Álgebra II

Primer Cuatrimestre - 2025 Práctica 7

Teorema de estructura

- 1. Sea M un A-módulo. Decidir cuáles de las siguientes afirmaciones son verdaderas.
 - (I) De todo sistema de generadores de *M* puede extraerse una base.
 - (II) Todo conjunto linealmente independiente en *M* puede extenderse a una base.
- (III) Todo módulo es libre.
- (IV) Todo submódulo de un módulo libre es libre.
- (v) Si $x \in M$ es no nulo entonces $\{x\}$ es linealmente independiente.
- (VI) Existen módulos libres con elementos no nulos que son linealmente dependientes.
- (VII) Existen módulos no libres tales que todo elemento no nulo es linealmente independiente.
- **2.** Sea *A* un dominio íntegro. Decidir cuáles de las siguientes afirmaciones son verdaderas.
 - (I) Si *M* es un *A*-módulo libre entonces es sin torsión.
 - (II) Si $f: M \longrightarrow N$ es un morfismo de A-módulos y M es de torsión entonces Im(f) es de torsión.
- (III) Si $f\colon M\longrightarrow N$ es un morfismo de A-módulos y M es sin torsión entonces $\mathrm{Im}(f)$ es sin torsión
- **3.** Sea A un dominio íntegro, sea M un A-módulo y $S \subset M$ un submódulo. Probar que $t(S) = S \cap t(M)$.
- **4.** Calcular $t(\mathbb{R}/\mathbb{Z})$.
- **5.** Sea *A* un dominio íntegro y sean *M* y *N* dos *A*-módulos. Probar que:
 - (I) si N es sin torsión entonces $\operatorname{Hom}_A(M, N)$ es sin torsión;
 - (II) Si M es de torsión y N es sin torsión entonces $\operatorname{Hom}_A(M,N)=0$.
- **6.** Sea A un dominio íntegro y sea $(M_i)_{i \in I}$ una familia de A-módulos. Probar que
 - (I) $t(\prod_{i\in I} M_i) \subseteq \prod_{i\in I} t(M_i)$.
 - (II) $t(\bigoplus_{i\in I} M_i) = \bigoplus_{i\in I} t(M_i)$.
- 7. Sea A un dominio íntegro, y sean M y N dos A-módulos. Probar que si M o N son de torsión entonces $M \otimes_A N$ es de torsión.
- **8.** Clasificar los grupos abelianos de orden 16, 27 y p^6 para cada $p \in \mathbb{N}$ primo.
- **9.** Sea G un grupo abeliano de orden p^5 , con p primo. Calcular los posibles órdenes del subgrupo $\{x \in G : x^p = 1\}$.

- **10.** Clasificar los grupos abelianos de orden 6, 12, 18, 45, 50, 100 y 180.
- 11. cCaracterizar los grupos abelianos finitos tales que:
 - (I) Todo subgrupo propio de *G* es cíclico.
 - (II) Todo subgrupo propio de *G* es de orden primo.
- (III) Todo subgrupo propio no nulo de *G* es maximal.
- (IV) Para todo par de subgrupos S y T de G, $S \subseteq T$ o $T \subseteq S$.
- (V) El orden de todo elemento no nulo de *G* es primo.
- (VI) G/S es cíclico para todo subgrupo S no nulo de G.
- 12. Calcular los factores invariantes de los siguientes grupos:
 - (I) $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z}$.
 - (II) $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/14\mathbb{Z}$.
- (III) *G* un grupo abeliano de orden 36 que tiene exactamente 2 elementos de orden 3 y que no tiene elementos de orden 4.
- (IV) G un grupo abeliano de orden 225 que tiene por lo menos 40 elementos de orden 15 y tal que todo subgrupo de orden 9 de G es isomorfo a $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$.