Práctica 6: Teoremas de la Función Implícita e Inversa

Teoremas de la Función Implícita e Inversa

- 1. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal T(x,y) = (3x 2y, 5x 2y). Mostrar que T es biyectiva y hallar la expresión de la inversa T^{-1} . Calcular $DT^{-1}(a)$ para cada $a \in \mathbb{R}^2$.
- 2. Sea $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$F(x,y) = (x^3y + 3x^2y^2 - 7x - 4y, xy + y)$$

- (a) Demostrar que existe un entorno $U \subseteq \mathbb{R}^2$ tal que $(1,1) \in U$, un entorno $V \subseteq \mathbb{R}^2$ tal que $(-7,2) \in V$ y una inversa para F, $F^{-1}: V \to U$, C^1 tal que $F^{-1}(-7,2) = (1,1)$.
- (b) Sean $g: \mathbb{R}^2 \to \mathbb{R}$ una función C^1 tal que $\frac{\partial g}{\partial x}(1,1) = 2$, $\frac{\partial g}{\partial y}(1,1) = 5$ y $v = \left(\frac{3}{5}, \frac{4}{5}\right)$. Calcular $\frac{\partial (goF^{-1})}{\partial v}(-7,2)$.
- 3. Sea $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $F(x,y) = (e^x \cos y, e^x \sin y)$. Probar que para todo $(x,y) \in \mathbb{R}^2$ se tiene $\det(DF(x,y)) \neq 0$ pero F no es inyectiva.
- 4. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida como

$$f(x,y) = (yx^{3/2} + (y+1)^2 - 6, (\ln(x) + 5)y - 4)$$

- (a) Probar que existe una inversa de f definida en un entorno del punto p = (5,6) = f(1,2), diferenciable en p.
- (b) Sean $v = (\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}})$, $w = (\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}})$ vectores en \mathbb{R}^2 y $g : \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable en q = (1, 2) tal que $\frac{\partial g}{\partial v}(1, 2) = 4$ y $\frac{\partial g}{\partial w}(1, 2) = 5$. Calcular $D(g \circ f^{-1})(5, 6)$.
- 5. Para $f(x,y) = x^2 y^3$ muestre que, sobre la curva de nivel f(x,y) = 0, podemos despejar y en función de x (i.e. $y = \phi(x)$). ¿Es ϕ de clase C^1 en un entorno del cero? ¿Puede aplicarse el teorema de la función implícita en el punto (0,0)?
- 6. Determinar las derivadas parciales de las funciones que quedan definidas implícitamente en un entorno del punto dado mediante las relaciones
 - (a) $f(x,y) = \frac{1}{4}x^2 y^2 = 1$ a = (2,0)
 - (b) $g(x,y) = x^5 + y^2 + xy = 3$ a = (1,1)
 - (c) $h(x, y, z) = x^3 + 2y^3 + z^3 3xyz 2y 8 = 0$ a = (0, 0, 2)

7. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ definida como

$$f(x, y, z) = x^2y + \ln(y)z - 1$$

- (a) Probar que la ecuación f(x, y, z) = 0 define implícitamente una función $y = \varphi(x, z)$ (diferenciable) en un entorno del punto (x, z) = (1, 2) tal que $f(x, \varphi(x, z), z) = 0$ para todo (x, z) en dicho entorno.
- (b) Sea $g: \mathbb{R}^2 \to \mathbb{R}^2$ una función diferenciable tal que $Dg(2, -3) = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ y que cumple que g(2, -3) = (1, 2). Sea $v = (\frac{4}{\sqrt{17}}, \frac{1}{\sqrt{17}})$. Calcular $\frac{\partial(\varphi \circ g)}{\partial v}(2, -3)$.
- 8. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ definida como

$$f(x, y, z) = x^3 - 2y^2 + z^2$$

- (a) Demostrar que f(x,y,z)=0 define una función implícita $x=\varphi(y,z)$ en el punto (1,1,1).
- (b) Encontrar $\frac{\partial \varphi}{\partial y}(1,1)$ y $\frac{\partial \varphi}{\partial z}(1,1)$.
- 9. Sea $f: \mathbb{R}^n \to \mathbb{R}$ de clase \mathcal{C}^1 . Probar que si existe $p \in \mathbb{R}^n$ tal que f(p) = 0 y $\nabla f(p) \neq 0$, entonces f se anula en infinitos puntos de \mathbb{R}^n .

Planos y rectas tangentes a superficies dadas de manera implícita en \mathbb{R}^3

- 10. Sea $S \subset \mathbb{R}^3$ la esfera de radio 1 centrada en el origen; es decir, S es la superficie de \mathbb{R}^3 definida por $S = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. Mostrar que el vector $v = \left(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ es normal a la superficie S en el punto $\left(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ e interpretar este hecho geométricamente.
- 11. Consideremos la superficie $S=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2-z^2=1\}$. Probar que las rectas

$$\mathbb{L}_1: t(0,1,1) + (1,0,0)$$
 y $\mathbb{L}_2: t(0,1,-1) + (1,0,0)$

son ortogonales y están contenidas en S. Usar esto para hallar la ecuación del plano tangente a S en (1,0,0).

- 12. Calcular la ecuación del plano tangente y de la recta normal, cuando existan, a las superficies dadas en los puntos indicados
 - (a) $x^{10}y \cos(z)x + 7 = 0$ $x_0 = (7, 0, 0)$
 - (b) $xy z \ln(y) + e^{xy} = 1$ $x_0 = (0, 1, 1)$
 - (c) $xy \operatorname{sen}(y) + ze^{xy} z^2 = 0$ $x_0 = (4, 0, 1)$
 - (d) $\cos(x)\cos(y)e^z = 0$ $x_0 = (\pi/2, 1, 0)$
- 13. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable en (x_0, y_0) y sea $h: \mathbb{R}^3 \to \mathbb{R}$ la función definida por h(x, y, z) = f(x, y) z. ¿Qué relación existe entre el plano tangente al gráfico de f en (x_0, y_0) y el plano tangente a una superficie de nivel de h en $(x_0, y_0, f(x_0, y_0))$?

14. Encontrar los puntos $P = (x_0, y_0, z_0)$ de la superficie

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 + 3z^2 = 21\}$$

en los que el plano tangente a S sea paralelo al plano $\Pi: x+4y+6z=8$.

- 15. Sea E el elipsoide definido por la ecuación $\frac{x^2}{9} + \frac{y^2}{16} + z^2 = 1$.
 - (a) Demostrar que si $P=(a,b,c)\in E,$ entonces $-P=(-a,,-b,-c)\in E$
 - (b) Demostrar que el plano tangente a E en P es paralelo al plano tangente a E en -P.
 - (c) Probar que si P y Q son dos puntos distintos de E, y el plano tangente a P es paralelo al plano tangente a Q, entonces Q=-P