
Probabilidades y estad́ıstica (M)
Práctica 1

De la lista de ejercicios de abajo (sacados del libro ‘Stochas-
tics’ de Georgii), hacer los siguientes:

1.1, 1.6-1.13, 1.15-1.17.
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Proof. By (1.29) we have −∞ < X (u) < ∞ for all 0 < u < 1. In fact, X is a
left-continuous inverse of F ; compare Figure 1.4. Indeed, X (u) ≤ c holds if and only
if u ≤ F(c); this is because, by the right-continuity of F , the in�mum in the de�nition
of X is in fact a minimum. In particular, {X ≤ c} = ]0, F(c)] ∩ ]0, 1[ ∈ B]0,1[.
Together with Example (1.26) this shows that X is a random variable. Furthermore,
the set {X ≤ c} has Lebesgue measure F(c). Hence F is the distribution function of
X . ✸

Since every probability measure P on (R, B) is uniquely determined by its distri-
bution function, we can rephrase the proposition as follows: Every P on (R, B) is the
distribution of a random variable on the probability space (]0, 1[, B]0,1[, U]0,1[). This
fact will repeatedly be useful.
The connection between distribution functions and probability densities is made by

the notion of a distribution density.

(1.31) Remark and De�nition. Existence of a distribution density. Let X be a real
random variable on a probability space (
, F , P). Its distribution P ◦ X−1 admits a
Lebesgue density � if and only if

FX (c) =
� c

−∞
�(x) dx for all c ∈ R.

Such a � is called the distribution density of X . In particular, P ◦ X−1 admits a
continuous density � if and only if FX is continuously differentiable, and then � = F �

X .
This follows directly from (1.8d) and the uniqueness theorem (1.12).

Problems

1.1. Let (
, F ) be an event space, A1, A2, . . . ∈ F and

A = {ω ∈ 
 : ω ∈ An for in�nitely many n}.

Show that (a) A = �
N≥1



n≥N An , (b) 1A = lim supn→∞ 1An .

1.2. Let 
 be uncountable and G = {{ω} : ω ∈ 
} the system of the singleton subsets of 
.
Show that σ (G ) = {A ⊂ 
 : A or Ac is countable}.
1.3. Show that the Borel σ-algebraB n on Rn coincides withB ⊗n , the n-fold product of the
Borel σ-algebraB on R.

1.4. Let 
 ⊂ Rn be at most countable. Show thatB n

 = P(
).

1.5. Let Ei , i ∈ N, be countable sets and 
 = �
i≥1 Ei their Cartesian product. Denote by

Xi : 
 → Ei the projection onto the i th coordinate. Show that the system

G =
�
{X1 = x1, . . . , Xk = xk} : k ≥ 1, xi ∈ Ei

�
∪

�
∅

�

is an intersection-stable generator of the product σ-algebra
�

i≥1P(Ei ).
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1.6. Inclusion�exclusion principle. Let (
,F , P) be a probability space and Ai ∈F , i ∈ I =
{1, . . . , n}. For J ⊂ I let

BJ =
�

j∈J
Aj ∩

�

j∈I\J
Acj ;

by convention, an intersection over an empty index set is equal to 
. Show the following:

(a) For all K ⊂ I ,

P
� �
k∈K

Ak
�

=
�

K⊂J⊂I

P(BJ ).

(b) For all J ⊂ I ,

P(BJ ) =
�

J⊂K⊂I

(−1)|K\J |P
� �
k∈K

Ak
�
.

What does this imply for J = ∅?

1.7. Bonferroni inequality. Let A1, . . . , An be any events in a probability space (
, F , P).
Show that

P
� n	

i=1
Ai



≥

n�

i=1
P(Ai ) −

�

1≤i< j≤n
P(Ai ∩ Aj ) .

