Análisis Complejo - Primer Cuatrimestre de 2018

Práctica N°1: Números Complejos, Esfera de Riemann y Homografías

- 1. Expresar los siguientes números complejos en la forma a+ib, con $a,b \in \mathbb{R}$:
 - a) (i+1)(i-1)(i+3),

 $q) (1+i)^{65} + (1-i)^{65}$.

- $b) (3-2i)^2,$

 $c) \frac{1}{-1+3i}$

- d) $\frac{1+i}{i}$, e) $\frac{2+i}{2-i}$, f) $(1+i)^{100}$,
- 2. . Determinar las partes reales e imaginarias de los siguientes números complejos, en términos de las de z:
 - $a) z^2$

 $e) \frac{1+z}{1-z}$

b) z^{-1} ,

 $f) \frac{i-z}{1+iz}$

c) z^{-2} .

 $d) z^4$

- $g) \frac{z}{z+1}$
- 3. Sean z y w dos números complejos. Demostrar que:
 - a) $\overline{z} = z$ si y solo si $z \in \mathbb{R}$,

d) $\operatorname{Re}(z) = \frac{z+\overline{z}}{2}$,

b) $\overline{z+w} = \overline{z} + \overline{w}$,

 $e) \operatorname{Im}(z) = \frac{z-\overline{z}}{2i}.$

- c) $\overline{zw} = \overline{z} \overline{w}$,
- 4. Probar que si $z_0 \in \mathbb{C}$ es raíz de $a_n X^n + a_{n-1} X^{n-1} + \cdots + a_0 = 0$, entonces $\overline{z}_0 \in \mathbb{C}$ es raíz de $\overline{a}_n X^n + \overline{a}_{n-1} X^{n-1} + \cdots + \overline{a}_0 = 0$. Deducir que si P(X) es un polinomio con coeficientes reales y $z_0 \in \mathbb{C}$ es raíz de P(X), entonces $\overline{z}_0 \in \mathbb{C}$ también lo es.
- 5. Hallar todas las soluciones en \mathbb{C} de la ecuación $iz^2 + (3-i)z (1+2i) = 0$.
- 6. Para $z \in \mathbb{C}$, se define $|z| = \sqrt{z\overline{z}}$. Probar que:
 - a) Si z = a + bi, $|z| = \sqrt{a^2 + b^2}$,
 - b) |zw| = |z| |w| y si $w \neq 0$, $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$,
 - c) -|z| < Re(z) < |z| y -|z| < Im(z) < |z|,
 - d) $|z+w|^2 = |z|^2 + |w|^2 + 2\operatorname{Re}(z \cdot \overline{w}) \text{ y } |z-w|^2 = |z|^2 + |w|^2 2\operatorname{Re}(z \cdot \overline{w}),$
 - e) $|z + w|^2 + |z w|^2 = 2(|z|^2 + |w|^2)$,
 - |z + w| < |z| + |w| + |z w| > |z| |w|

Interpretar geométricamente la propiedad (e), también conocida como "Ley del paralelogramo".

7. Probar que $d: \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ definida por d(z, w) = |z - w| es una métrica.

- 8. Describir geométricamente los siguientes subconjuntos de \mathbb{C} :
 - a) |z i + 3| = 5,

 $c) \operatorname{Re}(2z+3) \ge 0,$

b) $|z - i + 3| \le 5$,

- d) $Re((1+2i)z) \ge 0$.
- 9. Sean $\alpha, \beta \in \mathbb{R}$ y sea $c \in \mathbb{C}$, probar que $\alpha z\overline{z} + cz + \overline{cz} + \beta = 0$ representa una circunferencia, o una recta, o un punto o al conjunto vacío. Probar además que toda circunferencia o recta puede representarse de esta forma.
- 10. Transformaciones Lineales y Representación Matricial de los Números Complejos
 - a) Probar que toda transformación \mathbb{R} -lineal $T:\mathbb{C}\to\mathbb{C}$ puede escribirse de forma única como

$$T(z) = \mu z + \lambda \overline{z}$$

donde $\mu, \lambda \in \mathbb{C}$ y determinar estos números en función de T. Probar que T es \mathbb{C} -lineal si y solo si $\lambda = 0$, y en tal caso, T resulta la multiplicación por T(1).

