PRÁCTICA 8: ESPACIOS NORMADOS

Ejercicio 1. Probar que cada uno de los siguientes es un espacio normado sobre \mathbb{R} , y decidir si es un espacio de Banach.

i)
$$\ell^1 = \{(x_n)_{n \in \mathbb{N}} \subset \mathbb{R} / \sum_{n=1}^{\infty} |x_n| < \infty\}, \text{ con } ||(x_n)|| = \sum_{n=1}^{\infty} |x_n|.$$

- ii) ℓ^1 con $||(x_n)|| = \sup_{n \in \mathbb{N}} |x_n|$.
- iii) $C[a, b] \text{ con } ||f|| = \sup_{x \in [a, b]} |f(x)|.$
- iv) $C^1[a,b] = \{f : [a,b] \to \mathbb{R} / f \text{ es de clase } C^1\} \text{ con } ||f|| = \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |f'(x)|.$

Ejercicio 2. Sea $(V, \|\cdot\|)$ un espacio normado (sobre $k = \mathbb{R}$ ó \mathbb{C}). Probar que se verifican:

- i) La función "tomar norma" $\|\cdot\|:V\to\mathbb{R}$ es continua.
- ii) Las operaciones $+: V \times V \to V$ y $\cdot: k \times V \to V$ son funciones continuas.
- iii) $\overline{B(x,r)} = \overline{B}(x,r)$ (es decir, la clausura de la bola abierta es la bola cerrada).
- iv) $(\overline{B}(x,r))^{\circ} = B(x,r)$ (es decir, el interior de la bola cerrada es la bola abierta).
- v) diam(B(x,r)) = 2r (suponiendo que $V \neq \{0\}$).

Ejercicio 3. Sea V un k-espacio vectorial $(k = \mathbb{R} \text{ o } \mathbb{C})$ y sea $d: V \times V \longrightarrow \mathbb{R}$ una métrica que satisface:

i)
$$d(x+z, y+z) = d(x, y)$$
 $\forall x, y, z \in V$

ii)
$$d(\lambda x, \lambda y) = |\lambda| d(x, y)$$
 $\forall x, y \in V \ \forall \lambda \in k$

Se define $N:V\longrightarrow\mathbb{R}$ como N(x)=d(0,x). Probar que N es una norma en V y verificar que la distancia inducida por N es d.

Ejercicio 4. Sea $(V, \|\cdot\|)$ un espacio normado y sea $C \subset V$. Decimos que C es *convexo* si para todos $x, y \in C$ y $t \in [0, 1]$ se tiene que $tx + (1 - t)y \in C$.

- i) Probar que la bola abierta B(x,r) es convexa.
- ii) Probar que si C es convexo, entonces C° y \overline{C} también lo son.
- iii) Probar que si $(C_i)_{i\in I}$ es una familia de subconjuntos convexos de V, entonces $\bigcap_{i\in I} C_i$ es convexo. Deducir que dado un subconjunto $A\subset V$, existe un único conjunto convexo minimal (respecto de la inclusión) que lo contiene. Este conjunto se llama la *cápsula convexa* de A, y lo notamos Conv(A).
- iv) Probar que si $A = \{x_1, \dots, x_n\}$ es un subconjunto finito de V, entonces $Conv(A) = \{\sum_{i=1}^n a_i x_i \mid a_i \ge 0 \text{ para todo } i, \sum_{i=1}^n a_i = 1\}.$

Ejercicio 5. Sea $(V, \|\cdot\|)$ un espacio normado y $S \subset V$ un subespacio (vectorial). Probar que:

- i) \overline{S} también es un subespacio.
- ii) Si $S \neq V$, entonces $S^{\circ} = \emptyset$.

Ejercicio 6. Sea $(V, \|\cdot\|)$ un espacio normado y sea $(x_n)_{n\in\mathbb{N}} \in V^{\mathbb{N}}$. Decimos que la serie $\sum_{n=1}^{\infty} x_n$ converge si existe lím $\sum_{i=1}^{n} x_i$, y decimos que converge absolutamente si $\sum_{n=1}^{\infty} \|x_n\|$ converge en \mathbb{R} .

- (i) Probar que si $\sum_{n=1}^{\infty} x_n$ converge, entonces $x_n \to 0$.
- (ii) Probar que si $\sum_{n=1}^{\infty} x_n$ converge absolutamente y V es de Banach, entonces $\sum_{n=1}^{\infty} x_n$ converge.

Ejercicio 7. Sean $(V, \|\cdot\|)$ un espacio de Banach y X un conjunto. Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones de X en V. Probar el criterio de Weierstrass:

Si $(a_n)_{n\in\mathbb{N}}$ es una sucesión de números reales positivos tales que la serie $\sum_{n=1}^{\infty} a_n$ es convergente $y \|f_n(x)\| \le a_n$ para cualesquiera $x \in X$ y $n \in \mathbb{N}$, entonces la serie de funciones $\sum_{n=1}^{\infty} f_n$ converge uniformemente.

Ejercicio 8. Dado un k-espacio vectorial V, un subespacio (vectorial) $H \subset V$ se dice un hiperplano si existe $x \in V$, $x \neq 0$, tal que $H \oplus \langle x \rangle = V$.

- i) Probar que si H es un hiperplano, entonces para todo $y \in V \setminus H$ se tiene que $H \oplus \langle y \rangle = V$.
- ii) Probar que H es un hiperplano si y sólo si existe $\phi:V\to k$ lineal, $\phi\neq 0$, tal que $H=\mathrm{Nu}(\phi).$
- iii) Probar que si V es un espacio normado y H es un hiperplano, entonces H es o bien cerrado o bien denso en V.

