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Introducción
Durante las décadas de los 60 y 70, la teoŕıa de las catástrofes de Thom, inspirada en

el previo trabajo de Whitney sobre puntos cŕıticos, surgió como un área de la matemática
destinada al estudio de sistemas dinámicos. Buscaba, entre otras cosas, entender grandes
cambios en el comportamiento de ciertos procesos, ocasionados por pequeños cambios en
las circunstancias que lo rodean, analizando la dependencia de soluciones de ecuaciones
respecto de sus parámetros, a través del estudio de puntos cŕıticos degenerados. En esta
dirección, Vladimir Arnold comenzó a utilizar el término teoŕıa de singularidades, para
referirse al área que mezclaba ideas de los trabajos de Whitney, Thom y otros sobre teoŕıa
de las catástrofes, con aportes de la geometŕıa algebraica. Aśı, la teoŕıa de singularidades
es una herramienta para el estudio de fenómenos abruptos que ocurren en sistemas que
dependen de parámetros de manera suave. Sus aplicaciones van desde la teoŕıa de sis-
temas dinámicos, hasta otras áreas como óptica, mecánica cuántica, geometŕıa algebraica
y topoloǵıa diferencial, por mencionar algunas. En su trabajo, define una relación de
equivalencia entre gérmenes de funciones (diferenciables u holomorfas) que identifica dos
gérmenes, si existen cambios de coordenadas que lleven una función a la otra. Aśı, una
singularidad es la clase de equivalencia (v́ıa esta relación) de un germen de punto cŕıtico.
Uno de los grandes éxitos de la teoŕıa desarrollada por Vladimir Arnold (y explicada en
profundidad en [1]) fue la clasificación de singularidades de puntos cŕıticos de funciones v́ıa
la reducción a sus formas normales.

En este trabajo, estudiamos la teoŕıa de singularidades desarrollada por Vladimir Arnold
(con énfasis en el caso holomorfo, pero siempre teniendo en mente que los resultados se apli-
can también al caso diferenciable con métodos similares pero con modificaciones técnicas
no triviales), llegando a mostrar algunas de las técnicas usadas en la clasificación de singu-
laridades y haciendo el segmento inicial de la clasificación (es decir, dando formas normales
para las singularidades simples). Las principales referencias para este trabajo son los textos
[1] y [3].

En el caṕıtulo 1 definimos el espacio de jets, que servirá como marco para el estudio
de las singularidades y probamos algunos resultados que servirán como herramientas en
próximos caṕıtulos. También, enunciamos el problema de equivalencia entre funciones y el
concepto de singularidad, mencionando algunos de sus invariantes. Probamos el Splitting
Lemma, que servirá para comparar singularidades de funciones con distinto número de
variables.

En el caṕıtulo 2, estudiamos el álgebra local y la multiplicidad (también llamada número
de Milnor) como invariantes bajo la relación de equivalencia. Probaremos que una singu-
laridad es aislada si y sólo si la dimensión del álgebra local es finita y el teorema de
determinación finita de Tougeron (que dice que una singularidad aislada es equivalente a
un polinomio).

En el caṕıtulo 3, estudiamos las deformaciones versales de singularidades. Probaremos
el teorema de versalidad, que da condiciones infinitesimales para que una deformación sea
versal. Introduciremos los conceptos de modalidad y forma normal.

En el caṕıtulo 4, estudiamos las funciones quasihomogéneas y semi quasihomogéneas,
que servirán como herramienta para dar formas normales de singularidades de modalidad
baja. Arnold dio la clasificación completa para modalidad menor o igual a 2, ver [3]; en
este trabajo mostraremos completamente el caso de modalidad 0. Definimos el diagrama de
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Newton de una serie de potencias y damos un teorema sobre formas normales de funciones
semi quasihomogéneas.

En el caṕıtulo 5, utilizamos lo desarrollado en caṕıtulos anteriores para dar las for-
mas normales de las singularidades simples, mediante métodos que sirven también en la
clasificación de singularidades de modalidad superior. Esto en particular, demuestra la
clasificación de catástrofes elementales de Thom, además de darle una interpretación ADE.
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Introduction
During the 1960s and 1970s, Thom’s catastrophe theory, inspired in the previous work

of Whitney on critical points, emerged as an area for the study of dynamical systems. Its
goal was to understand big shifts in the behaviour of certain processes caused by small
changes in circumstances, by analizing the dependence of solutions of equations on the
parameters appearing in them and studying degenerate critical points. In this direction,
Vladimir Arnold started to use the term singularity theory to refer to the area that mixed
the ideas of the work of Whitney, Thom and catastrophe theory, with some input from
algebraic geometry. Therefore, singularity theory is a tool for the study of abrupt, jump-like
phenomena, occurring in systems that depend smoothly on parameters. It has applications
in many areas such as the theory of dynamical systems, optics, quantum mechanincs,
algebraic geometry and differential topology. In its work, Arnold defines an equivalence
relation between germs of functions (smooth or holomorphic) that identifies two germs
if there exist coordinate changes bringing one function to the other. A singularity is an
equivalence class of a germ of critical point. One of the big results of the theory developed
by Arnold (and explained in [1]) was the classification of singularities of critical points of
functions via reduction to its normal forms.

In this work, we study singularity theory, as developed by Vladimir Arnold (making
emphasis in the holomorphic case, but always having in mind that most results apply also
for smooth funcitons, with technical and non-trivial modifications) and show some of the
techniques used in the classification of singularities. We will make the initial segment of
this classification, by showing normal forms for simple singularities. The main references
for this work are [1] and [3].

In chapter 1, we define the jet spaces, that will be used as a framework for the study
of singularities and we prove results that will be useful tools for next chapters. Also, we
introduce the problem of equivalence between functions and the concept of singularity,
mentioning some of its invariants. We prove the Splitting lemma, that will be useful to
compare singularities of functions with different number of variables in the source space.

In chapter 2, we study the local algebra and multiplicity (also called Milnor number) as
invariants under the equivalence relation. We prove that a singularity is isolated if and only
if the dimension of the local algebra is finite and Tougeron’s finite determinacy theorem
(which states that an isolated singularity is equivalent to a polynomial).

In chapter 3, we study versal deformations of singularities. We prove a theorem that
gives infintesimal conditions for a deformation to be versal, called the versality theorem.
We introduce the concepts of modality and normal form.

In chapter 4, we study quasihomogeneous and semi quasihomogeneous functions, that
will be useful tools to show normal forms of singularities of low modality. Arnold gave the
complete classification for modality less or equal than 2, see [3]. We define the Newton
diagram of a power series and give a theorem on normal forms for semi quasihomogeneous
functions.

In chapter 5, we use the results of former chapters to give normal forms of simple
singularities, using methods that are useful also in the classification of singularities of
higher modality. This in particular proves Thom’s theorem of clasification of elementary
catastrophes and gives it an ADE interpretation.
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Chapter 1

Preliminaries

In this chapter, we introduce the basic concepts of germs of functions and jet spaces that
will allow us to work with the classification of singularities. We also define singularities
and state the problem of its classification. As an initial way to attack this problem, we
will prove some theorems such as the Morse lemma and the Splitting lemma. We will also
state and prove some Preparation theorems, which will be a powerful tool for our study
of deformations and isolatedness of singularities. These results and the proofs have been
taken from different sources, such as [8], [7] and [4].

1.1 Germs of functions and Jet spaces

Definition 1.1.1. Let n,m ∈ N and p ∈ Cn and define a relation in the space of
holomorphic maps {f : U → Cm : f is holomorphic, U ⊆ Cn is open and p ∈ U}, such that
f : U → Cm ' g : V → Cm if f |U∩V = g|U∩V (here, U, V ⊆ Cn are open sets that contain
p). This is an equivalence relation in the space of holomorphic maps defined in a neigh-
borhood of p. An equivalence class of this relation is called a map-germ. The equivalence
class of a map f at p will be written as f : (Cn, p) → (Cm, f(p)) or just fp (if there is no
confusion, we may also call f to its equivalence class). The set of all map-germs at p will
be denoted On,m;p. If m = 1, we will denote On;p and if p = 0, we will just write On.

Remark 1.1.2. • The same definition can be made for maps between complex or dif-
ferentiable manifolds, since the definition is local.

• The space of holomorphic maps On;p is an algebra. Indeed, we can define the sum and
product of maps in the intersection of their domains: fp + gp = f + gp, fpgp = fgp
and λfp = λfp for λ ∈ C and f, g holomorphic maps defined in a neighborhood of
p. It is easy to check that it is an algebra, since the space of holomorphic functions
is. Also, it is a local algebra: the ideal mn = {f : (Cn, p)→ (C, 0)} of maps that
vanish in p is the only maximal ideal: if U ⊆ Cn is open, p ∈ U , g : U → C is
holomorphic and g(p) 6= 0, then there is an open neighborhood V ⊆ U of p such that

g|V does not vanish. Therefore, gp

(
1
g|V

)
p

= 1p which means that g is a unit, and thus

mc
n = {Units of On;p}.

1
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Definition 1.1.3. We call the space Jkp (Cn) = On;p/m
k
n;p the space of k-jets of map-germs

defined on p. We denote the natural projection by jkp : On;p → Jkp (Cn) (and we do not
write the p when p = 0).

We will see that the space of k-jets codifies the taylor polynomials up to order k and
has a differentiable structure.

Lemma 1.1.4 (Hadamard). Let f : Cn+k → C be a holomorphic function and x ∈ Cn, y ∈
Ck be such that (x, y) are the coordinates of the domain of f . Then there exist holomorphic
functions g1, . . . , gn : Cn+k → C such that gi(x, 0) = ∂f

∂yi
(x, 0) and

f(x, y)− f(x, 0) =
k∑
i=1

yigi(x, y).

Proof. Just note that

f(x, y)− f(x, 0) =

∫ 1

0

∂

∂t
f(x, ty)dt =

k∑
i=1

yi

∫ 1

0

∂f

∂yi
(x, ty)dt.

If (α1, . . . , αn) ∈ Nn
0 and f : Cn → C is a holomorphic function, we will denote ∂|α|f

∂zα
=

∂|α|f
∂z
α1
1 ···∂z

αn
n

.

Corolary 1.1.5. Let f : Cn → C be a holomorphic function, then for every k ∈ N, there
exist functions cα : Cn → C such that

f(z) = Tk−1(z) +
∑
|α|=k

cα(z)zα

where Tk−1(z) is the k − 1 Taylor polynomial of f and cα(0) = 1
k!
∂kf
∂xα

(0).

Proof. The case k = 1 is exactly Hadamard’s Lemma 1.1.4. For k > 1 we use induction.
Indeed, our hypothesis says that

f(z) = Tk−2(z) +
∑
|β|=k−1

cβ(z)zβ (1.1)

with cβ(0) = 1
(k−1)!

∂k−1f
∂xβ

(0). Using Hadamard’s Lemma 1.1.4 over each cβ, we get

cβ(z) =
1

(k − 1)!

∂k−1f

∂xβ
(0) +

n∑
i=1

gβ,i(z)zi

where gβ,i(0) =
∂cβ
∂zi

(0). Replacing this in 1.1 we get the desired formula for k, completing

the induction (to see that gβ,i(0) = 1
k!

∂kf
∂xβ∂xi

(0), we just take ∂k

∂xβ∂xi
both sides of the equation

and evaluate in 0).
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Lemma 1.1.6. The map Jkp (Cn)
γ−→ C[x1, . . . , xn]/(x1, . . . , xn)k such that

γ(f) =
k∑
s=0

∑
1≤i1,...,ik≤k

1

k!

∂kf

∂xi1 · · ·xik
(p)(xi1 − pi1) · · · (xik − pik)

is an isomorphism.

Proof. Injectivity is immediate from our previous computation and it is obvioulsy surjective
(since C[x1, . . . , xn] ⊆ On).

Remark 1.1.7. We can give the space Jkp (Cn) a structure of complex manifold. After our
last identification, it is clear that the space of k-jets is a C vector space of finite dimension,
and a basis is given by the monomials of degree less than k.

1.2 Definitions, Morse lemma and Splitting lemma

Definition 1.2.1. Let U ⊆ Cn an open set and f : U → C an holomorphic function. A
critical point is said to be nondegenerate or Morse critical point if the second differential
is a nondegenerate quadratic form (or equivalently, its Hessian matrix is invertible). The
corank of a critical point is defined as the dimension of the kernel of the second differential.
Morse critical points have corank 0.

Definition 1.2.2. Let f, g : (Cn, 0)→ C be two holomorphic function-germs. We say that
they are holomorphically equivalent (or just equivalent if there is no confusion) if there
exists a biholomorphism h : (Cn, 0)→ (Cn, 0) such that f = g ◦ h, making the following a
commutative diagram

(Cn, 0) C

(Cn, 0)

h

f

g
.

Clearly, this is an equivalence relation. By precomposing our function with a translation,
we can always assume that the function has a critical point at 0. The equivalence class of
a function-germ at a critical point is called a singularity.

Remark 1.2.3. • The same definition can be given for maps instead of function-germs,
and for maps between differentiable manifolds M and N , although generally the
equivalence between to maps f, g : M → N is given by the existence of diffeomor-
phisms in both the source and target space that make the following a commutative
diagram

M N

M N

'

f

'

g

.
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• Let Dn the group of biholomorphic map-germs h : (Cn, 0)→ (Cn, 0). This group acts
in the space On of holomorphic function-germs in 0: if g ∈ Dn and f ∈ On, then
we define the action by g · f = f ◦ g−1. The orbits of this action are exactly the
equivalence classes defined before. Thus, the classification of singularities consists in
classifying the orbits of this action.

• The corank is an invariant of a singularity: equivalent function-germs have equal
coranks. If f : (Cn, 0) → C has a critical point at 0 and h : (Cn, 0) → (Cn, 0) is a
biholomorphism, then

∂2(f ◦ h)

∂xj∂xi
=
∂2(f ◦ h)

∂xj∂xi
=

∂

∂xj

(
n∑
k=1

∂f

∂xk

∂hk
∂xi

)
=

n∑
k=1

∂2f

∂xi∂xk

∂hk
∂xi

+
n∑
k=1

∂f

∂xk

∂2hk
∂xj∂xi

where hk : (Cn, 0)→ (C, 0) is the k-th component of h. Since f has a critical point at
0, we conclude that H(f ◦h)(0) = H(f)(0) ·Dh(0), where H(f) is the hessian matrix
of f . The fact that Dh(0) is invertible says that f and f ◦ h have the same corank.

The classification of the singularities of non-degenerate critical points is given by the
Morse lemma.

Lemma 1.2.4 (Morse). In a neighborhood U of a Morse critical point p ∈ Cn of a function
f : Cn → C, there is a biholomorphism g : U → V such that

f(g(x1, . . . , xn)) = f(p) + x2
1 + · · ·x2

n.

We will prove two generalizations of this lemma: see 1.2.5 and 2.3.3.
From the Invariance of Domain theorem, it is clear that two equivalent function-germs

f : (Cn, 0)→ C, g : (Cm, 0)→ C must satisfy n = m. However, some functions of different
number of variables “behave” similarly around a critical point. This is exactly the content
of the Splitting lemma (also called parametric Morse lemma, as it generalizes the Morse
lemma).

