MATERIAL COMPLEMENTARIO

TEMA: TRANSFORMADA DE FOURIER

En todo lo que sigue, las funciones se consideran a valores complejos.

DEFINICIÓN 1 (Transformada de Fourier, ver [1]).

Sea $f \in L^1(\mathbb{R}^n)$. La transformada de Fourier de f es la función $\hat{f} : \mathbb{R} \to \mathbb{C}$ definida por:

$$\hat{f}(y) = \int_{\mathbb{R}^n} f(x)e^{-2i\pi x \cdot y} dx.$$

Aquí, i es la unidad imaginaria y $e^{iz} = \cos(z) + i\sin(z)$ para $z \in \mathbb{R}$.

El operador que a cada función le asigna su transformada de Fourier se anota \mathcal{F} . Así, $\mathcal{F}f=\hat{f}$.

TEOREMA 1 (ver [1] y [2]).

La función $G: \mathbb{R}^n \times (0, \infty) \to \mathbb{R}$ definida por:

$$G(x,t) = t^{-n/2}e^{-\pi|x|^2/t},$$
(1)

tiene la siguientes propiedades:

1.
$$\int_{\mathbb{R}^n} G(x,t) dx = 1 \text{ para todo } t > 0.$$

2.
$$\int_{|x|>\delta} G(x,t) dx \to 0 \text{ si } t \to 0^+, \text{ para todo } \delta > 0.$$

3.
$$G(y-\alpha,t) = \mathcal{F}(x \mapsto e^{2i\pi x \cdot \alpha} e^{-t\pi|x|^2})(y)$$
 para todo $y, \alpha \in \mathbb{R}^n$ y todo $t > 0$.

La función $K: \mathbb{R}^n \times (0, \infty) \to \mathbb{R}$ definida por:

$$K(x,t) = G(x,4\pi t),$$

se conoce como núcleo del calor.

EJEMPLO 1.

Se dice que una función $f: \mathbb{R} \to \mathbb{C}$ tiene "crecimiento moderado" si es continua y existe una constante A > 0 tal que:

$$|f(x)| \le \frac{A}{1+|x|^2} \quad \forall x \in \mathbb{R}.$$

Notar que si f tiene crecimiento moderado entonces $f \in L^1(\mathbb{R})$ y por lo tanto tiene sentido considerar su transformada de Fourier \hat{f} .

1. (Fórmula de multiplicación) Si f y g tienen crecimiento moderado entonces:

$$\int_{\mathbb{R}} f(x)\hat{g}(x) dx = \int_{\mathbb{R}} \hat{f}(x)g(x) dx.$$

2. (Fórmula de inversión) Si f y \hat{f} tienen crecimiento moderado entonces:

$$f(x) = \int_{\mathbb{R}} \hat{f}(y)e^{2i\pi xy} dy \qquad \forall x \in \mathbb{R}.$$
 (2)

Demostración.

1. Comenzamos escribiendo:

$$\int_{\mathbb{R}} f(x)\hat{g}(x) dx = \int_{\mathbb{R}} f(x) \left(\int_{\mathbb{R}} g(y)e^{-2i\pi xy} dy \right) dx = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x)g(y)e^{-2i\pi xy} dy dx.$$
(3)

Definimos $F: \mathbb{R}^2 \to \mathbb{C}$ por:

$$F(x,y) = f(x)g(y)e^{-2i\pi xy}.$$

Usando que:

$$\int_{\mathbb{R}} |F(x,y)| \, dx \le |g(y)| \int_{\mathbb{R}} |f(x)| \, dx = |g(y)| ||f||_1 \qquad \forall \, y \in \mathbb{R},$$

obtenemos:

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |F(x,y)| \, dx \right) \, dy \le \|f\|_1 \int_{\mathbb{R}} |g(y)| \, dy = \|f\|_1 \|g\|_1.$$

Luego, $F \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$ (teorema de Tonelli) y por lo tanto es posible intercambiar el orden de integración (teorema de Fubini) en la última integral en (3). De este modo, se tiene:

$$\int_{\mathbb{R}} f(x)\hat{g}(x) dx = \int_{\mathbb{R}} g(y) \left(\int_{\mathbb{R}} f(x)e^{-2i\pi xy} dx \right) dy = \int_{\mathbb{R}} \hat{f}(y)g(y) dy.$$

