Elementos de Cálculo Numérico / Cálculo Numérico

Segundo Cuatrimestre 2018

Práctica N° 6: Interpolación.

Ejercicio 1 Para cada uno de los conjuntos de datos dados, calcular el polinomio p(x) interpolador de grado menor o igual que 3:

- a) en la forma de Lagrange,
- b) por coeficientes indeterminados,
- c) utilizando diferencias divididas.

Verificar los resultados en Octave, utilizando el comando **polyfit**. Graficar el polinomio interpolador, usando **polyval**.

2

3

1

Ejercicio 2 Agregar a las tablas de datos del Ejercicio 1 el punto x = 4, y = 1. Calcular los polinomios interpoladores, aumentando las tablas de diferencias divididas.

Ejercicio 3 Método de Horner Dado un polinomio $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. ¿Cuántos productos y cuántas sumas se realizan al evaluar el poliomio en un cierto x_0 ? Horner propone como alternativa escribir a p como $p(x) = a_0 + x(a_1 + x(a_2 + \cdots + x(a_{n-1} + xa_n)))$. ¿Cuántos productos y cuántas sumas se realizan al evaluar p bajo esta forma?

Ejercicio 4 Implementar un programa que reciba como input dos vectores $x, y \in \mathbb{R}^n$, calcule la tabla de diferencias divididas y devuelva el polinomio que interpola los puntos (x_i, y_i) .

Ejercicio 5 Interpolar cada una de las siguientes funciones en n+1 puntos equiespaciados en el intervalo [-1,1]. Graficar simultáneamente la función con sus respectivos interpoladores para n=5,10,15.

$$f_1(x) = \frac{1}{1 + 25x^2}, \qquad f_2(x) = |x|, \qquad f_3(x) = \operatorname{sen}(\pi x).$$

Ejercicio 6 Encontrar una función del tipo $2^{ax^3+bx^2+cx+d}$ que interpole la siguiente tabla de datos:

\overline{x}	-1	0	1	2
y	1	1	0.5	4

Ejercicio 7 Hallar y graficar una función del tipo $e^{a_4x^4+a_3x^3+\cdots+a_0}$ que interpole a la función f(x) = 1/x en 5 nodos equiespaciados en el intervalo [1, 10].

Ejercicio 8 Utilizar el método de coeficientes indeterminados para hallar un polinomio p de grado 2 que satisfaga:

$$p(1) = 0$$
, $p'(1) = 7$, $p(2) = 10$.

Ejercicio 9 Para ilustrar qué pasa cuando se desea interpolar no sólo una función sino también sus derivadas, consideramos el problema de hallar p de grado a lo sumo 3 que verifique:

- (a) p(0) = 1, p'(0) = 1, p'(1) = 2, p(2) = 1;
- (b) p(-1) = 1, p'(-1) = 1, p'(1) = 2, p(2) = 1;
- (c) p(-1) = 1, p'(-1) = -6, p'(1) = 2, p(2) = 1.

Usando el método de coeficientes indeterminados, demostrar que el problema (a) tiene solución única, el problema (b) no tiene solución, y el problema (c) tiene infinitas soluciones.

Ejercicio 10 Analizar para qué valores de x_0 , x_1 , x_2 , y α_0 , α_1 , α_2 existe un polinomio de grado 2 que satisface:

$$p(x_0) = \alpha_0, \ p(x_1) = \alpha_1, \ p'(x_2) = \alpha_2.$$

y cuándo este polinomio es único.

Ejercicio 11

a) Sea $f(x) = \cos(\pi x)$, hallar un polinomio de grado menor o igual que 3 que verifique

$$p(-1) = f(-1), \ p(0) = f(0), \ p(1) = f(1), \ p'(1) = f'(1).$$

b) Hallar un polinomio de grado menor o igual que 4 que verifique las condiciones del item anterior, más la condición

$$p''(1) = f''(1).$$

Ejercicio 12 1. Dado el intervalo [a,b], sea m el punto medio entre a y b y sea $h \le (b-a)/2$. Sea p=m-h y q=m+h. Demostrar que para todo x en [a,b],

