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Introducción

Un problema recurrente en diversas áreas del álgebra consiste en, dados un objeto al-
gebraico A y un subobjeto B, entender la estructura del cociente A/B. En su influyente
trabajo [Ber78], Bergman presenta el lema del diamante, una técnica para poder atacar
este problema en el contexto de la teoría de k-álgebras. Esencialmente, uno puede en-
tender a las relaciones dadas por los elementos del ideal B como reglas de reescritura
para elementos del cociente A/B. Si el sistema de reglas de reescritura verifica una
cierta condición de confluencia, entonces somos capaces de realizar cómputos explíci-
tos en el cociente de una manera sumamente sencilla.

El lema del diamante de Bergman es un resultado muy versátil; en la misma pu-
blicación donde fue enunciado aparecen diversas versiones del mismo para múltiples
estructuras algebraicas. Más recientemente, en [SAV15] se describe un resultado aná-
logo para completaciones de k-álgebras. En este trabajo empleamos esta variación para
estudiar una familia particular de cocientes de este tipo de objetos.

En [DWZ08] se describe un procedimiento que permite asignarle un quiver con poten-
cial, o QP, a una triangulación de una superficie. Un quiver es un multigrafo dirigido,
y un potencial es una combinación lineal de ciclos en la completación del álgebra de
caminos asociada al quiver. El álgebra Jacobiana asociada al QP es un cociente particular
de dicha completación; explícitamente, es aquel que se obtiene al cocientar por el ideal
cerrado generado por las derivadas cíclicas del potencial.

En trabajos como [Lad12] y [TVD12] fue determinada una propiedad clave de estos
objetos: el álgebra Jacobiana inducida por un QP asociado a una triangulación de una
superficie Σ es de dimensión finita si Σ no es una esfera con cuatro punciones. En
particular, el hecho de que el álgebra sea o no de dimensión finita es independiente de
la elección de escalares del potencial.

En esta tesis estudiamos este tipo de problemas, pero empleando como herramienta
principal el lema del diamante. Además, presentamos un procedimiento análogo para
generar un QP a partir de una subdivisión poligonal arbitraria de una superficie y abor-
damos este mismo tipo de problemas en esta nueva situación.

Nuestro trabajo se organiza de la siguiente manera. En el primer capítulo desa-
rrollamos los preliminares necesarios para definir con precisión los QPs asociados a
una triangulación de una superficie, y sus correspondientes álgebras Jacobianas. En
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el segundo capítulo presentamos el lema del diamante de Bergman en su versión para
k-álgebras y luego en una variante para completaciones de álgebras de caminos, que
será la que usaremos principalmente. Incluimos además varios ejemplos para ilustrar
cómo se utiliza el lema del diamante en situaciones concretas.

El tercer capítulo contiene los resultados principales de la tesis. Comenzamos es-
tudiando el caso de la esfera con cuatro punciones, que era el único caso sin cubrir en
[Lad12], y determinamos que el álgebra Jacobiana asociada es de dimensión infinita
(más aún, calculamos su serie de Hilbert). Luego, estudiamos la dimensión de álgebras
Jacobianas procedentes de subdivisiones arbitrarias. Construimos familias infinitas de
dichas álgebras tanto de dimensión finita como infinita, mostrando que la situación en
el caso poligonal es notablemente diferente al caso triangular. Finalmente, producimos
sistemas de reescritura confluentes para tres familias de subdivisiones poligonales de
la esfera: las pirámides, los prismas y los antiprismas. Las pirámides proveen además
de una familia de contraejemplos a la generalización de un teorema de Ladkani (acerca
de la relación entre la dimensión del álgebra y la elección de escalares en el potencial)
al caso poligonal.

En el último capítulo, utilizamos estos sistemas de reescritura para calcular inva-
riantes de tipo cohomológico para sus álgebras Jacobianas asociadas. En particular,
computamos el centro de dichas álgebras y probamos que admiten derivaciones no
triviales.

Finalmente, incluimos un apéndice en el que anexamos y explicamos el funciona-
miento de un programa escrito en SageMath, el cual desarrollamos para facilitar el cál-
culo de sistemas de reescritura.



