Álgebra II

Primer Cuatrimestre - 2025 Práctica 4 Anillos

Primeros ejemplos, ideales y cocientes

- **1.** Sean A, A₁,...,A_n anillos y X un conjunto. Probar que los siguientes conjuntos, con las operaciones definidas, tienen estructura de anillo:
 - (I) $A^X = \{f : X \longrightarrow A \text{ función}\}\$ con la suma y el producto puntual;
 - (II) el producto de anillos $A_1 \times \cdots \times A_n$ con operaciones coordenada a coordenada;
- (III) dados $X \subset \mathbb{R}^n$ y $U \subset \mathbb{R}^n$ abierto, $\mathscr{C}(X)$ y $\mathscr{C}^{\infty}(U) = \{f \colon U \to \mathbb{R} : f \text{ infinitamente derivable}\}$ como subanillos de \mathbb{R}^X y \mathbb{R}^U respectivamente;
- (IV) $\operatorname{End}(M)$ con M un grupo abeliano y operaciones la suma puntual y la composición;
- (V) $\mathbb{R}[\varepsilon]$, cuyo conjunto subyacente es $\mathbb{R}^2 = \{(a,b) : a,b \in \mathbb{R}\}$; la suma es coordenada a coordenada y, notando $a + \varepsilon b$ a (a,b), el producto $(a + \varepsilon b)(c + \varepsilon d) = ac + \varepsilon(bc + ad)$.

Decidir cuáles son conmutativos, cuáles son dominios íntegros, cuáles son anillos de división y cuáles son cuerpos.

- 2. Dar ejemplos de:
 - (I) un anillo de división que no sea cuerpo;
 - (II) un anillo que no sea íntegro;
- (III) un anillo íntegro que no sea de división.
- **3.** Sea A un anillo conmutativo y $f \neq 0$ en A[X]. Probar que si f es un divisor de cero en A[X] entonces existe $a \in A \setminus \{0\}$ tal que af = 0. Concluya que si A es un dominio íntegro, entonces A[X] es un dominio íntegro.
- **4.** Caracterice las unidades y divisores de cero del anillo $\mathscr{C}[0,1]$ de funciones continuas a valores reales definidas en [0,1].
- **5.** Pruebe que $2 + \sqrt{3}$ es una unidad en $\mathbb{Z}[\sqrt{3}]$.
- **6.** Sea *A* un anillo conmutativo y sea *B* un subanillo de *A*. Decida si las siguientes afirmaciones son verdaderas o falsas:
 - (I) Si A es un cuerpo, entonces B es un cuerpo.
 - (II) Si *A* es un dominio íntegro, entonces *B* es un dominio íntegro.
- (III) Si *B* es un dominio íntegro, entonces *A* es un dominio íntegro.
- 7. Pruebe que un anillo A es de división si y sólo si sus únicos ideales a izquierda son 0 y A.

- **8.** Sea k un cuerpo. Pruebe que los únicos ideales biláteros de $M_2(k)$ son 0 y $M_2(k)$. ¿Es $M_2(k)$ un anillo de división?
- **9.** Sea k un cuerpo. Pruebe que toda k-álgebra de dimensión finita sobre k es isomorfa a una subálgebra de $M_n(k)$.

Sugerencia: piense en el teorema de Cayley para grupos.

10 (Anillo de grupo). Sea G un grupo. El *soporte* de una función $f: G \to \mathbb{Z}$ es el conjunto

$$sop(f) := \{ g \in G : f(g) \neq 0 \}.$$

El anillo de grupo de G es el conjunto

$$\mathbb{Z}[G] = \{ f : G \to A : \operatorname{sop}(f) \text{ es finito} \}$$

con operaciones

$$(f_1 + f_2)(g) = f_1(g) + f_2(g),$$
 $(f_1 \cdot f_2)(g) = \sum_{st=g} f_1(s)f_2(g).$

Verifique que $\mathbb{Z}[G]$ es un anillo. Identificamos a $g \in G$ con la función característica χ_g , y notamos $\sum_{g \in G} a_g g$ a la función que vale $a_g \in \mathbb{Z}$ en cada $g \in G$. Se tienen luego las siguientes igualdades:

$$\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g) g \quad ; \quad \sum_{g \in G} a_g g \cdot \sum_{h \in G} a_h h = \sum_{g \in G} \left(\sum_{st=g} a_s b_t \right) g = \sum_{g,h \in G} a_g b_h g h.$$