2. Vamos a probar que:

$$f * G(\cdot, t) \to f$$
 puntualmente en \mathbb{R} si $t \to 0$, (4)

donde G es la función definida por (1). Esto, junto con la propiedad (ver Práctica 3):

$$G(y-x,t) = \hat{v}(y)$$
 para $v(z) = e^{2i\pi xz}e^{-t\pi z^2}$,

y la fórmula de multiplicación demostrada en el ítem anterior, nos dará el resultado que buscamos. En efecto, para $x \in \mathbb{R}$ se tendrá:

$$\begin{split} f(x) &= \lim_{t \to 0} \int_{\mathbb{R}} f(y) G(x - y, t) \, dy = \lim_{t \to 0} \int_{\mathbb{R}} f(y) G(y - x, t) \, dy \\ &= \lim_{t \to 0} \int_{\mathbb{R}} f(y) \hat{v}(y) \, dy = \lim_{t \to 0} \int_{\mathbb{R}} \hat{f}(y) v(y) \, dy \\ &= \lim_{t \to 0} \int_{\mathbb{R}} \hat{f}(y) e^{2i\pi xy} e^{-t\pi y^2} \, dy = \int_{\mathbb{R}} \hat{f}(y) e^{2i\pi xy} \lim_{t \to 0} e^{-t\pi y^2} \, dy \\ &= \int_{\mathbb{R}} \hat{f}(y) e^{2i\pi xy} \, dy. \end{split}$$

El intercambio del límite con la integral sigue del teorema de la convergencia dominada, ya que:

i)
$$\lim_{t\to 0} \hat{f}(y)e^{2i\pi xy}e^{-t\pi y^2} = \hat{f}(y)e^{2i\pi xy}$$
 para todo $y \in \mathbb{R}$,

ii)
$$|\hat{f}(y)e^{2i\pi xy}e^{-t\pi y^2}| \leq |\hat{f}(y)|$$
 para todo $y \in \mathbb{R}$, siendo $|\hat{f}|$ integrable en \mathbb{R} .

Veamos entonces que vale (4). Para $x \in \mathbb{R}$ y t > 0 dados, se tiene (ver Teorema 1):

$$|(f * G(\cdot, t))(x) - f(x)| = \left| \int_{\mathbb{R}} f(x - y)G(y, t) \, dy - f(x) \int_{\mathbb{R}} G(y, t) \, dy \right|$$

$$\leq \int_{\mathbb{R}} |f(x - y) - f(x)|G(y, t) \, dy.$$

Ahora consideramos $\varepsilon > 0$ y observamos que, por la continuidad de f en x, existe $\delta = \delta(x)$ tal que:

$$|f(x-y) - f(x)| < \varepsilon$$
 si $|y| < \delta$.

Además, notamos que $|f(x)| \leq A$ para todo $x \in \mathbb{R}$. Entonces,

$$\begin{split} |(f*G(\cdot,t))(x)-f(x)| \\ &\leq \int_{|y|<\delta} |f(x-y)-f(x)|G(y,t)\,dy + \int_{|y|>\delta} |f(x-y)-f(x)|G(y,t)\,dy \\ &\leq \varepsilon \int_{\mathbb{R}} G(y,t)\,dy + 2A \int_{|y|>\delta} G(y,t)\,dy \\ &= \varepsilon + 2A \int_{|y|>\delta} G(y,t)\,dy. \end{split}$$

Haciendo $t \to 0$ obtenemos:

$$\limsup_{t \to 0} |(f * G(\cdot t))(x) - f(x)| \le \varepsilon.$$

De la arbitrariedad de $\varepsilon > 0$, sigue que vale (4).

EJEMPLO 2.

1. Sea a > 0. La función f definida por $f(x) = e^{-a|x|}$ tiene crecimiento moderado y su transformada de Fourier está dada por:

$$\hat{f}(y) = \frac{2a}{a^2 + (2\pi y)^2} \qquad y \in \mathbb{R}.$$
 (5)

2. Para a > 0 y $x \in \mathbb{R}$ se tiene:

$$\int_{-\infty}^{\infty} \frac{\cos(zx)}{a^2 + z^2} dz = \frac{\pi}{a} e^{-a|x|}.$$
 (6)

Demostración.

1. Para ver que f tiene crecimiento moderado basta observar que

$$(1+x^2)e^{-a|x|} \to 0$$
 si $|x| \to \infty$.