- b) Fijemos una matriz $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{R}^{2\times 2}$ con coeficientes reales, y consideremos la transformación \mathbb{R} -lineal $T: \mathbb{C} \to \mathbb{C}$ que define A. Probar que son equivalentes
 - T es \mathbb{C} -lineal,
 - $a_{11} = a_{22} \text{ y } a_{21} = -a_{12}.$

y en tal caso T es la multiplicación por $z_A = a_{11} + ia_{21}$.

c) Deducir que la asignación del inciso anterior define una biyección

$$A \in \mathcal{M} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathbb{R}^{2 \times 2} : a, b \in \mathbb{R} \right\} \to z_A \in \mathbb{C}$$

de modo que $z_{A+B} = z_A + z_B$, $z_{AB} = z_A z_B$ y $z_{Id} = 1$. Luego \mathcal{M} resulta un cuerpo, con la suma y la multiplicación usual de matrices, isomorfo a \mathbb{C} .

Función Exponencial y Funciones Trigonométricas con argumentos complejos. Forma polar

- 11. **Definición**: Para $z \in \mathbb{C}$, z = a + bi, se define $e^z = e^a(\cos b + i \sin b)$.
 - a) Demostrar que para todo $z, w \in \mathbb{C}, e^{w+z} = e^w e^z$.
 - b) Describir los z tales que $e^z = 1$.
 - c) Demostrar que si $e^z = e^w$, entonces existe $k \in \mathbb{Z}$ tal que $z = w + 2k\pi i$.
 - d) Probar que para todo $z \in \mathbb{C}$, $e^{\overline{z}} = \overline{e^z}$.
- 12. a) Mostrar que si $\alpha = re^{i\theta}$ $(r \in \mathbb{R}_+, \theta \in \mathbb{R})$ es la forma polar del complejo α , entonces la transformación lineal T_{α} del ejercicio 10 se factoriza como una rotación en el plano complejo en el ángulo θ , seguida de una dilatación de factor r. Deducir que T_{α} preserva los ángulos entre los vectores.

2

b) Hallar todas las transformaciones \mathbb{R} -lineales $T:\mathbb{C}\to\mathbb{C}$ que preservan los ángulos entre los vectores. ¿Son todas de la forma T_α para algún $\alpha\in\mathbb{C}$?

13. a) Pasar de la forma a + ib a la forma polar:

1) 1+i,

2) -5i,

3) -3.

b) Pasar de la forma polar a la forma a + ib:

1) $3e^{i\frac{\pi}{4}}$,

2) $e^{-i\pi}$,

3) $\pi e^{-i\frac{\pi}{3}}$.

- 14. a) Para n = 2, 3, 4, 5, dibujar todos los números complejos z tales que $z^n = 1$.
 - b) Sea $n \in \mathbb{N}$ y $\alpha \in \mathbb{C} \setminus \{0\}$. Mostrar que hay n números complejos distintos tales que $z^n = \alpha$.
- 15. Sea $f: \mathbb{C} \to \mathbb{C}$, $f(z) = e^z$.
 - a) Hallar la imagen por f del conjunto $\{z \in \mathbb{C} \mid 0 \leq \operatorname{Im}(z) < 2\pi\}.$
 - b) Hallar la imagen por f del primer cuadrante.
 - c) Mostrar que la imagen de la recta $\{t+it \mid t \in \mathbb{R}\}$ es una espiral.
- 16. a) Sea $\theta \in \mathbb{R}$. Mostrar que $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ y $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$.
 - b) Generalizando las igualdades del ítem anterior, se define para $z \in \mathbb{C}$,

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 y $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$.

Comprobar que para todo $z \in \mathbb{C}$,

$$\cos^2(z) + \sin^2(z) = 1$$
 y $e^{iz} = \cos z + i \sin z$.

- c) Mostrar que sen z y cos z tienen período 2π .
- d) Mostrar que los únicos valores de z para los cuales $\cos z = 0$ y sen z = 0 son los valores reales usuales.
- e) Probar que para todo $z\in\mathbb{C},$ $\cos(\overline{z})=\overline{\cos(z)}$ y $\sin(\overline{z})=\overline{\sin(z)}$
- f) Hallar todos los $z \in \mathbb{C}$ tales que $\cos z \in \mathbb{R}$ y los $z \in \mathbb{C}$ tales que sen $z \in \mathbb{R}$.
- g) Probar que $\cos z$ y sen z son funciones survectivas de $\mathbb C$ en $\mathbb C$. Hallar todas las soluciones de la ecuación $\cos z = \frac{5}{4}$.
- 17. Sean $a, b, b' \in \mathbb{R}$. Probar que si |b| < |b'|, entonces $|\cos(a+bi)| < |\cos(a+b'i)|$ y $|\sin(a+bi)| < |\sin(a+bi)|$.
- 18. Sea $z \neq 1$. Probar que $1 + z + \cdots + z^n = \frac{z^{n+1}-1}{z-1}$. Para $0 < \theta < 2\pi$, dar una fórmula para la suma $1 + \cos \theta + \cdots + \cos n\theta$.

