Análisis Real - Medida y Probabilidad

Primer Cuatrimestre 2024

Guía de problemas N° 7: Diferenciación

Definición 1. Se define el conjunto de las funciones localmente integrables, $L^1_{loc}(\mathbb{R}^d)$, al conjunto

 $L^1_{loc}(\mathbb{R}^d) = \{ f \colon \mathbb{R}^d \to \overline{\mathbb{R}} \colon f \in L^1(K) \text{ para todo } K \subset \mathbb{R}^d \text{ compacto} \}.$

Definición 2. Dada $f \in L^1_{loc}(\mathbb{R}^d)$ se definen las funciones maximales de Hardy-Littlewood

- $M^Q(f)(x) = \sup \left\{ \frac{1}{|Q|} \int_{Q} |f| \, dy \colon Q \text{ es un cubo que contiene a } x \right\}.$
- $M^{QC}(f)(x) = \sup \left\{ \frac{1}{|Q|} \int_{Q} |f| \, dy \colon Q \text{ es un cubo centrado en } x \right\}.$
- $M^B(f)(x) = \sup \left\{ \frac{1}{|B|} \int_{B} |f| dy \colon B \text{ es una bola que contiene a } x \right\}.$
- $M^{BC}(f)(x) = \sup \left\{ \frac{1}{|B|} \int_{B} |f| \, dy \colon B \text{ es una bola centrada en } x \right\}.$

Ejercicio 1. Probar que todas las funciones maximales de Hardy-Littlewood definidas arriba son equivalentes. Es decir, para cualquier par de maximales consideradas $M^{(i)}(f)$ y $M^{(j)}(f)$ existen constantes $C_1, C_2 > 0$ que dependen únicamente de la dimensión d tales que para toda $f \in L^1_{loc}(\mathbb{R}^d)$ se verifica

$$C_1 M^{(i)}(f) \le M^{(j)}(f) \le C_2 M^{(i)}(f).$$

En lo que sigue notaremos M(f) para referirnos a cualquiera de las cuatro versiones de la función maximal.

Ejercicio 2. Sea $L^1_{loc}(\mathbb{R}^d)$ el conjunto formado por aquellas funciones medibles que son integrables sobre todo compacto $K \subseteq \mathbb{R}^d$. Probar:

- 1. Si $f \in L^p(\mathbb{R}^d)$ $(1 \le p \le \infty)$, entonces $f \in L^1_{\mathrm{loc}}(\mathbb{R}^d)$. 2. Si $f \in L^1_{\mathrm{loc}}(\mathbb{R}^d)$ entonces M(f) es semicontinua inferiormente.

1. Se
a $E\subset\mathbb{R}^d$ un conjunto medible de diámetro finito. Probar que existen constantes $C_1, C_2 > 0$ tales que para |x| suficientemente grande vale

$$C_1|E||x|^{-d} \le M(\chi_E)(x) \le C_2|E||x|^{-d}$$
.

- 2. Sea $f \in L^1_{\mathrm{loc}}(\mathbb{R}^d)$ no nula. Probar que existe c>0 tal que $M(f)(x) \geq c|x|^{-d}$ para $|x|\geq 1$. Deducir que $M(f)\not\in L^1(\mathbb{R}^d)$, salvo que f=0 en casi todo punto. 3. Sea $f\colon \mathbb{R} \to \mathbb{R}$ dada por $f(x)=\frac{1}{|x|\log^2(|x|^{-1})}\chi_{[-\frac{1}{2},\frac{1}{2}]}(x)$. Mostrar que f es integrable
- pero que $M(f) \not\in L^1_{loc}(\mathbb{R})$.

Ejercicio 4. Sea $f \in L^p(\mathbb{R}^d)$.

