Topología

Segundo cuatrimestre - 2013 Práctica 6

Espacios de adjunción

Sean X e Y espacios topológicos, $A\subseteq X$ un subespacio cerrado, $f:A\to Y$ una función continua, de manera que podemos construir el espacio $X\cup_f Y$, junto con funciones naturales $\bar{i}:Y\to X\cup_f Y$ y $\bar{f}:X\to X\cup_f Y$.

- 1. Pruebe que Y es un retracto de $X \cup_f Y$ si y sólo si existe una función $g: X \to Y$ tal que $g|_A = f$. Deduzca que si A es un retracto de X, entonces Y es un retracto de $X \cup_f Y$.
- 2. Si X e Y son compactos, entonces $X \cup_f Y$ es compacto.
- 3. Si X e Y son T_1 , entonces $X \cup_f Y$ es T_1
- 4. (a) Si A es no vacío y X e Y son conexos entonces $X \cup_f Y$ es conexo.
 - (b) Si A es no vacío y X e Y son arcoconexos entonces $X \cup_f Y$ es arcoconexo.
 - (c) Si Y es conexo y si A interseca cada componente conexa de X, entonces $X \cup_f Y$ es conexo.
 - (d) Si A es conexo y no vacío y $X \cup_f Y$ es conexo, entonces Y es conexo.
- 5. Si $X\subseteq X'$ e $Y'\subseteq Y$ son subespacio tales que $A\subseteq X'$ y $f(A)\subseteq Y'$ entonces $X'\cup_f Y'$ es subespacio de $X\cup_f Y$.
- 6. (a) Sean Y' un espacio topológico y $g:Y\to Y'$ una función continua. Como Y puede verse como un subespacio cerrado de $X\cup_f Y$, podemos construir el espacio $(X\cup_f Y)\cup_g Y'$. Podemos, por otro lado, construir el espacio de adjunción $X\cup_{g\circ f} Y'$. En estas condiciones, hay un homeomorfismo natural $(X\cup_f Y)\cup_g Y'\cong X\cup_{g\circ f} Y'$.
 - (b) Sea ahora $k: X \to X'$ una inclusión cerrada, de manera que tiene sentido el espacio de adjunción $X' \cup_f Y$. Entonces $X' \cup_f Y \cong X' \cup_{\bar{f}} (X \cup_f Y)$ naturalmente.
- 7. Sean X e Y espacios topológicos, y sea $f: X \to Y$ una función continua. Sea $f': X \times \{0\} \to Y$ definida por f'(x,0) = f(x). Como $X \times \{0\}$ es un subespacio cerrado de $X \times I$, podemos definir el espacio de adjunción $M(f) = Y \cup_{f'} (X \times I)$, que se denomina el *cilindro* de f. El *cono* de f se define como $C(f) = M(f)/(X \times \{1\})$.

Pruebe que si X e Y son T_2 , entonces M(f) y C(f) son T_2 .