Theorem 1.2.5 (Splitting lemma). In a neighborhood of the critical point 0 of corank k,
a holomorphic function f : (Cn, 0)→ (C, 0) is equivalent to a function of the form

ϕ(x1, . . . , xk) + x2
k+1 + · · ·+ x2

n

where m is the (only) maximal ideal of maps vanishing in the origin and ϕ ∈ m3 ⊆ On.

Proof. Since the Hessian matrix of f is symmetric, we can make a lineal change of coordi-
nates u = u(x) such that the hessian matrix of f has the form

1 0 . . . 0 0

0
. . . . . .

...
...

...
. . . . . . 0

...
0 . . . 0 1 0

0

0 . . . . . . 0
. . .

0


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where the top left block of the matrix has size (n− k)× (n− k).

Thus, using the Implicit Function Theorem, the set
{

∂f
∂u1

= · · · = ∂f
∂un−k

}
can be ex-

pressed locally as the graph of a holomorphic function g : Ck → Cn−k (putting the
image of g in the first n − k coordinates). Now, let us call φ : Cn → Cn such that
φ(u1, . . . , un) = (u1, . . . , un) + (g(un−k+1, . . . , un), 0). It is clearly a local biholomorphism
since its jacobian at 0 has the form (

Id ∗
0 Id

)
.

Now, let F = f ◦φ. If we fix the last k coordinates, the function F(un−k+1,...,un) : Cn−k →
Cn such that F(un−k+1,...,un)(u1, . . . , un−k) = F (u1, . . . , un−k, un−k+1, . . . , un) has a nondegen-
erate critical point at the origin. We write ϕ(un−k+1, . . . , un) = F (0, . . . , 0, un−k+1, . . . , un).
Now, using Hadamard’s Lemma 1.1.4 (and having in mind that the dependence on the
remaining parametets is still holomorphic) we get that

F (u1, . . . , un−k, un−k+1, . . . , un)− ϕ(un−k+1, . . . , un) =
n−k∑
i=1

uig
(un−k+1,...,un)
i (u1, . . . , un−k)

where the dependance of the last variables of the gi is holomorphic. Since

g
(un−k+1,...,un)
i (0) =

∂F

∂xi
(0, . . . , 0, un−k+1, . . . , un)) = 0

holds, we use again Hadamard’s lemma 1.1.4 over each gi to get

g
(un−k+1,...,un)
i (u1, . . . , un−k) =

n−k∑
j=1

ujh
(un−k+1,...,un)
i,j (u1, . . . , un−k)

(and again, the dependance of the last k variables is holomorphic). Hence,

F (u1, . . . , un−k, un−k+1, . . . , un)−ϕ(un−k+1, . . . , un) =
n−k∑
i,j=1

uiujh
(un−k+1,...,un)
i,j (u1, . . . , un−k).

(1.2)

Our goal now will be to prove that the right-hand side is equivalent to a sum of quadratic
forms for each (un−k+1, . . . , un), depending holomorphically on this variables.

In the last equation (due to symmetry of indices i, j) we replace h
(un−k+1,...,un)
i,j by the

average

h
(un−k+1,...,un)
i,j + h

(un−k+1,...,un)
j,i

2

so that the matrix hi,j be symmetric. Also, differentiating twice in 1.2, we get that

2h
(un−k+1,...,un)
i,j (0) = ∂2F

∂xi∂xj
(0, . . . , 0, un−k+1, . . . , un), that is an invertible matrix (moving

the indices i, j).
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Now, making a linear change of coordinates, we can assume that h
(un−k+1,...,un)
1,1 (0) 6= 0,

and let g be a square root of h
(un−k+1,...,un)
1,1 around 0. We make a change of coordinates

v1 = g(u1, . . . , un−k)

(
u1 +

n−k∑
i=2

ui
hi,1
h1,1

(u1, . . . , un−k)

)
vi = ui, i ≥ 2.

By the inverse function theorem, it is a local biholomorphism. Indeed, the matrix of
the change is triangular with 1s on the diagonal except for ∂v1

∂u1
(0) = g(0) 6= 0. Now, we get

that

n−k∑
i,j=1

vivjh
(un−k+1,...,un)
i,j (v1, . . . , vn−k) = v2

1 +
n−k∑
i,j=2

vivj(h
′)

(un−k+1,...,un)
i,j (v1, . . . , vn−k)

where the (h′)i,j are other functions that depend holomorphically of all the variables (even
the last ones). Repeating this procedure n−k times, we get the desired decomposition.

This lemma says that the behaviour of a function near a critical point of corank k can
be found by studying a function of k variables, independently of the number of variables
of the function. The reduction of variables is what makes the Splitting lemma so useful.

This motivates a very natural definition of a measure of degeneracies of critical points
of functions of different numbers of variable.

Definition 1.2.6. Two function-germs f : (Cn, 0) → (C, 0) and g : (Cm, 0) → (C, 0) are
said to be stably equivalent if they become equivalent after the addition of nondegenerate
forms in supplementary variables:

f(x1, . . . , xn) + x2
n+1 + · · ·+ x2

k ' g(y1, . . . , ym) + y2
m+1 + · · ·+ y2

k.

And this new notion of equivalence is coherent with our former one.

Theorem 1.2.7. Two functions-germs of the same number of variables are stably equivalent
if and only if they are equivalent

Proof. This result can be found in [1] Chapter 1, Section 1.3

So, from now on, we will classify the singularities of function germs up to stable equiv-
alence, which allows us to identify critical points of functions of different variables that
behave similarly in a neighborhood of the critical point.

Example 1.2.8. The funcion germs of f(z1) = z3
1 and g(w1, w2, w3) = w3

1 + w2w3 at 0
are stably equivalent critical points, since h(w1, w2, w3) = (z1, z2 + iz3, z2 − iz3) gives the
equivalence between f(z1) + z2

2 + z2
3 and g.
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1.3 Preparation theorems

Proposition 1.3.1. Let R be a commutative local ring with unit and its only maximal ideal
m. If B ∈Mn(m), and Id is the n×n identity matrix, then Id+B is an invertible matrix.

Proof. We use induction in n. If n = 1, 1 + b is a unit (with b ∈ m) because it does not
belong to m. For n > 1, let us compute the determinant of Id+B by expanding by the first
row. Let Mi,j be the determinant of the (n− 1)× (n− 1) minor of Id+B that results from
the elimination of the i-th row and j-th column of Id+B (defined for every 1 ≤ i, j ≤ n).
Therefore, we have

|Id+B| = (1 +B11)M1,1 +
n∑
i=2

(−1)i+1B1,iM1,i.

Since each Bij ∈ m, then |Id + B| is a unit if and only if M1,1 is. Since it is a
(n− 1)× (n− 1) matrix that is also of the form Id+C where C has coefficients in m, the
induction says that |Id+B| is a unit and thus Id+B is invertible.

Lemma 1.3.2 (Nakayama). If M is a finitely generated module over R a local and com-
mutative ring with unit, such that M = mM , then M = 0.

Proof. Let a1, . . . , an be generators of M . We know that there exist a matrix B = (Bij) ∈
Mn(m) such that ai =

∑
Bijaj for every 1 ≤ i ≤ n. Then, we have a system

A = BA⇔ (Id−B)A = 0.

Using 1.3.1, we know that Id−B is invertible and thus each ai = 0.

Theorem 1.3.3 (Weierstrass Preparation Theorem). Let f : (Cm+1, 0) → C be a holo-
morphic function-germ at 0, and let z ∈ Cm and w ∈ C be coordinates such that f =
f(z, w). If f(0, w) is a monic polynomial on w of degree n, then there exists a holomor-
phic function-germ h : (Cm+1, 0) → C such that h 6= 0 and holomorphic function-germs
a1, . . . , an : (C, 0)→ C such that

f = gh; g(z, w) = wn + a1(z)wn−1 + · · ·+ an(z).

We call g(z, w) the Weierstrass polynomial.

Proof. Denote bi(z) the zeros of the function f(z, •) : Bε(0) ⊆ C → C for every z in
a neighborhood of z = 0 (probably repeated, according to their multiplicity), such that
f(z, •) is defined in Bε(0). In fact, there exists a neighborhood V of z = 0 such that the

number of zeros of the function f(z, •) is constant in V . This is because f(z, w)
z→0−−→ f(0, w)

and ∫
|u|=ε

∂f
∂w

(z, u)

f(z, u)
du
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counts the number of zeros of f(z, •) inBε(0). Therefore, we can write f(z, w) = h(z, w)
∏

(w−
bi(z)), where h 6= 0. Our candidate to be g is

∏
(w−bi(z)), that has as coefficients the sym-

metric polynomials of the zeros bi(z). Since the ring of symmetric polynomials is generated
by sums of powers of the bi and we know (using Cauchy’s formula) that

b1(z)s + · · ·+ bn(z)s =
1

2πi

∫
|z|=R

ws
∂f
∂w

f
(z, w)dw.

This says that the functions ai(z) and g are holomorphic in a neighborhood of the
origin. Finally, h is holomorphic for small |z|, |w| since

h(z, w) =
1

2πi

∫
|u|=R

h(z, u)

u− w
du =

1

2πi

∫
|u|=R

f(z,u)
g(z,u)

u− w
du.

Theorem 1.3.4 (Division Theorem). Let f(z, w) be as in 1.3.3. Then for any germ of
holomorphic function φ(z, w), there exist holomorphic germs h(z, w) and hi(z), 1 ≤ i ≤ n−1
such that

φ = hf +
n−1∑
i=0

hi(z)wi.

Proof. Using the 1.3.3, we can assume that f is a Weierstrass polynomial. If we define h
to be

h(z, w) =
1

2πi

∫
|u|=R

φ(z, u)

f(z, u)

1

u− w
du

we get that

φ(z, w)− h(z, w)f(z, w) =
1

2πi

∫
|u|=R

φ(z, u)

f(z, u)

f(z, u)− f(z, w)

u− w
du.

If f is a Weierstrass polynomial of degree n in w, then f(z,u)−f(z,w)
u−w is a polynomial of

degree n − 1 in w with holomorphic coefficients in z and u. Thus, the linearity of the
integral implies the desired decomposition for φ.

Now, we will prove a preparation theorem, that will be an important technical tool in
our study of singularities. It is a theorem that allow to extend a solution of a functional
equation along the parameters of a deformation (this will be better understood in Chapter
3, with the proof of 3.0.11).

Theorem 1.3.5 (Thom-Martinet Preparation Theorem). Let (x, y) ∈ Cn × Ck and let
I ⊆ On+k be an ideal. Denote Ix,0 = {f(x, 0) : f ∈ I}. If e1, . . . , er ∈ On+k are such
that e1(x, 0), . . . , er(x, 0) generate On/Ix,0 as a C vector space, then the functions e1, . . . , er
generate the module On+k/I over Ok. That is, for every h ∈ On+k, there exist germs
g1(y), . . . , gr(y) such that

h(x, y) =
r∑
i=1

gi(y)ei(x, y)(mod I).
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Proof. We know from the hypothesis that for every h ∈ On+k, we can write

h(x, 0) =
r∑
i=1

aiei(x, o) (mod Ix,0) , ai ∈ C.

Using Hadamard’s lemma 1.1.4 to h(x, y) around y = 0, we get that

h(x, y) =
r∑
i=1

aiei(x, 0)+f(x, 0)+mkOn+kh(x, y) =
r∑
i=1

aiei(x, y)+f(x, y)+mkOn+k (1.3)

where f ∈ I, and we used that f(x, y) − f(x, 0), e(x, y) − e(x, 0) ∈ mkOn+k. If we call
M = On+k/I, we know that it is a finitely generated module over On+k, but our goal is to
prove that it is finitely generated over Ok by the e1, . . . , er. If we name N the Ok-submodule
of M generated by the e1, . . . , er, the last equation tells us that M = N + mkM and thus
M/N = mkM/N . If we know M is finitely generated over Ok, using Nakayama’s Lemma
1.3.2, we get that M/N = 0 or M = N . Then, from now on we will try to prove that M
is a finitely generated Ok-module.

We make induction in n. Let n = 1. Because of 1.3, we know that M is finitely
generated over R = Ok + mkOk+1, and its generators are e1, . . . , er. Now, consider the
operation of multiplying by x in the R-module M . Then, there exist coefficients Bi,j ∈ R
such that xei =

∑r
j=1 Bi,jej, or equivalently, a matrix B with coefficients Bi,j such that

(x Id−B)E = 0, E = (e1, . . . , er).

Cramer’s rule applied to this system says that det(x Id−B)ei = 0 for every 1 ≤ i ≤ r.
That means det(x Id−B) := α(x, y) is an annihilator of M (and is also a monic polynomial
on x of degree r with coefficients in R). It satisfies the hypothesis of the Division Theorem
1.3.4.

Finally, let m ∈ M and let m1, . . . ,ml be generators of M over O1+k. Then, m =∑l
i=1 cimi, ci ∈ O1+k. Applying the Division Theorem to the the ci, and then multiplying

by mi and summing over i, we obtain

ci = hiα +
n−1∑
j=0

di,jx
j, di,j ∈ Ok, hi ∈ O1+k.

Also,

m =
l∑

i=1

n−1∑
j=0

di,jmix
j

because αmi = 0. This says that xjmi, 1 ≤ i ≤ l, 0 ≤ j ≤ n− 1 generate M over Ok.
To finish the induction, assume that n > 1 and M = N + mkM . This implies that

M = On−1+k + mn−1+kM . Applying the first induction step, we get that M is finitely
generated as On−1+k-module. The inductive hypothesis implies that it is finitely generated
over Ok, and thus completes the proof.



Chapter 2

Local algebra of a map

Every geometric object can be described in two ways: in terms of points of manifolds and
in terms of the functions on them. The algebraic way of describing the geometric objects
(that is, via the algebra of functions on the manifold) becomes very useful when describing
singularities, because of the difficulties arising from their infinitesimal nature.

In this chapter, we introduce an important invariant of an holomorphic function germ:
the local algebra. We will prove that the dimension of that algebra (also known as the
Milnor number), seen as a complex vector space, is equal to the index of the function
in the point. In addition, it will allow us to characterize the isolated singularities and
will play an important role in the proof of Tougeron’s finite determinacy theorem at the
end of the chapter. This surprising result says that complex isolated singularities have a
polynomial representative in its class (one of its Taylor’s polynomials), and is very useful
in the classification of singularities.

The exposition of these topics follows [3], Part I, Chapters 5 and 6.

2.1 Definitions

Definition 2.1.1. Let f : (Cn, a)→ (Cm, 0) be a germ of a holomorphic function, a ∈ Cm.
The local algebra of the map f at a is the quotient algebra of the function-germs by the ideal
generated by the components of the map, which we call If,a = 〈f1, . . . , fm〉. We denote it
Qf,a = On/If,a. Its dimension as a C-vector space is called the algebraic multiplicity of f
at a. If a = 0, we will write If and Qf , for the ideal generated by the components and the
local algebra respectively.

Definition 2.1.2. Let f : (Cn, 0) → (C, 0) be a germ of a holomorphic function with a
critical point at zero. The gradient ideal is the ideal I∇f ⊆ On generated by the partial
derivatives of the function f . The local algebra of the singularity of f is Q∇f = On/I∇f .

