ÁLGEBRA III

Práctica 5 – Segundo Cuatrimestre de 2023

Cuerpos finitos y extensiones ciclotómicas

Ejercicio 1. Sea K un cuerpo finito. Pruebe que el grupo multiplicativo K^{\times} es cíclico. Concluya que toda extensión finita de un cuerpo finito es simple.

Ejercicio 2. Sea $p \in \mathbb{N}$ un primo y sean $n, m \in \mathbb{N}$. Pruebe que $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^m}$ si y solo si $n \mid m$.

Ejercicio 3. Sea K un cuerpo de q elementos.

- 1. Sea $f \in K[X]$ irreducible. Pruebe que $f \mid X^{q^n} X$ si y solo si $gr(f) \mid n$.
- 2. Pruebe que $X^{q^n} X = \prod_{d|n} (\prod f)$, donde el producto de adentro recorre todos los $f \in K[X]$ irreducibles mónicos de grado d.
- 3. Pruebe que $q^n = \sum_{d|n} u(d)d$, donde u(d) es la cantidad de polinomios mónicos irreducibles de grado d en K[X].
- 4. Calcule cuántos polinomios irreducibles de grados 3 y 4 hay en un cuerpo de 2^{12} elementos y en un cuerpo de 3^{12} elementos.
- 5. * Obtenga una fórmula cerrada para u(n) para todo $n \in \mathbb{N}$.
- **Ejercicio 4.** Sea $f \in \mathbb{F}_q[X]$ irreducible de grado n y sea $k \in \mathbb{N}$. Pruebe que f se factoriza en $\mathbb{F}_{q^k}[X]$ como producto de polinomios irreducibles de grado n/d, donde d = (n : k). Concluya que f sigue siendo irreducible en $\mathbb{F}_{q^k}[X]$ si y solo si n y k son coprimos.
- * **Ejercicio 5.** Sea $p \in \mathbb{N}$ primo. Sea C una clausura algebraica de \mathbb{F}_p . Pruebe que existe un elemento en $\operatorname{Gal}(C/\mathbb{F}_p)$ que no es una potencia del automorfismo de Frobenius $\sigma: C \to C$ dado por $\sigma(x) = x^p$. Más aun, caracterice el grupo de Galois $\operatorname{Gal}(C/\mathbb{F}_p)$.
- **Ejercicio 6.** Sea \mathbb{F}_{q^n} una extensión finita de \mathbb{F}_q . Pruebe que la norma y la traza de la extensión $\mathbb{F}_{q^n}/\mathbb{F}_q$ son sobreyectivas. ¿Es esto cierto para una extensión de cuerpos arbitraria (es decir, sin asumir que ninguno de los cuerpos es finito)?
- **Ejercicio 7.** Sea $n \in \mathbb{N}$ impar, y sea K un cuerpo de característica distinta de 2. Pruebe que K contiene a una raíz n-ésima primitiva de la unidad si y solo si contiene una raíz 2n-ésima primitiva de la unidad.

Ejercicio 8.

- 1. Sea K/\mathbb{Q} una extensión finita. Pruebe que hay solo un número finito de raíces de la unidad en K.
- 2. Halle todas las raíces de la unidad en K cuando K es uno de los siguientes cuerpos: $\mathbb{Q}[i]$, $\mathbb{Q}[\sqrt{-2}]$, $\mathbb{Q}[\xi_9]$, $\mathbb{Q}[\sqrt{2},\sqrt{-3}]$, $\mathbb{Q}[\sqrt[p]{2}]$.

Ejercicio 9. Halle todos los $n \in \mathbb{N}$ tales que Φ_n es irreducible sobre $\mathbb{Q}(\xi_9)$.

Ejercicio 10. Sea $p \in \mathbb{N}$ primo. Calcule la norma y la traza de ξ_p en $\mathbb{Q}[\xi_p]/\mathbb{Q}$.

Ejercicio 11. Sea Φ_n el *n*-ésimo polinomio ciclotómico sobre \mathbb{Q} . Pruebe que:

- 1. Si p es primo y $r \in \mathbb{N}$, entonces $\Phi_{p^r}(X) = \Phi_p(X^{p^{r-1}})$.
- 2. Si p es primo y p no divide a n, entonces $\Phi_{pn}(X)\Phi_n(X) = \Phi_n(X^p)$.
- 3. Calcule explícitamente Φ_{18} y Φ_{30} .