Ejercicio 9. Para cada uno de los siguientes ejemplos de subespacios decidir si son cerrados, si son densos y si son hiperplanos.

i)
$$c = \{(x_n)_{n \in \mathbb{N}} : \exists \lim_{n \to \infty} x_n\} \subset \ell^{\infty}.$$

- ii) $c_0 = \{(x_n)_{n \in \mathbb{N}} : x_n \to 0\} \subset c.$
- iii) $\{x \in \ell^1 : \sum_{n=1}^{\infty} x_n = 0\} \subset \ell^1$.
- iv) $\mathbb{R}[X] \subset C[0,1]$.

Ejercicio 10. Sean V y W espacios normados. Sea $T:V\to W$ un operador lineal. Probar que son equivalentes:

- i) T es continuo en 0;
- ii) existe $x_0 \in v$ tal que T es continuo en x_0 ;
- iii) T es continuo;

- iv) T es uniformemente continuo;
- v) existe M > 0 tal que $||Tx|| \le M||x||$ para todo $x \in V$ (T es acotado);
- vi) $\forall A \subset V$ acotado, T(A) es acotado.

Ejercicio 11. Sean $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ espacios normados. Consideramos $L(V, W) := \{T : V \to W \mid T \text{ es lineal y continua}\}$, y para cada $T \in L(V, W)$ sea

$$||T|| = \sup_{\|x\|_V \le 1} ||T(x)||_W.$$

Probar que:

- i) $(L(V, W), ||\cdot||)$ es un espacio normado.
- ii) Si W es de Banach entonces L(V, W) también lo es.

Ejercicio 12. Sean V y W espacios normados y sea $T:V\to W$ un operador lineal y continuo. Verificar las siguientes fórmulas:

$$\|T\| = \sup_{\|x\| \le 1} \|Tx\| = \sup_{\|x\| = 1} \|Tx\| = \sup_{x \ne 0} \frac{\|Tx\|}{\|x\|} = \inf\{M > 0 \ / \ \|Tx\| \le M\|x\| \ \text{ para todo } x\}.$$

Ejercicio 13. Sean V_1, V_2 y V_3 espacios normados, y sean $f: V_1 \longrightarrow V_2$ y $g: V_2 \longrightarrow V_3$ operadores lineales continuos. Probar que $||g \circ f|| \le ||g|| \cdot ||f||$.

Ejercicio 14. Sea $(\mathbb{R}[X], \| \|)$ el espacio normado formado por todos los polinomios con coeficientes reales con la norma $\|P\| = \sup_{x \in [0,1]} |P(x)|$. Sea $\varphi : \mathbb{R}[X] \longrightarrow \mathbb{R}$ definida por $\varphi(P) = P(3)$. Probar que φ es lineal pero no continua.

Ejercicio 15. Sea $C_0(\mathbb{R})$ el espacio normado formado por las funciones continuas con soporte compacto con la norma $||f|| = \sup_{x \in \mathbb{R}} |f(x)|$. Definimos $\varphi : C_0(\mathbb{R}) \longrightarrow \mathbb{R}$ como $\varphi(f) = \int_{\mathbb{R}} f(t) \ dt$. Estudiar la continuidad de φ .

Ejercicio 16. Sean $S, T : \ell^1 \to \ell^1$, definidos por:

$$S(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots)$$

$$T(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots)$$

Probar que $S, T \in L(\ell^1)$ y calcular sus normas.

Ejercicio 17. Sea $T: c \to \mathbb{R}$ dada por $T(a) = \lim_{n \to \infty} a_n$. Probar que T es lineal y continuo y hallar ||T||. (Recordar: c es el conjunto de las sucesiones en \mathbb{R} convergentes).

Ejercicio 18. Sea $\phi \in C[0,1]$ y sea $T_{\phi}: C[0,1] \to \mathbb{R}$ dada por

$$T_{\phi}f = \int_0^1 f(x)\phi(x)dx.$$

Probar que T_{ϕ} es un funcional lineal continuo y que $||T_{\phi}|| = \int_0^1 |\phi(x)| dx$.

Ejercicio 19. Sea V un espacio normado sobre k ($k = \mathbb{R}$ ó \mathbb{C}) y sea $\phi : V \to k$ un funcional lineal. Probar que ϕ es continuo si y sólo si $\text{Nu}(\phi)$ es cerrado.

Ejercicio 20.

- i) Sea V un espacio normado y sea H el hiperplano cerrado de V de ecuación $\varphi(x)=0$, donde φ es un funcional lineal continuo. Probar que para cada $a\in V$ vale que $d(a,H)=\frac{|\varphi(a)|}{\|\varphi\|}$.
- ii) En el espacio $(c_0, \|\ \|_{\infty})$, sea H el hiperplano de ecuación $\sum_{n=0}^{\infty} \frac{x_n}{2^n} = 0$.
 - a) Verificar que H es cerrado.
 - b) Probar que si $a \notin H$, no existe ningún punto $b \in H$ tal que d(a, H) = d(a, b).

Ejercicio 21. Sea V un espacio normado y sea (W, i) su completación. Recordar que W es un espacio normado. Sea U un espacio de Banach y $T: V \to U$ un operador lineal continuo.

- (i) Probar que existe un único operador lineal continuo $T':W\to U$ tal que $T'\circ i=T.$
- (ii) Probar que ||T'|| = ||T||.
- (iii) Probar que L(V, U) y L(W, U) son isométricamente isomorfos.

Ejercicio 22. Sea V un espacio de Banach de dimensión infinita. Probar que no puede tener una base algebraica numerable.

Sugerencia: si la tuviera se escribiría como unión numerable de subespacios de dimensión finita. Usar el teorema de Baire.