Remark 2.1.3. The algebra Q∇f does not depend on the choice of local coordinates. If
h : (Cn, 0) → (Cn, 0) is a biholomorphism, then there is an exact sequence isomorphism,
where vertical arrows are identities

10
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0 I∇(f) On Qf 0

0 I∇(f◦h) On Qf◦h 0

since ∇(f ◦ h)(z) = ∇(f)(h(z))Dh(z) and Dh(z) is invertible.

Definition 2.1.4. The Milnor number of the germ f ∈ On is the dimension of Q∇f seen
as a C-module:

µ(f) = dimCQ∇f .

A critical point is said to be of finite multiplicity if µ(f) < ∞ (we will see later that
this is equivalent to being isolated 2.2.2).

Example 2.1.5. • Let f : C → C such that f(x) = xk. Then Qf ′ = On/〈xk−1〉, so f
has at 0 a critical point of multiplicity k − 1 (using Taylor’s formula 1.1.5).

• Let f : C2 → C such that f(x, y) = x2y + yk. The local algebra of the singularity
is O2/〈x2 + kyk−1, 2xy〉 is generated by 1, x, y, y2, . . . , yk−1, and thus has multiplicity
k + 1.

• Let f : C2 → C such that f(x, y) = x3 + y4. The local algebra of the singularity is
O2/〈3x2, 4y3〉 is generated by 1, x, y, y2, xy, xy2, and thus has multiplicity 6.

• Let f : C2 → C such that f(x, y) = x3 + xy3. The local algebra of the singularity is
O2/〈3x2 + y3, 3xy2〉 is generated by 1, x, xy, y, y2, y3, y4 and thus has multiplicity 7.

• Let f : C2 → C such that f(x, y) = x3 + y5. The local algebra of the singularity is
O2/〈3x2, 5y4〉 is generated by 1, x, y, y2, y3, xy, xy2, xy3 and thus has multiplicity 8.

Definition 2.1.6. Let a be an isolated root of a smooth map-germ f : (Rn, a)→ Rn. The
index of f at a is

inda[f ] = deg

(
f(εx)

||f(εx)||
: Sn−1

1 (a)→ Sn−1
1

)
where Sn−1

1 is the sphere centered in a with radius 1 and ε is sufficiently small for a to
be the only root of f in Bε(a). In the holomorphic case, we can think of a map-germ
f : (Cn, a)→ Cn as a smooth map-germ f : R2n → R2n and apply the same definition.

Remark 2.1.7. The index is well defined. Indeed, if there are no roots of f in both Bε

and Bε′ , for sufficiently small ε, ε′, then the maps f(εx)
||f(εx)|| and f(ε′x)

||f(ε′x)|| are homotopic, via
the linear homotopy.

Example 2.1.8. If f(0) = 0 and Df(0) is invertible, then inda[f ] is equal to 1 or −1
depending on the sign of the jacobian. Indeed, by the inverse function theorem, there
exists an inverse map f−1 : Bε(0)→ f−1(Bε(0)) and f

||f || ◦ f
−1 : ∂Bε(0)→ Sn−1

1 has degree

1 (it is the map that sends x to x
||x||). Thus, deg( f

||f ||) should be a unit in Z, and it should

be equal to deg(f−1) = deg(f).
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Definition 2.1.9. The geometric multiplicity of a map-germ f : Cn → Cn at an isolated
cirtical point a is the value inda(f), that is the index of f at a.

Remark 2.1.10. Both multiplicities coincide (when well defined) for a holomorphic map
germ. This will be proven later 2.2.24.

Remark 2.1.11. The same definitions can be made in the real case with practically no
modification of the theory. In the holomorphic case, as we will see later, the finite algebraic
multiplicity is equivalent to the isolation of the critical point. In the real case, this is not

so: the function f(x) = e−
1
x2 has an isolated critical point at 0 but its local algebra is

infinite dimensional. Indeed, f ′(x) = 2e
− 1
x2

x3 , so 0 is the only critical point. And {xi : i ∈ N}
is a linearly independent set in Qf ′ since e is trascendent.

2.2 Local multiplicities of holomorfic maps

The main goal of this section will be to prove the next two theorems, concerning the
multiplicity of map-germs at a point.

Theorem 2.2.1 (Equivalence of multiplicities). The index of a holomorphic germ of finite
multiplicity is equal to its multiplicity.

Theorem 2.2.2 (Isolatedness of roots). A holomorphic map-germ fails to be of finite
multiplicity at a point a, if and only if a is a non-isolated inverse image of 0 of the germ.

Definition 2.2.3. A map-germ F : (Cn, a)→ (C, 0) is said to be non-degenerate at a if it
has an isolated zero at a.

Remark 2.2.4. If δ > 0 and Bδ(0) ⊆ Rn is such that 0 is the only zero of a map-germ
f : (Rn, 0) → Rn, then the index of a point 0 is equal to the number of preimages of any
sufficiently small regular value ε ∈ Rn, counted with the sign of the jacobian (provided
that this number of zeros is finite). Indeed, let {p1, . . . , pk} be these finite zeros and let
B1, . . . , Bn be mutually disjonint balls centered in each of these zeros contained in Bδ(0).
Let (f − ε)j = f−ε

||f−ε|| : ∂Dj → Sn−1
1 . Thus, since homotopies preserve the degree, we know

that

ind0(f) =
k∑
j=1

deg((f − ε)j) + deg

(
g =

f

||f ||
: ∂X → Sn−1

1

)
where X = Bδ(0)−

⋃k
i=1 B̃i and B̃i is the ball Bi with the inverse orientation. By 2.1.8, we

know that the deg((f − ε)j) are 1 or −1 depending of the sign of the jacobian. And also,
if w is a n− 1 form in Sn−1

1 that integrates 1 and i : ∂X → X is the inclusion, then

deg(g) = deg(g)

∫
M

w =

∫
∂X

g∗w =

∫
∂X

(
f

||f ||
◦ i
)∗

w =

∫
∂X

i∗
((

f

||f ||

)∗
w

)
=

∫
X

d

(
f

||f ||

)∗
w =

∫
X

(
f

||f ||

)∗
dw = 0
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since dw = 0 (we used Stoke’s theorem).
The same argument can be used for any other deformation H(x, t), x ∈ Rn, t ∈ R such

that H(x, 0) = f (in this case, H(x, t) = f(x)− t).
Definition 2.2.5. Let f, g : (Rn, 0) → Rn be two germs of smooth functions. If there
exists a smooth germ A : (Rn, 0) → GLn(R) such that det(A(0)) > 0 and g = Af , we say
that f and g are R-A-equivalent.

Let f, g : (Cn, 0) → Cn be two holomorphic function-germs. If there exists a germ of
holomorphic function A : (Cn, 0) → GLn(C) such that g = Af , we say that f and g are
C-A-equivalent.

In both cases, it is an equivalence relation: If A is like in the definition and gives f ∼ g,
the function A−1(x) := A(x)−1 gives g ∼ f .

Proposition 2.2.6. Two R-A-equivalent germs f, g : (Rn, 0)→ Rn have the same indices.

Proof. Since det(A(0)) > 0, we can join A(0) and Id with a smooth path γ in GLn(R). As
the image of that path is compact, the distance to the set {B ∈ Rn : det(B) = 0} in Mn(R)
is d > 0. So, by the tubular neighborhood theorem we can create a tubular neighborhood
U = {x+ v : (x, v) ∈ N(im(γ)) and |v| < δ} for that path, where 0 < δ < d (thinking
of GLn(R) embedded in Rn2

and using the notation N(im(γ)) for the normal bundle of
γ). This gives a homotopy H between A and the constant map cId : (Rn, 0) → GLn(R)
(that maps every point in Rn to the identity matrix). Indeed, by making a sufficiently small
extension of the curve and taking a sufficiently small open in the domain of A, we can always
assume that the image of A is an open ball B that belongs to the tubular neighborhood.
Now, consider the vector field Xγ(t)+v = γ′(t) defined in U (constant over each normal
space) and its flow θ(y, s). We define an homotopy G : Dom(A) × [0, 1] → GLn(R) by
G(z, s) = θ(A(z), s). The image of G(z, 1) is an open contractible set (this is because if
(γ(t), v) ∈ N(im(γ)), we know γ(t) + v is an integral curve of X). Thus, we can build
our desired H by concatenating G with an homotopy between im(G(z, 1)) and the identity
matrix (because G(0, 1) = Id).

Finally, the homotopy H(x, t) = H(x, t)f(x) joins g to f and preserves the index
(multiplying the function by an invertible matrix preserves the degree).

Proposition 2.2.7. If A ∈ GLn(C), then its real form Ã ∈ GL2n(R) has positive determi-
nant (where Ã(x1, . . . , x2n) = A(x1 + ix2, x3 + ix4, . . . , x2n−1 + ix2n), thinking of Ã and A
as linear transformations).

Proof. It is because det(Ã) = | det(A)|2. Since ÃB = ÃB̃, we can assume that A is in

Jordan form (that is because C̃AC−1 = C̃ÃC̃−1 for every invertible matrix C and so the

determinant of Ã and C̃AC−1 are equal). Thus, the determinant is the product of the
eigenvalues counted with its multiplicity in the characteristic polynomial of A. If a block
Ji of the Jordan form of A has the form

Ji =


a1 + ib1 0 . . . . . . 0

1
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 1 an + ibn


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where ai, bi ∈ R, then we have that

J̃i =



a1 −b1 0 . . . . . . . . . 0
b1 a1 0 . . . . . . . . . 0

1 0
. . . 0

. . .
...

0 1
. . . 0

. . .
...

0 0
. . . . . . 0 0

...
. . . 1 0 an −bn

0 . . . 0 0 1 bn an


.

Therefore, the determinant of J̃i is
∏n

i=1(a2
i + b2

i ) = | det(Ji)|2. If the jordan blocks of
A are J1, . . . , Jm, then we know that

det(Ã) =
m∏
i=1

det(J̃i) =
m∏
i=1

| det(Ji)|2 = | det(A)|2.

This completes the proof.

Corolary 2.2.8. C-A-equivalent holomorphic germs have the same index.

Proof. This is because the real forms of two holomorphic C-A-equivalent map-germs g, f
are R-A-equivalent. This is because if g = Af , where A ∈ GLn(C), then g̃ = Ãf̃ , and
Ã(0) has positive determinant because of the previous proposition. By the real form of
a holomorphic map f : Cn → Cn, we mean the map f̃ : R2n → R2n such that f̃(x) =
(u1(x), v1(x) . . . un(x), vn(x)) where the components fj of f are written as fj(x + iy) =
uj(x1, y1, . . . , xn, yn) + ivj(x1, y1, . . . , xn, yn), where uj, vj : R2n → R.

Corolary 2.2.9. Let B be a closed ball centered in a point a ∈ Cn and f a holomorphic
map defined in B such that a is the only root of f . Then, the index at a of f is equal to
the number of preimages of a sufficiently small regular value ε.

Proof. The index is equal to the number of preimages of a sufficiently small regular value
ε 6= 0 counted with the sign of the jacobian, as discussed in 2.2.4, and we just proved that
this sign is always positive.

Proposition 2.2.10 (Additivity of the index). Let f : (Cn, 0)→ (Cn, 0) be a map with an
isolated root at 0 and B a closed ball centered at 0 such that 0 is the only root of f at B.
Then any sufficiently small deformation fε of f has finitely many zeros in B, and the sum
of its indices is equal to the index of f at 0.

Proof. If we know that the number of zeros is finite, 2.2.4 says that the sum of the indices
of fε at these zeros is equal to the index of f at 0. So, let us see that fε cannot have
more than k = ind0(f) roots in B. If fε has k + 1 different roots a1, . . . , ak+1 in B, let
g be a polynomial that vanishes in this k + 1 points. Then fε + δg has nondegenerate
roots in a1, . . . , ak+1 for almost every δ ∈ C. Using an analogous argument as the one in
2.2.4, we get mutually disjoint balls B1, . . . , Bk+1 around the roots. Since these roots are
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nondegenerate, the degree of fε + δg at each of these roots is 1 (holomorphic maps are
orientation preserving). Thus,

k = deg

(
fε
||fε||

)
= k + 1 + deg

(
fε
||fε||

: ∂X → S2n−1
1

)
where X = B −

⋃k+1
i=1 B̃i and B̃i are the balls Bi with the inverse orientation. Since

holomorphic maps are orientation preserving and the degree counts the number of preimages
of regular values with the sign of the jacobian, we get an absurd in the last equation (since
the degree is non-negative and k < k + 1).

Remark 2.2.11. Deformations will be treated in more detail in Chapter 3. We will use
this result in one particular case in the proof of our theorems, so the reader not familiar
with deformations can try to use the proof of the former proposition in particular cases.
(which will be convex combinations of maps).

Proposition 2.2.12. The multiplicities of A-equivalent map germs f, g : (Cn, 0)→ Cn are
equal.

Proof. Indeed, since f(x) = A(x)g(x), if we name f1, . . . , fn and g1, . . . , gn the coordinate
functions of f and g, we have that fi(x) =

∑n
j=1Aij(x)gj(x). So, If ⊆ Ig and since it is

A-equivalence is an equivalence relation, the same argument gives the other inclusion.

Lemma 2.2.13. Let f : (Cn, 0) → (Cn, 0) be a map-germ of finite multiplicity µ > 0.
Then, the product of any µ map-germs that vanish at 0 is contained in the ideal If . In
particular, any monomial of degree µ or greater lies in If .

Proof. Let ϕ1, . . . , ϕµ be such µ map-germs. Name ψi =
i∏

j=1

ϕi for every 1 ≤ i ≤ µ and

also ψ0 = 1. These µ + 1 germs are linearly dependent in the ring Qf as its dimen-

sion is µ. So, there exist elements c0, . . . , cµ ∈ C such that
µ∑
i=0

ciψi ∈ If (and not all ci

are zero). It is evident that c0 = 0, otherwise If would contain a unit and Qf would
be trivial (which contradicts that its dimension is positive). If r = min {j ∈ N : cj 6= 0}
then ψr (cr + cr+1ϕr+1 + · · ·+ cµϕr+1 · · ·ϕµ) ∈ If . This means that ψr belongs to If as

(cr + cr+1ϕr+1 + · · ·+ cµϕr+1 · · ·ϕµ) is invertible in On. Then,
µ∏
j=1

ϕi ∈ I(f) because it is

divisible by ψr, which completes the proof.

Corolary 2.2.14. A root of finite multiplicity is isolated.

Proof. If the germ of f has finite multiplicity µ at 0, we can apply the lemma 2.2.13 to
the germs xµj for every 1 ≤ j ≤ n. Therefore, we can write each of them in the form∑n

i=1 hj,ifi where hj,i are holomorphic map-germs. So, in a small domain (the intersection
of all the domains of the hj,i and fi), f(x) = 0 implies that xµj = 0 for all 1 ≤ j ≤ n, and
so x = 0.

Corolary 2.2.15. Let f : (Cn, 0)→ C be a germ of finite multiplicity µ and g : (Cn, 0)→ C
such that f − g ∈ mµ+1. Then, f and g are C-A-equivalent.
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Proof. We name fi and gi to the components of f and g and we write gi−fi as
∑
Hi,jfj for

every 1 ≤ i ≤ n, where Hi,j(0) = 0 (using the Lemma 2.2.13). So, we get that g− f = Hf
where H is the matrix which components are Hi,j(x). Thus, H ∈Mn(m). Since Id+H is
invertible (1.3.1), we get that g = (Id+H)f , which proves the C-A-equivalence.

