Análisis Complejo

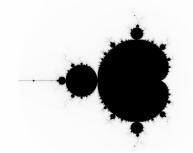
Práctica N°3.

- 1. Sea $\alpha \in \mathbb{C}$ con $|\alpha| < 1$.
 - (a) Calcular $\lim_{n\to\infty} \alpha^n$.
 - (b) Calcular $\lim_{n\to\infty} (1+\alpha+\cdots+\alpha^n)$.
- 2. Calcular, en caso de que existan, los límites de las siguientes sucesiones:
- (i) $\frac{1}{n}i^n$, (ii) $n\left(\frac{1+i}{\sqrt{2}}\right)^n$, (iii) $\cos(n\pi) + i\frac{\sin(\frac{n}{2})}{n^2}$, (iv) $\left(\frac{1+2i^n}{3}\right)^n$, (v) $n\left(\frac{1+i}{2}\right)^n$.

- 3. Se define el conjunto de Mandelbrot como el conjunto $\mathcal M$ de los $z\in\mathbb C$ tales que la sucesión recursiva definida por:

$$z_0 = 0, \quad z_{n+1} = z_n^2 + z,$$

resulta acotada.



Demostrar que $\mathcal{M} \subset \{|z| \leq 2\}$.

- 4. Estudiar la convergencia de la serie cuyo término general es el siguiente:
 - (i) $a_n = \frac{n+1}{2n+1}$, (ii) $a_n = \frac{n}{2n^2+3}$, (iii) $a_n = \frac{1}{\sqrt{n+5}}$,
- (iv) $a_n = \log(1 + \frac{1}{n}),$ (v) $a_n = \sin(\frac{1}{n^2}).$
- 5. Demostrar que la serie de término general $a_n = \frac{1}{n^p \log(n)^q}, n \ge 2$,

 - (i) converge si q > 0 y p > 1, (ii) converge si q > 1 y p = 1,

 - (iii) diverge si q > 0 si p < 1, (iv) diverge si $0 < q \le 1$ y p = 1.
- 6. Hallar el radio de convergencia de las siguientes series de potencia:
 - (i) $\sum_{n=0}^{\infty} \frac{1}{(n+1)^3 4^n} z^n$, (ii) $\sum_{n=1}^{\infty} \frac{(1+2i)^n}{n^n} z^n$, (iii) $\sum_{n=0}^{\infty} (\frac{1}{2})^{n^2} z^n$, (iv) $\sum_{n=0}^{\infty} 4^{n^2} z^n$, (v) $\sum_{n=0}^{\infty} \frac{1}{2^n} z^{n^2}$, (vi) $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$.

- 7. Sea $k \in \mathbb{N}$. Probar que $\sum_{n=0}^{\infty} a_n z^n$ y $\sum_{n=0}^{\infty} a_n n^k z^n$ tienen el mismo radio de convergencia.
- 8. Sean $(a_n)_{n\geq 0}$ y $(z_n)_{n\geq 0}$ sucesiones de números complejos.
 - (a) Criterio de Dedekind. Demostrar que si $\lim a_n = 0$, $\sum_{n=0}^{\infty} (a_n a_{n+1})$ converge absolutamente y las sumas parciales de $\sum_{n=1}^{\infty} z_n$ están acotadas, entonces $\sum_{n=0}^{\infty} a_n z_n$ converge.
 - (b) Criterio de Bois-Reymond. Demostrar que si $\sum_{n=0}^{\infty} (a_n a_{n+1})$ converge absolutamente y $\sum_{n=0}^{\infty} z_n$ converge, entonces $\sum_{n=1}^{\infty} a_n z_n$ converge.
- 9. Hallar el radio de convergencia de las siguientes series y estudiar el comportamiento en el borde del disco de convergencia:

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n} z^n,$$

(ii)
$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+2}} z^n,$$

(iii)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}} z^n,$$

(iv)
$$\sum_{n=0}^{\infty} \frac{4^n}{5^n} z^n$$

$$(v) \qquad \sum_{n=0}^{\infty} \frac{1}{(n+2)^n} z^n$$

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n} z^n$$
, (ii) $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+2}} z^n$, (iii) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}} z^n$, (iv) $\sum_{n=0}^{\infty} \frac{4^n}{5^n} z^n$, (v) $\sum_{n=0}^{\infty} \frac{1}{(n+2)^n} z^n$, (vi) $\sum_{n=1}^{\infty} \frac{n!}{(2-i)n^2} z^n$, (vii) $\sum_{n=0}^{\infty} \frac{1}{1+(1+i)^n} z^n$, (viii) $\sum_{n=1}^{\infty} n! z^n^2$, (ix) $\sum_{n=1}^{\infty} z^n!$,

(vii)
$$\sum_{n=0}^{\infty} \frac{1}{1+(1+i)^n} z^n$$

(viii)
$$\sum_{n=1}^{\infty} n! z^{n^2}$$

(ix)
$$\sum_{n=1}^{\infty} z^{n!}$$

(x)
$$\sum_{n=0}^{\infty} \operatorname{sen} n \, z^n$$

(x)
$$\sum_{n=0}^{\infty} \operatorname{sen} n \, z^n$$
, (xi) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} z^{n(n+1)}$.

10. Hallar los valores de $z \in \mathbb{C}$ para los cuales las siguientes series resultan convergentes:

(i)
$$\sum_{n=0}^{\infty} \frac{(z+i)^n}{(n+1)(n+2)}$$
, (ii) $\sum_{n=1}^{\infty} \frac{1}{n+|z|}$, (iii) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+|z|}$, (iv) $\sum_{n=1}^{\infty} \frac{3^n}{nz^n}$, (v) $\sum_{n=1}^{\infty} \frac{e^{nz}}{n^2}$, (vi) $\sum_{n=1}^{\infty} \frac{e^{inz}}{n+1}$.

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{n+|z|},$$

(iii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+|z|}$$

(iv)
$$\sum_{n=1}^{\infty} \frac{3^n}{nz^n}$$

$$(v) \quad \sum_{n=1}^{\infty} \frac{e^{nz}}{n^2},$$

(vi)
$$\sum_{n=1}^{\infty} \frac{e^{inz}}{n+1}$$

- 11. Sea $m \in \mathbb{N}$. Demostrar que los conjuntos de convergencia de las series $\sum_{n=1}^{\infty} a_n z^n$ y $\sum_{n=1}^{\infty} a_{m+n} z^n$ son iguales.
- 12. Sea $f(z) = \sum_{n} a_n z^n$ una serie de potencias con radio de convergencia $\rho > 0$.
 - (a) Demostrar que f(-z) = f(z) para todo z con $|z| < \rho$ si y solo si $a_n = 0$ para todo nimpar.
 - (b) Demostrar que f(-z) = -f(z) para todo z con $|z| < \rho$ si y solo si $a_n = 0$ para todo n
- 13. La sucesión de Fibonacci se define recursivamente por $a_0 = 0$, $a_1 = 1$ y $a_n = a_{n-1} + a_{n-2}$ para $n \ge 2$.
 - (a) Probar que $R(z) = \sum_{n=0}^{\infty} a_n z^n$ tiene radio de convergencia positivo, y la función R(z) es una función racional. Hallar una fórmula explícita para R(z).
 - (b) Descomponiendo R(z) en fracciones simples y usando la suma de la serie geométrica, obtener un nuevo desarrollo de R(z) en serie de potencias.
 - (c) Comparar ambos desarrollos y obtener una fórmula cerrada para el n-ésimo término de la sucesión de Fibonacci.