Álgebra II

Primer cuatrimestre - 2024 Práctica 4 Anillos

Ejemplos y construcciones

- 1. Probar que los siguientes conjuntos son anillos con las operaciones indicadas. Decidir en cada caso si son conmutativos, íntegros, de división, cuerpos, etc.
 - (a) $M_8(\mathbb{R})$ con el producto y la suma de matrices.
 - (b) $\mathbb{Z}_{12}[X]$ con el producto usual de polinomios.
 - (c) $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$ donde $d \in \mathbb{Z}$ es libre de cuadrados, con la suma y el producto de números complejos.
 - (d) $\mathcal{C}^6[0,1] = \{f : [0,1] \to \mathbb{R} \mid \text{ las primeras 6 derivadas de f existen y son continuas}\}$, con la suma y el producto usual de funciones.
 - (e) $A = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\} \subset M_2(\mathbb{R})$, con el producto y la suma de matrices.
 - (f) Dado un espacio métrico (X, d), el conjunto $\mathcal{B}(X) = \{f : X \to \mathbb{R} \mid f \text{ es acotada}\}$.
- 2. Si A es un grupo abeliano entonces End A, el conjunto de endomorfismos de grupo de A, es un anillo con la suma habitual de funciones y la composición como producto. Encontrar descripciones explícitas para este anillo cuando A es \mathbb{Z}^n o \mathbb{Z}_n .
- 3. (a) Sean A un anillo y $\mathcal C$ una familia de subanillos de A. Muestre que $B = \bigcap_{C \in \mathcal C} C$ es un subanillo de A.
 - (b) Sean A un anillo, $B \subset A$ un subanillo y $X \subset A$. Mostrar que existe un subanillo B[X] de A que contiene a X y a B y tal que cualquier otro subanillo de A que contiene a B y a X contiene a B[X].
 - (c) Sea η una raíz primitiva sexta de la unidad y ω una raíz primitiva p-ésima de la unidad, donde p es algún número primo. Describir explícitamente $\mathbb{Z}[\sqrt{2}]$, $\mathbb{Z}[\sqrt[3]{5}]$, $\mathbb{Z}[i]$, $\mathbb{Z}[\eta]$, $\mathbb{Z}[\sqrt{6}, \sqrt{p}]$ y $\mathbb{Z}[\omega]$ como subanillos de \mathbb{C} .
- 4. (Anillos de matrices) Sea A un anillo.
 - (a) Sea $n \in \mathbb{N}$. Probar que el conjunto de matrices $M_n(A)$ con coeficientes en A es un anillo con respecto a las operaciones usuales de suma y producto de matrices. Si n > 1, entonces $M_n(A)$ no es conmutativo.
 - (b) Sea $M_{\infty}(A) = \{f : \mathbb{N} \times \mathbb{N} \to A\}$. Decimos que un elemento $f \in M_{\infty}(A)$ tiene filas finitas si para cada $n \in \mathbb{N}$ existe $k(n) \in \mathbb{N}$ tal que f(n,m) = 0 si m > k(n); de manera similar, decimos que $f \in M_{\infty}(A)$ tiene columnas finitas si para cada $m \in \mathbb{N}$ existe $k(m) \in \mathbb{N}$ tal que f(n,m) = 0 si n > k(m).
 - Sean $M^f_\infty(A)$ y $M^c_\infty(A)$ los subconjuntos de $M_\infty(A)$ de matrices con filas finitas y con columnas finitas, respectivamente, y sea $M^f_\infty(A) = M^f_\infty(A) \cap M^c_\infty(A)$. Mostrar que $M^f_\infty(A)$, $M^c_\infty(A)$ y $M^c_\infty(A)$ son anillos con el producto dado por

$$f \cdot g(n, m) = \sum_{k=1}^{\infty} f(n, k)g(k, m).$$

5. (Anillos de funciones)

(a) Sea A un anillo y X un conjunto no vacío. Sea A^X el conjunto de todas las funciones $X \to A$. Se definen operaciones $+,\cdot:A^X\times A^X\to A^X$ de la siguiente manera: dadas $f,g\in A^X$

$$(f+g)(x) = f(x) + g(x)$$
 para todo $x \in X$,

y

$$(f \cdot g)(x) = f(x)g(x)$$
 para todo $x \in X$.