Definition 2.2.16. Let m = (m1, . . . ,mn) ∈ (N0)n. The m-Pham map is Φm : Cn → Cn

such that Φm(z1, . . . , zn) = (zm1
1 , . . . , zmnn ).

Remark 2.2.17. Let f : (Cn, 0) → Cn be a map-germ of multiplicity µ at 0. If we let
m = (µ+ 1, . . . , µ+ 1), then the map-germ f is C-A-equivalent at 0 to the germ Φm + εf
for all ε ∈ R− {0}. This is because their difference is Φm, and they belong to mµ+1, so we
apply 2.2.15.

Proposition 2.2.18. ind0(Φm) = µ0(Φm).

Proof. If m = (m1, . . . ,mn), we can compute both numbers separately. The index is equal
to the number of roots of the map Φm − (ε1, . . . , εn) for a sufficiently small regular value
(ε1, . . . , εn) of Φm 2.2.9. The system xi = εi for 1 ≤ i ≤ n has

∏n
i=1mi solutions if εi 6= 0

for every i.
On the other hand, QΦm = C[x1, . . . , xn]/〈xm1

1 , . . . , xmnn 〉 has a basis of monomials
formed by the elements

∏n
i=1 x

ki
i where 0 ≤ ki < mi for every i. So, the dimension of

this algebra is
∏n

i=1mi.

Definition 2.2.19. Let g : U ⊆ Cn → Cn be a holomorphic function and U an open set,
Hol(U) the algebra of holomorphic functions in U and Ig(U) = 〈g1, . . . , gn〉 ⊆ Hol(U). The
quotient Qg(U) = Hol(U)/Ig(U) is the local algebra of g on the domain U . The image
of the polynomials in this quotient is called the polynomial subalgebra, and is denoted
Qg[U ]. If a1, . . . , am are the zeros of g in U , the multilocal algebra of g in U is the space
MLg(U) = ⊕mi=1Qg,ai , that is, the direct sum of the local algebras of the germs of g at the
points ai.

Lemma 2.2.20. Suppose that the C dimension of the polynomial subalgebra of a map g in
U is µ <∞. Then every zero of the map g is of finite multiplicity.

Proof. We make an argument similar to the one in 2.2.13. If a is a zero of the map g and
ϕ1, . . . , ϕµ are linear functions vanishing at a, then the images of the µ + 1 polynomials
1, ϕ1, ϕ1ϕ2, . . . , ϕ1 · · ·ϕµ are linearly dependent. Thus, arguing as in 2.2.13, we find that
there exists a function h ∈ Hol(U) such that h(a) 6= 0 and hϕ1 · · ·ϕµ ∈ Ig(U). This
says that ϕ1 · · ·ϕµ ∈ Ig,a, after inverting h (in the local algebra, not in the polynomial
subalgebra).

Proposition 2.2.21. Let fε be a deformation of f . Then, for sufficiently small ε,

| {fε = 0} | ≤ µ(f).

Proof. We name fε(x) = (f1(x, ε), . . . , fn(x, ε)) and let e1, . . . , eµ the polynomial generators
of Qf . Using the Thom-Martinet Preparation Theorem 1.3.5, any polynomial P (x) can be
decomposed in the form

P (x) =

µ∑
j=1

gj(ε)ej(x) +
n∑
i=1

ϕi(x, ε)fi(x, ε) (2.1)
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where each of the ϕi, gj are holomorphic. The problem is that the domains of this functions
can depend on the choice of the polynomial. However, we can choose domains not depending
on the polynomial. We intersect the domains of the functions corresponding to the Thom-
Martinet preparation theorem decomposition of 1, x1, . . . , xn and xjek, 1 ≤ j ≤ n, 1 ≤ k ≤
µ. Since every polynomial of degree d can be put in the form P =

∑n
j=1 xjQj + c · 1

with deg(Qj) < d, we can apply induction with respect to deg(P ) and obtain the desired
representation in a fixed domain (that is, independent from the choice of the polynomial).

Thus, we can assume that x ∈ U , ε ∈ V where U, V are fixed domains of the origin.
Also, we can assume that all the zeros of Fε, ε ∈ V bifurcating from the origin lie in U (by
reducing V ). From our previous decomposition 2.1, we get that dimCQfε [U ] ≤ µ.

Let a1, . . . , aν be the roots of fε in U and Π : Qfε [U ] → MLfε(U) be the natural
map that sends a polynomial to its classes in the local algebra. The fact that this map is
surjective implies the inequality. And this holds because given finite jets at the points ai,
there exist a polynomial having those jets at each ai (this is Hermite interpolation).

In the middle of the proof of this proposition we deduced that

Corolary 2.2.22.
∑
µai(Fε) ≤ µ(f).

And also

Corolary 2.2.23. ind0(f) ≤ µ(f).

Proof. Applying our proposition to the deformation Fε = f − ε, for ε a sufficiently small
regular value of f , we get that ind0(f) = | {f = ε} | ≤ µ, by using 2.2.9 in the first equality
and the proposition in the second one.

Theorem 2.2.24. The index of a holomorphic germ of finite multiplicity is equal to its
multiplicity.

Proof. If the map-germ does not vanish in the origin, then both the multiplicity and the in-
dex are obviously equal to 0. Let f : (Cn, 0)→ (Cn, 0) be a map-germ of finite multiplicity.
By 2.2.17, we can choose a Pham map Φ such that f and Φε := Φ + εf are C-A-equivalent
for ε 6= 0. Then, we choose a sufficiently small neighborhood U of 0 and a small ε. If we
call ai the roots of Φε in U , we obtain the chain of inequalities

µ0(Φ) ≥
∑

µai(Φε) by 2.2.22

µai(Φ) ≥ indai(Φε) by 2.2.23∑
indai(Φε) = ind0(Φ) applying the Proposition 2.2.10 to the deformation Φ + tf

ind0(Φ) = µ0(Φ) because of Proposition 2.2.18.

This chain of inequalities implies that µai(Φε) = indai(Φε) for every ai root of Φε. Since
f(0) = 0, then 0 is a root of Φε, and therefore µ0(Φε) = ind0(Φε). But since f and Φε are
C-A-equivalent, we know that

µ0(f) = µ0(Φε) because of 2.2.12

ind0(f) = ind0(Φε) because of 2.2.8.

So, this implies that µ0(f) = ind0(f).
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Corolary 2.2.25. An isolated root of f : (Cn, 0)→ (Cn, 0) has finite multiplicity.

Proof. We would like to use our Theorem 2.2.24, to say that the multiplicity of that root
is exactly its index; the problem is that we cannot use it directly on f since we don’t know
if it has finite multiplicity (moreover, that is what we would like to prove). The idea is
to build another function germ g of finite multiplicity that “looks like” f (in the sense
that they have the same index and are C-A-equivalent). Let k be the number ind0(f) and
g = fl−1 + εΦ(l,...,l) where l > k + 1, fl−1 is the taylor polynomial of f of degree l − 1 and
Φ(l,...,l) is a Pham map (defined in 2.2.16). It is clear that the k+ 1-jets of f and g at 0 are
equal. Also, the germ g is of finite multiplicity. Indeed, in the local algebra, the relation
εΦ(l,...,l) = −fl−1 allows us to reduce the degree of each polynomial if its degree in one of
the variables is greater or equal than l. This says that the subalgebra of Q∇(g) generated by
polynomials is of finite dimension. This implies that Q∇(g) is finitely generated, by 2.2.20.
If we define a ball B in the domain of convergence of the germ of f at 0 such that f vanishes
only in the origin, we can choose l and ε such that ||f || > ||f − g|| in ∂B.

Finally, since for 0 ≤ t ≤ 1, we get that ||tg + (1 − t)f || = ||f + t(g − f)|| ≥ ||f || −
t||f−g|| > (1− t)||f−g|| ≥ 0, the maps f

||f || and g
||g|| are homotopic, through the homotopy

tg+(1−t)f
||tg+(1−t)f || . Therefore, ind0(g) ≤ deg( g

||g|| : ∂B → S1(0)) = ind0(f) = k. Since g has finite

multiplicity at 0, we know that µ0(g) = ind0(g) ≤ k because of the Theorem 2.2.24. Since
f − g ∈ mµ0(g)+1, the germs at 0 of f and g are C-A-equivalent because of 2.2.15 and thus
have the same (finite) multiplicity at 0 (this is because of 2.2.12).

2.3 Tougeron’s finite determinacy theorem

To classify critical points, it is necessary to describe the action of the infinite-dimensional
Lie group of diffeomorphism-germs over the infinite-dimensional space of map-germs. The
Tougeron’s theorem states that any function-germ at an isolated critical point (or equiv-
alently, of finite multiplicity, as seen in the last chapter) is equivalent to a polynomial.
This helps us reduce the description of isolated singularities to the action over a finite-
dimensional space of map-germs.

To prove Tougeron’s theorem, we are going to introduce a method proposed by Thom,
which is called the homotopy method. Say that (in a more general way and in the real case)
we want to have a left-right equivalence between two maps between differentiable manifolds
M and N , say f, g : M → N , so we want to find two diffeomorphisms H and K such that

M N

M N

f

H K

g

.

To find those diffeomorphisms, we find a homotopy F : M × I → N that joins f and g
and try to decompose the previous commutative diagram into many “infinitesimal” ones,
by trying to find two diffeomorphisms
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M N

M N

Ft

H∆t K∆t

Ft+∆t

for small ∆t.
In the rest of this subsection, let f : (Cn, 0)→ (C, 0), m the maximal ideal, ϕ ∈ mµ+2,

where 0 < µ < ∞ is the multiplicity of the map ∇(f) at the point 0 and fj, ϕj : Cn → C
the maps ∂jf and ∂jϕ for 1 ≤ j ≤ n.

Lemma 2.3.1. 1. Every monomial of sufficiently high degree (≥ µ) belongs to the ideal
I∇(f+tϕ), that is mµ ⊆ I∇(f+tϕ) with t ∈ [0, 1] a constant.

2. The homological equation with unknown vt a vector depending on t

vt · (f + tϕ) = α

is solvable for every t ∈ [0, 1] if α is a monomial of degree µ+ 1. The · denotes difer-
entiation in the direction of the vector vt. Moreover, the solution depends smoothly
on t and vanishes at the origin.

Proof. 1. There is a finite number (which we call r) of monomials of degree µ, which are
{Mj}rj=1. By means of Lemma 2.2.13 Mi is one of those monomials. We have that
Mi ∈ If and

Mi =
n∑
j=1

fjhj,i(x) =
n∑
j=1

(fj + tϕj)hj,i(x)−
n∑
j=1

tϕjhj,i(x), hj,i ∈ On.

Since ϕj ∈ mµ+1, the term substracted in the right hand side can be written as a
linear combination of monomials of degree µ with coefficients in m. Then, we have

Mi =
n∑
j=1

(fj + tϕj)hj,i(x)−
r∑
j=1

Mj

(
n∑
s=1

txsaj,s,i(x)

)
, aj,s ∈ On.

By taking the same decomposition for all the monomials of degree µ, we get a system

of equations


M1 +

r∑
j=1

Mj

(
n∑
s=1

txsaj,s,1(x)

)
=

n∑
j=1

(fj + tϕj)hj,1(x)

...

Mr +
r∑
j=1

Mj

(
n∑
s=1

txsaj,s,r(x)

)
=

n∑
j=1

(fj + tϕj)hj,r(x)

which is a system of equations of the form (Id +At)M = B. In the equation, B =(
n∑
j=1

(fj + tϕj)hj,i(x)

)r

i=1

and M = (M1, . . . ,Mr) are r-dimensional vectors and At =(
n∑
s=1

txsaj,s,i(x)

)
i,j

is a matrix with coefficients in m. If we know (Id +At) is invertible,
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then M = (Id +At)
−1B and as B has coefficients in I∇(f+tϕ), we conclude that M

does too. And this has been done in 1.3.1.

2. If we fix t ∈ [0, 1] and write α = xiMj where Mj is a monomial of degree µ we know
there exists a solution of the equation

vt · (f + tϕ) = Mj

because Mj ∈ I∇(f+tϕ). Also, using the same notation that we used in the proof of
the first part of this lemma, as (Id +At)

−1 = adj(Id +At) det(Id +At)
−1 (having in

mind that det(Id +At)
−1 is a unit), we can see that the solution depends smoothly of

t ∈ [0, 1]. By multiplying by xi we get the desired solution vt.

Definition 2.3.2. We say that a k-jet is sufficient if any two functions with that k-jet are
equivalent.

Theorem 2.3.3 (Tougeron). Let f : (Cn, 0) → (C, 0) be an holomorphic map-germ at a
critical point of finite multiplicity µ. Then its µ+ 1-jet is sufficient.

Proof. We join f and f + ϕ with the homotopy F (x, t) = (f + tϕ)(x) and we look for a
family of local diffeomorphisms gt such that

(f + tϕ)(gt(x)) ≡ f(x)

g0(x) ≡ x

gt(0) ≡ 0

.

If we take d
dt

in both sides of the equation, and we call vs(gs(x)) =
(
d
dt
gt(x)

)
|t=s we get

another equation

ϕ(gt(x)) + vt(gt(x)) · (f + tϕ)(gt(x)) ≡ 0. (2.2)

As α = −ϕ ∈ mµ+2, we know that there exists a decomposition α(x) =
s∑
i=1

αi(x)ci(x) where

the αi are monomials of degree µ+ 1 and ci ∈ m. We can solve for every i the homological
equations with unknown (vi) {

(vi)t · (f + tϕ) ≡ αi

(vi)t(0) ≡ 0
.

Which means that vt =
s∑
i=1

ci(x)(vi)t is a solution for 2.2. To find gt, we use the fact that


d
dt
gt(x) ≡ vt(gt(x))

gt(0) ≡ 0

g0(x) ≡ f(x)
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is an ordinary differential equation for gt and its (only) solution solves 2.2. By integrating
the equation in t between 0 and s we get that

(f + tϕ)(gt(x))|t=st=0 ≡ (f + sϕ)(gs(x))− f(x) ≡ 0

which means that g1 is a right change of coordinates between f and f + ϕ.

Remark 2.3.4. This in particular says that every isolated singularity has a polynomial
representative of degree less than µ + 1, where µ is its multiplicity in the critical point.
Thus, this simplifies the classification of isolated singularities of a certain multiplicity to
the classification of orbits of an infinite dimensional group action over a finite-dimensional
manifold (the µ+ 1-jets).

Remark 2.3.5. The particular case of µ = 1, Tougeron’s theorem says that every critical
point of index 1 (that is, non-degenerate critical point by 2.1.8) is equivalent to its 2 jet,
which can be made equivalent, by completing the square several times, to a sum of variables
squared; this is exactly the Morse lemma 1.2.4.