Ejercicio 12. Sea K un cuerpo de q elementos y sea $n \in \mathbb{N}$ coprimo con $\operatorname{car}(K)$. Sea $E = K[\xi_n]$, donde ξ_n es una raíz primitiva n-ésima de la unidad. Pruebe que:

- 1. Vale [E:K]=m, donde $m \in \mathbb{N}$ es el menor natural tal que $n \mid q^m-1$.
- 2. El polinomio Φ_n se factoriza en K[X] como producto de polinomios irreducibles de grado m.
- 3. El polinomio Φ_n es irreducible en K[X] si y solo si q tiene orden $\varphi(n)$ en \mathcal{U}_n , el grupo de unidades de $\mathbb{Z}/n\mathbb{Z}$.

Ejercicio 13. Pruebe que $f = X^4 + 1$ es reducible en $\mathbb{F}_p[X]$ para todo $p \in \mathbb{N}$ primo. ¿Es f reducible en $\mathbb{Z}[X]$?

Ejercicio 14. Pruebe que:

- 1. \mathbb{F}_3 no contiene raices 13-ésimas de la unidad distintas de 1.
- 2. Si $\xi_{13} \in \overline{\mathbb{F}_3}$ es una raíz 13-ésima primitiva de la unidad, entonces $[\mathbb{F}_3[\xi_{13}] : \mathbb{F}_3] = 3 < \varphi(13)$.

Ejercicio 15. Sea $n, m \in \mathbb{Z}$. Pruebe que el polinomio $x^6 - (5n+1)x^3 + (5m+1)$ es irreducible en $\mathbb{Q}[X]$.

Ejercicio 16. Halle todos los $n \in \mathbb{N}$ tales que Φ_n es irreducible en $\mathbb{F}_9[X]$.

Ejercicio 17. Sea $p \in \mathbb{N}$ primo. Halle todos los $n \in \mathbb{N}$ tales que Φ_6 es irreducible en \mathbb{F}_{p^n} .

Ejercicio 18. Factorice Φ_7 en $\mathbb{F}_{27}[X]$, y $\Phi_9(X)$ en $\mathbb{F}_7(t)[X]$.

Ejercicio 19. Sea K un cuerpo de q elementos y sea n coprimo con q. Sea $\xi_n \in \overline{K}$ una raíz primitiva n-ésima de la unidad. Pruebe que

$$\xi_n + {\xi_n}^{-1} \in K \iff q \equiv \pm 1 \mod n.$$

Ejercicio 20. Decimos que $f \in \mathbb{F}_q[X]$ irreducible es *primitivo* si alguna de sus sus raíces genera multiplicativamente su cuerpo de descomposición.

- 1. Pruebe que todas las raíces de f primitivo son raíces primitivas de la unidad.
- 2. Halle la cantidad de polinomios primitivos de grado n en $\mathbb{F}_q[X]$.

Ejercicio 21. (Test de Rabin) Sean p_1, \ldots, p_k los divisores primos de n. Notamos $n_i = n/p_i$ para $i = 1, \ldots, k$. Pruebe que un polinomio $f \in \mathbb{F}_q[X]$ de grado n es irreducible si y solo si $\gcd(f, X^{q^{n_i}} - X) = 1$ para todo $i = 1, \ldots, k$, y f divide a $X^{q^n} - X$.

Ejercicio 22. (Algoritmo de Berlekamp) Sea $f \in \mathbb{F}_q[X]$ libre de cuadrados. Sea $K \subseteq \mathbb{F}_q[X]/f\mathbb{F}_q[X]$ el núcleo del endomorfismo $g \mapsto g^q - g$.

- 1. Pruebe que K es una \mathbb{F}_q -subálgebra de $\mathbb{F}_q[X]/f\mathbb{F}_q[X]$.
- 2. Pruebe que la cantidad de factores irreducibles de f coincide con $\dim_{\mathbb{F}_q} K$.
- 3. Pruebe que $f(X) = \prod_{a \in \mathbb{F}_q} \gcd(f(X), g(X) a)$ para todo $g \in K$.

Ejercicio 23. Sea $\xi = \xi_p$ una raíz p-ésima primitiva de la unidad con p primo. Pruebe que $\mathbb{Z}[\xi]/(1-\xi)\mathbb{Z}[\xi] \simeq \mathbb{F}_p$.

Ejercicio 24. Sea $P \in \mathbb{Z}[X_1, \dots, X_n]$. Supongamos que para cierta n-upla $(\xi_1, \dots, \xi_n) \in \mu_p(\mathbb{C})^n$ de raíces p-ésimas de la unidad (no necesariamente primitivas) se tiene que $P(\xi_1, \dots, \xi_n) = 0$. Pruebe que $P(1, \dots, 1) \equiv 0 \mod (p)$.