Introduction

A recurring problem in various branches of algebra consists in, given an algebraic object
A and a subobject B, understanding the structure of the quotient A/B. In his influential
work [Ber78], Bergman introduces the diamond lemma, a tool used to tackle this prob-
lem in the context of k-algebras. Essentially, one may think of the relations given by
elements in the ideal B as rewriting rules for the elements in the quotient A/B. If the
set of rewriting rules verifies a certain confluence condition, then we are able to carry
out explicit computations in the quotient in a simple fashion.

Bergman’s diamond lemma is a very versatile result; there are several versions of
it for various algebraic structures on the same paper where it was first stated. More
recently, in [SAV15], an analogous result for completions of k-algebras is described. In
this work, we make use of this variation to study a particular family of quotients of this
kind of objects.

In [DWZ08], the authors describe a procedure that assigns a quiver with potential, or
QP for short, to a triangulation of a surface. A quiver is a directed multigraph, and a
potential is a linear combination of cycles in the completion of the path algebra asso-
ciated to said quiver. The Jacobian algebra associated to the QP is a particular quotient
of said completion; explicitly, it is the one obtained after modding out the closed ideal
spanned by the set of cyclic derivatives of the potential.

In works such as [Lad12] and [TVD12], the authors determine a key property of
these objects: the Jacobian algebra induced by a QP associated to a triangulation of a
surface Σ is finite-dimensional if Σ is not a sphere with four punctures. In particular,
the finite-dimensionality of the algebra is independent of the choice of scalars in the
potential.

In this thesis we study this kind of problems, but using the diamond lemma as
our main tool. Moreover, we introduce a procedure that assigns a QP to an arbitrary
polygonal subdivision of a surface, and we tackle the same kind of problems in this
new setting.

Our work is organized as follows. In the first chapter we introduce the necessary
preliminaries in order to define the QP associated to a triangulation of a surface, and
its corresponding Jacobian algebra. In the second chapter we introduce Bergman’s di-
amond lemma, first in the classical k-algebra setting and then we present a variation
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of it that applies over completions of path algebras, which we will use the most. We
also include several examples, with the purpose of showing how the diamond lemma
is used in concrete situations.

The third chapter contains our main results. We start off by studying the case of
the sphere with four punctures, which is the only case not discussed in [Lad12], and
we prove that the associated Jacobian algebra is infinite-dimensional (moreover, we
compute its Hilbert series). We then study the finite-dimensionality problem in the
case of Jacobian algebras arising from arbitrary polygonal subdvisions. We construct
infinite families of said algebras, of both finite and infinite dimension, showing that the
situation in the polygonal case is remarkably different to the triangular case. Finally,
we produce confluent rewriting systems for three families of polygonal subdivisions
of the sphere: pyramids, prisms and antiprisms. Pyramids also provide a family of
counterexamples to the generalization of a theorem of Ladkani (concerning the relation
between the dimension of the Jacobian algebra and the choice of scalars appearing in
the potential) to the polygonal case.

In the last chapter, we use these rewriting systems to compute cohomological in-
variants of the associated Jacobian algebras. In particular, we compute the center of
said algebras and we prove that they admit non-trivial derivations.

Finally, we include an appendix on which we present a program written in SageMath,
which we developed to ease computations related to rewriting systems.



Chapter 1

Preliminaries

Throughout the text, k will denote a field of characteristic zero.

1.1 The path algebra of a quiver

A quiver is a quadruple Q = (Q0, Q1, s, t), where Q0 and Q1 are finite sets whose ele-
ments are called vertices and arrows respectively, and s, t : Q1 → Q0 are functions that
associate to each arrow α ∈ Q1 its source s(α) ∈ Q0 and its target t(α) ∈ Q0. We will
usually abbreviate the fact that an arrow α ∈ Q1 has source a and target b using the
notation α : a → b. We will also omit mentioning s and t explicitly when they are clear
from context.