Un cálculo directo muestra que la transformada de Fourier de f está dada por (5). En efecto, para $y \in \mathbb{R}$, se tiene:

$$\hat{f}(y) = \int_{\mathbb{R}} e^{-a|x|} e^{-2i\pi xy} dx = \int_{-\infty}^{0} e^{(-2i\pi y + a)x} dx + \int_{0}^{+\infty} e^{(-2i\pi y - a)x} dx$$

$$= \frac{e^{(-2i\pi y + a)x}}{-2i\pi y + a} \Big|_{-\infty}^{0} + \frac{e^{(-2i\pi y - a)x}}{-2i\pi y - a} \Big|_{0}^{+\infty} = \frac{1}{-2i\pi y + a} + \frac{1}{2i\pi y + a}$$

$$= \frac{2a}{a^{2} + (2\pi y)^{2}}.$$

2. Como f y \hat{f} tienen crecimiento moderado, vale la fórmula de inversión (ver (2) en el Ejercicio 1-2). Entonces,

$$f(x) = \int \hat{f}(y)e^{2i\pi xy} dy = \int_{\mathbb{R}} \left(\frac{2a}{a^2 + (2\pi y)^2}\right) e^{2i\pi xy} dy$$
$$= \int_{\mathbb{R}} \frac{2a\cos(2\pi xy)}{a^2 + (2\pi y)^2} dy + i \int_{\mathbb{R}} \frac{2a\sin(2\pi xy)}{a^2 + (2\pi y)^2} dy.$$

Observando que f es una función a valores reales, resulta:

$$\int_{\mathbb{R}} \frac{2a\cos(2\pi xy)}{a^2 + (2\pi y)^2} \, dy = e^{-a|x|}.$$

Haciendo el cambio de variables $2\pi y = z$ se obtiene (6).

DEFINICIÓN 2 (Clase de Schwartz: Funciones de decrecimiento rápido, ver [1]). Se define la clase de Schwartz $\mathcal{S}(\mathbb{R}^n)$ como el conjunto de todas las funciones $f \in C^{\infty}(\mathbb{R}^n)$ tales que:

 $\sup_{x\in\mathbb{R}^n}(1+|x|^k)|D^\alpha f(x)|<\infty\quad para\ to do\ k\in\mathbb{N}_0\ y\ to do\ multi-\'indice\ \alpha\in\mathbb{N}_0^n.$

TEOREMA 2 (ver [1]). Para todo $1 \le p \le \infty$ se tiene $\mathcal{S}(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$.

TEOREMA 3 (Identidad de Plancherel, ver [1]). Si $f \in \mathcal{S}(\mathbb{R}^n)$ entonces $||f||_2 = ||\hat{f}||_2$.

EJEMPLO 3.

Si $f, g \in \mathcal{S}(\mathbb{R}^n)$ son funciones a valores reales, entonces:

$$\int_{\mathbb{R}^n} f(x)g(x) dx = \int_{\mathbb{R}^n} \hat{f}(y)\hat{g}(y) dy.$$
 (7)

Demostración. Primero observamos que $f + g, f - g \in \mathcal{S}(\mathbb{R}^n)$. Entonces, usando la identidad de Plancherel para f + g y f - g, obtenemos:

$$\int_{\mathbb{R}^n} (f^2 + 2fg + g^2) \, dx = \int_{\mathbb{R}^n} (\hat{f}^2 + 2\hat{f}\hat{g} + \hat{g}^2) \, dx,$$
$$\int_{\mathbb{R}^n} (f^2 - 2fg + g^2) \, dx = \int_{\mathbb{R}^n} (\hat{f}^2 - 2\hat{f}\hat{g} + \hat{g}^2) \, dx.$$

Restando miembro a miembro estas igualdades (7).

DEFINICIÓN 3 (Antitransformada de Fourier, ver [1]). Sea $f \in L^1(\mathbb{R}^n)$. La antitransformada de Fourier de f es la función $\check{f}: \mathbb{R} \to \mathbb{C}$ definida por:

$$\check{f}(x) = \int_{\mathbb{R}^n} f(y)e^{2i\pi x \cdot y} dx.$$

El operador que a cada función le asigna su antitransformada de Fourier se anota \mathcal{F}^{-1} . Así, $\mathcal{F}^{-1}f=\check{f}$.

TEOREMA 4 (La transformada de Fourier en la clase de Schwartz, ver [1]). El operador \mathcal{F} es una biyección de $\mathcal{S}(\mathbb{R}^n)$ en $\mathcal{S}(\mathbb{R}^n)$ y su inversa es \mathcal{F}^{-1} .

Más generalmente, si $f, \hat{f} \in L^1(\mathbb{R}^n)$ entonces $f = \mathcal{F}^{-1}\hat{f}$ (ver slides de teoría).

