ÁLGEBRA III 2DO CUATRIMESTRE 2022

Práctica 7: Resolubilidad - Dedekind - Regla y compás

En los siguientes dos ejercicios, $\{t_1, \ldots, t_n\}$ es algebraicamente independiente sobre K y s_1, \ldots, s_n son los polinomios simétricos elementales en las variables t_1, t_2, \ldots, t_n .

- 1 Sean $E = K(t_1, t_2, t_3, t_4)$ y $F = K(s_1, s_2, s_3, s_4)$.
 - (a) Calcular el grado de la subextensión $F(t_1 + t_2)/F$. ¿Es normal?
 - (b) ¿Qué raíces de $m(t_1 + t_2, F)$ están en $F(t_1 + t_2)$?
- 2 Sean $E = K(t_1, t_2, ..., t_n)$ y $F = K(s_1, s_2, ..., s_n)$.
 - (a) Probar que $t_1^{a_1} + t_2^{a_2} + ... + t_n^{a_n}$ es un elemento primitivo de la extensión E/F si y sólo si los números naturales a_i son distintos dos a dos.
 - (b) Probar que E/F tiene una única subextensión de grado 2.
 - (c) Suponiendo que la característica de K no es 2, hallar un elemento de E que genere la subextensión de grado 2 de E/F.
- **3** Probar, exhibiendo una torre adecuada, que la extensión $\mathbb{Q}(\sqrt[3]{1+\sqrt{2}},i+\sqrt{3})/\mathbb{Q}$ es radical.
- **4** (a) Probar que para todo $n \in \mathbb{N}$ el grupo diedral D_n es resoluble.
 - (b) Probar que todo p-grupo finito es resoluble.
- Sea $f = X^5 bx a$ un polinomio irreducible en $\mathbb{Q}[X]$. Sea α una raíz de f y sea $E = \mathbb{Q}(\alpha)$. Sabiendo que $N_{E/\mathbb{Q}}(\alpha + 1) = -77$ y $N_{E/\mathbb{Q}}(\alpha 1) = 81$, determinar si f es resoluble por radicales.
- Sean $a_1 < a_2 < \ldots < a_r$ enteros positivos pares, con r > 1. Dado $m \in \mathbb{N}$ par, consideramos el polinomio $f = (X^2 + m)(X a_1) \cdots (X a_r) 2$.
 - (a) Probar que f es irreducible en $\mathbb{Q}[X]$.
 - (*b*) Probar que si *m* es suficientemente grande, entonces *f* tiene exactamente dos raíces no reales.
 - (c) Deducir que para todo primo $p \ge 5$ existe un polinomio $f \in \mathbb{Q}[X]$ de grado p que no es resoluble por radicales.
- $\fbox{7}$ Probar que ninguno de los siguientes polinomios es resoluble por radicales sobre $\Bbb Q$:
 - (a) $X^5 14X + 7$
- (b) $X^5 7X^2 + 7$
- (c) $X^7 10X^5 + 15X + 5$
- Sea $f \in \mathbb{Q}[X]$ un polinomio irreducible de grado 5 tal que $\Delta(f) < 0$. Probar que f no es resoluble por radicales.

En lo que sigue, dado un polinomio separable $f \in \mathbb{Z}[X]$ de grado n, llamamos G_f a su grupo de Galois sobre \mathbb{Q} , al cual identificamos con un subgrupo de S_n . Además, para cada primo p, llamamos f_p a la imagen de f por el morfismo canónico $\mathbb{Z}[X] \to \mathbb{F}_p[X]$.

ÁLGEBRA III 2DO CUATRIMESTRE 2022

- Para cada uno de los siguientes polinomios f, probar que $G_f = S_n$, siendo n el grado del polinomio:
 - (a) $X^5 + 4X^4 + 4X^3 + 5X^2 2X + 3$
 - (b) $X^6 12X^4 + 15X^3 6X^2 + 15X + 12$
 - (c) $X^5 + 25X^4 + 10X^3 + 10X^2 + 10X + 15$
- Sea f el polinomio $X^5 X^4 + 2X^2 2$. Factorizando f módulo 3 y módulo 7, probar que G_f contiene una trasposición y un 4-ciclo. ¿Es $G_f = S_5$?
- Sea $f \in \mathbb{Z}[X]$ mónico e irreducible de grado 4 tal que $G_f \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Probar que para todo primo p, el polinomio f_p es reducible en $\mathbb{F}_p[X]$.
- Sea G un subgrupo de S_n . Definimos una relación \sim en el conjunto $\{1, 2, ..., n\}$ de la siguiente manera: $a \sim b$ si y sólo si $(ab) \in G$ (entendiendo que (aa) = id).
 - (a) Probar que \sim es relación de equivalencia.
 - (b) Probar que si $a \sim b$ y $g \in G$, entonces también $g(a) \sim g(b)$. Luego, queda bien definida una acción de G en el conjunto de clases de equivalencia, dada por $g \cdot [a] := [g(a)]$.
 - (c) Probar que si G es transitivo, entonces todas las clases de equivalencia de \sim tienen el mismo cardinal.
- Sea G un subgrupo transitivo de S_n que contiene una trasposición y un p-ciclo, donde $p > \frac{n}{2}$ es un número primo. Probar que $G = S_n$.

Sugerencia. Probar que la relación \sim definida en el ejercicio anterior tiene una única clase de equivalencia.

- Sea p > 2 un número primo y sea $f \in \mathbb{Z}[X]$ un polinomio mónico e irreducible de grado p + 2. Supongamos que para cierto primo p', el polinomio $f_{p'}$ se factoriza en $\mathbb{F}_{p'}[X]$ como producto de dos polinomios irreducibles cuyos grados son 2 y p. Probar que $G_f = S_{p+2}$.
- **15** Calcular el grupo de Galois sobre \mathbb{Q} del polinomio $X^9 + 3X^8 + 3X^7 9X^3 9$.

Recordemos que un número $\alpha \in \mathbb{R}$ es construible (con regla y compás) si y sólo si existe una torre de cuerpos $\mathbb{Q} = F_0 \subset F_1 \subset \ldots \subset F_n$ con $\alpha \in F_n$ y $[F_i : F_{i-1}] = 2$ para todo $i = 1, \ldots, n$.

- Dar un procedimiento para construir un pentágono regular con regla y compás.
- Sea n un entero positivo. Probar que se puede construir un ángulo de n grados con regla y compás si y sólo si n es divisible por 3.
- Probar que un ángulo dado θ se puede trisecar con regla y compás si y sólo si el polinomio $4X^3 3X \cos(\theta)$ es reducible sobre $\mathbb{Q}(\cos(\theta))$.
- Mostrar como se puede trisecar un ángulo dado de $\frac{3\pi}{7}$ usando regla y compás.
- Decidir si es posible construir con regla y compás un triángulo isósceles no rectángulo cuyos vértices estén sobre la circunferencia unitaria y su área sea 1.