One can represent a quiver graphically as an oriented graph allowing loops and
multiple arrows between the same pair of vertices. The following are some examples
of quivers:

Let Q = (Q0, Q1, s, t) be a quiver and consider the k-vector spaces R = kQ0 and A = kQ1 ,
which we will call the vertex span and arrow span of Q, respectively. The space R is a
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2 CHAPTER 1. PRELIMINARIES

commutative k-algebra with the product given by pointwise multiplication. We can
consider an R-bimodule structure on A given as follows: if r ∈ Q0, α ∈ Q1 then we
define rα = δr,t(α)α and analogously αr = δr,s(α)α, and extend the action linearly. A
vertex r acts as the identity on the left (right) of an arrow α if the target (source) of α is
r, and otherwise it acts as zero. The path algebra k〈Q〉 associated to the quiver Q is the
graded tensor algebra

k〈Q〉 =
∞⊕

n=0

A⊗Rn,

where we set A⊗R0 = R. For the sake of simplicity we will usually notate A⊗Rn as An

and an elementary tensor αn ⊗ · · · ⊗ α1 as αn . . . α1. Notice that a non-zero element of
the form αn . . . α1 consists of a sequence of concatenable arrows αi, that is, arrows such
that s(αi+1) = t(αi). We will call such an element a path of length n. It is worth observing
that the collection of all paths of length n form a basis of An as a k-vector space. Since
Q0 is a basis of A0 = R, we will refer to elements of Q0 as paths of length 0, which we
will usually call trivial or stationary paths. Considering the fact that Q0 and Q1 are in
bijection with paths of length 0 and 1 respectively, we will denote the set of paths of
length n as Qn and the set of all paths as Q∗. We can now define source and target
functions s, t : Q∗ → Q0 as follows: if u = αn . . . α0 ∈ Qn with n > 0, then s(u) = s(α0)

and t(u) = t(αn). Otherwise, if u = r ∈ Q0 then s(u) = t(u) = r. One easily checks that
if a, b ∈ Q0, the space spanned by paths with source a and target b is exactly bk〈Q〉a.

The path algebra satisfies the following useful universal property:

Proposition 1.1. Let Q be a quiver and Λ be an associative k-algebra with unit. Suppose
f0 : Q0 → Λ, f1 : Q1 → Λ are maps satisfying:

1. ∑a∈Q0
f0(a) = 1.

2. If a ∈ Q0, then f0(a)2 = f0(a).

3. If a 6= b, with a, b ∈ Q0, then f0(a) f0(b) = 0.

4. If α : a→ b is an arrow in Q1, then f1(α) = f0(b) f1(α) f0(a).

Then, there exists a unique k-algebra morphism f : k〈Q〉 → Λ extending f0 and f1.

Proof. For n ≥ 1, define f (αn . . . α1) = f1(αn) . . . f1(α0) and let f (r) = f0(r) for r ∈ Q0.
As the set of all paths forms a basis of k〈Q〉 as a vector space, this defines a k-linear
map f : k〈Q〉 → Λ. Condition 1 guarantees that such a map preserves the unit and
conditions 2, 3 and 4 guarantee that it preserves products involving stationary paths.
Since by definition f preserves products of paths of positive length, we conclude that
f is a k-algebra morphism extending f0 and f1. As for uniqueness, consider another
extension g : k〈Q〉 → Λ. Since g is a k-algebra morphism, we have that g(αn . . . α1) =

g(αn) . . . g(α1) = f1(αn) . . . f1(α1) = f (αn . . . α1) for n ≥ 1 and g(r) = f0(r) = f (r) for
all r ∈ Q0. Thus g agrees with f in a basis, and so g = f as wanted.
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Let us now consider some examples:

Example 1.2. Let Q be the quiver with vertices {1, . . . , n} and no arrows:

1 2 3 ... n

The path algebra k〈Q〉 is then isomorphic to kn = ke1 ⊕ · · · ⊕ ken, where multiplication
is given by eiej = δi,jei and extended linearly.

Example 1.3. Let Q be the quiver with a single vertex 1 and a single arrow α : 1→ 1.

1

α

The path algebra k〈Q〉 has a basis given by {e1, α, α2, . . . }. It is easily seen that k〈Q〉 is
isomorphic to the polynomial algebra k[x], via the map sending α 7→ x and 1 7→ 1.