TEOREMA 5 (ver [1]). Si $f, g \in L^1(\mathbb{R}^n)$ entonces $\mathcal{F}(f * g) = \hat{f} \hat{g}$. EJEMPLO 4.

Si $f, g \in \mathcal{S}(\mathbb{R}^n)$ entonces $fg \in \mathcal{S}(\mathbb{R}^n)$ y $f * g \in \mathcal{S}(\mathbb{R}^n)$.

Demostración. Veamos primero que $fg \in \mathcal{S}(\mathbb{R}^n)$. Como $f,g \in C^{\infty}(\mathbb{R}^n)$ se tiene que $fg \in C^{\infty}(\mathbb{R}^n)$. Consideramos ahora $j \in \mathbb{N}_0$ y $\alpha \in \mathbb{N}_0^n$. Usando la fórmula de Leibniz, obtenemos:

$$D^{\alpha}fg = \sum_{\beta \leq \alpha} {\alpha \choose \beta} D^{\beta}fD^{\alpha-\beta}g,$$

donde $\beta \leq \alpha$ se entiende componente a componente y

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{\alpha!}{\beta!(\alpha - \beta)!} \quad \text{donde} \quad \gamma! = \gamma_1! \dots \gamma_n! \quad \text{para} \quad \gamma := (\gamma_1, \dots, \gamma_n).$$

Combinando esto con que $D^{\alpha-\beta}g \in \mathcal{S} \subset L^{\infty}(\mathbb{R}^n)$ para cada $\beta \leq \alpha$, obtenemos:

$$\sup_{x \in \mathbb{R}^n} (1 + |x|^j) |D^{\alpha} f g(x)| \leq \sum_{\beta \leq \alpha} {\alpha \choose \beta} \sup_{x \in \mathbb{R}^n} (1 + |x|^j) |D^{\beta} f(x)| |D^{\alpha - \beta} g(x)|$$
$$\leq \sum_{\beta < \alpha} {\alpha \choose \beta} ||D^{\alpha - \beta} g||_{\infty} \sup_{x \in \mathbb{R}^n} (1 + |x|^j) |D^{\beta} f(x)|.$$

Notando que la suma sobre $\beta \leq \alpha$ es finita y usando que $f \in \mathcal{S}(\mathbb{R}^n)$, se tiene:

$$\sup_{x \in \mathbb{R}^n} (1 + |x|^j) |D^{\alpha} fg(x)| < \infty.$$

Luego, $fg \in \mathcal{S}(\mathbb{R}^n)$.

Veamos ahora que $f * g \in \mathcal{S}(\mathbb{R}^n)$. Primero, observamos que

$$\mathcal{F}(f * g) = \hat{f}\hat{g} \in \mathcal{S}(\mathbb{R}^n),$$

ya que \hat{f} , $\hat{g} \in \mathcal{S}(\mathbb{R}^n)$. Entonces,

$$\mathcal{F}^{-1}\mathcal{F}(f*g) = \mathcal{F}^{-1}\hat{f}\hat{g} \in \mathcal{S}(\mathbb{R}^n),$$

dado que \mathcal{F} es una biyección de $\mathcal{S}(\mathbb{R}^n)$ en $\mathcal{S}(\mathbb{R}^n)$. Finalmente, notamos que $\mathcal{F}^{-1}\mathcal{F}(f*g) = f*g$ ya que tanto f*g como su transformada $\hat{f}\hat{g}$ pertenecen a $L^1(\mathbb{R}^n)$. Por lo tanto, $f*g \in \mathcal{S}(\mathbb{R}^n)$.

Otra forma de probar que $f * g \in \mathcal{S}(\mathbb{R}^n)$ es comprobando mediante un cálculo directo que f * g es la antitransformada de Fourier de una función en $\mathcal{S}(\mathbb{R}^n)$, como veremos a continuación. Para $x \in \mathbb{R}^n$ se tiene:

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y) \, dy = \int_{\mathbb{R}^n} f(y)\hat{\hat{h}}(y) \, dy,$$

donde $h: \mathbb{R}^n \to \mathbb{C}$ está definida por h(y) = g(x+y). Para obtener la segunda igualdad hemos usado que $\hat{h}(y) = h(-y)$ para todo $y \in \mathbb{R}^n$, ya que $h \in \mathcal{S}(\mathbb{R}^n)$ (ver Práctica 3). Usando ahora la fórmula de multiplicación (ver Ejemplo 1) junto con que $\hat{h}(y) = \hat{g}(y)e^{2i\pi x \cdot y}$ para todo $y \in \mathbb{R}^n$ (ver Práctica 3), obtenemos:

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y) \, dy = \int_{\mathbb{R}^n} \hat{f}(y)\hat{g}(y)e^{2i\pi x \cdot y} \, dy = \mathcal{F}^{-1}(\hat{f}\hat{g})(x).$$

Sólo resta observar que $\hat{f}\hat{g} \in \mathcal{S}(\mathbb{R}^n)$ ya que $\hat{f}, \hat{g} \in \mathcal{S}(\mathbb{R}^n)$.

