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De los ejercicios de abajo (sacados del libro de Georgii, Stochastics) se proponen los siguientes:

7.2, 7.3, 7.4, 7.5 b) , 7.7, 7.9, 7.10, 7.12, 7.13, 7.14, 7.18, 7.25, 7.26, 7.29.

Aclaración 7.2: Dicho en otras palabras, es lo mismo que tener una muestra X1, · · · , Xn i.i.d con
X1 ∼ U [θ − 1

2 , θ +
1
2 ].
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(7.39) Example. Bayes estimate of the expectation of a normal distribution when the
variance is known. Let (Rn,Bn,Nϑ,v⊗n : ϑ ∈ R) be the n-fold Gaussian product
model with fixed variance v > 0, which has the likelihood function

�(x, ϑ) = (2πv)−n/2 exp
[
− 1

2v

n∑
i=1
(xi − ϑ)2

]
.

We choose a prior distribution which is also normal, namely α = Nm,u for m ∈ R and
u > 0. Using the maximum likelihood estimator M(x) = 1

n

∑n
i=1 xi and appropriate

constants cx , c′x > 0, we can then write

πx (ϑ) = cx exp
[
− 1

2u
(ϑ − m)2 − 1

2v

n∑
i=1
(xi − ϑ)2

]
= c′x exp

[
− ϑ

2

2

(1
u
+ n

v

)
+ ϑ

(m
u

+ n

v
M(x)

)]
= φT (x),u∗(ϑ) ;

here u∗ = 1/
( 1
u + n

v

)
and

T (x) =
1
u m + n

v
M(x)

1
u + n

v

.

(Since πx and φT (x),u∗ are both probability densities, the factor c′′x that appears in the
last step is necessarily equal to 1.) Hence, we obtain π x = NT (x),u∗ and, in particular,
T (x) = E(π x ). Theorem (7.38) thus tells us that T is the Bayes estimator correspond-
ing to the prior distribution α = Nm,u . Note that T is a convex combination of m and
M , which gives M more and more weight as either the number n of observations or
the prior uncertainty u increases. In the limit as n → ∞, we obtain an analogue of the
consistency statement (7.37); see also Problem 7.28.

Problems

7.1. Forest mushrooms are examined in order to determine their radiation burden. For this
purpose, n independent samples are taken, and, for each, the number of decays in a time unit is
registered by means of a Geiger counter. Set up a suitable statistical model and find an unbiased
estimator of the radiation burden.

7.2. Shifted uniform distributions. Consider the product model (Rn,B n,Uϑ⊗n : ϑ ∈ R),
where Uϑ is the uniform distribution on the interval

[
ϑ − 1

2 , ϑ + 1
2

]
. Show that

M = 1

n

n∑
i=1

Xi and T = 1

2

(
max
1≤i≤n

Xi + min
1≤i≤n

Xi
)

are unbiased estimators of ϑ . Hint: Use the symmetry of Uϑ for ϑ = 0.
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7.3. Discrete uniform distribution model. A lottery drum contains N lots labelled with the
numbers 1, 2, . . . , N . Little Bill, who is curious about the total number N of lots, uses an
unwatched moment to take a lot at random, read off its number, and return it to the drum. He
repeats this n times.

(a) Find a maximum likelihood estimator T of N that is based on the observed numbers
X1, . . . , Xn . Is it unbiased? Hint: Use Problem 4.5.

(b) Find an approximation to the relative expectation EN (T )/N for large N . Hint: Treat a
suitable expression as a Riemann sum.

7.4. Consider again the setting of Problem 7.3. This time little Bill draws n lots without
replacing them. Find the maximum likelihood estimator T of N , calculate EN (T ), and give an
unbiased estimator of N .

7.5. Determine a maximum likelihood estimator

(a) in the situation of Problem 7.1,

(b) in the real product model (Rn,B n, Q⊗n
ϑ : ϑ > 0), where Qϑ = βϑ,1 is the probability

measure on (R,B ) with density ρϑ(x) = ϑxϑ−1 1]0,1[(x),
and check whether it is unique.