Example 1.4. More generally, let Q be the quiver with a single vertex 1 and n arrows
αn : 1→ 1.

1

...

α5

α3

α1

α2

α6

α4

αn

The path algebra k〈Q〉 is isomorphic to the free algebra on n generators k〈x1, . . . , xn〉,
via the map sending αi 7→ xi and 1 7→ 1.

A path u ∈ Qn with n > 1 such that s(u) = t(u) is called a cycle, and a quiver con-
taining no cycles is said to be acyclic. As we can infer from the previous examples, the
existence of cycles in the quiver is closely related to the dimension of the path algebra.
More precisely, we have:

Proposition 1.5. Let Q be a quiver and k〈Q〉 its associated path algebra. Then k〈Q〉 is finite-
dimensional iff Q is acyclic.

Proof. Suppose k〈Q〉 is infinite-dimensional. Then the set of all paths Q∗, which is a
basis for k〈Q〉, must be infinite. Since the quiver has only a finite number of arrows,
there is only a finite number of paths of less than a fixed length. Therefore, if the set
of paths Q∗ is infinite, then there exist arbitrarily long paths. Let n be the number
of vertices in Q0 and pick a path αm . . . α1 with m > n. Then s(αi) = t(αj) for some
1 ≤ i < j ≤ m and so αj . . . αi is a cycle in Q.

Conversely, if Q contains a cycle u, then {u, u2, u3, . . . } is an infinite linearly inde-
pendent set, and so k〈Q〉 is infinite-dimensional.
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1.2 Completions

In this section we will outline the construction of the completion of a path algebra. For
a more detailed treatment of this subject, the reader may consult [SAV15].

Given a quiver Q, the path algebra k〈Q〉 admits a k-algebra norm | · | such that for
each non-zero x = ∑u∈Q∗ λuu we have |x| = e−ν(x), where ν(x) = min{i ∈ N0 : |u| =
i and λu 6= 0}. In fact, this is not just a norm but an ultranorm, which means we have a
stronger triangle inequality, namely

|x + y| ≤ max{|x|, |y|}.

This ultranorm is compatible with multiplication as well, since

|xy| = e−ν(xy) = e−ν(x)−ν(y) = e−ν(x)e−ν(y) = |x| · |y|.

It is thus straightforward to check that the k-algebra operations of k〈Q〉 are con-
tinuous in the topology induced by this ultranorm. These operations extend to the
completion of k〈Q〉 as a metric space, making it a k-algebra itself, which we will call the
complete path algebra k〈〈Q〉〉.

Suppose (xn) is a Cauchy sequence in k〈Q〉. If xn = ∑u∈Q∗ λn
uu, the sequence (λn

u)

is eventually constant, since |xn − xm| < e−|u| for big enough n, m. Therefore, we may
identify the Cauchy sequence (xn) with its termwise limit x = ∑u∈Q∗ λuu, where λu de-
notes the constant value the sequence (λn

u) eventually takes. Notice that the termwise
limit x is not necessarily finitely supported. One can now check that k〈〈Q〉〉may be iden-
tified with the k-algebra ∏∞

n=0 An, where, as before, An stands for the k-vector spanned
by paths of length n. The norm | · | extends naturally to this algebra, and it is easy to see
that the usual path algebra k〈Q〉 is a dense k-subalgebra and R-subbimodule of k〈〈Q〉〉.

We now consider the completions of the examples of path algebras mentioned pre-
viously:

Example 1.6. Let k〈Q〉 be a finite-dimensional path algebra. Since we must have An = 0
for big enough n, we conclude that

⊕
An = ∏ An and thus the path algebra coincides

with its completion. As we proved in Proposition 1.5, this can only happen if the quiver
Q is acyclic.

Example 1.7. Consider the quiver Q from Example 1.4. The isomorphism k〈Q〉 '
k〈x1, . . . , xn〉 extends to an isomorphism between the respective completions k〈〈Q〉〉 '
k〈〈x1, . . . , xn〉〉, where the right-hand side term denotes the algebra of non-commutative
formal power series in n variables.