- **11.** Probar que si $f: \mathbb{R} \to \mathbb{R}$ es un morfismo de anillos entonces $f = \mathrm{id}_{\mathbb{R}}$. ¿Cómo son los morfismos de anillos $f: \mathbb{C} \to \mathbb{C}$ que satisfacen $f(\mathbb{R}) \subseteq \mathbb{R}$?
- 12. Calcule el grupo de automorfismos de anillos de $\mathbb{Z}[\sqrt{2}]$ y $\mathbb{Q}[\sqrt{3}]$.
- **13.** Pruebe que para todo anillo A hay biyecciones $\operatorname{Hom}(\mathbb{Z}[X],A) \equiv A$ y $\operatorname{Hom}(\mathbb{Z}[G],A) \equiv \operatorname{Hom}(G,A^{\times})$.
- 14. Pruebe la existencia de los siguientes isomorfismos:

(I)
$$\mathbb{Q}[X]/(X^3+X) \cong \mathbb{Q} \times \mathbb{Q}[i]$$
.

(IV)
$$\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}/2\mathbb{Z}$$
.

(II)
$$\mathbb{R}[X]/(X^4-1) \cong \mathbb{R} \times \mathbb{R} \times \mathbb{C}$$
.

(v)
$$\mathbb{Z}[i]/(1+2i) \cong \mathbb{Z}/5\mathbb{Z}$$
.

(III)
$$\mathbb{Z}[X]/(X^2+1) \cong \mathbb{Z}[i]$$
.

(VI)
$$\mathbb{Z}[X]/(n) \cong (\mathbb{Z}/n\mathbb{Z})[X], n \in \mathbb{N}$$
.

Ideales primos y maximales

- **15.** Sean I_1, \ldots, I_n ideales de un anillo conmutativo A y sea $\mathfrak{p} \subset A$ un ideal primo tal que $\bigcap_{i=1}^n I_i \subseteq \mathfrak{p}$.
 - (I) Probar que existe $1 \le i \le n$ tal que $I_i \subseteq \mathfrak{p}$.
- (II) Probar que si $\mathfrak{p} = \bigcap_{i=1}^{n} I_i$, entonces $\mathfrak{p} = I_i$ para algún $1 \le i \le n$.
- **16.** Sea *I* un ideal de un anillo conmutativo *A*. Probar que

$$\sqrt{I} = \{ a \in A : \text{existe } r \in \mathbb{N} \text{ tal que } a^r \in I \}$$

es un ideal de *A*, que denominamos el *radical* de *I*.

- 17. Sean A y B dos anillos conmutativos y $f: A \to B$ un morfismo de anillos. Pruebe que si \mathfrak{p} es un ideal primo de B, entonces $f^{-1}(\mathfrak{p})$ es un ideal primo de A. ¿Es cierta la afirmación si reemplazamos primo por maximal?
- **18.** Sea A un dominio íntegro. Pruebe que A es un dominio principal si y sólo si todo ideal primo de A es principal.
- **19.** Probar que $\mathfrak{m} = (3, Y^4 X, Y^{12} X^3 + Y 1)$ es un ideal maximal de $\mathbb{Z}[X, Y]$.
- **20.** Sea $A = \mathbb{Z}[\sqrt{-5}]$.
 - (I) Probar que 2, 3, $1 + \sqrt{-5}$ y $1 \sqrt{-5}$ son irreducibles en A.
 - (II) Notar que $6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 \sqrt{-5})$ y concluir que A no es un DFU.
- (III) Probar que 3 no es primo.
- (IV) Pruebe que $(2, 1 + \sqrt{-5})$ no es principal.
- **21.** Sean $n \in \mathbb{N}$ y $X \subset \mathbb{R}^n$. Pruebe que los ideales de $\mathscr{C}(X)$ de la forma

$$\mathfrak{m}_p := \{ f \in \mathscr{C}(X) : f(p) = 0 \}, \qquad (p \in X)$$

son maximales. Pruebe además que si X es compacto entonces todos los ideales maximales de $\mathscr{C}(X)$ son de esta forma.