1.8. A certain Chevalier de Méré, who has become famous in the history of probability theory
for his gambling problems and their solutions by Pascal, once mentioned to Pascal how surprised
he was that when throwing three dice he observed the total sum of 11 more often than the sum of
12, although 11 could be obtained by the combinations 6-4-1, 6-3-2, 5-5-1, 5-4-2, 5-3-3, 4-4-3,
and the sum of 12 by as many combinations (which ones?). Can we consider his observation
as caused by �chance� or is there an error in his argument? To solve the problem, introduce a
suitable probability space.

1.9. In a pack of six chocolate drinks every carton is supposed to have a straw, but it is missing
with probability 1/3, with probability 1/3 it is broken and only with probability 1/3 it is in
perfect condition. Let A be the event �at least one straw is missing and at least one is in perfect
condition�. Exhibit a suitable probability space, formulate the event A set-theoretically, and
determine its probability.

1.10. Alice and Bob agree to play a fair game over 7 rounds. Each of them pays e 5 as an
initial stake, and the winner gets the total of e 10. At the score of 2 : 3 they have to stop the
game. Alice suggests to split the winnings in this ratio. Should Bob accept the offer? Set up an
appropriate model and calculate the probability of winning for Bob.

1.11. The birthday paradox. Let pn be the probability that in a class of n children at least
two have their birthday on the same day. For simplicity, we assume here that no birthday is on
February 29th, and all other birthdays are equally likely. Show (using the inequality 1−x ≤ e−x )
that

pn ≥ 1− exp (−n(n − 1)/730) ,

and determine the smallest n such that pn ≥ 1/2.

1.12. The rencontre problem. Alice and Bob agree to play the following game: From two
completely new, identical sets of playing cards, one is well shuf�ed. Both piles are put next to
each other face down, and then revealed card by card simultaneously. Bob bets (for a stake of
e 10) that in this procedure at least two identical cards will be revealed at the same time. Alice,
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however, is convinced that this is �completely unlikely� and so bets the opposite way. Who do
you think is more likely to win? Set up an appropriate model and calculate the probability of
winning for Alice. Hint: Use Problem 1.6(b); the sum that appears can be approximated by the
corresponding in�nite series.

1.13. Let X, Y, X1, X2, . . . be real random variables on an event space (
, F ). Prove the
following statements.

(a) (X, Y ) : 
 → R2 is a random variable.
(b) X + Y and XY are random variables.

(c) supn∈N Xn and lim supn→∞ Xn are random variables (taking values in R̄).
(d) {X = Y } ∈ F , {limn→∞ Xn exists} ∈ F , {X = limn→∞ Xn} ∈ F .

1.14. Let (
, F ) = (R,B) and X : 
 → R be an arbitrary real function. Verify the
following:

(a) If X is piecewise monotone (i.e., R may be decomposed into at most countably many
intervals, on each of which X is either increasing or decreasing), then X is a random
variable.

(b) If X is differentiable with (not necessarily continuous) derivative X �, then X � is a random
variable.

1.15. Properties of distribution functions. Let P be a probability measure on (R,B) and
F(c) = P(]−∞, c]), for c ∈ R, its distribution function. Show that F is monotone increasing
and right-continuous, and (1.29) holds.

1.16. Consider the two cases

(a) 
 = [0, ∞[, �(ω) = e−ω, X (ω) = (ω/α)1/β for ω ∈ 
 and α, β > 0,

(b) 
 = ]−π/2,π/2[, �(ω) = 1/π , X (ω) = sin2 ω for ω ∈ 
.

In each case, show that � is a probability density and X a random variable on (
, B
), and
calculate the distribution density of X with respect to the probability measure P with density �.
(The distribution of X in case (a) is called theWeibull distribution with parameters α, β, in case
(b) the arcsine distribution.)

1.17. Transformation to uniformity. Prove the following converse to Proposition (1.30): If
X is a real random variable with a continuous distribution function FX = F, then the random
variable F(X) is uniformly distributed on [0, 1].