We end this section with a trivial remark that will be used extensively later:

Remark 1.8. Let I be a closed ideal in k〈〈Q〉〉. Suppose x is a path such that, for all n ∈ N,
there exists a path xn of length at least n such that x = xn in k〈〈Q〉〉/I. Then, x = 0 in
k〈〈Q〉〉/I.
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Proof. Let (xn) be a sequence of paths such that x = xn in k〈〈Q〉〉/I and xn is of length
at least n. Then x− xn ∈ I and since |xn| ≤ e−n → 0 we have that x− xn → x. Since the
ideal I is closed and the sequence (x − xn) is contained in I, then x ∈ I and therefore
x = 0 in k〈〈Q〉〉/I.

1.3 The Jacobian algebra of a quiver with potential

Let k〈〈Q〉〉 = ∏ An be the complete path algebra associated to a quiver Q. For n ≥ 1,
we define the cyclic part of An as

An
cyc =

⊕
r∈Q0

rAnr,

that is, the R-subbimodule spanned by cycles of length n. A potential P is an element of
the closed R-subbimodule k〈〈Q〉〉cyc ⊆ k〈〈Q〉〉, which we define as

k〈〈Q〉〉cyc =
∞

∏
n=1

An
cyc.

In other words, a potential is a possibly infinitely supported linear combination of cy-
cles. We will call a pair (Q, P) a quiver with potential, or QP for short.

In their work [RSS80], Rota, Sagan and Stein introduced a notion of derivative for
non-commutative algebras, called the cyclic derivative. Here we will work with this
concept within the context of the complete path algebra of a quiver. Given an arrow
α ∈ Q1, the cyclic derivative with respect to α is the morphism ∂α : k〈〈Q〉〉cyc → k〈〈Q〉〉
defined for a cycle u = αn . . . α1 as

∂α(u) =
n

∑
k=1

δα,αk αk−1 . . . α1αn . . . αk+1

and extended linearly and continuously.
We are now able to introduce the Jacobian algebra associated to a QP, which is the

main algebraic object of study in this work. Given a QP (Q, P), the Jacobian ideal J(P)
is the closed ideal in k〈〈Q〉〉 generated by the set of all cyclic derivatives of the potential,
that is, {∂α(P) : α ∈ Q1}. The Jacobian algebra J(Q, P) is then the quotient k〈〈Q〉〉/J(P).

Example 1.9. As in Example 1.3, consider the quiver Q with a single vertex and a
unique arrow from that vertex to itself. As we have seen, the complete path algebra
k〈〈Q〉〉 is isomorphic to the algebra of formal power series kJxK. Identifying x with the
only arrow in the quiver, we see that any potential for Q is of the form ∑∞

n=1 λnxn for
some choice of scalars λn ∈ k. For example, let us consider the potential P = xn.
Since x is the only arrow in the quiver, we just have to compute ∂x(xn), which turns
out to be nxn−1 (happily coinciding with the usual, commutative notion of derivation).
Therefore, the Jacobian algebra is kJxK/(nxn−1), which is isomorphic to the truncated
polynomial algebra k[x]/(xn−1).
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A direct computation shows that cyclic derivatives vanish on the subspace V of
k〈〈Q〉〉cyc generated by all commutators. Suppose now that P and P′ are two potentials.
If every term of P is a cyclic permutation of the factors of a term of P′ then the difference
P− P′ lies in V and so ∂α(P− P′) vanishes for any arrow α. This in turn implies that P
and P′ induce both the same Jacobian ideal and the same Jacobian algebra. In this case,
we will say that P and P′ are cyclically equivalent.

Example 1.10. Let Q be the quiver with vertices 1 and 2, and arrows α : 1→ 2, β : 2→
1.

1 2
αα

β

Any potential for Q is of the form ∑∞
n=1 λn(αβ)n + µn(βα)n for some scalars λn, µn ∈ k.

For instance, the cyclically equivalent potentials P = (αβ)n and P′ = (βα)n give rise
to the same Jacobian ideal, which is (∂α(P), ∂β(P)) = (n(βα)n−1β, n(αβ)n−1α). As any
path of length at least 2n has either (βα)n−1β or (αβ)n−1α as factors, the Jacobian ideal
contains Ad for d ≥ 2n. Therefore, the Jacobian algebra J(Q, P) turns out to be finite-
dimensional.