Mostrar que $(A^X, +, \cdot)$ es un anillo. ¿Cuándo es conmutativo?

- (b) Sean $n \in \mathbb{N}$, $k \in \mathbb{N}_0$ y sea $\mathcal{C}^k(\mathbb{R}^n)$ el conjunto de todas las funciones $f : \mathbb{R}^n \to \mathbb{R}$ con derivadas parciales de orden k continuas. Muestre que se trata de un subanillo de $\mathbb{R}^{(\mathbb{R}^n)}$.
- 6. (Anillos de series formales) Sea A un anillo.
 - (a) Sea $S = \{f : \mathbb{N}_0 \to A\}$ el conjunto de todas las funciones de \mathbb{N}_0 a A. Definimos operaciones $+, \cdot : S \times S \to S$ de la siguiente manera: para cada $f, g \in S$ y cada $n \in \mathbb{N}_0$,

$$(f+g)(n) = f(n) + g(n)$$

y

$$(f \cdot g)(n) = \sum_{\substack{k,l \geqslant 0 \\ k+l = n}} f(k)g(l).$$

Muestre que $(S, +, \cdot)$ es un anillo.

Sea X una variable formal. Podemos representar a una función $f \in S$ por una serie

$$f = \sum_{n=0}^{\infty} f(n) X^n.$$

Usando esta notación, las definiciones de la suma y el producto de S imitan formalmente a las correspondientes operaciones con las series. Llamamos a S el *anillo de series formales de potencias con coeficientes en* A, y lo notamos A[X].

- (b) Pruebe que la función representada por la serie 1 X es inversible en A[X].
- (c) Tomamos ahora $A = \mathbb{R}$ y sea $\mathbb{R}\{X\} \subset \mathbb{R}[X]$ el subconjunto de las series formales que tienen radio de convergencia positivo. Mostrar que se trata de un subanillo.
- 7. Un cuadrado mágico es una matriz cuadrada con entradas enteras, tal que la suma de los elementos de cualquier fila o columna es igual a la suma de los elementos de cualquier otra fila o columna. Probar que para cada $n \in \mathbb{N}$ los cuadrados mágicos de tamaño n forman un subanillo de $M_n(\mathbb{R})$.
- 8. (**Idempotentes**) Sea A un anillo. Un elemento $e \in A$ es *idempotente* si $e^2 = e$. Probar las siguientes afirmaciones.
 - (a) Si $e \in A$ es idempotente, el subconjunto eAe con las operaciones de A restringidas es un anillo. Se trata de un subanillo de A si y solo si e = 1.
 - (b) Si $e \in A$ es idempotente, entonces 1 e también lo es.

- 9. (Anillos booleanos) Un anillo A es booleano si todos sus elementos son idempotentes.
 - (a) Sea X un conjunto. Mostrar que $(\mathcal{P}(X), \triangle, \cap)$ es un anillo booleano. Aquí \triangle es la operación diferencia simétrica.
 - (b) Probar que un anillo booleano es conmutativo.
- 10. Sea A un anillo. Probar las siguientes afirmaciones.
 - (a) Si cada elemento de A tiene inverso a izquierda entonces A es un anillo de división.
 - (b) Si $a \in A$ es un elemento inversible a izquierda y que no divide a 0 por la derecha, entonces a es inversible.
 - (c) Sea $a \in A$. Si existe $n \in \mathbb{N}$ tal que a^n es inversible, entonces a es inversible.
- 11. Sea A un anillo posiblemente sin unidad. Muestre que si A posee una única unidad a izquierda e, entonces A posee una unidad.

Sugerencia: Sea $a \in A$ y considere para cada $c \in A$ el elemento (e - ae + a)c.

