PRÁCTICA 6: CONEXIÓN

Ejercicio 1. Determinar cuáles de los siguientes subconjuntos de \mathbb{R} (con la métrica usual) son conexos:

$$\mathbb{N}, \qquad [0,1), \qquad \mathbb{Q}, \qquad \left\{ \frac{1}{n} \ / \ n \in \mathbb{N} \right\}$$

Ejercicio 2. Analizar la validez de las siguientes afirmaciones en un espacio métrico arbitrario (X, d). Pensar además si las que son falsas se vuelven verdaderas cuando el espacio es \mathbb{R}^n .

- i) Toda bola abierta B(a,r) es conexa.
- ii) Para todo $a \in X$, existe r > 0 tal que la bola B(a, r) es conexa.
- iii) Si $A, B \subset X$ son conexos entonces $A \cup B$ es conexo.
- iv) Si $A, B \subset X$ son conexos entonces $A \cap B$ es conexo.
- v) Si $A, B \subset X$ son conexos entonces A B es conexo.
- vi) Si $A \subset X$ es conexo y x es un punto de acumulación de A, entonces $A \cup \{x\}$ es conexo.
- vii) Si $A \subset X$ es conexo, entonces A° es conexo.
- viii) Si $A \subset X$ es conexo, entonces \overline{A} es conexo.

Ejercicio 3. Probar que el conjunto $\{(x,y) \in \mathbb{R}^2 : 0 < ||(x,y)|| < 2\}$ es conexo.

Ejercicio 4. Sea (X, d) un espacio métrico y sea $C \subset X$. Probar que son equivalentes:

- i) No existen U, V abiertos en C, no vacíos y disjuntos tales que $C = U \cup V$.
- ii) No existen \mathcal{U} , \mathcal{V} abiertos en X tales que $C \cap \mathcal{U} \neq \emptyset$, $C \cap \mathcal{V} \neq \emptyset$, $C \cap \mathcal{U} \cap \mathcal{V} = \emptyset$ y $C \subset \mathcal{U} \cup \mathcal{V}$.
- iii) Si $A \subset C$ es no vacío y abierto y cerrado en C, entonces A = C.

Ejercicio 5. Sea (X, d) un espacio métrico y sea C un subconjunto de X que no es conexo. Probar que existen \mathcal{U} , \mathcal{V} abiertos en X disjuntos tales que $C \cap \mathcal{U} \neq \emptyset$, $C \cap \mathcal{V} \neq \emptyset$ y $C \subset \mathcal{U} \cup \mathcal{V}$.

Ejercicio 6. Sea $f: \mathbb{R} \longrightarrow \mathbb{Z}$ continua. Probar que f es constante.

Ejercicio 7. Probar que un espacio métrico (X,d) es conexo si y sólo si toda función continua $f: X \longrightarrow \{0,1\}$ es constante.

Ejercicio 8. Probar que si $n \geq 2$ no existe un homeomorfismo entre \mathbb{R} y \mathbb{R}^n . (Que \mathbb{R}^m y \mathbb{R}^n no son homeomorfos si $m \neq n$ es un resultado mucho más avanzado, que se verá en Topología.)

Ejercicio 9. Probar que los espacios métricos (0,1), [0,1) y [0,1] (con las métricas que heredan como subespacios de \mathbb{R}) son dos a dos no homeomorfos.

Ejercicio 10.

- i) Sea (X,d) un espacio métrico conexo y sea $f:X\longrightarrow\mathbb{R}$ una función continua. Sean $a,b\in f(X)$ tales que $a\leq b$. Probar que para todo $c\in [a,b]$ existe $x\in X$ tal que f(x)=c.
- ii) Probar que si (X, d) es conexo, entonces #X = 1 o $\#X \ge c$.

