RECUPERATORIO PRIMER PARCIAL - TOPOLOGÍA 2023

1. El toro T se define como el cociente de $[0,2\pi] \times [0,2\pi]$ con la topología usual por la relación de equivalencia generada por

$$(x,0) \sim (x,2\pi)$$
 para todo x en $[0,2\pi]$ y $(0,y) \sim (2\pi,y)$ para todo y en $[0,2\pi]$.

Probar que

- a) el toro T es un espacio Hausdorff y compacto,
- b) la función cociente $p:[0,2\pi]\times[0,2\pi]\to T$ es cerrada pero no es abierta.
- 2. Probar que un espacio es localmente conexo si y sólo si todo subespacio abierto tiene la propiedad de que todas sus componentes conexas son abiertas.
- 3. Dado un espacio X probar que las siguientes propiedades son equivalentes:
 - a) si A y B son tales que $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ entonces se pueden separar por abiertos,
 - b) todo subespacio es normal,
 - c) todo subespacio abierto es normal.
- 4. Sea Xun espacio Hausdorff compacto. Probar que para toda $f:X\to X$ continua, si definimos

$$S = \bigcap_{n \in \mathbb{N}} f^n(X)$$

entonces S es un subespacio no vacio que es cerrado y verifica que f(S) = S.

- 5. Sea $p: X \to Y$ una función cociente, probar que
 - a) si S es un subespacio cerrado de Y entonces $p_S: f^{-1}(S) \to S$ es cociente,
 - b) si $q:Y'\to Y$ es continua con Y' un espacio Hausdorff localmente compacto y Y un espacio Hausdorff entonces el cambio de base $p':X'\to Y'$ es una función cociente.

Sugerencia: Para la segunda parte factorizar q por su gráfico.