7.6. Phylogeny. When did the most recent common ancestor V of two organisms A and B
live? In the ‘infinite-sites mutation model’, it is assumed that the mutations occur along the lines
of descent from V to A and V to B at the times of independent Poisson processes with known
intensity (i.e., mutation rate) μ > 0. It is also assumed that each mutation changes a different
nucleotide in the gene sequence. Let x be the observed number of nucleotides that differ in the
sequences of A and B. What is your maximum likelihood estimate of the age of V ? First specify
the statistical model!

7.7. A certain butterfly species is split into three types 1, 2 and 3, which occur in the genotypical
proportions p1(ϑ) = ϑ2, p2(ϑ) = 2ϑ(1 − ϑ) and p3(ϑ) = (1 − ϑ)2, 0 ≤ ϑ ≤ 1. Among
n butterflies of this species you have caught, you find ni specimens of type i . Determine a
maximum likelihood estimator T of ϑ . (Do not forget to consider the extreme cases n1 = n and
n3 = n.)

7.8. At the summer party of the rabbit breeders’ association, there is a prize draw for K rabbits.
The organisers print N ≥ K lots, of which K are winning lots, the remaining ones are blanks.
Much to his mum’s dismay, little Bill brings x rabbits home, 1 ≤ x ≤ K . How many lots did
he probably buy? Give an estimate using the maximum likelihood method.

7.9. Consider the geometric model (Z+,P(Z+),Gϑ : ϑ ∈ ]0, 1]). Determine a maximum
likelihood estimator of the unknown parameter ϑ . Is it unbiased?

7.10. Consider the statistical product model (Rn,B n, Q⊗n
ϑ : ϑ ∈ R). Suppose that Qϑ is

the so-called two-sided exponential distribution or Laplace distribution centred at ϑ , i.e., the
probability measure on (R,B ) with density

�ϑ(x) = 1
2 e

−|x−ϑ | , x ∈ R.

Find a maximum likelihood estimator of ϑ and show that it is unique for even n only. Hint: Use
Problem 4.15.
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7.11. Estimate of a transition matrix. Let X0, . . . , Xn be a Markov chain with finite state
space E , known initial distribution α and unknown transition matrix  . For a, b ∈ E , let
L(2)(a, b) = |{1≤ i ≤ n : Xi−1 = a, Xi = b}|/n be the relative frequency of the letter pair
(a, b) in the ‘random word’ (X0, . . . , Xn). The random matrix L(2) = (

L(2)(a, b)
)
a,b∈E is

called the empirical pair distribution. Define the empirical transition matrix T on E by

T (a, b) = L(2)(a, b)/L(a) if L(a) :=
∑
c∈E

L(2)(a, c) > 0 ,

and arbitrarily otherwise. Specify the statistical model and show that T is a maximum likelihood
estimator of . Hint: You can argue as in Example (7.7).

7.12. Consider the binomial model of Example (7.14). For any given n, find an estimator of ϑ
for which the mean squared error does not depend on ϑ .

7.13. Unbiased estimators can be bad. Consider the model (N,P(N), Pϑ : ϑ > 0) of the
conditional Poisson distributions

Pϑ ({n}) = Pϑ ({n}|N) =
ϑn

n! (eϑ − 1) , n ∈ N.

Show that the only unbiased estimator of τ(ϑ) = 1 − e−ϑ is the (useless) estimator T (n) =
1+ (−1)n , n ∈ N.

7.14. Uniqueness of best estimators. In a statistical model (X ,F , Pϑ : ϑ ∈ +), let S, T be
two best unbiased estimators of a real characteristic τ(ϑ). Show that Pϑ (S = T ) = 1 for all ϑ .
Hint: Consider the estimators S + c (T − S) for c ≈ 0.