Ejercicio 25. Sea $g \in \mathbb{F}_p[X] \setminus \{0\}$ de grado menor que p. Sea $\alpha \in \mathbb{F}_p^{\times}$. Pruebe que la multiplicidad de α como raíz de g es menor que la cantidad de coeficientes no nulos de g.

* **Ejercicio 26.** (Principio finito de incertidumbre) Sea $A \in \mathbb{C}^{p \times p}$ la matriz de Vandemonde definida por las raíces p-ésimas de la unidad. Pruebe que todos sus menores son inversibles. Sugerencia: use los ejercicios anteriores.

Ejercicio 27. (Chevalley-Warning) Sean p primo y $q = p^m$ para cierto $m \ge 1$.

- 1. Pruebe que para todo $k = 1, \dots, q 2$ se tiene $\sum_{x \in \mathbb{F}_q} x^k = 0$.
- 2. Si $f \in \mathbb{F}_q[X_1, \dots, X_n]$ es de grado total menor que n(q-1), pruebe que $\sum_{x \in \mathbb{F}_q^n} f(x) = 0$.
- 3. Sea $\{f_i\}_{i=1}^r\subseteq \mathbb{F}_q[X_1,\ldots,X_n]$. Pruebe que el número de soluciones de $f_1(x)=\ldots=f_r(x)=0$ es congruente módulo p a $\sum_{x\in\mathbb{F}_q^n}\prod_{i=1}^r(1-f_i^{q-1}(x))$.
- 4. Supongamos además que f_i tiene grado total d_i y $\sum d_i < n$. Pruebe que el número de soluciones de $f_1(x) = \ldots = f_r(x) = 0$ es múltiplo de p.

Ejercicio 28. Sean $a, b, c \in \mathbb{F}_q^{\times}$ con q impar. Pruebe que existen $x, y \in \mathbb{F}_q$ tales que $ax^2 + by^2 = c$. Sugerencia: homogeneice la ecuación.

Ejercicio 29. Sean p > 2 primo y $g \in \mathbb{F}_p^{\times}$ una raíz primitiva (es decir, un generador del grupo multiplicativo). Para $x \in \mathbb{F}_p^{\times}$ notamos $\log_g(x)$ al menor entero no negativo k tal que $g^k = x$. Pruebe que

$$\log_g(x) \equiv -1 + \sum_{i=1}^{p-2} \frac{x^i}{g^{-i} - 1}.$$

En particular, el polinomio que interpola al logaritmo discreto módulo p tiene por coeficientes una permutación de \mathbb{F}_p^{\times} .

Ejercicio 30. (Lucas–Lehmer) Sean $p \ge 3$ primo, $q = 2^p - 1$ y r el menor divisor primo de q. Se define recursivamente la sucesión $s_0 = 4$, $s_{k+1} = s_k^2 - 2$.

- 1. Pruebe que $s_k = (2 + \sqrt{3})^{2^k} + (2 \sqrt{3})^{2^k}$.
- 2. Pruebe que 2 es resto cuadrático $\mod(r)$.
- 3. Pruebe que el grupo de unidades de $R := \mathbb{F}_r[X]/(X^2-3)$ tiene orden a lo sumo r^2-1 .
- 4. Pruebe que si q es primo entonces 3 no es un cuadrado en \mathbb{F}_q .
- * 5. Pruebe que q es primo si y sólo si $s_{p-2} \equiv 0 \mod (q)$.
- * **Ejercicio 31.** Con ayuda de una computadora, pruebe que $M_{127} := 2^{127} 1$ es primo.

Ejercicio 32. Sea $p \equiv 3 \pmod{4}$ primo. Pruebe que 2p+1 también es primo si y solo si 2p+1 divide a 2^p-1 .

Ejercicio 33. (Teorema de Kronecker) Sea $f = \prod_{i=1}^n (X - \alpha_i)$ la factorización en \mathbb{C} de un $f \in \mathbb{Z}[X]$ mónico. Supongamos que $0 < |\alpha_i| \le 1$ para todo $i = 1, \ldots, n$. Pruebe que:

- 1. $f_m := \prod_{i=1}^n (X \alpha_i^m) \in \mathbb{Z}[X].$
- 2. Los coeficientes de f_m están acotados.
- 3. $\{f_m\}_{m\geq 1}$ solo recorre un número finito de polinomios.
- 4. f es un producto de polinomios ciclotómicos.
- 5. Existe $\alpha \in \overline{\mathbb{Q}} \setminus \overline{\mathbb{Z}}$ con la propiedad de tener todos sus conjugados (es decir, todas las raíces de su polinomio minimal sobre \mathbb{Q}) de módulo 1.