Example 2.3.6 (Whitney). Let us consider the holomorphic function in three variables
f(x, y, z) = xy(x + y)(x − zy)(x − ezy). Each plane z = c, c ∈ C fixed, intersects the set
{f(x, y, z) = 0} along 5 curves that intersect in the point (0, 0, c). The cross-ratios of the
tangents of 4 of those 5 curves depend on the plane z = c chosen. One can check that
this dependance is not algebraic (because of the factor ez appearing in the expression of
f), and this proves that this function is not equivalent to a polynomial (in that case, the
dependance must be algebraic).



Chapter 3

Versal deformations

Generally, when we consider the set of all singularities, the main interest is the study of
the nondegenerate critcal points, since they appear generically; that is, we may get rid of
complicated singularities by small perturbations (that is the content of the Transversality
theorems, see for example [3] Chapter 2, [5] Chapter 3). However, in many cases we are
not interested in the study of an individual object, but in a family of objects, depending on
parameters. In this case, degenerate singularities can be “irremovable”. Take for instance,
the case of x3 + tx. It has a degenerate singularity for t = 0 and every sufficiently close
family will have a degenerate critical point for t close to 0, although for each fixed value of
the parameter the singularity is removable by a generic perturbation of the map. Therefore,
the natural object of study is not the degenerate singularity, but the family in which this
singularity becomes irremovable; this will be the main topic of this chapter.

Definition 3.0.1. Let G be a Lie group acting on a mainfold M and f ∈M . A deformation
of f is a smooth map-germ F from a manifold Λ (called the base) to M at a point 0 ∈ Λ
for which F (0) = f .

Two deformations F, F ′ : Λ → M are said to be equivalent if they have the same base
and there exists a deformation g : Λ→ G of the element 1 ∈ G such that

F ′(λ) = g(λ)F (λ);λ ∈ Λ.

Definition 3.0.2. If θ : (Λ′, 0) → (Λ, 0) is a smooth map, and F : (Λ, 0) → (M, f) is a
deformation, we call θ∗F = F ◦ θ the deformation induced from F by θ.

A deformation F is versal if every deformation of f is equivalent to one induced from
F .

A deformation F of f is miniversal if it is versal and if the dimension of its base is less
or equal than the dimension of the base of any other versal deformation of f (that is, the
dimension of its base takes its least possible value).

Example 3.0.3. The identity map Id : M → M is always a versal deformation, but
is not in general a mini-versal deformation. Since we want to parametrize the space of
functions in the simpler way, the definition of versal deformation is not enough; mini-versal
deformations will be the way to understand a neighborhood of a point in the space of
functions.

22
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Remark 3.0.4. The transversality of the deformation F : (Λ, 0)→ (M, f) to the orbit Gf
of f is a necessary condition for the versality of F . In fact, suppose that

F∗T0Λ + TfGf ( TfM.

If we take an equivalent deformation to F , say H, then F∗T0Λ + TfGf = H∗T0Λ + TfGf
holds. And if we take any induced deformation θ∗F , we know that (θ∗F )∗T0Λ + TfGf ⊆
F∗T0Λ + TfGf . This says that every deformation F ′ of f satisfies

F ′∗T0Λ + TfGf ( TfM

which is obviously not true (take F ′ the identity map of M).

Theorem 3.0.5. A minimal transversal to Gf at f in M is a miniversal deformation of
f .

Proof. Let F : (Λ, 0) → (M, f) be a minimal transversal deformation and let K be a
transversal to the stabiliser EG(f) of f . The product operation p : K × F (Λ) → M
defines a smooth map-germ at (1, 0) that is also a diffeomorphism-germ. This is because
the differential is suryective (as a consequence of the previous remark) and also injective,
or we can reduce the dimension of Λ and keep it a transversal deformation. By the inverse
function theorem, the product is a diffeomorphism.

Then, let F ′ : (Λ′, 0) → (M, f) be another deformation of f . For all λ′ ∈ Λ′, we
have that p−1(F ′(λ′)) = (β(λ′), γ(λ′)) ∈ K × F (Λ). Finally, F ′(λ′) = β(λ′) · γ(λ′) =
β(λ′) · F (F−1(γ(λ′))).

Definition 3.0.6. The modality of the point f ∈ M under the action of a Lie group G is
the least number m such that a small neighborhood of f is covered by a finite number of
m-parameter families of orbits.

Example 3.0.7. Let M be the manifold of quadruples of lines passing through the origin
in C3 and G be the group GL(3,C). G acts on M by multiplication. Let us describe the
orbits of this action.

Firstly, the quadruples of lines that are not contained in a common plane are one
orbit. Indeed, if we multiply three linearly independent vectors on C3 by the same invert-
ible matrix, we obtain again three linearly independent vectors. Also, if v1, v2, v3, v4 and
w1, w2, w3, w4 are a pair of quadruples of vectors that direct two non-coplanar quadru-
ples of lines, then there is a matrix g such that gvi = wi for i = 1, 2, 3. Then, if
v4 = a1v1 + a2v2 + a3v3 and w4 = b1w1 + b2w2 + b3w3, the matrix g̃ such that g̃vi = bi

ai
wi

if ai 6= 0 and g̃vi = wi if ai = 0 sends one quadruple into the other. This orbit is a
0-parametric family.

In the case of the quadruples of lines that lie in a common plane, there is a numerical
invariant of the action: the cross-ratios of the four lines. So, we will not be able to cover
a neighborhood of any of these points with finitely many orbits; we will need at least a
uniparametric family. Since every quadruple of coplanar lines with a fixed cross-ratio can
be moved to any other quadruple with the same cross ratio by the action of an element
of the group, we can cover a neighborhood of any coplanar quadruples of lines with a
uniparametric family that varies the cross ratios and the orbit (or 0-parametric family) of
non-coplanar quadruples of lines. Thus, the modality is 1.
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We have introduced this deformations in the finite-dimensional case to generalize its
study to our infinite dimensional case, in which we have a space M of maps (smooth
or holomorphic) and an infinite dimensional Lie group, which is the group of changes of
variables, right-acting.

Definition 3.0.8. A deformation with base Λ = Cl of the map-germ f : (Cn, 0) → C is
the germ at zero of a map F : (Cn × Cl, 0)→ C such that F (x, 0) = f(x).

A deformation F ′ is equivalent to F if F ′(x, λ) = F (g(x, λ), λ) where g(x, 0) ≡ x and
g : (Cn × Cl, 0)→ (Cn, 0) is a holomorphic map-germ.

A deformation G is induced from F by θ if

G(x, λ′) = F (x, θ(λ′))

with θ : (Cl′ , 0)→ (Cl, 0) is an holomorphic map-germ.
A deformation F : (Cn × Cl, 0) → C of the germ f : (Cn, 0) → C is said to be versal

if every deformation of f is equivalent to a deformation induced from F . Equivalently, if
every deformation F ′ of f can be represented as

F ′(x, λ′) = F (g(x, λ′), θ(λ′))

g(x, 0) ≡ x

θ(0) = 0

.

If we have a versal deformation F of the germ f , we know that it is transversal to the
orbit of f (using the 3.0.4). In the finite dimensional case, this is also a sufficient condition
as we already proved. This also holds in the infinite-dimensional case of the action of
biholomorphic changes we just defined. But in this case, we have to define a notion of
transversality in the infinite-dimensional case.

Remark 3.0.9. Let us assume that F is a versal deformation of f : (Cn, 0) → C. Then,
there exist a family of holomorphic map-germs g : (Cn×C, 0)→ (Cn, 0) and a holomorphic
function θ : (C, 0)→ (Cl, 0) such that

f(x) + λ′α(x) = F (g(x, λ′), θ(λ′))

where α : (Cn, 0)→ C is any map. Taking d
dλ′
|λ′=0 both sides of the equality, we get

α(x) =
n∑
i=1

∂f

∂xi
(x)

∂gi
∂λ′

(x, 0) +
n∑
i=1

∂F

∂λi
(x, 0)

∂θi
∂λ′

(0).

So, the infinitesimal condition should be that any function can be written as a sum of
an element of I∇(f) (which is an element of the first summation, and takes the role played
by the tangent to the orbit in the finite dimensional case) and a linear combination of the
partial derivatives ∂F

∂λi
|λ′=0.

Definition 3.0.10. A deformation F (x, λ) of the germ f(x) is called infinitesimally versal
if every function-germ g(x) can be written as

g(x) =
n∑
i=1

hi
∂f

∂xi
+

l∑
j=1

cj
∂F

∂λj
|λ=0
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where hi(x) are holomorphic map-germs and cj are constants. That means, if ∂F
∂λj
|λ=0

generate the local algebra Q∇f as a C-module.

Theorem 3.0.11. Any infinitesimally versal deformation of a function-germ is versal.

Proof. Let F (x, λ), λ = (λ1, . . . , λk) ∈ (Ck, 0) be an infinitesimally versal deformation of a
germ f and let F ′(x, λ′), λ′ = (λ′1, . . . , λ

′
k) ∈ (Ck′ , 0) be another deformation of f . First,

consider the deformation F̃ (x, λ, λ′) = F (x, λ) + F ′(x, λ′)− f(x). It is both a deformation
of f with parameters (λ, λ′) and a deformation of F with parameters λ′. Thus, it is an in-
finitesimally versal deformation of f . It is clear that F ′ is induced from F̃ (replacing λ = 0).
So, we will manage to make F̃ equivalent to a deformation induced from F . Moreover, it is
enough to prove it for k′ = 1: in this case, we make step by step F̃ (x, λ, λ′1, . . . , λ

′
s, 0, . . . , 0)

equivalent to one induced from F̃ (x, λ, λ′1, . . . , λ
′
s+1, 0, . . . , 0) for every 1 ≤ s ≤ k′ − 1 and

finally F̃ (x, λ, λ′1, 0, . . . , 0) equivalent to one induced from F̃ (x, λ, 0) = F (x, λ).
Now, we reduced our problem to prove that the deformation Φ(x, λ, λ′), λ ∈ Ck, λ′ ∈

C; Φ(x, λ, 0) = F (x, λ) is equivalent to one induced from F . This means that we have to
find θ : (Ck+1, 0)→ Ck, g′ : (Cn+k+1, 0)→ Cn such that

Φ(x, λ, µ) = F (g′(x, λ, µ), θ(λ, µ)).

We can think h′µ(x, λ) = (g′(x, λ, µ), θ(λ, µ)) as a 1-parameter family of (local) bi-
holomorphisms. Thus, by applying (h′)−1

µ both sides of the equation, we need to find
ϕ : (Ck+1, 0)→ Ck, g : (Cn+k+1, 0)→ Cn such that

Φ(g(x, λ, µ), ϕ(λ, µ), µ) = F (g′(x, λ, µ), θ(λ, µ)) (3.1)

where hµ(x, λ) = g(x, λ, µ), ϕ(λ, µ) is a 1-parameter family of local biholomorphisms. Since
we have an equation holding and we have to find a 1-parameter family of local biholomor-
phisms, we can use the homotopy method, formerly described for the proof of Tougeron’s
finite determinacy theorem 2.3.3. In this direction, we consider the vector field Vµ corre-
sponding to the family hµ and depending on µ defined by the equation

Vµ ◦ hµ =
∂hµ
∂µ

. (3.2)

Thus, we have an expression for Vµ of the form

Vµ =
n∑
i=1

Hi(x, λ, µ)
∂

∂xi
+

k∑
j=1

ξj(λ, µ)
∂

∂λj

where Hi, ξj, 1 ≤ i ≤ n, 1 ≤ j ≤ k are holomorphic function-germs.
Thus, after taking ∂

∂µ
both sides of the equality in 3.1, we get

∂Φ

∂µ
+

n∑
i=1

Hi(x, λ, µ)
∂Φ

∂xi
+

k∑
j=1

ξj(λ, µ)
∂Φ

∂λj
≡ 0. (3.3)
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If we manage to solve the equation

n∑
i=1

Hi(x, λ;µ)
∂Φ

∂xi
+

k∑
j=1

ξj(λ;µ)
∂Φ

∂λj
≡ α(x, λ;µ) (3.4)

with unknowns Hi, ξj, we can recover the family hµ from Vµ in the 3.2 and integrate 3.3
to show that this hµ satisfies the required relation. Indeed, the hypothesis of infintiesimal
versality of F (that implies the infinitesimal versality of Φ), say that the equation has a
solution for λ = 0, µ = 0, so we need a tool that allows us to “extend” this solution along
the evolution of parameters. This tool is exactly the Thom-Martinet Preparation Theorem
1.3.5. Indeed, if we put y = (λ;µ), I = 〈 ∂Φ

∂x1
, . . . , ∂Φ

∂xn
〉, ei = ∂Φ

∂λi
, the thesis of its theorem

says exactly that 3.4 has a solution in the class of germs of analytic functions. Thus, the
theorem is proved.

Remark 3.0.12. The proof gives us a clearer interpretation of the Thom-Martinet Prepa-
ration Theorem: it is a theorem that “extends” the solution of an equation such as 3.4
(where the unknowns are the functions) “along the parameters”.

Corolary 3.0.13. The base of a miniversal deformation of a critical point of a map-germ
f has dimension µ(f), its multiplicity at the point. Moreover, a miniversal deformation
has the form

f(x) +

µ(f)∑
j=1

λjvj

where the
{
v1, . . . , vµ(f)

}
is a basis of Q∇f .

Proof. To be able to generate Q∇f , its dimension must be at least µ(f). If
{
v1, . . . , vµ(f)

}
is a basis of Q∇f , then we have that f(x) +

µ(f)∑
j=1

λjvj is an infinitesimally versal deformation

of f and therefore is a miniversal deformation.

Theorem 3.0.14 (Uniqueness of miniversal deformations). Any miniversal deformation F
of a germ f : (Cn, 0)→ C is equivalent to a deformation induced from any other miniversal
deformation F ′ by a biholomorphism of their bases.

Proof. Let k be the dimension of the base of a miniversal deformation, that is k = µ(f).
Then, we know there exist g : (Cn+k, 0)→ (Cn, 0), θ : (Ck, 0)→ (Cn, 0) such that

F ′(x, λ) = F (g(x, λ), θ(λ))

g(x, 0) ≡ x

θ(0) = 0

.

We have to prove that Dθ(0) is an invertible matrix. Now, taking ∂
∂λi
|λ=0 both sides of

the equation, we get
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∂F ′

∂λi
(x, 0) =

n∑
j=1

∂F

∂xj
(x, 0)

∂gj
∂λi

+
k∑
s=1

∂F

∂λs
(x, 0)

∂θs
∂λi

.

As ∂F
∂xj

(x, 0) = ∂f
∂xi

(x), we get

∂F ′

∂λi
(x, 0) =

∂F

∂λ
(x, 0) · ∂θ

∂λi
(0)

in the local algebra Q∇(f). Assume that there exist constants α1, . . . , αn ∈ C such that∑k
i=1 αi

∂θ
∂λi

(0) = 0. We have to prove that αi = 0 for every i (this says that the rows of
Dθ(0) are linearly independent). In fact,

k∑
i=1

αi
∂F ′

∂λi
(x, 0) =

k∑
i=1

∂F

∂λ
(x, 0) · (αi

∂θ

∂λi
(0)) = 0

holds in Q∇(f), and since
{
∂F ′

∂λi
(x, 0)

}n
i=1

is a linearly independent set, then αi = 0 for every

i.