Teorema 6 (ver [1]).

Sean $f \in C^1(\mathbb{R}^n)$ $y \in \{1, ..., n\}$. Si $\partial_{x_j} f \in L^1(\mathbb{R}^n)$ entonces:

$$\mathcal{F}\left(\partial_{x_j}f\right)(y) = 2i\pi y_j \hat{f}(y) \qquad y \in \mathbb{R}^n.$$

Como consecuencia, si $f\in C^2(\mathbb{R}^n)$ es tal que $f,\partial_{x_j}f,\partial^2_{x_j}f\in L^1(\mathbb{R}^n)$ entonces:

$$\mathcal{F}\left(\partial_{x_j}^2 f\right)(y) = (2i\pi y_j)^2 \hat{f}(y) = -4\pi^2 y_j^2 \hat{f}(y) \qquad y \in \mathbb{R}^n.$$

EJEMPLO 5.

Usar el método de la transformada de Fourier para hallar una solución explícita del siguiente problema de valores iniciales para la ecuación del calor:

$$u_t = \Delta u \quad \text{en} \quad \mathbb{R}^n \times (0, \infty), \qquad u = f \quad \text{en} \quad \mathbb{R}^n \times \{0\},$$
 (8)

donde $f \in \mathcal{S}(\mathbb{R}^n)$.

Resolución. La estrategia que seguiremos consiste en determinar una solución formal explícita y luego verificar que la misma resuelve el problema.

Notación: Para $t \geq 0$ fijo, anotamos $\mathcal{F}(v(\cdot,t))$ simplemente como $\hat{v}(\cdot,t)$.

Paso 1 (solución formal). Suponemos que existe una solución u. Aplicando la transformada de Fourier miembro a miembro de la ecuación del calor para cada t>0 fijo, obtenemos:

$$\partial_t \hat{u}(\xi, t) = -4\pi^2 |\xi|^2 \hat{u}(\xi, t) \qquad \xi \in \mathbb{R}^n, \ t > 0.$$

Y aplicando la transformada de Fourier miembro a miembro de la condición inicial, obtenemos:

$$\hat{u}(\xi,0) = \hat{f}(\xi) \qquad \xi \in \mathbb{R}^n.$$

Así, para cada $\xi \in \mathbb{R}^n$, se tiene el siguiente problema de valores iniciales para $\hat{u}(\xi,\cdot)$:

$$\partial_t \hat{u}(\xi, t) = -4\pi^2 |\xi|^2 \hat{u}(\xi, t)$$
 $t > 0$, $\hat{u}(\xi, 0) = \hat{f}(\xi)$.

Resolviendo este problema, obtenemos:

$$\hat{u}(\xi, t) = \hat{f}(\xi)e^{-4\pi^2 t|\xi|^2} \qquad \xi \in \mathbb{R}^n, \ t \ge 0.$$
(9)

Usando ahora que $e^{-4\pi^2t|\xi|^2} = \hat{K}(\xi,t)$ para $\xi \in \mathbb{R}^n$ y t > 0 fijo, donde K es el nucleo del calor (ver Teorema 1-3), vemos que:

$$\hat{u}(\xi,t) = \mathcal{F}(f * K(\cdot,t))(\xi) \qquad \xi \in \mathbb{R}^n, t > 0.$$

Aplicando la antitransformada de Fourier miembro a miembro de la última expresión para t>0 fijo, obtenemos:

$$u(x,t) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} f(z)e^{-|x-z|^2/4t} dz \qquad x \in \mathbb{R}^n, \ t > 0.$$
 (10)

Paso 2 (análisis de la solución formal). Vamos a probar ahora que, para $f \in \mathcal{S}(\mathbb{R}^n)$, la función definida por (10) satisface la ecuación del calor y converge uniformemente a f si $t \to 0$. Entonces, extendiendo la definición de u a $\mathbb{R}^n \times [0, \infty)$ por $u(\cdot, 0) = f$, se tiene que u resuelve el problema. Además, $u \in C^{\infty}(\mathbb{R}^n \times [0, \infty))$.