1. Probar que si $1 \le p < \infty$, existe c > 0 que no depende de f tal que para todo $\alpha > 0$,

$$|\{x \in \mathbb{R}^d \colon M(f)(x) > \alpha\}| \le \frac{c}{\alpha} \int_{\{x \in \mathbb{R}^d \colon |f(x)| \ge \alpha/2\}} |f(x)| \, dx.$$

Sugerencia: Considerar $g = f\chi_{\{|f| \geq \frac{\alpha}{2}\}}$ y usar que $|f| \leq |g| + \frac{\alpha}{2}$.

2. Probar que si $1 , entonces <math>M(f) \in L^p(\mathbb{R}^d)$. Además existe $c_p > 0$ que no depende de f tal que $||M(f)||_p \le c_p ||f||_p$.

Ejercicio 5. Sea $f \in L^1_{loc}(\mathbb{R}^d)$. Un punto x se dice punto de Lebesque de f si

$$\frac{1}{|Q|} \int_{Q} |f(y) - f(x)| \, dy \to 0 \text{ cuando } Q \downarrow x.$$

Probar que casi todo punto de \mathbb{R}^d es un punto de Lebesgue de f.

Ejercicio 6. Sea $S = \{S_i : i \in I\}$ una familia de conjuntos medibles. Se dice que S se contrae regularmente a x si

- 1. Para todo $\varepsilon > 0$ existe $S_i \in \mathcal{S}$ tal que diam $(S_i) < \varepsilon$.
- 2. Existe una constante k > 0 tal que para todo $S_i \in \mathcal{S}$ vale que $|Q_i| \le k|S_i|$, donde Q_i es el cubo más pequeño con centro en x que contiene a S_i .

Los conjuntos S_i no necesitan contener a x.

- 1. Probar que las siguientes familias se contraen regularmente a x:
 - $S^B = \{B : B \text{ bola que contiene a } x\}$
 - $S^Q = \{Q : Q \text{ cubo que contiene a } x\}$
 - $S^{BC} = \{B(x,r): r > 0\}$
 - $S^{QC} = \{x + [-\ell, \ell]^d : \ell > 0\}.$
- 2. Probar que si S es una familia que se contrae regularmente a x entonces existe una constante C>0 tal que

$$\sup_{S_i \in \mathcal{S}} \frac{1}{|S_i|} \int_{S_i} |f(y)| \, dy \le CM^{QC}(f)(x).$$

3. Probar que si $f \in L^1_{loc}(\mathbb{R}^d)$ entonces en todo punto de Lebesgue de f,

$$\lim_{|S_i| \rightarrow 0} \frac{1}{|S_i|} \int_{S_i} \left| f(y) - f(x) \right| dy = 0,$$

para toda familia S que se contrae regularmente a x.

Ejercicio 7. Sea $\phi \in L^{\infty}(\mathbb{R}^d)$, $\phi \geq 0$ tal que $\operatorname{sop}(\phi) \subset \overline{B_1(0)}$ y $\int_{\mathbb{R}^d} \phi \, dx = 1$. Para cada $\varepsilon > 0$ se define $\phi_{\varepsilon}(x) = \varepsilon^{-d}\phi(\frac{x}{\varepsilon})$. Dada $f \in L^1(\mathbb{R}^d)$, probar que:

$$\lim_{\varepsilon \to 0} (f * \phi_{\varepsilon})(x) = f(x),$$

para todo punto de Lebesgue de f.

Ejercicio 8. Sea $f \in L^1_{loc}(\mathbb{R})$ tal que $\int_{\mathbb{R}} f\varphi' dx = 0$ para toda $\varphi \in C_c^{\infty}(\mathbb{R})$. Probar que f es constante en casi todo punto.

Ejercicio 9. Sea $K \in L^{\infty}(\mathbb{R}^d)$ de soporte compacto. Probar que existe C > 0 tal que para toda función $f \in L^1_{loc}(\mathbb{R}^d)$, se tiene

$$\sup_{\varepsilon>0} |f * K_{\varepsilon}(x)| \le CM(f)(x),$$

para todo $x \in \mathbb{R}^d$ donde $K_{\varepsilon}(x) = \varepsilon^{-d} K(\frac{x}{\varepsilon})$.