Definition 3.0.15. Let f : (Cn, 0)→ (C, 0) be a function-germ (that is f ∈ m the maximal
ideal in the space of function-germs). The modality m of this function-germ f(x) is the
modality of any of its jets jk(f) (in m) for every k ≥ µ(f) + 1. This is well defined because
of Tougeron’s theorem 2.3.3. The function-germs of modalities 0,1 and 2 respectively are
called simple, unimodal and bimodal respectively. We will give the complete classification
(and by this, we mean a list of normal forms) of simple singularities in the last chapter
and explain some methods (even though not all of them) that allow us to classify all the
unimodal and bimodal singularities. This result is due to Arnold in [2]. The full list of
unimodal and bimodal singularities can be found in [3] Chapter 16, or [1] Chapter 1, Section
2.3.

Remark 3.0.16. The definition of modality considers the smallest function space m; oth-
erwise, all critical points will have modality greater than 0.

Example 3.0.17. The modality of the function-germ f(x) = x2 is 0. This is an immediate
consequence of the Morse Lemma.

To classify the singularities of map-germs, we will try to give normal forms, which are
essentially some choice of a member of each orbit. This choice is not usually unique. Let
us give a definition.

Definition 3.0.18. • A class of singularities K is any subset of On that is invariant
under the action of the group of biholomorphic map-germs.

• A normal form for a class of singularities K is a smooth map Φ : B → M from a
finite-dimensional vector space B into the set of polynomials M that satisfies

1. Φ(B) intersects all orbits in K.

2. The preimage of any orbit in K under Φ is a finite set.
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3. The preimage of Kc under Φ is contained in some proper hypersurface in B.

• A normal form is said to be polynomial if Φ is a polynomial with coefficients in M (the
set of polynomials) and it is said to be simple if Φ(b1, . . . , bk) = p(x) +

∑k
i=1 bix

mi ,
where p(x) is a fixed polynomial and mi ∈ N.

Remark 3.0.19. In this work, we will not check that our normal forms satisfy this defini-
tion (since we deal only with simple singularities, we do not need this complicated definition,
that is useful when the classification is more complicated). Instead, we will think of normal
forms as some (probably simultaneous) choice of a member from each orbit. This choice is
not unique, so we must do it in a natural way.



Chapter 4

Quasihomogeneous singularities

In this section, we introduce and work with quasihomogeneous and semiquasihomogeneous
morphisms with the idea of reducing quasihomogeneous and semiquasihomogeneous singu-
larities to normal forms. In this chapter, we will mainly work with the algebra of poly-
nomials, but they can be replaced by power series or germs (except it explicitly says that
they cannot).

A motivating example for the study of semiquasihomogeneous functions is the fact
that every function-germ in two variables with 3-jet equivalent to x2y + y3 can be made
equivalent to its taylor polynomial of order 3, say its “principal part”. This is of course not
true in general: indeed, the initial part may have a non-isolated singularity, while the whole
singularity may not (take for example x3 + y5 in two variables). The idea of working with
quasihomogeneous and semi-quasihomogeneous functions, is that it allows us to generalize
the idea of making a function equivalent to its principal part by relaxing the notion of
principal part of a power series. Indeed, we will prove that (under this relaxed new notion
of degree) if the principal part has an isolated singularity, then we can make it equivalent to
a normal form, depending only on its principal part. This will be our main tool to reduce
singularities to normal forms in the next (and last) chapter. The main source is [3], Part
2, Chapter 12.

From now on, if x = (x1, . . . , xn) ∈ Cn and k ∈ (Z≥0)n, we denote xk :=
∏n

i=1 x
ki
i .

4.1 The Newton diagram

Definition 4.1.1. Let f : (Cn, 0) → (C, 0) be an holomorphic function-germ and let∑
k∈(Z≥0)n fkx

k be its Taylor series. The Newton support of f is the set

supp(f) = {k ∈ (Z≥0)n : fk 6= 0} .

The Newton polyhedron is the convex hull of supp(f) + (Z≥0)n depicted in (R≥0)n. The
Newton diagram of f is the union of compact faces of its Newton polyhedron.

Example 4.1.2. The Newton diagram and Newton polyhedron of the function f(x, y) =
x6y + x2y2 + y3 are shown in the figure 4.1.

29
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Figure 4.1: Newton diagram and polyhedron of x6y + x2y2 + y3.

Remark 4.1.3. Let f : (Cn, 0) → (C, 0) be a holomorphic function-germ. If we multiply
f by any monomial xk, its support gets transalted by the vector k, that has non-negative
coordinates. Thus, given a Newton polyhedron Γ, the holomorphic function-germs whose
supports are contained in Γ form an ideal in the ring On of holomorphic function-germs.

4.2 Quasihomogeneous functions

Definition 4.2.1. Consider the space Cn with coordinates x1, . . . , xn. An holomorphic
map germ f : (Cn, 0) → (C, 0) is said to be quasihomogeneous of degree d and indices (or
weights) α = (α1, . . . , αn) ∈ Qn

>0 if for every λ > 0, the equality

f(λα1x1, . . . , λ
αnxn) = λdf(x1, . . . , xn)

holds. If we write the Taylor series f =
∑
k

fkx
k, the condition means that all the indices of

the non-null terms that appear in the series, belong to the hyperplane Γ = {k : 〈α, k〉 = d}.
When d = 1, this space Γ is called the diagonal. If we divide all the weights by d, we
can always assume that a quasihomogeneous function has degree 1. We also say that a
monomial xk has generalized degree d (fixing first α) if 〈α, k〉 = d. This gives a filtration
in the ring of power series.

Definition 4.2.2. A quasihomogeneous function is non-degenerate if 0 is an isolated critical
point (or equivalently, of finite multiplicity because of 2.2.24). They form an algebraic
hypersurface in the linear space of quasihomogeneous polynomials.

Definition 4.2.3. A polynomial f has order d (we note it ϕ(f)) if all its monomials have
degree d or higher. In this case, we call d the quasi-degree of f . We denote Ad the space of
power series/germs/polynomials of order d and A<d the space of series/germs/polynomials
of order greater than d. By convention, we say that ϕ(0) = +∞.

Remark 4.2.4. Ad′ ⊆ Ad if d < d′, and ϕ(f) is the biggest rational number d such that
f ∈ Ad. Also, as 0 ∈ Ad and the order of a product of monomials is the sum of its orders,
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we have that Ad is an ideal in the algebra of polynomials A. This gives a filtration in the
ring On (when α = (1, . . . , 1), this is the usual filtration by degree). By taking the quotient
A/Ad, we are identifying polynomials (or maps, more in general) that have the same Taylor
polynomial of degree d.

Definition 4.2.5. With the last definition in mind, we say that A/Ad is the algebra of d
quasi-jets and we call its elements, d quasi-jets.

Definition 4.2.6. A power series/polynomial is said to be semiquasihomogeneous of degree
d and weights α1, . . . , αn if f = f0 + g where f0 is a non-degenerate quasihomogeneous
polynomial of degree d weights α and g is a polynomial of order greater than d.

Remark 4.2.7. Let f : (Cn, 0)→ (C, 0) be a quasihomogeneous function of degree d and
type α. Then, its partial derivatives are also quasihomogeneous. Indeed, taking ∂

∂xi
on

both sides of the expression

f(λα1x1, . . . , λ
αnxn) = λdf(x1, . . . , xn)

we obtain

λαi
∂f

∂xi
(λα1x1, . . . , λ

αnxn) = λd
∂f

∂xi
(x1, . . . , xn).

This says that ∂f
∂xi

is a quasihomogeneous function of degree d− αi and weights α.

One of the main goals of the section will be to prove the next result.

Theorem 4.2.8. Let f0 be a non-degenerate quasihomogeneous function (or polynomial),
and let us fix a basis of monomials of the local algebra of f0. Let e1, . . . , es be the monomials
of this basis whose indices lie strictly over the diagonal. Then every semiquasihomogeneous

function with quasihomogeneous part f0 is equivalent to a function f0 +
s∑

k=1

ckek with ck

constants.

First, let us show that a monomial basis for the local algebra of a quasihomogeneous
holomorphic and non-degenerate function is also a basis for the local algebra of all semi-
quasihomogeneous functions with such quasihomogeneous part.

Theorem 4.2.9. If f is a semiquasihomogeneous function with quasihomogeneous part f0,
then µ(f) = µ(f0) in the point 0.

Proof. We shall suppose that the degree of the quasihomogeneous part d is 1. Let us
consider St = {x ∈ Cn : |x1|a1 + . . .+ |xn|an = t} where ai = 1

αi
the inverses of the weights,

and remember that µ(f) is the degree of the map ∇(f)
||∇(f)|| with source space St for small t.

We also know that Tt ◦ S1 = St where Tt(x) = (tα1x1, . . . , t
αnxn), so we can assume that

the source space of ∇(f)
||∇(f)|| is S1. We also know that f0 is nondegenerate, so at least one of

the partial derivatives of f0 is not zero. Therefore, max
s=1,...,n

| ∂f0

∂xs
| ≥ c > 0.

On the other hand, we know that λf0(x1, . . . , xn) = f0(λα1x1, . . . , λ
αnxn). If we take

∂
∂xs

on both sides of the equality, we get that ∂f0

∂xs
is quasihomogeneous of degree 1 − αs,
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and therefore ∂f0

∂xs
≥ ct1−αs for at least one 1 ≤ s ≤ n and for x ∈ St. Also, if f = f0 + f ′,

where f ′ is a polynomial of order strictly greater than d, we know that | ∂f ′
∂xs
| ≤ Ct1+d−αs .

Using both inequalities, we can show that for a sufficiently small t, the map f0 + θf ′

has no critical points on the sphere St, for every 0 ≤ θ ≤ 1. This says that the degrees of
the maps given by the gradients of f0 and f0 + f ′ coincide.

Lemma 4.2.10. Let F be a family of smooth functions that depend continuously on a finite
number of parameters and has a critical point at 0 of multiplicity µ for all values of the
parameters. Then every basis of the local algebra that correspond to the null value of the
parameters is also a basis of the local algebra for F (x, λ), and λ ∈ B(0, ε) for an ε > 0
(that is, it remains a basis for small values of the parameters).

Proof. Because of the Tougeron’s finite determinacy theorem 2.3.3, we know that for
all the functions in the family are µ + 1-determined, so we might prove that a basis of
Jµ+1(Cn,C)/I∇(F (x,0)) remains a basis of the local algebra of the functions given by (suffi-
ciently) small values of the parameters. Indeed, the isomorphism

I∇(F (x,0)) ⊕ Jµ+1(Cn,C)/I∇(F (x,0)) ' Jµ+1(Cn,C)

tells us that for small values of the parameters, both summands will still be in direct sum
(because both depend continuously on the parameters) and that a basis for the local algebra
will still be a transversal to I∇(F (x,λ)) for small values of λ, and therefore will still be a basis
of the local algebra.

Corolary 4.2.11. If f = f0 + f ′ is semiquasihomogeneous with quasihomogeneous part f0

and e1, . . . , eµ form a basis for the local algebra of f0, then e1, . . . , eµ form a basis for the
local algebra of f .

Proof. Consider the function

ft(x) = f0 +
1

td
f ′(Tt(x)) =

1

td
f(Tt(x)), where Tt(x) = (tα1x1, . . . , t

αnxn).

The second summand depends continuously on t since the order of f ′ is greater than d.
Using the previous lemma, a basis of the local algebra of f0 is also a basis of the local
algebra of ft for a small t.

As tdft = f ◦ Tt, we know that 〈∇ft〉 = 〈∇f〉. As Tt is a diffeomorphism, we know that
it sends a basis of the local algebra of ft to a basis of the local algebra of f . Also, every
monomial is sent by Tt to another one that is proportional to it, so the basis of Q∇(ft) is
also a basis of Q∇(f) (and it was a basis of Q∇(f0)).

Remark 4.2.12. The number of basis monomials of the local algebra of any (semi) quasi-
homogeneous function f of a fixed quasi-degree δ does not depend on the choice of the
basis for the local algebra. This is because that number is equal to the dimension of the
space

Aδ/(A<δ + Aδ ∩ I∇f ).

Corolary 4.2.13. Any two semiquasihomogeneous functions of fixed degree d and weights
α have the same number of basis monomials of the local algebra of a fixed degree δ.



CHAPTER 4. QUASIHOMOGENEOUS SINGULARITIES 33

Proof. Because of 4.2.8, it is enough to consider only nondegenerate quasihomogeneous
functions. It is easy to see that the set of nondegenerate semiquasihomogeneous functions
of a fixed degree d and weights α is path connected. Along a path connecting two points
of this set, the number of basis monomials of the local algebra of a given degree δ is locally
constant because of 4.2.10. Then, it is constant along the curve.

Definition 4.2.14. A map F : (Cn, 0) → (Cn, 0) with components F1, . . . , Fn : (Cn, 0) →
(C, 0) is said to be quasihomogeneous of degree d = (d1, . . . , dn) ∈ (Z≥0)n and type α ∈
(Q≥0)n if the function-germs Fi are quasihomogeneous of degree di and weights α for every
1 ≤ i ≤ n.

The map F is said to be semiquasihomogeneous if F = F0 + F ′ where F0 is a non-
degenerate quasihomogeneous map-germ and F ′i (the i-th component of F ′) has order
greater than the degree of the corresponding component (F0)i of F0 for every 1 ≤ i ≤ n.

Example 4.2.15. If f is a quasihomogeneous function of degree d and weights (α1, . . . , αn),
then ∇(f) is a quasihomogeneous map of weights (α1, . . . , αn) and degree d = (d, . . . , d)−α
as seen in 4.2.7.

Proposition 4.2.16. Let F : (Cn, 0) → (Cn, 0) be a quasihomomgeneous map of mul-
tiplicity µ with integer-valued weights α and degrees d = (d1, . . . , dn) (for any quasi-
homogeneous map, we can multiply all these rational numbers by a common denomina-
tor and always obtain such weights). Consider the map T : (Cn, 0) → (Cn, 0) such
that T (y1, . . . , yn) = (yα1

1 , . . . , yαnn ). Then F ◦ T has for its components homogeneous
functions (in the ordinary sense) of degrees d1, . . . , dn and its multiplicity is µ

∏n
s=1 αs.

In fact, if e1, . . . , eµ is a monomial basis of QF , then a monomial basis for QF◦T is{
e′i,a = T ∗(ei)y

a : 1 ≤ i ≤ µ, a ∈ (Z≥0)n, 0 ≤ as ≤ αs
}

.

Proof. In the i-th component of F , a monomial xk of quasi-degree di and weights α de-
termines a monomial x(k1α1,...,knαn) of degree

∑n
s=1 ksαs = 〈k, α〉 = di. For the formula

of the multiplicity, consider the set {y : F ◦ T (y) = ε} for ε a small regular value. Since
{z : F (z) = ε} has µ non-zero solutions c1, . . . , cµ(F ) (by 2.2.9) and for each of them, the
system T (w) = ci has

∏n
s=1 αs solutions, we conclude that the set {y : F ◦ T (y) = ε} has

µ
∏n

s=1 αs elements and thus µ(F ◦ T ) = µ
∏n

s=1 αs. Finally, we will see that the mono-
mials e′i,a generate QF◦T . Take a map g : (Cn, 0) → C. We can write it as g(y) =∑

a:0≤as≤αs y
aT ∗(ga) with ga : (Cn, 0) → C holomorphic. Since each ga can be reduced to

the form
∑µ

i=1 ci,aei +
∑n

s=1 Fshs,a, we get that

g(y) =
∑

a:0≤as≤αs

yaT ∗(ga) =
∑

a:0≤as≤αs

µ∑
i=1

ci,ay
aT ∗(ei) +

∑
a:0≤as≤αs

n∑
s=1

T ∗(Fs)y
ahs,a.