Primero observamos que para todo t > 0 se tiene $u(\cdot,t) \in \mathcal{S}(\mathbb{R}^n)$, ya que $u(\cdot,t)$ es la convolución de dos funciones en $\mathcal{S}(\mathbb{R}^n)$. En particular, esto implica que u está bien definida en $\mathbb{R}^n \times (0,\infty)$.

Usando que \mathcal{F} es una biyección de $\mathcal{S}(\mathbb{R}^n)$ en $\mathcal{S}(\mathbb{R}^n)$ con inversa \mathcal{F}^{-1} , obtenemos:

$$u(x,t) = \int_{\mathbb{R}^n} \hat{f}(\xi)\hat{K}(\xi,t)e^{2i\pi\xi\cdot x} d\xi \qquad x \in \mathbb{R}^n, \ t \ge 0.$$
 (11)

Definimos la función $F: \mathbb{R}^n \times [0, \infty) \times \mathbb{R}^n \to \mathbb{R}$ por

$$F(x,t,\xi) = \hat{f}(\xi)\hat{K}(\xi,t)e^{2i\pi\xi\cdot x},$$

y observamos que F tiene las siguientes propiedades:

- i) Para todo $\xi \in \mathbb{R}^n$, $F(\cdot, \cdot, \xi) \in C^{\infty}(\mathbb{R}^n \times [0, +\infty))$.
- ii) Para todo $(x,t) \in \mathbb{R}^n \times [0,\infty)$, $F(x,t,\cdot)$ es medible.
- iii) Para todo $k \in \mathbb{N}_0$ y todo multi-índice α , se tiene:

$$D_x^{\alpha} \partial_t^k F(t, x, \xi) = (2i\pi \xi)^{\alpha} (-4\pi^2 |\xi|^2)^k \hat{f}(\xi) e^{-4\pi^2 |\xi|^2 t} e^{2i\pi \xi \cdot x} \qquad x, \xi \in \mathbb{R}^n, \ t \ge 0.$$

En particular, a partir de iii) se obtiene:

$$|D_x^{\alpha} \partial_t^k F(t, x, \xi)| < (2\pi |\xi|)^{|\alpha| + 2k} |\hat{f}(\xi)| \qquad x, \xi \in \mathbb{R}^n, \ t > 0,$$

siendo $\xi \mapsto |\xi|^{|\alpha|+2k}|\hat{f}(\xi)|$ integrable en \mathbb{R}^n ya que $\hat{f} \in \mathcal{S}(\mathbb{R}^n)$.

Entonces, usando el teorema de la convergencia dominada obtenemos que $u \in C^{\infty}(\mathbb{R}^n \times [0,\infty))$ y que sus derivadas se obtienen derivando bajo el signo integral. Además,

$$\lim_{t \to 0} u(x, t) = \int_{\mathbb{R}^n} \hat{f}(\xi) \lim_{t \to 0} \hat{K}(\xi, t) e^{2i\pi\xi \cdot x} d\xi = \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2i\pi\xi \cdot x} d\xi = f(x),$$

ya que $\lim_{t\to 0} \hat{K}(\xi,t) = 1$. Finalmente, observamos que:

$$\partial_t u(x,t) = \int_{\mathbb{R}^n} \hat{f}(\xi) (\partial_t \hat{K}(\xi,t)) e^{2i\pi\xi \cdot x} d\xi$$

$$= \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{K}(\xi,t) \left(-4\pi^2 |\xi|^2 e^{2i\pi\xi \cdot x} \right) d\xi$$

$$= \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{K}(\xi,t) \left(\Delta_x e^{2i\pi\xi \cdot x} \right) d\xi$$

$$= \Delta u(x,t),$$

para todo $(x,t) \in \mathbb{R}^n \times (0,\infty)$.

Saintier, Ceretani, Completa

Referencias

- $[1]\;$ J. Fernández Bonder. $Ecuaciones\; Diferenciales\; Parciales.$ Departamento de Matemática, FCENUBA, 2015.
- [2] R. Shakarchi E. Stein. Fourier Analysis: An Introduction. Princeton University Press Princeton and Oxford, 2002.
- [3] L. Ward M. C. Pereyra. *Harmonic Analysis. From Fourier to Wavelets*. American Mathematical Society. Institute for Advances Studies., 2012.