Sucesiones de Números Complejos

- 19. a) Probar que si $\lim_{n\to\infty} z_n = z$ entonces $\lim_{n\to\infty} |z_n| = |z|$.
 - $b)\,$ Dar un ejemplo donde no valga la recíproca.
- 20. a) Sea $\alpha\in\mathbb{C},\,|\alpha|<1.$ ¿Cuánto vale lím $_{n\to\infty}$ $\alpha^n?$ Repetir para $|\alpha|>1.$
 - b) Si $|\alpha| < 1$, probar que $\lim_{n \to \infty} (1 + \alpha + \dots + \alpha^n) = \frac{1}{1 \alpha}$.

- 21. Calcular, en caso de que existan, los límites de las siguientes sucesiones:
 - $a) \frac{1}{n} \left(\frac{1+i}{2}\right)^n$

- c) $\cos(n\pi) + i\frac{\sin(\frac{n}{2})}{n^2}$,
- $e) ni^{2n+1}.$

 $b) n \left(\frac{1+i}{2}\right)^n$

- $d) \left(\frac{(-1)^n+1}{3}\right)^n,$
- 22. Se define el conjunto de Mandelbrot como el conjunto \mathfrak{M} de los números complejos c tales que la sucesión definida de manera recursiva del siguiente modo:

$$z_0 = c, \quad z_{n+1} = z_n^2 + c,$$

resulta acotada. Demostrar que $\mathcal{M} \subset \{|z| \leq 2\}$.

Plano Complejo ampliado. Esfera de Riemann

- 23. Sean $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ y $S = S^2$ (la esfera en \mathbb{R}^3 de radio 1 y centro en (0,0,0)). Sea $N = (0,0,1) \in S$, definimos la proyección estereográfica $\theta : S \to \widehat{\mathbb{C}}$ de la siguiente manera: $\theta(N) = \infty$ y dado $P \in S \setminus \{N\}$, $\theta(P) = a + ib$ sii (a,b,0) es el punto de intersección de la recta $\overline{NP} \subset \mathbb{R}^3$ con el plano $x_3 = 0$.
 - a) Probar que $\theta(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 x_3}$ si $(x_1, x_2, x_3) \neq N$.
 - b) Probar que θ es una biyección y su inversa φ está dada por

$$\varphi(z) = \frac{1}{1+|z|^2} \left(2\operatorname{Re}(z), 2\operatorname{Im}(z), |z|^2 - 1 \right).$$

- c) Calcular $\varphi(\operatorname{Re}(z) = 0)$ y $\varphi(\operatorname{Im}(z) = 0)$.
- 24. Sea \overline{d} la distancia en $\widehat{\mathbb{C}}$ inducida por la distancia de \mathbb{R}^3 vía θ , es decir, si $z, z' \in \widehat{\mathbb{C}}$, definimos $\overline{d}(z,z') = ||\varphi(z) \varphi(z')||$ donde ||a|| representa la norma usual del vector a en \mathbb{R}^3 .
 - a) Verificar que \overline{d} es una métrica en $\widehat{\mathbb{C}}$. Probar que, restringida a \mathbb{C} , \overline{d} resulta equivalente a la métrica usual (probando, por ejemplo, que $(\mathbb{C}, \overline{d})$ y (\mathbb{C}, d_{usual}) tienen las mismas sucesiones convergentes).
 - b) Para $z, w \in \mathbb{C}$, verificar que $\overline{d}(z, w) = \frac{2|w-z|}{(1+|z|^2)^{\frac{1}{2}}(1+|w|^2)^{\frac{1}{2}}}$ y $\overline{d}(z, \infty) = \frac{2}{(1+|z|^2)^{\frac{1}{2}}}$.
 - c) Probar que $(\widehat{\mathbb{C}}, \overline{d})$ es un espacio métrico compacto (y por lo tanto completo).
- 25. Sea C una circunferencia contenida en S y sea π el un único plano en \mathbb{R}^3 tal que $\pi \cap S = C$. Mostrar que si C pasa por N entonces su proyección en \mathbb{C} es una recta y, en caso contrario, una circunferencia.