Ejercicio 11. Hallar las componentes conexas de los siguientes subconjuntos de \mathbb{R} y de \mathbb{R}^2 :

i)
$$\arcsin([\frac{\sqrt{2}}{2}, 1])$$
.

iii)
$$B((-1,0),1) \cup B((1,0),1)$$
.

iv)
$$B((-1,0),1) \cup B((1,0),1) \cup \{(0,0)\}.$$

Ejercicio 12. Para cada $n \in \mathbb{N}$, sea $A_n = \{\frac{1}{n}\} \times [0,1]$, y sea $X = \bigcup_{n \in \mathbb{N}} A_n \cup \{(0,0),(0,1)\}$. Probar que:

- i) $\{(0,0)\}$ y $\{(0,1)\}$ son componentes conexas de X.
- ii) Si $B \subset X$ es abierto y cerrado en X, entonces $\{(0,0),(0,1)\} \subset B$ o $\{(0,0),(0,1)\} \cap B = \emptyset$.

Ejercicio 13. Sea (X, d) un espacio métrico. Probar que las componentes conexas de X son conjuntos cerrados. ¿Son abiertos?

Ejercicio 14. Probar que los siguientes conjuntos son totalmente disconexos:

- i) Un espacio métrico discreto con cardinal mayor o igual que 2.
- ii) Un espacio métrico numerable.
- iii) El conjunto de Cantor.

Ejercicio 15. Decidir cuáles de los siguientes conjuntos son arcoconexos:

- i) $\{(x,y,z)\in\mathbb{R}^3\mid z=f(x,y)\}$ donde $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ es una función continua.
- ii) $B(0,1) \subset \mathbb{R}^n$.
- iii) $\mathbb{R}^n B(0,1)$.
- iv) $\mathbb{R}^2 \{(x,0) / x \in \mathbb{R}\}.$
- v) $\mathbb{R}^2 \{(0,0)\}.$

Ejercicio 16. Sean (X,d) un espacio métrico arcoconexo, (Y,d') un espacio métrico y $f:X\longrightarrow Y$ una función continua. Probar que el conjunto f(X) es arcoconexo.

Ejercicio 17. Para cada $k \in \mathbb{N}$, definimos la esfera S^k como el conjunto de puntos de \mathbb{R}^{k+1} que tienen norma 1. Probar que S^1 no es homeomorfo a S^2 .

Ejercicio 18. Sea n > 2 y sea $S \subset \mathbb{R}^n$ un subconjunto contable. Probar que $\mathbb{R}^n - S$ es arcoconexo.

Ejercicio 19. Sea (X, d) un espacio métrico. Se define la siguiente relación: $x \sim y$ si existe un camino de x a y.

- i) Probar que \sim es una relación de equivalencia en X.
- ii) La componente arcoconexa de $x \in X$ se define como $C_x = \{y \in X \mid y \sim x\}$. Verificar que:
 - a) Si $x \sim y$ entonces $C_x = C_y$
 - b) Si $x \not\sim y$ entonces $C_x \cap C_y = \emptyset$
 - c) $X = \bigcup_{x \in X} C_x$
- iii) Mostrar que X es arcoconexo si y sólo si tiene una única componente arcoconexa.

Ejercicio 20. En el espacio $(C[0,1],d_{\infty})$ se considera el conjunto

$$U = \{ f \in C[0,1] : f(x) \neq 0 \ \forall \ x \in [0,1] \}.$$

Probar que U es abierto y hallar sus componentes conexas.

Ejercicio 21. Un espacio métrico (X, d) se dice localmente conexo (resp. localmente arcoconexo) si para todo $x \in X$ y para todo $U \subset X$ entorno de x, existe un entorno conexo (resp. arcoconexo) V de x tal que $x \in V \subset U$. Probar que:

- i) Si $A \subset \mathbb{R}^n$ es abierto, entonces A es conexo \iff A es arcoconexo
- ii) Un espacio métrico X es localmente (arco)conexo si y sólo si para todo U abierto de X, las componentes (arco)conexas de U son abiertas.
- iii) Todo espacio métrico conexo y localmente arcoconexo es arcoconexo.
- iv) En un espacio métrico localmente arcoconexo todo conjunto abierto y conexo es arcoconexo.
- v) Las componentes arcoconexas de un espacio localmente arcoconexo son abiertas.