Análisis Complejo - Primer cuatrimestre de 2021

Práctica N°9. Automorfismos y Teorema de la aplicación conforme

1. Sea $f: B(0,1) \to B(0,1)$ holomorfa. Probar que si existen dos números complejos distintos a y b tales que f(a) = a y f(b) = b, entonces f(z) = z para todo z en B(0,1). Sugerencia: Considerar la función

$$g(z) = \frac{h(z) - a}{1 - \overline{a}h(z)}, \quad \text{con} \quad h(z) = f\left(\frac{z + a}{1 + \overline{a}z}\right)$$

y usar el Lema de Schwarz.

- 2. Sean $f, g: B(0,1) \to B(0,1)$ holomorfas y biyectivas. Probar que si f y g coinciden en dos puntos distintos de B(0,1), entonces f(z) = g(z) para todo z en B(0,1).
- 3. Hallar todas las funciones holomorfas $f: B(0,1) \to B(1,4)$ que verifican simultáneamente f(0)=3 y $f(\frac{1}{2})=1$.
- 4. Sea $f: B(0,1) \to B(0,1)$ holomorfa tal que f(0) = 0 y |f'(0)| = 1. Probar que existe $\lambda \in \mathbb{C}$ con $|\lambda| = 1$ tal que $f(z) = \lambda z$ para todo z en B(0,1).
- 5. Hallar todas las funciones holomorfas $f: B(0,1) \to B(0,2)$ que verifican simultáneamente f(0) = 1 y $f'(0) = \frac{3}{2}$.
- 6. (a) Sea f un automorfismo de B(0,1) tal que f(0) = 0. Probar que existe $\theta \in \mathbb{R}$ tal que $f(z) = e^{i\theta}z$ para todo z en B(0,1).
 - (b) Probar que $f: B(0,1) \to B(0,1)$ es automorfismo si y sólo si existen $\theta \in \mathbb{R}$ y $\alpha \in B(0,1)$ tales que para todo z en B(0,1),

$$f(z) = e^{i\theta} \frac{z - \alpha}{\overline{\alpha}z - 1}.$$

7. (a) Sea \mathbb{P} el semiplano superior (también llamado el semiplano de Poincaré). Es decir, $\mathbb{P} = \{ \operatorname{Im}(z) > 0 \}$. Probar que $f : \mathbb{P} \to \mathbb{P}$ es automorfismo si y sólo si existen a, b, c y $d \in \mathbb{R}$ con ad - bc > 0 tales que para todo z en \mathbb{P} ,

$$f(z) = \frac{az+b}{cz+d}.$$

- (b) ¿Cuáles son los automorfismos del semiplano inferior?
- 8. Caracterizar todos los automorfismos de $\mathbb{L} = \{ \operatorname{Im}(z) > 0, \operatorname{Re}(z) > 0 \}.$
- 9. Sean $a,b \in \mathbb{R}$ tales que a-b sea un múltiplo racional de π . Dar explícitamente un biholomorfismo ϕ que mande el conjunto $\{z \in \mathbb{C} : a < Arg(z) < b\}$ en el disco unidad.
- 10. Caracterizar todos los automorfismos de $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. (Sugerencia: recordar el ejercicio 12 de la práctica 7.)

- 11. Sean Ω un abierto simplemente conexo del plano, f y g dos automorfismos de Ω y a y b dos puntos distintos de Ω . Si f(a) = g(a) y f(b) = g(b), probar que f(z) = g(z) para todo z en Ω .
- 12. Caracterizar todos los automorfismos de $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. (Sugerencia: estudiar el desarrollo de Laurent en 0 de un tal automorfismo.)