Homografías

Definición: Una homografía es una función $T:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ del tipo $T(z)=\frac{az+b}{cz+d}$ donde $ad-bc\neq 0$.

- 26. Probar que el conjunto $\mathcal H$ de las homografías es un grupo bajo la composición.
- 27. Sean z_2, z_3, z_4 puntos distintos de $\widehat{\mathbb{C}}$. Probar que existe una única homografía T tal que $T(z_2) = 0$, $T(z_3) = 1$ y $T(z_4) = \infty$. Deducir que dados puntos distintos w_2, w_3, w_4 de $\widehat{\mathbb{C}}$ hay una única homografía que aplica z_2 en w_2, z_3 en w_3 y z_4 en w_4 .

- 28. a) Hallar homografías que transformen
 - 1) los puntos 0, i, -i en $0, 1, \infty$;
 - 2) los puntos 0, i, -i en 1, -1, 0.
 - b) Probar que la imagen de la circunferencia de centro 0 y radio 1 por la primer homografía del ítem anterior es la recta $\{\text{Re}(z)=1\}$.
- 29. Para $\alpha \in \mathbb{C}$ tal que $|\alpha| \neq 1$, demostrar que la homografía

$$T(z) = \frac{z - \alpha}{-\overline{\alpha}z + 1}$$

transforma a la circunferencia $\{|z|=1\}$ en si misma y a α en 0 $(|\alpha|\neq 1)$.

30. Dada una matriz no singular

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^{2 \times 2}$$
 donde $\det(A) = ab - cd \neq 0$

le asignamos la homografía

$$T_A(z) = \frac{az+b}{cz+d}$$

Diremos que la matriz A representa a la homografía T_A .

Sean $A,B\in\mathbb{C}^{2\times 2}$ no singulares que respresentan las homografías T_A y T_B respectivamente.

- a) ¿Qué homografía representa la matriz AB?
- b) ¿qué homografía representa la matriz A^{-1} ?
- c)¿ Qué homografías representan las matrices diagonales?
- d) ¿Cuando dos matrices distintas representan la misma homografía?
- 31. Demostrar que una homografía $T(z) = \frac{az+b}{cz+d}$ aplica $\widehat{\mathbb{R}}$ en $\widehat{\mathbb{R}}$ si y solo si se puede escribir con coeficientes reales.
- 32. a) Dadas las funciones

$$t(z) = z + c, c \in \mathbb{C}$$
 fijo (traslación),

$$h(z) = a(z - z_0) + z_0, \ a \in \mathbb{C} - \{0\}, \ z_o \in \mathbb{C}$$
 (homotecia de centro z_0 y razón a),

$$i(z)=z^{-1},\,z\in\mathbb{C}-\{0\}$$
 (inversión),

describirlas geométricamente. Caracterizar la imagen, por cada una de ellas, de una circunferencia y de una recta.

- b) Probar que toda homografía se escribe como composición de funciones del inciso anterior.
- c) Describir la imagen por una homografía arbitraria de una circunferencia o recta.

5

33. Determinar la imagen de las siguientes regiones bajo la homografía indicada:

a) El disco
$$\{z \in \mathbb{C} : |z| < 1\}$$
 por $f(z) = \frac{2z - i}{2 + iz}$.

b) El medio-disco
$$\{z \in \mathbb{C} : \text{Im}(z) > 0 \text{ y } |z| < 1\}$$
 por $f(z) = \frac{2z-i}{2+iz}$.

c) El cuadrante $\{z\in\mathbb{C}: \operatorname{Im}(z)>0 \text{ y } \operatorname{Re}(z)>0\}$ por $f(z)=\frac{z-i}{z+i}.$

34. Hallar homografías que transformen

- a)la circunferencia |z|=2 en |z+1|=1 y además -2 en 0 y 0 en i;
- b)el semiplano superior $\mathrm{Im}(z)>0$ en |z|<1 y α en 0 (donde $\mathrm{Im}(\alpha)>0).$