Práctica 7 - Segunda parte Reducción módulo p y teorema de Dedekind

Nota: En esta práctica trabajamos con polinomios con coeficientes enteros. Dado un polinomio separable $f \in \mathbb{Z}[X]$ de grado n, denotamos G_f al grupo de Galois de f sobre \mathbb{Q} , el cual identificamos con un subgrupo de \mathbb{S}_n . Para cada primo p, la reducción de f módulo p es la imagen de f por el morfismo canónico $\mathbb{Z}[X] \to \mathbb{F}_p[X]$, y la denotamos f_p .

- 1. Sea $f \in \mathbb{Q}[X]$ un polinomio mónico de grado n, y sea c un número entero divisible por todos los denominadores en los coeficientes de f. Probar que el polinomio $g(x) = c^n f\left(\frac{x}{c}\right)$ es mónico, tiene coeficientes enteros, y $\operatorname{Desc}(g|\mathbb{Q}) = \operatorname{Desc}(f|\mathbb{Q})$.
- 2. Sea G un subgrupo transitivo de \mathbb{S}_n que contiene una trasposición y un (n-1)-ciclo. Probar que $G = \mathbb{S}_n$.
- 3. Para cada uno de los siguientes polinomios f, probar que $G_f = \mathbb{S}_n$, con $n = \deg(f)$:

(a)
$$X^5 + 4X^4 + 4X^3 + 5X^2 - 2X + 3$$
;

(b)
$$X^6 - 12X^4 + 15X^3 - 6X^2 + 15X + 12$$
;

(c)
$$X^5 + 25X^4 + 10X^3 + 10X^2 + 10X + 15$$
.

- 4. Sea f el polinomio $X^5 X^4 + 2X^2 2$. Factorizando f módulo 3 y módulo 7, probar que G_f contiene una trasposición y un 4-ciclo. ¿Es $G_f = \mathbb{S}_5$?
- 5. Sea $f \in \mathbb{Z}[X]$ mónico e irreducible de grado 4 tal que $G_f \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Probar que para todo primo p, el polinomio f_p es reducible en $\mathbb{F}_p[X]$.
- 6. Sea n un entero impar tal que p = n+2 es primo, y sea $f \in \mathbb{Z}[X]$ un polinomio mónico e irreducible de grado p. Supongamos que para un cierto primo p', el polinomio $f_{p'}$ se factoriza en $\mathbb{F}_{p'}[X]$ como producto de dos polinomios irreducibles cuyos grados son 2 y n. Probar que $G_f = \mathbb{S}_p$.