7.15. Consider the negative binomial model (Z+,P(Z+),Br,ϑ : 0 < ϑ < 1) for given r > 0.
Determine a best estimator of τ(ϑ) = 1/ϑ and determine its variance explicitly for each ϑ .

7.16. Randomised response. In a survey on a delicate topic (‘Do you take hard drugs?’) it
is difficult to protect the privacy of the people questioned and at the same time to get reliable
answers. That is why the following ‘unrelated question method’ was suggested. A deck of
cards is prepared such that half of the cards contain the delicate question A and the other half a
harmless question B, which is unrelated to question A (‘Did you go to the cinema last week?’).
The interviewer asks the candidate to shuffle the cards, then to choose a card without showing
it to anyone, and to answer the question found on this card. The group of people questioned
contains a known proportion pB of people affirming question B (cinema-goers). Let ϑ = pA
be the unknown probability that the sensitive question A is answered positively. Suppose n
people are questioned independently. Specify the statistical model, find a best estimator of ϑ ,
and determine its variance.

7.17. Consider the n-fold Gaussian product model (Rn,B n,Nm,ϑ
⊗n : ϑ > 0) with known

expectation m ∈ R and unknown variance. Show that the statistic

T =
√
π

2

1

n

n∑
i=1

|Xi − m|

on Rn is an unbiased estimator of τ(ϑ) = √
ϑ , but that there is no ϑ at which Vϑ (T ) reaches

the Cramér–Rao bound τ ′(ϑ)2/I (ϑ).
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7.18. Shifted uniform distributions. Consider the situation of Problem 7.2. Compute the var-
iances Vϑ (M) and Vϑ (T ) of the estimators M and V , and decide which of them you would
recommend for practical use. Hint: For n ≥ 3 and ϑ = 1/2, determine first the joint distribution
density of min1≤i≤n Xi and max1≤i≤n Xi , and then the distribution density of T . Use also
(2.23).

7.19. Sufficiency and completeness. Let (X ,F , Pϑ : ϑ ∈ +) be a statistical model and
T : X → Σ a statistic with (for simplicity) countable range Σ . T is called sufficient if there
exists a family {Qs : s ∈ Σ} of probability measures on (X ,F ) that do not depend on ϑ and
satisfy Pϑ ( · |T = s) = Qs whenever Pϑ (T = s) > 0. T is called complete if g ≡ 0 is the
only function g : Σ → R such that Eϑ (g ◦ T ) = 0 for all ϑ ∈ +. Let τ be a real characteristic.
Show the following.

(a) Rao–Blackwell. If T is sufficient, then every unbiased estimator S of τ can be improved
as follows: Let gS(s) := EQs (S) for s ∈ Σ ; then the estimator gS ◦ T is unbiased and
satisfies Vϑ (gS ◦ T ) ≤ Vϑ (S) for all ϑ ∈ +.

(b) Lehmann–Scheffé. If T is sufficient and complete and S is an arbitrary unbiased estimator
of τ , then gS ◦ T is in fact a best estimator of τ . Hint: Argue by contradiction.

7.20. Let (X ,F , Pϑ : ϑ ∈ +) be an exponential model relative to a statistic T , and suppose
for simplicity that T takes values in Σ := Z+. Show that T is sufficient and complete.
7.21. Recall the situation of Problem 7.3 and show that the maximum likelihood estimator T
to be determined there is sufficient and complete.

7.22. Relative entropy and Fisher information. Let (X ,F , Pϑ : ϑ ∈+) be a regular statistical
model with finite sample space X . Show that

lim
ε→0

ε−2H(Pϑ+ε; Pϑ ) = I (ϑ)/2 for all ϑ ∈ +.

7.23. Estimation of the mutation rate in the infinite alleles model. For given n ≥ 1, consider
Ewens’ sampling distribution �n,ϑ with unknown mutation rate ϑ > 0, as defined in Problem
6.5(a). Show the following.

