Topología

Segundo cuatrimestre - 2013 Práctica 2

Topologías iniciales y finales

Subespacios

- 1. Sea X un espacio topológico. Pruebe que si $Z \subset A$ y A subespacio de X, entonces la topología de Z como subespacio de A coincide con la topología de Z como subespacio del subespacio X.
- 2. Sea X un conjunto totalmente ordenado, dotado de la topología del orden, y sea $Y\subseteq X$ un subconjunto.
 - (a) Muestre que la topología del orden de Y no necesariamente concide con la topología de Y como subespacio de X.
 - (b) Y se dice **convexo** si satisface $a,b \in Y \Rightarrow (a,b) \subset Y$. Pruebe que si Y es convexo, entonces estas dos topologías sí coinciden.
- 3. Considere a I = [-1, 1] como subespacio de \mathbb{R} . ¿Cuáles de los siguientes conjuntos son abiertos en I? ¿Cuáles son abiertos en \mathbb{R} ?

$$\begin{array}{ll} A = \{x: \frac{1}{2} < |x| < 1\} & B = \{x: \frac{1}{2} < |x| \leq 1\} \\ D = \{x: \frac{1}{2} \leq |x| \leq 1\} & E = \{x: 0 < |x| < 1, 1/x \notin \mathbb{N}\} & F = \{x: |x| \leq 1\} \end{array}$$

Productos

- 4. Sean X e Y espacios topológicos. Sean A un subespacio de X, B un subespacio de Y. Pruebe que la topología producto en $A \times B$ coincide con la topología de subespacio de $X \times Y$.
- 5. Sean X,Y espacios topológicos. Pruebe que las proyecciones $p_1:X\times Y\to X$ y $p_2:X\times Y\to Y$ son abiertas. Halle ejemplos en los que no sean cerradas.
- 6. Sean X,Y,Z espacios topológicos, y sea $f:X\times Y\to Z$ una función. f se dice **continua en** x si $f(-,y):X\to Z$ es continua para todo $y\in Y$. Analogamente, f se dice **continua en** y si $f(x,-):Y\to Z$ es continua para todo $x\in X$.
 - (a) Pruebe que si f es continua, entonces es continua en cada variable.
 - (b) Dé un ejemplo en el que f sea continua en cada variable y sin embargo no sea continua.
- 7. Sean $A\subset X$ y $B\subset Y$. Pruebe que $\overline{A\times B}=\overline{A}\times \overline{B}$. Concluya que si A es cerrado en X y B es cerrado en X, entonces $A\times B$ es cerrado en $X\times Y$.
- 8. (a) Pruebe que la topología del orden lexicográfico en $\mathbb{R} \times \mathbb{R}$ coincide con la topología producto de $\mathbb{R}_d \times \mathbb{R}$, donde \mathbb{R}_d es el conjunto \mathbb{R} dotado de la topología discreta. Compare con la topología usual de \mathbb{R}^2 .
 - (b) Sea $I = [0, 1] \subset \mathbb{R}$. Compare las siguientes topologías sobre $I \times I$:
 - la topología producto;
 - la topología del orden para el orden lexicográfico;
 - la topología producto $I_d \times I$, donde I_d denota a I con la topología discreta.