So, the e′i,a generate Q(F ◦ T ) and as they are exactly µ(F )
∏n

s=1 αs monomials, they form
a basis.

Definition 4.2.17. The Poincaré polynomial of a semiquasihomogeneous map F of given
integral and coprime weights α is the polynomial PF (t) =

∑
µit

i such that every µi is the
number of basis monomials of QF of quasidegree i. We can always assume that the weights
are integer by multiplying the weights by a common denominator. Also, we can assume
that the weights are coprime by dividing them by a common factor.
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Remark 4.2.18. µ(F ) = PF (1).

To understand the behaviour of the basis of QF , we have a formula for its Poincaré
polynomial.

Theorem 4.2.19. The Poincaré polynomial of a semi-quasihomogeneous map F of degree
d and integral and coprime weights α is given by the formula

PF (t) =
n∏
s=1

tds − 1

tαs − 1
.

Proof. Because of 4.2.8, it is enough to consider the case of a nondegenerate quasihomoge-
neous map F . By making a change of variables T like in the last proposition 4.2.16, and
using the form of the basis monomials of F ◦ T , we deduce that

PF◦T (t) = PF (t)PT (t)

where both F ◦ T and T are considered homogeneous in the usual degree (that is, with
weights (1, . . . , 1)). The polynomials PT and PF◦T are easier to compute.

Since the the Poincaré polynomial for the map T1 : (C, 0) → C such that T1(x) = xn

is tn−1
t−1

and a basis of monomials of QT is formed by the polynomials
{
xk : 0 ≤ ki < αi

}
,

we get that PT (t) =
∏n

i=1
tαi−1
t−1

. Also, F ◦ T is a nondegenerate map, whose components
(F ◦ T )i are homogeneous functions of degrees Di. Consequently, applying 4.2.13, it has
the same Poincaré polynomial as any other map with the same degrees. Since we already
computed that polynomial for the map T ′(x1, . . . , xn) = (xd1

1 , . . . , x
dn
n ), we obtain

PF◦T (t) = PT ′(t) =
n∏
i=1

tdi − 1

t− 1
.

Finally, PF (t) = PF◦T
PT

=
∏n

i=1
tαi−1
di−1

.

Corolary 4.2.20. Under the same hypothesis of the previous theorem, and naming µ to
the multiplicity of F and dmax the higher quasidegree of all the basis monomial of QF ,

1. µ =
∏n

i=1
di
αi

2. dmax =
∑n

i=1(di−αi) and there is only one basis monomial of QF of quasidegree dmax.

Proof. Because of the theorem, PF (t) =
∏n

s=1
tds−1
tαs−1

=
∏n

s=1
tds−1
t−1

t−1
tαs−1

. The first equality

shows that PF is monic of degree
∑n

i=1(di − αi). Since tn−1
t−1

= 1 + t+ · · ·+ tn−1, when we

evaluate t = 1 in
∏n

s=1
tds−1
t−1

t−1
tαs−1

we get µ = PF (1) =
∏n

s=1(ds − αs).

Definition 4.2.21. A formal vector field v =
∑
vi

∂
∂xi

has order d of weights α if differ-
entiating in the direction of the field v raises the order of a function in at least d, that is
v(Aλ) ⊆ Aλ+d. We denote gd to the set of vector fields of order d. This induces a filtration
in the module of vector fields that is compatible with the filtration of the algebra:

f ∈ Ad, v ∈ gd′ ⇒ fv ∈ gd+d′ , v(f) ∈ Ad+d′ .
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Remark 4.2.22. Let f ∈ Aλ, v1 ∈ gd, v2 ∈ gd′ , then Lv1Lv2(f) − Lv2Lv1(f) ∈ Aλ+d+d′ .
This says that the Poisson bracket determines a Lie algebra structure on every gd and that
every gd is an ideal in the algebra g0.

Definition 4.2.23. Let x = (x1, . . . , xn) and k ∈ (Z≥0)n. A vector-monomial is a vector
field of the form xk ∂

∂xi
. Its degree is 〈k−1i, α〉 ∈ Q where 1i is the i-th vector of the canonical

basis of Zn (note that its degree can be negative). A vector field is quasihomogeneous of
degree d if all the monomials with non-zero coefficient have degree d.

Proposition 4.2.24. A field v =
∑
vi

∂
∂xi

of weights α has order d if and only if each of
its components vi is a function-germ of order d+ αi.

Proof. If v ∈ gd, then vi = Lv(xi) ∈ Ad+αi , because xi ∈ Aαi .
Now, let vi =

∑
k∈(Z≥0)n vi,kx

k of order d + αi. Then, for every monomial f = xl we

have

Lv(f) =
n∑
i=1

vi
∂f

∂xi
=

∑
k∈(Z≥0)n

n∑
i=1

livi,kx
l+k−1i .

Now, 〈l + k − 1i, α〉 ≥ 〈l, α〉 + d because 〈k, α〉 ≥ d + αi for every k exponent of a
monomial with non-zero coefficient in vi. This says that LvAλ ⊆ Aλ+d for every λ ≥ 0.

Consider the local algebra of a semiquasihomogeneous function f of degree d and fix a
system of monomials forming a basis for its local algebra.

Definition 4.2.25. A monomial is said to be upper or lying above the diagonal (respec-
tively, lower or diagonal) if it has degree greater than d (respectively, less tan d or equal to
d) for the given type of quasihomogeneity. As we know from 4.2.8, the number of upper,
diagonal or lower basis monomials does not depend on the choice of the basis.

Lemma 4.2.26. Let F be a power series of order d and v a vector field of positive order
δ, for fixed weights of quasihomogeneity α. Then the Taylor formula

F (x+ v(x)) = F (x) +
∂F

∂x
v +R

holds, where R is a remainder term of order greater than d+ δ.

Proof. It is enough to show it for F = xk and v =
∑n

i=1 vi
∂
∂xi

(because of the linearity

of the expression). We can express vi =
∑∞

k=1

∑
l∈(N0)n:|l|=k vi,lx

l for every 1 ≤ i ≤ n.
By writting the Taylor expansion of F , each of the monomial terms that arise from the

summand ∂|m|f
∂m

vm1
1 · · · vmnn ,m = (m1, . . . ,mn) ∈ (N0)n have exponents of the form k−m+∑mi

j=1

∑n
i=1 li,j where each li,j is the exponent of one of the monomials in the Taylor series

of vi. Therefore, each of these exponents can be written as

k −m+

mi∑
j=1

n∑
i=1

li,j = k +

mi∑
j=1

n∑
i=1

(li,j − 1i)

where 1i ∈ (N0)n has a 1 in the i-th coordinate and zeros in the rest of them. Since our
hypothesis say that

〈k, α〉 ≥ d and 〈li,j − 1i, α〉 ≥ δ > 0
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we conclude that the degree of each of these monomials is greater than d + |m|δ. So, for
every term with |m| > 1, we know it has order strictly greater than d+ 2δ, which is what
we had to prove.

Theorem 4.2.27 (Normal forms for semiquasihomogeneous functions). Let f0 be a quasi-
homogeneous function and e1, . . . , es a system of all upper basis monomials of a fixed basis
of its local algebra. Then, every semiquasihomogeneous function f = f0 + f1 with quasiho-
mogeneous part f0 is equivalent to a function of the form f0 +

∑s
i=1 ciei.

Proof. The main idea of the proof is to cancel the high-order terms using the quasihomo-
geneous part f0. Denote by g the sum of the terms of degree d′ > d in f1. Let e1, . . . , er be
all the monomials of degree d′ on the considered basis of the local algebra. Then, we can
write

g =
n∑
i=1

∂f0

∂xi
vi(x) +

r∑
j=1

ciei.

Since g, e1, . . . , er is quasihomogeneous of degree d′, we can choose v =
∑
vi

∂
∂xi

to be
quasihomogeneous of degree d′−d > 0 (when we write v as a sum of its quasihomogeneous
part, it is clear that if we replace v by its quasihomogeneous part of degree d′−d, the same
formula holds).

Now, consider the change of variables x = y − v(y). It is indeed a biholomorphism:
we compute ∂xi

∂yj
(y) = δij − ∂vi

∂yj
(y). Since the function ∂vi

∂yj
(y) is quasihomogeneous of degree

δ + αi − αj, we know it will vanish in 0 if αi ≥ αj. So, if we permute the coordinates such
that the weights are in decreasing order, the jacobian matrix at 0 will be triangular with
1s on the diagonal.

Now, using 4.2.26 on f , we get

f(y − v(y)) = f0(y) + f1(y)−
n∑
i=1

∂f0

∂xi
(y)vi(y)−

n∑
i=1

∂f1

∂xi
(y)vi(y) +R

f(y − v(y)) = f0(y) +

[
f1(y) +

r∑
i=1

ciei − g(y)

]
−

n∑
i=1

∂f1

∂xi
(y)vi(y) +R.

Here, both R and the last sum have orders greater than d′. Thus, we were able to make our
function equivalent to one with exactly the same terms of degree less than d′ and changed
the terms of degree d′ to

∑r
i=1 ciei (by altering only the terms of higher order).

Using this procedure step by step in increasing order of degrees, we can obtain the
required normal form modulo terms of arbitrarily high degree (or obtain it through a
formal biholomorphism). To finish the proof, we use the finiteness of the multiplicity of
f0 (that has not been used yet). Indeed, by Tougeron’s theorem 2.3.3, we know that any
function of multiplicity µ is equivalent to its µ+ 1 Taylor polynomial. Thus, we apply our
procedure finitely many times until all its monomials of degree less or equal than µ + 1
have degree less than d′, and then we use one last biholomorphism to throw the terms of
(usual) degree less or equal than µ+ 1.
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Example 4.2.28. Let k be an integer greater or equal than 3. Consider a semiquasi-
homogeneous function f of quasihomogeneous part f0(x, y) = x2y + yk (of degree 1 and
weights α1 = k−1

2k
, α2 = 2

2k
). Because of 4.2.8, a basis of monomial of its local algebra

Q∇(f) = On/〈2xy, x2 + kyk−1〉 is formed by the monomials
{

1, x, y, y2, y3, . . . , yk−2, yk−1
}

.
Thus, it has multiplicity µ(f) = k + 1 and none of its basis monomials lie above the
diagonal. Hence, it is equivalent to its quasihomogeneous part because of 4.2.27.



Chapter 5

Classification of singularities

Now that we have all the tools required, we proceed to make some computations to obtain
all the normal forms of simple singularities. We will also give some examples of normal
forms for unimodal singularities. This classification allows to generalize the description
of the elementary catastrophes given by Thom in the 1960s. The simple singularities
have an ADE classification, which relates the classification of simple singularities with
other constructions, such as resolution of singularities of complex surfaces or Kleinian
singularities. The results and the order of the exposition are taken from [2], but using in
many cases, different techniques for the reduction to normal forms.

Proposition 5.0.1. If a germ has a singularity of finite multiplicity and corank 1, then it
is stably equivalent to a function of the form xn.

Proof. Using the Splitting lemma 1.2.5, we know that f is stably equivalent to a function
in one variable f̃(x) =

∑∞
i=1 aix

i (we assume that f̃(0) = 0). If n = min {i ∈ N : ai 6= 0}
(if every coefficient is equal to 0, then f does not have finite multiplicity), we know that
f̃(x) = xn(

∑∞
i=0 an+ix

i). Thus, by chosing a branch of the n-th root h well defined in a
neighborhood of an and making the change y = xg(

∑∞
i=0 an+ix

i), we get that f is stably
equivalent to the map yn (indeed, g(

∑∞
i=0 an+ix

i) is a unit).

Definition 5.0.2. If a singularity is stably equivalent to the function xk+1 for k ∈ N, we
say that it has type Ak.

This classifies all the functions with corank 1. In the case of simple singularities, they
have at most corank 2, as shown in the following result.

Proposition 5.0.3. The corank of a simple singularity is less or equal than 2.

Proof. If the corank of the function-germ f is equal to k, then it is stably equivalent to a
function ϕ : (Ck, 0) → C and ϕ ∈ m3. The action of the groups of biholomorphisms over
the 3-jets of functions in m3, induces an action of GLk(C), in the form of linear sustitution.
This is because if g ∈ m3 and h ∈ m is a biholomorphism, then j3(g ◦ h) = g ◦ j1(h). Thus,
if the cubical forms of two functions-germs lie in different orbits of the action of GLk(C),
then they cannot be equivalent. Since the group GLk(C) has dimension k2, and the space
of cubical forms has dimension

(
k+2

3

)
, and for k ≥ 3, we get

(
k+2

3

)
> k2, it is impossible

that finite orbits cover a small neighborhood of j3(ϕ).

38
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Remark 5.0.4. From now on, since we know that the corank of the simples singularities
is less or equal to 2, we will always take a member ϕ of the equivalence class with (C2, 0) as
a source space that is contained in m3. The taylor expansion of ϕ begins from cubic terms.
Say that its cubic part is the homogeneous polynomial ax3 + bx2y + cxy2 + dy3. Thinking
of it as function in CP 1, we have an associated cubic polynomial a + bt + ct2 + dt3 =
(t − α1)(t − α2)(t − α3) Thus, after making a linear change of coordinates, we can make
every polynomial equivalent to one of the following:

1. P (x, y) = x2y + y3, which corresponds to three different roots (t = i,−i, 0) in the
associated polynomial;

2. P (x, y) = x2y, which corresponds to a simple root (t = 0) and a double root (t =∞
in CP 1);

3. P (x, y) = x3 which corresponds to a triple zero;

4. P ≡ 0.

Thus, the initial form of any corank 2 simple singularity can be made equivalent under
a linear change of coordinates to one of the list. Actually, if the singularity is simple, the
last option is not available, as we will prove now.

Proposition 5.0.5. If a function-germ f : (C2, 0)→ C of corank 2 has a simple singularity,
then its cubical form is not equal to 0, that is, f /∈ m4.

Proof. If f ∈ m4, then its 4-jet j4(f) is a homogeneous polynomial or 0, and in the first
case it vanishes along 4 lines intersecting in the origin. Having in mind that the action of
biholomorphisms induces an action of GL2(C) in the 4-jets, that differentiates the orbits (as
in 5.0.3), the cross ratios of these lines is an invariant of the action of the diffeomorphisms
on the 4-jets. Therefore, there is a 1-parameter family of function-germs that does not have
two equivalent germs. This means that the singularity cannot be simple.

If the cubic part of (the taylor expansion of) f is x2y + y3, we can reduce our function
to its cubic part via a biholomorphism.

Theorem 5.0.6. Let f : (C2, 0) → C be a (representative of the class of a) singularity of
corank 2, such that its cubic part x2y + y3. Then f is equivalent to its cubic part.

