ANÁLISIS ARMÓNICO - 2
do. Cuatrimestre, 2016 Práctica 5 - Pesos A_v

Notación: Si w es un peso A_p con 1 , notamos

$$[w]_{A_p} := \sup_{Q \in \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q w(x) \, dx \right) \left(\frac{1}{|Q|} \int_Q w(x)^{-\frac{1}{p-1}} \right)^{p-1}$$

Si w es un peso A_1 , notamos

$$[w]_{A_1} := \sup_{Q \in \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q w(t) \, dt \right) \|w^{-1}\|_{L^{\infty}(Q)}$$

Ejercicio 1. Probar que si $w \in A_p$ para algún $1 \le p < \infty$, entonces:

• Si $1 , entonces <math>w^{-\frac{1}{p-1}} \in A_{p'}$ y además

$$[w^{-\frac{1}{p-1}}]_{A_{p'}} = [w]_{A_p}^{\frac{1}{p-1}}$$

Por lo tanto, $w \in A_2$ si y sólo si $w^{-1} \in A_2$ y $[w]_{A_2} = [w^{-1}]_{A_2}$.

- $[w]_{A_p} \ge 1$ para todo $w \in A_p$, y la igualdad vale si y sólo si w es constante.
- \blacksquare Las clases A_p son crecientes en p, es decir, si $1 \leq p < q < \infty,$ entonces

$$[w]_{A_a} \leq [w]_{A_n}$$

- $\lim_{q \to 1^+} [w]_{A_q} = [w]_{A_1} \text{ si } w \in A_1.$
- Probar que la medida w(x)dx es duplicante, o sea, para todo $\lambda > 1$ y para todo cubo Q, vale

$$w(\lambda Q) \le \lambda^{np}[w]_{A_p}w(Q).$$

Ejercicio 2. Sea k una función no negativa y medible tal que $k, k^{-1} \in L^{\infty}(\mathbb{R}^n)$. Probar que si w es un peso A_p , entonces también lo es kw.

Ejercicio 3. Probar que si w_1 y $w_2 \in A_1$, entonces $w_1 w_2^{1-p} \in A_p$ y vale

$$[w_1 w_2^{1-p}]_{A_p} \le [w_1]_{A_1} [w_2]_{A_1}^{p-1}$$

Ejercicio 4. Probar que si $w \in A_p$ y $0 < \delta < 1$, entonces $w^{\delta} \in A_q$, con $q = \delta p + 1 - \delta$ y vale

$$[w^{\delta}]_{A_q} \le [w]_{A_p}^{\delta}.$$

Ejercicio 5. Sean $w_0 \in A_{p_0}$ y $w_1 \in A_{p_1}$ para algún $1 \le p_0, p_1 < \infty$. Sea $0 \le \theta \le 1$ y sean

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \qquad y \qquad w^{\frac{1}{p}} = w_0^{\frac{1-\theta}{p_0}} w_1^{\frac{\theta}{p_1}}$$

Entonces $w \in A_p$ y vale

$$[w]_{A_p} \le [w_0]_{A_{p_0}}^{(1-\theta)\frac{p}{p_0}} [w_1]_{A_{p_1}}^{\theta\frac{p}{p_1}}$$

Ejercicio 6. Sean $w_1 \in A_{p_1}$ y $w_2 \in A_{p_2}$ para $1 \le p_1, p_2 < \infty$. Probar que si $p = \min(p_1, p_2)$, entonces vale

$$[w_1 + w_2]_{A_p} \le [w_1]_{A_{p_1}} + [w_2]_{A_{p_2}}$$

Ejercicio 7. (Relación entre A_p y BMO)

■ Sea $v \in L^1_{loc(\mathbb{R}^n)}$ y sea $1 . Probar que <math>e^v$ es un peso A_p si y sólo si vale:

$$\sup_{Q} \frac{1}{|Q|} \int_{Q} e^{v(t) - v_Q} dt \le C$$

у

$$\sup_{Q} \frac{1}{|Q|} \int_{Q} e^{-(v(t) - v_Q) \frac{1}{p-1}} dt \le C$$

(Sugerencia: usar que si $e^v \in A_p$ entonces $|Q|^{-1} \int_Q e^{v(t)-v_Q} dt \le (|Q|^{-1} \int_Q e^{-\frac{v}{p-1}})^{p-1} (|Q|^{-1} \int_Q e^v)$ y una estimación similar para la segunda desigualdad).

• Usar el item anterior para probar que $e^v \in A_2$ si y sólo si

$$\sup_{Q} \frac{1}{|Q|} \int_{Q} e^{|v(t) - v_Q|} dt \le C.$$

- Concluir que si $\varphi \in A_2$, entonces $\log \varphi \in BMO$ y $\|\log \varphi\|_* \leq [\varphi]_{A_2}$.
- Usando el teorema de John-Nirenberg, probar que vale la recíproca, es decir que cualquier función de BMO es un múltiplo del logaritmo de un peso A_2 .
- Probar que si $\varphi \in A_p$ para algún $1 , entonces <math>\log \varphi \in BMO$ y

$$\|\log \varphi\|_* \le \begin{cases} [\varphi]_{A_p} & \text{si } 1$$

(Sugerencia: usar que $\varphi^{-\frac{1}{p-1}} \in A_{p'}$ en el caso p > 2).

Ejercicio 8. Probar que la función dada por

$$w(x) = \begin{cases} & \log \frac{1}{|x|} & \text{si } |x| < \frac{1}{e} \\ & 1 & \text{otro caso} \end{cases}$$

es un peso A_1 .

Ejercicio 9. Verificar que si $0 < \gamma < n(p-1)$ y $w(x) = |x|^{\gamma}$, entonces $w \in A_p$ y la función

$$f(x) = \begin{cases} |x|^{-n/p} & |x| < 1\\ 0 & |x| \ge 1 \end{cases}$$

está en $L_w^p(\mathbb{R}^n)$, pero

$$\lim_{y \to 0} \int_{\Omega} |f(x+y) - f(x)|^p dx \neq 0$$

si $y \neq 0$.

Ejercicio 10. Probar que las funciones simples no son densas en $L_w^p(\mathbb{R})$ si $1 \leq p < +\infty$.

Ejercicio 11. Densidad de $C_0^{\infty}(\Omega)$ en $L^p(\Omega, w)$

- Sea f una función localmente integrable en \mathbb{R}^n , y sea $\eta \in C_0^\infty(\mathbb{R}^n)$ una función no negativa y radialmente decreciente $(\eta(x) = \eta(y) \ge \eta(z)$ si $|x| = |y| \le |z|)$ tal que $\int_{\mathbb{R}^n} \eta \, dx = 1$. Probar que $|\eta * f| \le Mf$.
- Probar que si $w \in A_p$, $\|\eta_j * g\|_{L^p_w} \le \|Mg\|_{L^p_w} \le C\|g\|_{L^p_w}$ para toda $g \in L^p_w(\mathbb{R}^n)$.
- Probar que si $w \in A_p$ y $f \in L^p_w(\mathbb{R}^n)$, entonces $\eta_j * f \to f$ en $L^p_w(\mathbb{R}^n)$, donde $\eta_j(x) = j^n \eta(jx), j = 1, 2, ...$ (notar que η_j tienen las mismas propiedades que η).
- Deducir que $C_0^{\infty}(\Omega)$ es denso en $L_w^p(\Omega)$.