Análisis Funcional - 1° cuatrimestre 2013

Práctica 1 Espacios de Banach

- 1. a) Si $1 \le p \le \infty$, $S = \{(x_n)_n \in \ell^p : x_n = 0 \text{ salvo para finitos } n\}$, entonces S es un subespacio de ℓ^p no cerrado (más aún: si $p < \infty$, es denso).
 - b) Sea S un subespacio de un espacio normado; probar que \overline{S} es subespacio.
 - c) Mostar que $\ell^p \subseteq \ell^\infty$ y calcular su clausura.
 - d) Sean E un espacio de Banach y S un subespacio cerrado. Entonces S, con la norma inducida por E, es un espacio de Banach.
- 2. Sea E un espacio vectorial y B un subconjunto convexo que contiene al 0 y tal que:
 - a) Si $x \in B$ y $|\lambda| = 1$, entonces $\lambda x \in B$.
 - b) Para todo $x \in E$, existe $\lambda > 0$ tal que $\lambda x \in B$.
 - c) Si para todo n se tiene $\lambda_n x \in B$ con $0 \le \lambda_n \le 1$ y $\lambda_n \to 1$ entonces $x \in B$.

Demostrar que si en E ponemos la norma $||x|| = \inf \{\lambda^{-1} : \lambda > 0, \lambda x \in B\}$ se obtiene un espacio normado con $B = \{x \in E : ||x|| \le 1\}$.

- 3. Sea (E, || ||) un espacio vectorial normado. Son equivalentes:
 - a) E es Banach
 - b) $\{x \in E : ||x|| \le 1\}$ es completo
 - c) $\{x \in E : ||x|| = 1\}$ es completo
- 4. Demostrar que las bolas en un espacio normado de dimensión finita son compactas.
- 5. Sea E un espacio vectorial normado y F un subespacio de dimensión finita. Demostrar que para todo x existe y_0 en F tal que

$$||x - y_0|| = \inf_{y \in F} ||x - y|| = d(x, F).$$

Es decir que la distancia a los subespacios de dimension finita se realiza.

- 6. a) Sea S un subespacio de un espacio normado E. Demostrar que S tiene interior no vacío si y sólo si S = E.
 - b) Sea E un espacio vectorial. Probar que posee una base algebraica.
 - c) Probar que un espacio de Banach E de dimensión infinita no puede tener una base (algebraica) numerable (en otras palabras, dim $E > \aleph_0$).
 - d) Probar que todo espacio vectorial admite una norma y si es de dimension infinita entonces admite al menos dos no equivalentes.
- 7. Un espacio de Banach tiene dimensión finita si y sólo si todo subespacio es cerrado.
- 8. Sea E un espacio vectorial normado. Demostrar que es de Banach si y sólo si para toda sucesion $\{x_n\}_n$ vale que: $\sum_{n=1}^{\infty} \|x_n\| < \infty \Rightarrow \sum_{n=1}^{\infty} x_n$ converge en E.

Dar un ejemplo de un espacio normado E y una serie que no converge pero sí lo hace absolutamente.

1

- 9. Sean E un espacio de Banach, S un subespacio cerrado y $\Pi: E \to E/S$ es la provección al cociente.
 - a) Probar que E/S es un espacio vectorial normado con ||[x]|| = ||x+S|| = d(x,S).
 - b) Probar que Π es lineal, abierta y acotada con $\|\Pi\| \le 1$.
 - c) Probar que E/S es un espacio de Banach.
- 10. Si $E = \ell^{\infty}$ y $S = c_0$, probar que $||[(x_n)]|| = \limsup_{n \to \infty} |x_n|$.
- 11. Sea E un espacio de Banach con S y T subespacios cerrados. Probar que si T tiene dimension finita entonces S+T es cerrado. Dar un ejemplo de dos subespacios cerrados S y T tales que S+T no lo sea.
- 12. a) Sea X un espacio métrico entonces $C_b(X) = \{f : X \to \mathbb{C} \text{ continuas y acotadas}\}$ con la norma

$$||f||_{\infty} = \sup_{x \in X} |f(x)|$$

es un espacio de Banach.