Ejercicio 10. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} 0 & \text{si } x = 0, \\ x \sin(\frac{1}{x}) & \text{si } x \neq 0. \end{cases}$$

Calcular los cuatro números de Dini f en $x_0 = 0$.

Ejercicio 11. Hallar $f:[0,1]\to\mathbb{R}$ creciente, continua y tal que

$$\int_0^1 f'(x) \, dx < f(1) - f(0).$$

Ejercicio 12. Sea $f:[a,b]\to\mathbb{R}$ integrable y sea $F(x)=\int_a^x f(t)\,dt$ la integral indefinida de f. Probar:

- 1. F es absolutamente continua.
- 2. F es derivable en casi todo punto y F'(x) = f(x).

Ejercicio 13. Sea $g:[a,b]\to\mathbb{R}$ una función estrictamente creciente y absolutamente continua con g(a) = c y g(b) = d.

- 1. Si $G \subset [c,d]$ es abierto, entonces $|G| = \int_{g^{-1}(G)} g'(x) \, dx.$
- 2. Sea $H = \{x : g'(x) \neq 0\}$. Si $E \subset [c,d]$ verifica que |E| = 0, entonces $g^{-1}(E) \cap H$ tiene medida nula.
- 3. Si $E \subset [c,d]$ es medible, entonces $F=g^{-1}(E)\cap H$ es medible y $|E|=\int_F g'(x)\,dx=0$
- $\int_a^b \chi_E(g(x))g'(x)\,dx.$ 4. Si f es medible y no negativa sobre [c,d], entonces $(f\circ g)g'$ es medible sobre [a,b] y $\int_c^d f(y)\,dy = \int_a^b f(g(x))g'(x)\,dx.$

Ejercicio 14. Sea $F:[a,b]\to\mathbb{R}$ absolutamente continua en [a,b] y $g:[a,b]\to\mathbb{R}$ integrable. Definimos

$$G(x) = G(a) + \int_{a}^{x} g(t) dt.$$

Probar que vale la fórmula de integración por partes

$$\int_{a}^{b} F(x)g(x) \, dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} G(x)F'(x) \, dx.$$

Ejercicio 15. Probar que si f es de variación acotada en [a, b], entonces f se puede escribir como f = g + h donde g es absolutamente continua en [a, b] y h es singular en [a, b]. Probar, además, que g y h son únicas salvo constantes aditivas.

Ejercicio 16. Sean $f_n \colon [0,1] \to \mathbb{R}$ $(n \in \mathbb{N})$ funciones absolutamente continuas, crecientes y no negativas tales que $\sum_{n=1}^{\infty} f_n(x)$ converge a un límite finito para todo $x \in [0,1]$. Sea f(x) ese límite. Probar que f es derivable en casi todo punto y $f'(x) = \sum_{n=1}^{\infty} f'_n(x)$ en casi todo

Ejercicio 17. Sea $f:[0,1]\to\mathbb{R}$ dada por

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

- 1. Probar que f es continua en [0,1], pero $V_0^1(f)=\infty$.
- 2. Probar que g(x) = xf(x) es de variación acotada sobre [0, 1].

Ejercicio 18. Sean $f, g \colon [a, b] \to \mathbb{R}$ funciones de variación acotada. Entonces:

- 1. f + g, f g, fg y |f| son de variación acotada.
- 2. Si existe m>0 tal que $|f(x)|\geq m$ para todo $x\in [a,b]$, entonces la función 1/f es de variación acotada.

Ejercicio 19. Sea $g:[a,b]\to\mathbb{R}$ integrable Riemann. Probar que $f(x)=\int_a^x g(t)\,dt$ es de variación acotada.

Ejercicio 20. Sea $f:[a,b]\to\mathbb{R}$ una función de variación acotada. Para cada $x\in(a,b]$ notemos $V(x) = V_a^x(f)$ y V(a) = 0. Dado $x_0 \in [a,b]$ probar que f es continua a izquierda (resp. a derecha) en x_0 si y sólo si V es continua a izquierda (resp. a derecha) en x_0 .