Noetherianidad

- **22.** Sea A un anillo. Probar que A es noetheriano si y sólo si todo conjunto \mathcal{I} de ideales de A tiene un elemento maximal con respecto al orden dado por la inclusión.
- **23.** Sea A un anillo noetheriano. Pruebe que todo endomorfismo sobreyectivo $f \colon A \to A$ es un isomorfismo.
- **24.** Sea A un anillo noetheriano e $I \subset A$ un ideal bilátero. Pruebe que A/I es noetheriano.

Factorización

- **25.** Sea $\mathfrak{p} \subset \mathbb{Z}[X]$ un ideal primo tal que $\mathfrak{p} \cap \mathbb{Z} \neq (0)$, y $p \in \mathbb{N}$ primo tal que $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$. Pruebe que o bien $\mathfrak{p} = (p)$ o bien existe $f \in \mathbb{Z}[X]$ que es mónico e irreducible en $(\mathbb{Z}/p\mathbb{Z})[X]$ y tal que $\mathfrak{p} = (p, f)$.
- 26 (Primos Gaußianos). Probar que:
 - (I) un primo $p \in \mathbb{Z}$ es congruente a 1 módulo 4 si y sólo si la ecuación $x^2 \equiv -1 \pmod{p}$ tiene solución.
 - (II) si $x \in \mathbb{Z}$ y $a + ib \in \mathbb{Z}[i]$, entonces $a + ib \mid x$ si y sólo si $a ib \mid x$.
- (III) $a + ib \in \mathbb{Z}[i]$ es irreducible en $\mathbb{Z}[i]$ si y sólo si $a^2 + b^2$ es un primo de \mathbb{Z} *no* congruente a 3 módulo 4.
- (IV) probar que un entero $n \in \mathbb{Z}$ es irreducible en $\mathbb{Z}[i]$ si y sólo si es un primo de \mathbb{Z} congruente a 3 módulo 4.

- **27** (Lema de Gauß). Sean A un DFU y $K = \operatorname{Frac}(A)$ su cuerpo de fracciones. Sea $f = \sum_{i=0}^{n} a_i X^i \in A[X]$ con $a_0 \neq 0$. Probar que si p y q son elementos de A no nulos, coprimos entre sí, y tales que $\frac{p}{q} \in K$ es raíz de f, entonces $p \mid a_0$ y $q \mid a_n$ en A.
- **28.** Sean A un dominio íntegro e I un ideal propio de A. Consideramos $\pi\colon A\longrightarrow A/I$ la proyección canónica. Si $f=\sum_{i=0}^n a_i X^i\in A[X]$ es mónico y $\overline{f}:=\sum_{i=0}^n \pi(a_i)X^i\in (A/I)[X]$. Probar que si f es reducible en A[X], entonces \overline{f} es reducible en (A/I)[X].
- **29** (Criterio de Eisenstein). Sean A un DFU y $K = \operatorname{Frac}(A)$ su cuerpo de fracciones. Sea $f = \sum_{i=0}^n a_i X^i \in A[X]$. Supongamos que existe un primo $p \in A$ tal que $p \nmid a_n$, $p \mid a_i$ para todo $i \in \{0, \ldots, n-1\}$ y $p^2 \nmid a_0$. Pruebe que f es irreducible en K[X].
- 30. Probar que los siguientes polinomios son irreducibles:

(I)
$$X^4 - X^2 + 1 \in \mathbb{Q}[X]$$
;

(II)
$$X^2 + Y^2 - 1 \in \mathbb{Q}[X, Y];$$

(III)
$$XY - ZT \in \mathbb{Q}[X, Y, Z, T];$$

(IV)
$$X^{p-1} + pX^{p-2} + {p \choose 2}X^{p-3} + \ldots + {p \choose 2}X + p \in \mathbb{Q}[X];$$

(v)
$$X^{p-1} + X^{p-2} + \ldots + X + 1 \in \mathbb{Q}[X]$$

Sugerencia: haga un cambio de variables conveniente.

31. Decida si $Z^7 + 2X^9YZ + 2Y^{10}Z + X + Y \in \mathbb{Z}/3\mathbb{Z}[X,Y,Z]$ es irreducible.