Proof. First, we make a change of coordinates (x1, y1) = (x + φ(x, y), y + ψ(x, y)), where
φ, ψ ∈ m2. Its differential matrix is Id + D(φ, ψ)(x, y) that is invertible because the
derivatives of φ and ψ all belong to m (using 1.3.1). So, after making that change of
coordinates, we have

x2
1y1 + y3

1 = (x+ φ)2(y + ψ) + (y + ψ)3 = x2y + y3 + 2xyφ+ (x2 + 3y2)ψ +O(5)
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where O(5) are the terms of the expansion that belong to m5. So basicly, after this change
of coordinates, the cubic part remains the same, and we can add any polynomial of degree
4 that belongs to I∇(x2y+y3) = 〈2xy, x2 +3y2〉 = 〈xy, x3, y3〉. Since any polynomial of degree
4 is contained in I∇(x2y+y3), we can cancel the terms of degree 4 in the taylor expansion of f
by means of this change of coordinates. By doing the same with φ, ψ ∈ m3, we can cancel
the terms of degree 5, keeping the 4-jet unchanged. So, our map’s 5-jet will be (after both
changes) equivalent to x2y + y3. Since µ(f) = 4, by Tougeron’s theorem 2.3.3, that says
that f is equivalent to x2y + y3.

Remark 5.0.7. We would like to use the same argument in the general case. However, not
always f is equivalent to its principal part. Indeed, if f has an isolated singularity and its
cubic part is x2y, it will never be equivalent to its cubic part (because it does not have an
isolated singularity in 0). So, we can “relax” the notion of principal part of a function and
try to find “another candidate to principal part” (under this new relaxed notion), to make
the function f equivalent to it; this is when the concept of quasihomogeneous functions
with different weights plays its role. Indeed, the fact that in the last theorem we could
cancel the high degree monomials was because there were no basis monomials of Q∇(f) over
the diagonal as in 4.2.27.

In general (as seen in the case of the previous theorem) it is a good idea to consider as
the principal part of a function, the monomials lying over one of the segments that form the
newton diagram of our function-germ (that is, considering the weights such the diagonal is
parallel to that segment). Indeed, this is what we did in the last theorem (the only segment
forming the newton diagram of f was indeed {(i, j) ∈ (N0)2 : i+ j = 3}).
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(a) Newton diagram and polyhedron of
x2y + y3. Here, the diagonal using the usual
degree of polynomials is an edge of the
Newton diagram.
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(b) Newton diagram and polyhedron of x2y+y4.
Here, the diagonal using the usual degree of poly-
nomials is not an edge of the Newton diagram, so
we change the type of quasihomogeneity to make
the diagonal an edge.

Figure 5.1
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Example 5.0.8. Let us see the case of the functions having the segment joining (0, k) and
(2, 1) as an edge of the Newton diagram. In 5.1b, it is drawn for k = 4.

We know that this function is indeed a semi-quasihomogeneous function with principal
part f0(x, y) = x2y + yk. As we saw before in 4.2.28,

{
1, x, y, y2, y3, . . . , yk−2, yk−1

}
is a

basis of the local algebra, so its an isolated singularity. In this case, the cancellation of
higher order terms is done by virtue of the Theorem 4.2.27: since neither of the monomials
of the basis of the local algebra lie above the diagonal, we can make any function with that
Newton diagram equivalent to f0.

Remark 5.0.9. However, in general it is not true that any function can be chosen to
be semi-quasihomogeneous. Indeed, consider the case of f(x, y) = x6 + x2y2 + y6. The
possible principal parts are considered to be x6 + x2y2, x2y2 or x2y2 + y6, depending on
the type of quasihomogeneity used. In neither of those cases, the singularities is isolated
while Q∇(f) = C[x, y]/〈6x5 + 2xy2, 6y5 + 2yx2〉 has finite dimension. This is because every

monomial axiyj ∈ Q∇(f) has a monomial bxαyβ with bidegree α+β ≤ 10 as a representative
(otherwise, α or β will be greater than five and we can replace it with an equivalent
polynomial of smaller bidegree).

Definition 5.0.10. We say that a singularity is of type Dk+1 if it is stably equivalent to
the function x2y + yk.

Continuing the classification of simple singularities, assume that the 3-jet of a simple
function-germ f is equivalent to x2y. In this case, we would like to take one of the edges of
its Newton diagram and use our theorem of reduction to normal forms of semiquasihomo-
geneous functions 4.2.27. As x2 cannot divide f (because it is an isolated singularity), we
know that in its Taylor series there are monomials having non-zero coefficient with degree
in x less than 2. In the Newton diagram 5.2a, it means that in the blue area, there must
be an integral point that belongs to its Newton diagram. Since we want to “find” all the
simple singularities with 3-jet equivalent to x2y, the idea will be to “start” with a line
{i+ j = 3} and rotate it clockwise around the point (2, 1) until we “crush” a point (i0, j0)
that corresponds to a monomial with non-zero coefficient in the Taylor series of f (this
happens since the blue area of 5.2a contains one of these). This method is called Newton’s
rotating ruler method, depicted in 5.2. After rotating the ruler, we find that there are two
possibilities:

1. The ruler first strikes only a point (0, k). In that case, the Newton diagram of
f will have an edge joining only (0, k) and (2, 1). This says that the function f
is semiquasihomogeneous with quasihomogeneous part Ax2y + Byk with A,B 6= 0
(obviously, this is equivalent to x2y + yk). 4.2.28 says that it is equivalent to its
quasihomogeneous part x2y + yk.

2. The ruler first strikes two points corresponding to the polynomials xyk+1 and y2k+1.
In this case, the polynomial determined by the points touching the ruler is

Ax2y +Bxyk+1 + Cy2k+1, A 6= 0.

In this case, the change x′ = x− B
2A
yk, y′ = y gives
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A(x2y − B

A
xyk+1 +

B2

4A2
y2k+1) +B(xyk+1 − B

2A
y2k+1) + Cy2k+1

= Ax2y + (C − B2

4A
)y2k+1.

If B2 6= 4AC, then we can make this map equivalent to a semiquasihomogeneous one
of quasihomogeneous part of type Dk, reducing it to the first case. Otherwise, after
making this change, we obtain an equivalent map that has no monomials below the
ruler, so we keep rotating the ruler until we strike another monomials. We repeat
this operation, and if the function has finite multiplicity, it should end in finite steps
(that means, we should get it reduced to the first case).
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(a) The blue zone must have a monomial or
the singularity will not be isolated.
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(b) We rotate the ruler, starting from the black
segment.

Figure 5.2: Newton’s rotating ruler method.

In the same direction, we will find normal forms for the functions with cubical form x3.

Lemma 5.0.11. A simple germ of a function of 2 variables of corank 2 with cubical form
x3 is equivalent to one of the 3 normal forms:

• E6 : x3 + y4

• E7 : x3 + xy3

• E8 : x3 + y5.
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Figure 5.3: Once again, we rotate the ruler, starting from the black segment.

Proof. In the same spirit, we begin by using our method of rotating the ruler around
x3. If we strike firstly one of the monomials y4, xy3 or y5, we know that the function is
semiquasihomogeneous and does not have upper monomials in its local basis (the basis of
each local algebra is written in 5.0.12). Therefore, we can make our function equivalent to
one of our normal forms using the Theorem 4.2.27.

Otherwise, if the coefficient of xy4 is not zero, the 5-jet of the function is equivalent to
x3 + xy4. Indeed, if it is of the form x3 + axy4 + 3x2ϕ with ϕ ∈ m2, we make the change
x1 = x−ϕ to cancel the term with ϕ and then multiply y by a scalar. Now, our new function
should be semiquasihomogeneous with quasihomogeneous part f0(x, y) = x3 + xy4 + λy6

for λ ∈ C. Indeed, the local algebra of the quasihomogeneous part is

Qf0 = O2/〈3x2 + y4, 4xy3 + 6λy5〉.

It is obviously finitely generated, and its basis are 〈1, x, xy, xy2, y, y2, y3, y4, y5.y6〉 if λ =
0 and 〈1, x, x2, xy, xy2, y, y2, y3〉 if λ 6= 0. In any case, there are no upper monomials
in neither basis of the respective local algebras, and thus can be made equivalent to its
quasihomogeneous part. Now, let fλ(x, y) = x3 + xy4 + λy6 be a 1-parameter family. We
will show that the orbit of the germ at 0 of fλ varies continuously with λ. This will show
that this germ cannot be simple (if the coefficient of xy4 vanishes, we can make it a two-
parameter family and show that there is a curve in the space of parameters where the orbit
varies continuously).

Note that the zeros of fλ form 3 parabolas of the form x = kiy
2, where ki, i = 1, 2, 3

are the three roots of the equation k3 + k + λ = 0. We will show that the ratio k3−k1

k2−k1

(defined after ordering the roots by its imaginary part) is an invariant via the action of
biholomorphisms. It is enough to show that a biholomorphism that carries the ordered
triple x = 0, x = y2, x = my2 into other triple of the same form, has different m, that is,
if the triples x = 0, x = y2, x = my2 and x = 0, x = y2, x = m′y2 are carried from one to
the other by a biholomorphism, then m = m′ (we are making k1 = 0, k2 = 1). Indeed, we
can transform two of the three parabolas in the pair x = 0, x = y2 by making the change
x′ = x− k1y

2, y′ =
√
k2 − k1y .
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Since a biholomorphism h that carries one triple to the other leaves the y axis fixed, it
must have the form

h1(x, y) = x(α + u(x, y)), h2(x, y) = βx+ γy + v(x, y) where u ∈ m, v ∈ m2.

Since the image of x = y2 (in its 2-jet) must be h1 = h2
2, we must have that γ2 = α.

And thus, the image of the parabola x = my2 is x = my2 again since

h1(x, y) = x(α + u(x, y)) = my2(γ2 + u(x, y)) in the curve x = my2

m (h2(x, y))2 = m
(
βy2 + γy + v(x, y)

)2
= γ2y2 +O(y3) in the curve x = my2.

This says that the family varies continuously, since the ratio k3−k1

k2−k1
(where k1, k2, k3 are the

three roots of k3 + k + λ) varies continuously with λ and is equal to −1 if and only if
k3 + k2 = 2k1 (which means that k1 = 0, since k1 + k2 + k3 = 0). Thus, we have reduced
the normal forms simple singularities with 3-jet equivalent to x3, to E6, E7 and E8.

Remark 5.0.12. • The miniversal deformation of xk, k ∈ N is xk +
∑k−2

i=0 λix
i. Thus,

the singularity is simple since every deformation of it belongs to one of the finite
orbits x, x2, . . . , xk−1 for 1 ≤ j ≤ k − 1 (in the smaller space m). See 5.0.1.

• The miniversal deformation of x2y + yk, k ∈ N≥3 is x2y + yk + λkx +
∑k−1

i=0 λiy
i, as

shown in 4.2.28. The corank of a function-germ defined by a fixed set of parameters,
has corank 1 or 2, depending on the coefficient λ2 (assuming that λk = 0, or otherwise
0 is not a critical point). In that case, it is clear that the local algebra cannot have
dimension higher than k. In any other case, since the function has the monomial x2y
in its development, it is equivalent to one of the Dk (as we shown in our Newton’s
rotating the line method). It is also clear in this case that the dimension of the
local algebra is less or equal than k. After cracking all these cases, we get that this
singularity is simple, since only finitely many orbits can be intersected after a small
deformation.

• In the case of x3 + y4, its local algebra is generated by 1, x, y, y2, xy, xy2, so it has
multiplicity 6 and cannot be perturbed to have higher multiplicity. Depending on the
corrank of it, we can make it equivalent to Ak, Dk with k ≤ 5 (by rotating the ruler
as we did before).

• The cases of E7 and E8 are similar to E6. The versal deformations can be found in
5.0.12. Making analogous computations to the ones showed in the case of Dk, k ∈ N
and E6, we can show that they are simple. Indeed, any sufficiently small deformation
of them can be made equivalent to Ak, Dk, k ≤ 7 or E6 in the case of E7 and to
Ak, Dk, k ≤ 8, E6 or E7 in the case of E8.

Thus, we have proved that all the simple singularities are those listed below.

Theorem 5.0.13. If f is a simple singularity, then it is stably equivalent to one of the
following singularities:

• Ak : xk−1
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• Dk : x2y + yk−1

• E6 : x3 + y3

• E7 : x3 + xy3

• E8 : x3 + y4.

Remark 5.0.14. A particular case of our theorem is that in families of 4 parameters or
less, one meets only with the singularities An, n ≤ 5, D4 and D5. This assertion is usually
known as “Thom’s theorem” or also “Thom’s rule of the seven elementary catastrophes”,
and is one of the fundamental results in Catastrophe Theory. See for example [5] Chapter
5, [4] Chapter 15, [7] Chapters 7 and 9.

Remark 5.0.15. The fact that the series of simple singularities have that name is not
by chance. There is a deep conection with other objects in other areas of mathematics,
having also this ADE classification. We will glimpse this relation by showing one example.
Finding relations between objects that have the ADE classification has been a major topic
of study in several areas (especially in representation theory).

Let

Gn+1 =

{(
ζkn+1 0

0 ζ−kn+1

)
: 0 ≤ k ≤ n, ζn+1 (n+1)-th primitive root of 1

}
be the cyclic finite subgroup of SU2 (which we identify with Z/(n+1)Z). The quotient space
given by C2/Gn+1 can be identified with C [u, v]Gn+1 , that is the polynomials in two variables
fixed by the action of the group. Since the element k · uivj is ζk(i−j)uivj, the monomials
fixed by the action are exactly {uiuj : i− j ≡ 0(mod n)}. That is, they are generated by
the elements xy, xn+1, yn+1. Since the kernel of the morphism C[a, b, c]→ C[uv, un+1, vn+1]
is 〈an+1− bc〉, we get that it is isomorphic to C[a, b, c]/〈an+1− bc〉, and making the change
x = a, y = (b+ ic), z = (b− ic), it is isomorphic to C[x, y, z]/〈xn+1 +y2 +z2〉. The factoring
ideal is generated by a polynomial that is exactly the normal form An. Moreover, the list of
finite subgroups of SU2 is given by the dihedral group D2n and the groups of symetries and
the binary tetrahedral, octahedral and icosahedral groups (named T, O and I respectively).
Making analogous procedures with the other finite subgroups, the factoring ideals that rise
are x2y + yn+1 + z2 for D2n, x3 + y4 + z2 for T, x3 + xy3 + z2 for O and x3 + y5 + z2 for
I, which correspond to all the normal forms of simple singularities. Also, since any finite
subgroup Γ ⊆ SU2 ⊆ GL2(C) is a representation, we can build its McKay Graph: in each
case, it is the corresponding Dynkin diagram.



CHAPTER 5. CLASSIFICATION OF SINGULARITIES 46

Dynkin diagram Finite subgroup
of SU2

Relations be-
tween the
generators

Normal forms of
simple singulari-
ties

Zn+1 xn+1 + y2 + z2 An

D2n x2y + yn+1 + z2 Dn+2

T x3 + y4 + z2 E6

O x3 + xy3 + z2 E7

I x3 + y5 + z2 E8

The reader that wishes to explore this connection (and other construction with simple
singularities that are related with other ADE objects) can see [8], Chapter 4 (for the
construction of Dynkin diagrams of singularities); [1] Chapter 1, Section 2 and the papers
[2] and [6].
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