Ejercicio 21. Sea $f:[a,b]\to\mathbb{R}$ una función de variación acotada. Probar que el conjunto de puntos de discontinuidad de f es a lo sumo numerable.

Ejercicio 22. Sea f absolutamente continua en $[\varepsilon, 1]$ para todo $\varepsilon > 0$.

- 1. Si además f es continua en 0, ¿es f absolutamente continua en [0,1]?
- 2. Si además f es continua en 0 y de variación acotada en [0,1], ¿es f absolutamente continua en [0,1]?

Ejercicio 23. Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones de variación acotada sobre [a,b]. Probar que si $\sup_{n\in\mathbb{N}} V_a^b(f_n) < \infty$ y $f_n(x) \to f(x)$ para todo $x \in [a,b]$, entonces $V_a^b(f) < \infty$.

Ejercicio 24. Dar un ejemplo de una sucesión convergente de funciones de variación acotada cuyo límite sea una función de variación no acotada.

Ejercicio 25. Sea $f: [0,1] \to \mathbb{R}$ dada por $f(x) = \sum_{n=1}^{\infty} a_n x^n$, donde $\sum_{n=1}^{\infty} |a_n| < \infty$. Probar que f es de variación acotada y $V_0^1(f) \le \sum_{n=1}^{\infty} |a_n|$.

Ejercicio 26. Sea $f:[a,b]\to\mathbb{R}$ una función de variación acotada. Sea $V:[a,b]\to\mathbb{R}$ dada por $V(x) = V_a^x(f)$. El objetivo de este ejercicio es el de probar que V'(x) = |f'(x)| en casi todo punto. Para eso se propone lo siguiente:

- 1. Dada una partición $a = x_0 < x_1 < \cdots < x_n = b$, existe una función $g: [a, b] \to \mathbb{R}$ tal
 - g(0)=0,
 - para cada $0 \le j \le n-1$, $g(x_{j+1}) g(x_j) = |f(x_{j+1}) f(x_j)|$,
 - para cada $0 \le j \le n-1$, existe una constante $c_j \in \mathbb{R}$ tal que

$$g|_{[x_j,x_{j+1}]} = f|_{[x_j,x_{j+1}]} + c_j \quad \text{o} \quad g|_{[x_j,x_{j+1}]} = -f|_{[x_j,x_{j+1}]} + c_j.$$

- 2. Probar que toda función q como en el ítem anterior verifica que
 - |g'| = |f'| en casi todo punto,
 - $g(b) = \sum_{j=1}^{n-1} |f(x_{j+1}) f(x_j)|,$ V g es monótona creciente.
- 3. Elegir una sucesión de funciones g_k como en el ítem 1 tales que $\sum_{k=1}^{\infty} V(x) g_k(x) < \infty$ para casi todo $x \in [a, b]$ y aplicar el ejercicio 16

Ejercicio 27. Sea $f:[a,b]\to\mathbb{R}$ una función de variación acotada. Sea $V:[a,b]\to\mathbb{R}$ dada por $V(x) = V_a^x(f)$. Probar que

- 1. f es continua si y sólo si V lo es.
- 2. f es absolutamente continua si y sólo si V lo es. Además, en este caso,

$$V(x) = \int_{a}^{x} |f'(x)| dx$$
, para todo $x \in [a, b]$.

3. $\int_a^b |f'(x)| \, dx \leq V_a^b(f)$ y la igualdad vale si y sólo si f es absolutamente continua.

Ejercicio 28. Sea $f:[a,b]\to\mathbb{R}$ una función absolutamente continua. Probar que si $N\subset[a,b]$ tiene medida nula, entonces f(N) tiene medida nula. Concluir que la imagen por f de un conjunto medible es un conjunto medible.

Sugerencia: Probar que la imagen por f de un intervalo [c,d] es un intervalo de medida menor a la variación de f en [c,d].