- 1. En la cola para comprar entradas para un recital hay 100 personas. La cantidad de entradas que compra una persona tiene media 2.4 y varianza $\sigma = 4$. Si hay en total 250 entradas a la venta, usando TCL aproximar la probabilidad que que todas las personas en la cola consigan sus entradas.
- 2. Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aletatorias iid tales que $X_n \sim Be(p)$. Sea

$$\overline{X}_n = \sum_{i=1}^n \frac{X_n}{n}.$$

Mostrar que

$$\frac{\sqrt{n}(\overline{X}_n - p)}{\sqrt{\overline{X}_n(1 - \overline{X}_n)}} \xrightarrow{D} Z,$$

con $Z \sim \mathcal{N}(0,1)$.

3. Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias iid con media $\mu_X \neq 0$, varianza σ_X , y sea $(Y_n)_{n\in\mathbb{N}}$ una sucesión de variableas aletatorias iid con media μ_Y , varianza σ_Y , tal que Y_j , X_k son independientes para todo j,k. Mostrar que

$$\sqrt{n}\left(\frac{\overline{Y}_n}{\overline{X}_n} - \frac{\mu_Y}{\mu_X}\right) \xrightarrow{D} N,$$

(suponiendo $\overline{X}_n \neq 0$) con $N \sim \mathcal{N}(0, \sigma^2)$ para algún σ y encontrar σ .