$$|(x-p)(x-q)| \le \frac{(b-a)^2}{4}.$$

2. Sean $x_0 = a, \ldots, x_i = x_0 + \frac{b-a}{n}, \ldots, x_n = b, n+1$ puntos en el intervalo [a, b], distribuidos simétricamente respecto del punto medio. Demostrar que para todo x en [a, b],

$$|(x-x_0)\dots(x-x_n)| \le \frac{(b-a)^{n+1}}{2^{n+1}}.$$

Ejercicio 13 Sea f una función C^{∞} tal que para todo $k \in \mathbb{N}$ y para todo $x \in [a, b]$ se tiene:

$$|f^k(x)| \le C^k k!$$

Mostrar que, si $0 < C < \frac{1}{b-a}$ y P_n en un polinomio de grado n que interpola a f en n+1 puntos distintos, entonces P_n converge a f uniformemente en [a,b], es decir, $||f-P_n||_{\infty,[a,b]} \to 0$ cuando n tiende a ∞ .

Ejercicio 14 Sea $f: [-1,1] \to \mathbb{R}$, $f(x) = \frac{1}{a+x}$. Sean $(x_n)_{n\geq 0}$ una sucesión arbitraria de puntos en [-1,1] y $P_n(x)$ el polinomio que interpola a f(x) en x_0, x_1, \ldots, x_n . Demostrar que si a>3 entonces P_n converge a f uniformemente en [-1,1].

Ejercicio 15 Sea $f:[0,1] \to \mathbb{R}$, $f(x) = \sin(\pi x) + e^x$. Sea P_n el polinomio de grado n que interpola a f en n+1 puntos equiespaciados.

- a) Usando el Ejercicio 12, acotar el error $||f P_n||_{\infty}$.
- b) Sea C_n la cota hallada en (a). Para n=1,3,5, graficar simultáneamente $f, f+C_n$, $f-C_n$ y P_n .

Ejercicio 16 Dado un intervalo [a, b], decidir como tienen que estar distribuidos n + 1 nodos $x_0 < x_1 < \cdots < x_n$ en el intervalo de modo que exista $x \in [a, b]$ tal que

$$|(x-x_0)\dots(x-x_n)| \sim (b-a)^{n+1}$$

Ejercicio 17 a) Hallar n de modo que el polinomio P_n que interpola a la función $f(x) = e^{2x}$ en los ceros de T_{n+1} verifique que $||f - P_n||_{\infty} \le 10^{-2}$ en [-1, 1].

b) Repetir el ítem anterior para $f(x) = e^x$, $x \in [0, 4]$.

Ejercicio 18 Para n = 5, 10, 15; graficar simultáneamente el polinomio $W_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$, donde $x_i = -1 + 2i/n$, i = 0, ..., n y el polinomio de Tchebychev T_{n+1} .

Ejercicio 19 Repetir el Ejercicio 5 usando los polinomios que interpolan a la función f en los ceros del polinomio de Tchebychev de grado n + 1, para n = 5, 10, 15.

Ejercicio 20 Sea $f: [-1,1] \to \mathbb{R}$ la función $f(x) = e^{2x-1}$ y sean $x_0 < x_1 < \ldots < x_n$ los ceros del polinomio de Tchebychev, T_{n+1} . Se interpola a f con un polinomio P de grado $\leq n+1$ de modo que $P(x_0) = f(x_0)$, $P(x_1) = f(x_1), \ldots, P(x_n) = f(x_n)$ y además $P'(x_n) = f'(x_n)$. Probar que si $n \geq 6$ entonces, el error cometido en la interpolación sobre el intervalo [-1,1] es menor que 10^{-3} .

Ejercicio 21 Sea $f \in C^2[a, b]$, y sean $x_0 = a, x_1 = a + h, \dots, x_n = b$, donde h = (b - a)/n. Considerar la poligonal $\ell(x)$ que interpola a f en los puntos x_i , $i = 0 \dots n$.

a) Probar que

$$|f(x) - \ell(x)| \le \frac{h^2}{2} \max_{x \in [a,b]} |f''(x)|.$$

b) Para los $x \in [a, b]$ tales que l es derivable, probar que

$$|f'(x) - \ell'(x)| \le h \max_{x \in [a,b]} |f''(x)|.$$

Ejercicio 22 Calcular un spline cúbico que interpole los datos: x = (0, 0.5, 1), y = (0, 1, 0). Graficar el spline junto con la función sen (πx) .