- b) Probar que X es compacto si y solo si $C_b(X)$ es separable.
- 13. Los siguientes espacios son Banach con las normas indicadas. Por Ω entendemos un abierto acotado en \mathbb{R}^N .
 - a) Funciones derivables. El espacio $C^1(\overline{\Omega})$ con norma $||f|| = ||f||_{\infty} + \sum ||f_{x_i}||_{\infty}$.
 - b) Espacios de Sobolev. Decimos que f en $L^p(\Omega)$ tiene derivadas debiles si para todo i existe g_i en $L^p(\Omega)$ tal que

$$\int_{\Omega} f(x)\varphi_{x_i}(x)dx + \int_{\Omega} g_i(x)\varphi(x)dx = 0$$

para toda φ en $C_0^{\infty}(\Omega)$. Luego $W^{1,p}(\Omega)$, las funciones en $L^p(\Omega)$ con derivadas debiles, con $||f|| = ||f||_{L^p} + \sum ||g_i||_{L^p}$ es un espacio de Banach.

c) Espacio de Medidas. Sea X un espacio metrico localmente compacto. Dada una medida signada boreliana y regular μ definimos su variacion total como

$$||\mu|| = \mu_+(X) + \mu_-(X)$$

donde $\mu = \mu_+ - \mu_-$ es la descomposicion de Hahn de μ . Luego $\mathcal{M}(X)$, las medidas con variacion total finita, con la norma || || es un espacio de Banach.

14. Sean E y F espacios normados y $T:E\to F$ lineal. Demostrar que $\|Tx\|\leq \|T\|\,\|x\|$ donde

$$\begin{split} \|T\| &= \sup\{\|Tx\| : x \in E, \ \|x\| = 1\} \\ &= \sup\{\|Tx\| : x \in E, \ \|x\| < 1\} \\ &= \sup\{\frac{\|Tx\|}{\|x\|} : x \in E, \ x \neq 0\} \end{split}$$

- 15. Dar un ejemplo de espacios de Banach E y F junto con una transformacion lineal $T:E\to F$ tal que $\ker T$ es cerrado pero T no es acotada.
- 16. Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica pensada como operador lineal de \mathbb{R}^n en \mathbb{R}^n con la norma euclídea. Probar que $||A|| = \max\{|\lambda| : \lambda \text{ es un autovalor de } A\}$.

17. Operadores Shift: Sean $1 \le p \le \infty$, $S: \ell^p \to \ell^p$ y $T: \ell^p \to \ell^p$ dados por

$$S(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, \ldots)$$
 y $T(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots)$.

- a) Probar que $S \in \mathcal{L}(\ell^p)$ y es inyectivo. Calcular ||S||.
- b) Probar que $T \in \mathcal{L}(\ell^p)$ y es survectivo. Calcular ||T||.
- c) Probar que TS = I pero $ST \neq I$.
- 18. Operadores Integrales: Dado un nucleo K en $L^2([0,1] \times [0,1])$ definimos el operador integral $T_K: L^2([0,1]) \to L^2([0,1])$ dado por

$$(T_K f)(s) = \int_0^1 K(s, t) f(t) dt$$

Probar que T_K es acotado y $||T_K|| \le ||K||_2$.

Trate de probar que si $\overline{K(s,t)} = K(t,s)$ entonces T_K tiene un autovector. Mas aun, T_K tiene una base ortonormal de autovectores.

- 19. Operadores de Multiplicación 1: Sea $\alpha = (\alpha_n)_n$ una sucesión de números complejos y $1 \le p < \infty$. Definimos $M_\alpha : \ell^p \to \ell^p$ por $M_\alpha((x_n)_n) = (\alpha_n x_n)_n$. Probar:
 - a) M_{α} está bien definida si y solo si $\alpha = (\alpha_n)_n \in \ell^{\infty}$.
 - b) M_{α} es inyectiva si y solo si $\alpha_n \neq 0 \ \forall n$.
 - c) M_{α} es un isomorfismo si y solo si $(\frac{1}{\alpha_n})_n \in \ell^{\infty}$.
 - $d) ||M_{\alpha}|| = ||\alpha||_{\infty}$
- 20. Operadores de Multiplicación 2: Dado φ en $L^{\infty}[0,1]$ se define el operador de multiplicación $M_{\varphi}(f) = \varphi f$.
 - a) Si φ es continua entonces M_{φ} es un operador acotado de C[0,1] en C[0,1] y calcular su norma.
 - b) Probar que M_{φ} es acotado de $L^p[0,1]$ en $L^p[0,1]$ y calcular su norma.