- 9. Sea \mathbb{R}_l el espacio topológico cuyo conjunto subyacente es \mathbb{R} y cuya topología tiene como base de abiertos al conjunto $\{[a,b),\ a,b\in\mathbb{R}\}$. Sea L una recta en el plano. Describa la topología de L como subespacio de $\mathbb{R}_l\times\mathbb{R}$ y como subespacio de $\mathbb{R}_l\times\mathbb{R}_l$.
- 10. (a) Sean $x_0 \in X$ e $y_0 \in Y$. Pruebe que las funciones $f: X \to X \times Y$ y $g: Y \to X \times Y$ definidas por $f(x) = (x, y_0), g(y) = (x_0, y)$ son subespacios.
 - (b) Sea X un espacio métrico con métrica $d: X \times X \to \mathbb{R}$. Pruebe que la topología inducida por la métrica es la menos fina que hace que d sea una función continua. Sugerencia: si d es continua, también lo es $d_{x_0}: X \to \mathbb{R}$, $d_{x_0}(x) = d(x, x_0)$.
- 11. Sea $\{X_i\}_{i\in I}$ una familia de espacios topológicos, y sea para cada $i\in I$ un subconjunto $A_i\subset X_i$. Decida cuáles de las siguientes afirmaciones son ciertas y cuáles falsas si se toma en $X=\prod_{i\in I}X_i$ la topología producto. ¿Y si se toma la topología caja?
 - (a) Si cada A_i es cerrado en X_i entonces $\prod_{i \in I} A_i$ es cerrado en X.
 - (b) $\overline{\prod_{i\in I} A_i} = \prod_{i\in I} \overline{A_i}$.
- 12. Sea $\{X_i\}_{i\in I}$ una familia de espacios topológicos, y sea $X=\prod_{i\in I}X_i$ el espacio producto con proyecciones $(p_i:X\to X_i)_{i\in I}$. Dada $(x_\alpha)_{\alpha\in\Lambda}$ una red en X, pruebe que $x_\alpha\to x$ si y sólo si $p_i(x_\alpha)\to p_i(x)$ para todo $i\in I$. ¿Es cierto ésto si se toma en X la topología caja?
- 13. Se define en $\mathbb R$ la métrica acotada como $\overline{d}(a,b)=\min\{|a-b|,1\}$. Pruebe que induce la misma topología que la usual. Sea $\mathbb R^\omega$ el conjunto de las sucesiones de números reales. Se define en $\mathbb R^\omega$ la métrica uniforme como $\overline{\rho}((a_n)_{n\in\mathbb N},(b_n)_{n\in\mathbb N})=\sup_n\{\overline{d}(a_n,b_n)\}$. Verifique que la métrica uniforme es efectivamente una métrica.
- 14. Decida si las siguientes funciones $\mathbb{R} \to \mathbb{R}^{\omega}$ son continuas tomando en \mathbb{R} la topología usual y tomando en \mathbb{R}^{ω} la topología uniforme, la topología producto y la topología caja.

$$f(t) = (t, 2t, 3t, ...)$$
 $g(t) = (t, t, t, ...)$ $h(t) = (t, \frac{1}{2}t, \frac{1}{3}t, ...)$

- 15. Decida si las siguientes sucesiones convergen en \mathbb{R}^{ω} con las topologías uniforme, producto y caja.
 - (a) $(1,1,1,1,\ldots), (0,2,2,2,\ldots), (0,0,3,3,\ldots), \ldots$
 - (b) $(1,1,1,1,\ldots), (0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\ldots), (0,0,\frac{1}{3},\frac{1}{3},\ldots), \ldots$
 - (c) $(1,0,0,0,\ldots), (\frac{1}{2},\frac{1}{2},0,0,\ldots), (\frac{1}{3},\frac{1}{3},\frac{1}{3},0,\ldots), \ldots$
 - (d) $(1,1,0,0,\ldots), (\frac{1}{2},\frac{1}{2},0,0,\ldots), (\frac{1}{3},\frac{1}{3},0,0,\ldots), \ldots$
- 16. Calcule la clausura del conjunto de las sucesiones eventualmente cero con respecto a las topologías uniforme, producto y caja.

Cocientes

- 17. (a) Sean X e Y espacios topológicos y sea $f:X\to Y$ una función continua. Pruebe que si existe $g:Y\to X$ continua tal que $f\circ g=id_Y$, entonces f es un cociente.
 - (b) Si $A \subset X$, una **retracción** de X sobre A es una aplicación continua $r: X \to A$ tal que r(a) = a para todo $a \in A$. Pruebe que una retracción es una aplicación cociente.
- 18. Sea $p_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ la proyección a la primer coordenada. Muestre que:

- (a) si $X = (\{0\} \times \mathbb{R}) \cup (\mathbb{R} \times \{0\})$, entonces $p_1|_X : X \to \mathbb{R}$ es un cociente cerrado pero no abierto;
- (b) si $Y=(\mathbb{R}_{\geq 0}\times\mathbb{R})\cup(\mathbb{R}\times\{0\})$, entonces $p_1|_Y:Y\to\mathbb{R}$ es un cociente que no es ni abierto ni cerrado.
- 19. Sea Z el subespacio $\mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R}$ de $\mathbb{R} \times \mathbb{R}$. Definimos $g: \mathbb{R} \times \mathbb{R} \to Z$ por la fórmula

$$\left\{ \begin{array}{lll} g((x,y)) & = & (x,0) & \quad \text{si } x \neq 0 \\ g((0,y)) & = & (0,y) \end{array} \right.$$

- (a) ¿Es g un cociente? ¿Es g continua?
- (b) Halle una base para la topología cociente en $\mathbb Z$ inducida por g.
- 20. Sea G un grupo. Un G-espacio es un espacio topológico X junto con una acción . : $G \times X \to X$ tal que $x \mapsto g \cdot x$ es continua para todo $g \in G$. Pruebe que los siguientes espacios topológicos son G-espacios.
 - (a) $X = \mathbb{R}$, $G = \mathbb{Z}$ y la acción es $n \cdot x = n + x$.
 - (b) $X = \mathbb{R}^2$, $G = \mathbb{Z} \times \mathbb{Z}$ y la acción es $(n, m) \cdot (x, y) = (n + x, m + y)$.
 - (c) $X = S^n$, $G = \mathbb{Z}_2 = \{\pm 1\}$ y la acción es $\pm 1 \cdot x = \pm x$.
 - (d) $X = \{(x,y) \in \mathbb{R}^2 : -\frac{1}{2} \le y \le \frac{1}{2}\}, G = \mathbb{Z}$ y la acción es $m \cdot (x,y) = (m+x,(-1)^m y)$.
- 21. Si X es un G-espacio, definimos una relación de equivalencia \sim_G en X como sigue:

$$x \sim_G y \iff \exists g \in X \text{ tal que } y = g \cdot x.$$

Notamos X/G al espacio cociente X/\sim_G y $p:X\to X/G$ a la proyección. Pruebe que p es abierta; y que si G es finito, entonces p también es cerrada.

- 22. (a) Pruebe que el espacio cociente \mathbb{R}/\mathbb{Z} (ejercicio 22, a) es homeomorfo a S^1 .
 - (b) Pruebe que el espacio cociente $\mathbb{R}^2/\mathbb{Z}\times\mathbb{Z}$ (ejercicio 22, b) es homeomorfo al toro $S^1\times S^1$.
 - (c) Pruebe que el espacio cociente S^2/\mathbb{Z}_2 (ejercicio 22, c) es homeomeorfo a $\mathcal{P}^2(\mathbb{R})$, el plano proyectivo real. (Recordar que el plano proyectivo real se define como el cociente de $[0,1]\times[0,1]$ por la relación que identifica (0,y) con (1,1-y), para todo $y\in[0,1]$, y (x,0) con (1-x,1), para todo $x\in[0,1]$).
 - (d) Pruebe que el espacio cociente X/\mathbb{Z} (ejercicio 22, d) es homeomorfo a la banda de Möbius. (Recordar que la banda de Möbius se define como el cociente de $[0,1] \times [0,1]$ por la relación que identifica (0,y) con (1,1-y), para todo $y \in [0,1]$).

Familias iniciales y finales

23. Sea $\{f_i:X\to X_i\}_{i\in I}$ una familia inicial de funciones, y sea $f:X\to\prod X_i$ la función definida por

$$f(x) = (f_i(x))_{i \in I}$$

Sea Z la imagen de f. Pruebe que $f: X \to Z$ es abierta

- 24. Sea X un espacio topológico con topología τ , y sea $S=\{0,1\}$ el espacio de **Sierpinski**, con topología $\{\emptyset,\{1\},S\}$.
 - (a) Pruebe que $A\subset X$ es abierto si y sólo si la función característica de $A,\ \chi_A:X\to S,$ es continua.
 - (b) Pruebe que la familia $\{\chi_U: X \to S\}_{U \in \tau}$ es inicial.