Álgebras sobre cuerpos

En esta sección k es un cuerpo.

- 12. Sea A una k-álgebra de dimensión finita.
 - (a) Probar que A es isomorfa a una subálgebra de $M_n(k)$, con $n = \dim A$.
 - (b) Probar que si A es íntegra entonces es un álgebra de división.
- 13. Sea k algebraicamente cerrado.
 - (a) Probar que no existen k-álgebras de dimensión finita que no tengan divisores de cero.
 - (b) Describir a menos de isomorfismo todas las k-álgebras de dimensión a lo sumo 3.

Morfismos, ideales y cocientes

En toda esta sección A es un anillo.

- 14. Sea $f : \mathbb{R} \to \mathbb{R}$ un morfismo de anillos. Pruebe las siguientes afirmaciones.
 - (a) $f(\mathbb{Q}) \subset \mathbb{Q}$, y de hecho $f|_{\mathbb{Q}} = id_{\mathbb{Q}}$.
 - (b) La aplicación f es estrictamente creciente.

Concluya que $f = id_{\mathbb{R}}$.

- 15. Sea \Bbbk un cuerpo. Decidir en cada caso si existe un morfismo de anillos $f:A\to B$:
 - (a) $A = \mathbb{Z}[i] \text{ y } B = \mathbb{R};$
 - (b) $A = B = \mathbb{Z}[i];$
 - (c) $A = B = \mathbb{Z}[\sqrt{-5}];$
 - (d) $A = B = \mathbb{Z}[\sqrt{3}];$
 - (e) $A = \mathbb{Z}[\sqrt{-5}] \text{ y } B = \mathbb{Z}[\sqrt{3}];$

- (f) $A = \mathbb{k} y B = M_n(\mathbb{k});$
- (g) $A = M_n(k)$ y B = k.
- 16. Sea $n \in \mathbb{N}$ compuesto. ¿Existe algún producto $\cdot : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$ que haga del grupo abeliano \mathbb{Z}_n un cuerpo?
- 17. Sea J una familia de ideales a izquierda (a derecha, biláteros) de A.
 - (a) Muestre que $\bigcap_{I \in \mathcal{I}} I$ es un ideal a izquierda (a derecha, bilatéro) de A. Se trata del ideal más grande contenido en todos los ideales de \mathcal{I} .
 - (b) Muestre que $\sum_{I \in \mathcal{I}} I$ es un ideal a izquierda (a derecha, bilátero) de A. Se trata del ideal más chico que contiene a todos los ideales de \mathcal{I} .
- 18. Sean A un anillo e I \subset A un ideal bilátero.
 - (a) Sea J el ideal generado por I en A[X]. Muestre que A[X]/J \cong (A/I)[X].
 - (b) Sea $n \in \mathbb{N}$ y sea $M_n(I) \subset M_n(A)$ el subconjunto de las matrices de $M_n(A)$ que tienen todos sus coeficientes en I. Mostrar que $M_n(I)$ es un ideal bilátero de $M_n(A)$ y que $M_n(A)/M_n(I) \cong M_n(A/I)$.
- 19. Sea k un cuerpo.
 - (a) Encuentre todos los ideales a izquierda de $M_n(k)$.
 - (b) Muestre que $M_n(k)$ es simple.
 - (c) Sean ahora A un anillo y $n \in \mathbb{N}$. Si $J \subset M_n(A)$ es un ideal bilátero, pruebe que existe un ideal bilátero $I \subset A$ tal que $J = M_n(I)$.

Sugerencia: Tomar I = { $a \in A \mid a = m_{1,1}$ para alguna matriz $M \in J$ }.

20. Sea k un cuerpo. Sean G un grupo y $H \triangleleft G$ un subgrupo normal, y consideremos la proyección canónica $\pi: G \to G/H$. Muestre que π determina un morfismo sobreyectivo de anillos $k[\pi]: k[G] \to k[G/H]$. Describa el núcleo de $k[\pi]$.