Análisis Funcional - 1° cuatrimestre 2013

Práctica 4

- 1. Sea E un espacio de Banach y x_n , x en E. Demostrar las siguientes afirmaciones y analizar su validez si en vez de sucesiones se consideran redes.
 - a) Si $x_n \to x$ entonces $x_n \xrightarrow{w} x$ (y entonces $x_n \xrightarrow{w^*} x$ cuando E sea un dual).
 - b) Si $x_n \xrightarrow{w} x$ entonces $\{x_n\}$ es acotada.
 - c) Si $x_n \xrightarrow{w} x$ y $\phi_n \to \phi$ en E^* entonces $\phi_n(x_n) \to \phi(x)$.
 - d) Si $x_n \to x$ y $\phi_n \xrightarrow{w^*} \phi$ en E^* entonces $\phi_n(x_n) \to \phi(x)$.
- 2. Probar que la topologia de todo espacio localmente convexo esta dada por una familia de seminormas. Para ello demostrar que hay una base para el filtro de entornos alrededor del 0 que consiste de convexos abiertos y balanceados.
- 3. Demostrar que el teorema de la aplicacion abierta vale para espacios de Frechet.
- 4. Demostrar que un subespacio de E^* separa los puntos de E si y solo si es w^* -denso.
- 5. Sea E un espacio normado y $j: E \hookrightarrow E^{**}$ la inclusion canonica. Si B y B^{**} son las bolas unitarias cerradas de E y E^{**} demostrar que B es w^* -densa en B^{**} .
- 6. El subespacio C[0,1] es cerrado en $L^{\infty}[0,1]$ en $\| \|_{\infty}$ pero no en la topología w^* .
- 7. Sean $\{e_n\}$ los vectores canonicos en ℓ^p con $1 . Demostrar que el 0 esta en la clausura debil de <math>\{e_k + ke_n : 1 \le k \le n\}$ pero no es el limite de ninguna subsucesion.
- 8. Sea E un espacio de Banach de dimensión infinita. Probar que $\{x \in E : ||x|| < 1\}$ tiene interior vacío respecto de la topologia debil.
- 9. Definamos $\phi_n : \ell^{\infty} \to \mathbb{C}$ por $\phi_n(x) = x_n$. Probar que $\{\phi_n\}$ es acotada pero no tiene subsucesiónes w^* -convergente. ¿Contradice esto a que $(B_{E'}, w^*)$ es compacta?
- 10. a) En c_0 si $\phi_n(x) = \frac{x_1 + \dots + x_n}{n}$ probar que $\phi_n \to 0$ en w^* pero no en $|| \cdot ||$.
 - b) En ℓ^1 si $\phi_n(x)=x_n$ probar que $\phi_n\to 0$ en w^* pero no en w y || ||.
 - c) En ℓ^3 si $\phi_n(x)=x_n$ probar que $\phi_n\to 0$ en $w=w^*$ pero no en || ||.
 - d) En $L^2[0,1]$ si $f_n(t)=\sin(n\pi t)$ probar que $f_n\to 0$ en $w=w^*$ pero no en || ||.
 - e) En C[-1,1] si $\phi_n(f) = f\left(\frac{-1}{n}\right) f\left(\frac{1}{n}\right)$ probar que $\phi_n \to 0$ en w^* pero no en $||\cdot||$.
- 11. Demostrar que en ℓ^1 se tiene que $x_n \to x$ si y solo si $x_n \xrightarrow{w} x$.
- 12. En ℓ^p con $1 se tiene que si <math>x_n \xrightarrow{w} x$ y $||x_n|| \to ||x||$ entonces $x_n \to x$. Sugerencia: Vale en todo espacio uniformemente convexo (si $\delta > 0$ existe $\epsilon > 0$ tal que si ||x|| = ||y|| = 1 y $||\frac{x+y}{2}|| > 1 - \epsilon$ entonces se tiene $||x-y|| < \delta$).
- 13. Sean f_n , f en C(X) con X compacto y Haussdorf. Demostrar que $f_n \xrightarrow{w} f$ si y solo si $\{f_n\}$ es acotada y $f_n(x) \to f(x)$ para todo x.

14. Sean f_n , f en $L^p(X,\mu)$ con $1 . Demostrar que <math>f_n \xrightarrow{w} f$ si y solo si $\{f_n\}$ es acotada y $\int_E f_n d\mu \to \int_E f d\mu$ para todo medible E con $\mu(E) < \infty$.

En particular si X es numerable basta considerar E con un punto y si es el \mathbb{R} alcanza con conjuntos de la forma [0, a].

15. Sean μ_n, μ medidas borelianas en un espacio metrico y compacto X. Demostrar que se tiene $\mu_n \xrightarrow{w} \mu$ si y solo si $\mu_n(B) \to \mu(B)$ para todo B y $\mu_n \xrightarrow{w^*} \mu$ si y solo si vale lo mismo pero solo para los B con $\mu(\partial B) = 0$.

Nota: La segunda afirmacion es el teorema de Portmanteau, la condicion es equivalente a que $\mu_n(X) \to \mu(X)$ y para todo B se tenga

$$\mu(B^{\circ}) \leq \liminf \mu_n(B) \leq \limsup \mu_n(B) \leq \mu(\overline{B}).$$

- 16. Sean $f_n, f: [0,1] \to [0,1]$ tales que $f_n(x) \to f(x)$ para todo x. Demostrar que hay una sucesion de combinaciones convexas de las f_n que converge uniformemente a f.
- 17. Sean E y F espacios de Banach y $T: E \to F$ lineal. Probar que T es continua si y sólo si T es continua de (E, w) en (F, w).
- 18. Sean E, F Banach y $T: F^* \to E^*$ continuo. Probar que T es $w^* w^*$ continuo si y solo si es el adjunto de alguien continuo.