Ejercicio 34. Sea $f = (X^2 + X + 1)^2 - 2X^2$. Pruebe que:

- a) f es irreducible en $\mathbb{Q}[X]$.
- b) f tiene exactamente dos raíces de valor absoluto 1.
- * **Ejercicio 35.** Sean $\alpha, \beta \in \mathbb{C}$ raíces primitivas de la unidad de órdenes p y p-1 respectivamente, con p>2 primo. Sea $g\in \mathbb{F}_p^{\times}$ un generador del grupo multiplicativo. Para $j=1,\ldots,p-1$ definimos $t_j:=\sum_{k=1}^{p-1}\alpha^{g^k}\beta^{jk}$.
 - 1. Halle $Gal(\mathbb{Q}[\alpha, \beta]/\mathbb{Q}[\beta])$.
 - 2. Pruebe que $\alpha = \frac{1}{p-1}(t_1 + \ldots + t_{p-1}).$
 - 3. Pruebe que $(t_i)^{p-1} \in \mathbb{Q}[\beta]$.
 - 4. Pruebe que $t_i(t_1)^{p-1-j} \in \mathbb{Q}[\beta]$.

Ejercicio 36. (Suma de Gauss) Sean $g := \sum_{k=0}^{p-1} \xi_p^{k^2}$, donde $\xi_p \in \mathbb{C}$ es una raíz primitiva de orden p primo, y σ un generador de $\mathrm{Gal}(\mathbb{Q}[\xi_p]/\mathbb{Q})$. Pruebe que:

1)
$$g = \sum_{k=0}^{p-2} (-1)^k \sigma^k(\xi_p)$$
.

2) $g^2 = (-1)^{(p-1)/2}p$. Deduzca nuevamente cuál es la única subextensión cuadrática de $\mathbb{Q}[\xi_p]/\mathbb{Q}$ para p > 2 primo.

Ejercicio 37. Sea $A \in GL_n(\mathbb{F}_q)$.

- 1. Pruebe que el orden de A es a lo sumo $q^n 1$.
- 2. Halle el orden de $GL_n(\mathbb{F}_q)$.

Ejercicio 38. Sean p_1, \ldots, p_n números primos positivos distintos y $f \in \mathbb{Q}[X]$ el polinomio minimal de $\sqrt{p_1} + \ldots + \sqrt{p_n}$. Probar que para todo primo p la reducción de f módulo p se factoriza como producto de polinomios de grados 1 y 2.

Ejercicio 39. Le damos a \mathbb{F}_{q^n} estructura de $\mathbb{F}_q[X]$ -módulo, donde X actúa como el automorfismo de Frobenius $X \cdot \alpha := \alpha^q$.

- 1. Pruebe que los submódulos de \mathbb{F}_{q^n} admiten un *vector cíclico* (es decir, son monogenerados).
- 2. Pruebe que \mathbb{F}_{q^n} admite una base normal.
- * **Ejercicio 40.** Sea $q=2^p-1$ un primo de Mersenne. Supongamos que $X^p+X+1 \in \mathbb{F}_2[X]$ es irreducible. Pruebe que $X^q+X+1 \in \mathbb{F}_2[X]$ es irreducible. Sugerencia: use el ejercicio anterior.
- * Ejercicio 41. Para cada $n \ge 1$ notamos $B_n \subseteq \mu_n(\mathbb{C})$ al conjunto de raíces primitivas n-ésimas de la unidad.
- (a) Halle $\sum_{\xi \in B_n} \xi$.
- (b) Pruebe que B_n es una base normal de $\mathbb{Q}[\xi_n]/\mathbb{Q}$ si y sólo si n es libre de cuadrados.
- * **Ejercicio 42.** Para $f \in \mathbb{F}_q[X]$, denotamos $\varphi_q(f)$ a la cantidad de polinomios en $\mathbb{F}_q[X]$ de grado menor que f que son coprimos con f. Pruebe que:
 - 1. $\varphi_q(f) = 1 \text{ si } gr(f) = 0.$
 - 2. $\varphi_q(fg) = \varphi_q(f)\varphi_q(g)$ si (f,g) = 1.
 - 3. si gr(f) = n, entonces

$$\varphi_q(f) = q^n \prod (1 - q^{-n_i})$$

donde n_i son los grados de los factores mónicos irreducibles que dividen a f.

- * **Ejercicio 43.** Pruebe que $\mathbb{F}_{q^m}/\mathbb{F}_q$ tiene exactamente $\frac{1}{m}\varphi_q(X^m-1)$ bases normales.
- * Ejercicio 44. Probar que

$$X^{2^{2^{2^{2^{-1}}}-1}-1}+X+1\in\mathbb{F}_{2}[X]$$

es irreducible (recuerde que 170141183460469231731687303715884105727 es primo).