Final de

Análisis I - Análisis Matemático I - Matemática 1 - Análisis II (C)

Fechas de examen de diciembre 2013 y febrero/marzo 2014

Se espera que los alumnos sepan y entiendan todos los enunciados de los temas vistos en las clases teóricas. El examen final podrá contener ejercicios teórico-prácticos sobre todos los temas. Por otro lado, se podrá pedir que escriban las demostraciones de los teoremas y resultados que se listan a continuación.

- 1. Una función $f: \mathbb{R}^2 \to \mathbb{R}$ es continua en $P \in \mathbb{R}^2$ si y solo si para toda sucesión $\{P_k\}_{k \in \mathbb{N}}$ en \mathbb{R}^2 tal que $\lim_{k\to\infty} P_k = P$, se verifica $\lim_{k\to\infty} f(P_k) = f(P)$. 2. Teorema de Bolzano: Dada $f:[a,b]\to\mathbb{R}$ continua con f(a) y f(b) de signos distintos, entonces
- existe $c \in (a, b)$ tal que f(c) = 0.
- 3. Teorema de valores intermedios en conjuntos arcoconexos de \mathbb{R}^2 : Sean $A \subset \mathbb{R}^2$ arcoconexo y $f: A \to \mathbb{R}$ continua. Si f(P) < d < f(Q) con $P, Q \in A$ y $d \in \mathbb{R}$, entonces existe $R \in A$ tal que
- 4. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en $P \in \mathbb{R}^2$. Probar que f es continua en P.
- 5. Teoremas de Rolle, Lagrange y Cauchy en una variable.
- 6. Sea $f:U\subseteq\mathbb{R}^2\to\mathbb{R}$ con derivadas parciales continuas en el abierto U. Probar que f es diferenciable
- 7. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en $P \in \mathbb{R}^2$ y $v \in \mathbb{R}^2$ tal que ||v|| = 1. Probar que existe $\frac{\partial f}{\partial v}(P)$ y es igual a $\nabla f(P) \cdot v$
- 8. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en $P \in \mathbb{R}^2$ tal que $\nabla f(P) \neq 0$. Probar que la dirección de máximo crecimiento de f está dada por $\nabla f(P)$.
- 9. Teorema del valor medio para funciones diferenciables en \mathbb{R}^2 : Sean $B \subseteq \mathbb{R}^2$ abierto y convexo y $f: B \to \mathbb{R}$ diferenciable en B. Entonces para todo $P, Q \in B$, existe R en el segmento que une P con Q tal que $f(P) - f(Q) = \nabla f(R) \cdot (P - Q)$.
- 10. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en $P \in \mathbb{R}^2$ y P un extremo de f. Probar que $\nabla f(P) = 0$.
- 11. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ de clase \mathcal{C}^3 y P un punto crítico de f. Probar que si el hessiano de f en P es definido positivo, entonces P es un mínimo relativo estricto de f.
- 12. Teorema de multiplicadores de Lagrange: Sean $f, g: \mathbb{R}^n \to \mathbb{R}$ funciones de clase $C^1, S = \{x \in \mathbb{R}^n : x \in \mathbb{R$ g(x)=0} y $P\in S$. Probar para n=2 o n=3 que si P es un extremo local de f restringido a Sy $\nabla g(P) \neq 0$, entonces existe $\lambda \in \mathbb{R}$ tal que $\nabla f(P) = \lambda \nabla g(P)$.
- 13. Dado P en una curva de nivel de F(x,y) de clase C^1 tal que $\nabla F(P) \neq 0$, entonces $\nabla F(P)$ es perpendicular a la recta tangente a la curva en P.
- 14. Teorema fundamental del cálculo: Si f es continua en [a,b], entonces $F(x) = \int_a^x f(t)dt$ es continua en [a, b], derivable en (a, b) y F'(x) = f(x) para todo $x \in (a, b)$.
- 15. Regla de Barrow: sea f continua en [a,b], y F una primitiva, es decir $F:[a,b]\to\mathbb{R}$ es continua, F es derivable en (a,b) y F'(x)=f(x) para todo $x\in(a,b)$. Entonces, $\int_a^b f(t)dt=F(b)-F(a)$. 16. Teorema del valor medio integral: Dada $f:[a,b]\to\mathbb{R}$ continua, entonces existe $c\in(a,b)$ tal que
- $\int_{a}^{b} f(t)dt = f(c).(b-a).$

1