(a) {�n,ϑ : ϑ > 0} is an exponential family and Kn(x) :=
∑n

i=1 xi (the number of different
clans in the sample) is a best unbiased estimator of τn(ϑ) :=

∑n−1
i=0

ϑ
ϑ+i .

(b) The maximum likelihood estimator of ϑ is Tn := τ−1n ◦ Kn . (Note that τn is strictly
increasing.)

(c) The sequence (Kn/ log n)n≥1 of estimators ofϑ is asymptotically unbiased and consistent.
However, the squared error of Kn/ log n is of order 1/ log n, so it converges to 0 very slowly.

7.24. Estimation by the method of moments. Let (R,B, Qϑ : ϑ ∈ +) be a real-valued
statistical model, and let r ∈ N be given. Suppose that for each ϑ ∈ + and every k ∈ {1, . . . , r},
the kth moment mk(ϑ) := Eϑ (IdkR) of Qϑ exists. Furthermore, let g : Rr → R be continuous,
and consider the real characteristic τ(ϑ) := g(m1(ϑ), . . . ,mr (ϑ)). In the associated infinite
product model (RN,B⊗N, Q⊗N

ϑ : ϑ ∈ +), one can then define the estimator

Tn := g
( 1
n

n∑
i=1

Xi ,
1

n

n∑
i=1

X2i , . . . ,
1

n

n∑
i=1

Xri

)
of τ , which is based on the first n observations. Show that the sequence (Tn) is consistent.
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7.25. Consider the two-sided exponential model of Problem 7.10. For each n ≥ 1, let Tn be
a maximum likelihood estimator based on n independent observations. Show that the sequence
(Tn) is consistent.

7.26. Verify the consistency statement (7.37) for the posterior distributions in the binomial
model of Example (7.36).

7.27. Dirichlet and multinomial distributions. As a generalisation of Example (7.36), consider
an urn model in which each ball has one of a finite number s of colours (instead of only two).
Let + be the set of all probability densities on {1, . . . , s}. Suppose that the prior distribution α

on + is the Dirichlet distribution D� for some parameter � ∈ ]0,∞[s , which is defined by the
equation

D�(A) =
�
(∑s

i=1 �(i)
)∏s

i=1 �
(
�(i)

) ∫
1A(ϑ)

s∏
i=1
ϑ
�(i)−1
i dϑ1 . . . dϑs−1 , A ∈ B+.

(The integral runs over all (ϑ1, . . . , ϑs−1) for whichϑ := (ϑ1, . . . , ϑs−1, 1−
∑s−1

i=1 ϑi ) belongs
to+. The fact thatD� is indeed a probability measure will follow for instance from Problem 9.8.
In the case � ≡ 1, D� is the uniform distribution on +.) We take a sample of size n with
replacement. For each colour compositionϑ ∈ +, the colour histogram then has themultinomial
distributionMn,ϑ . Determine the associated posterior distribution.

7.28. Asymptotics of the residual uncertainty as the information grows. Consider Example
(7.39) in the limit as n → ∞. Let x = (x1, x2, . . . ) be a sequence of observed values in R
such that the sequence of averages Mn(x) = 1

n
∑n

i=1 xi remains bounded. Let π
(n)
x be the

posterior density corresponding to the outcomes (x1, . . . , xn) and the prior distribution Nm,u .

Let θn,x be a random variable with distribution π
(n)
x . Show that the rescaled random variables√

n/v (θn,x − Mn(x)) converge in distribution toN0,1.
7.29. GammaandPoisson distribution. Let (Zn+,P(Zn+),P⊗n

ϑ : ϑ > 0) be the n-fold Poisson
product model. Suppose the prior distribution is given by α = Γa,r , the gamma distribution
with parameters a, r > 0. Find the posterior density πx for each x ∈ Zn+, and determine the
Bayes estimator of ϑ .