In the context of Jacobian algebras, having finite dimension is a highly desirable at-
tribute. A usual method for proving this, as seen in the works of [LF09,Lad12,TVD12],
consists in showing that enough cycles are contained in the Jacobian ideal, just as we
did in the toy example above. We will make use of the diamond lemma in order to
produce this kind of arguments in a streamlined fashion.

1.4 Ideal triangulations of surfaces

In this thesis we will focus primarily on a family of QPs (and their associated Jaco-
bian algebras) arising from a particular procedure carried out on a triangulation of a
Riemann surface, as described in [LF09]. In order to do this, we start with some basic
definitions regarding our geometric objects.

Throughout the text, we will refer to compact, connected, oriented Riemann sur-
face with boundary simply as surfaces. We now state a classical result in combinatorial
topology that completely classifies these objects:

Proposition 1.11. Let Σ be a surface with a number b of boundary components. Then Σ is
homeomorphic to either a sphere with b open disks removed or to a g-holed torus with b open
disks removed.

Proof. See [Mas77, Section 10].

The number g appearing in the statement of the previous theorem is called the genus
of the surface, which we will set as g = 0 in the spherical case.
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A surface with marked points (Σ, M) is an ordered pair consisting of a surface Σ and
a finite, non-empty collection M of points (called marked points) of Σ containing at least
one point from each of its boundary components. Points in M that belong to the interior
of Σ are called punctures.

An arc on a surface with marked points (Σ, M) is a curve γ : [0, 1]→ Σ such that:

1. Its endpoints lie in M.

2. Its restriction to (0, 1) is injective and does not intersect M or the boundary of Σ.

3. Its image is not contractible into M or onto the boundary of Σ.

Figure 1.1: While the first is an arc of the punctured triangle, the last two
are not, since they are contractible to the boundary or to the set of marked
points, respectively.

We will consider arcs on a surface only up to isotopy relative to M. Two arcs will be
said to be compatible if there exist representatives in their corresponding relative isotopy
classes such that they do not intersect in the interior of Σ. An ideal triangulation for
(Σ, M) is then a maximal family of compatible arcs in Σ.

Figure 1.2: Some ideal triangulations of the square with one puncture.

An ideal triangulation divides the surface Σ into ideal triangles. As we can see in
Figure 1.2, such triangulations are more general than the usual ones, since they admit
configurations in which two triangles share more than one side. Even more, the three
sides of an ideal triangle may not be distinct. In that case we say that the triangle is
self-folded.

Most surfaces may be triangulated without using self-folded triangles. In fact, we
have the following result:

Proposition 1.12 ([FST08, Proposition 2.13]). Let (Σ, M) be any surface with marked points
different from:
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Figure 1.3: The three possible kinds of ideal triangles: the usual triangle
and the self-folded ones, which are the monogon and the digon.

1. A sphere with one, two or three punctures.

2. An unpunctured or once-punctured monogon.

3. An unpunctured digon.

4. An unpunctured triangle.

Then (Σ, M) admits an ideal triangulation involving no self-folded triangles.

As one may observe, every ideal triangulation of the square pictured in Figure 1.2
consists of exactly 4 arcs. Indeed, the number of arcs in a triangulation is an invariant
of the marked surface. More precisely, we have:

Proposition 1.13 ([FST08, Proposition 2.10]). Any ideal triangulation of a surface with
marked points (Σ, M) involving no self-folded triangles consists of exactly

n = 6g + 3b + 3p + c− 6

arcs, where g is the genus of the surface Σ, b is its number of boundary components, p is the
number of punctures and c is the number of marked points lying on the boundary.

Proof. One can show using the classification theorem 1.11 that the Euler characteristic
of a surface Σ of genus g with b boundary components is

χ(Σ) = 2− 2g− b (1)

On the other hand, we can compute the Euler characteristic of the surface regarding
an ideal triangulation as a cellular decomposition. Since an ideal triangulation is a
maximal collection of compatible arcs, any marked point must be a vertex of the de-
composition and so we have v = c + p vertices. As for edges, we have n of them in
the interior of the surface and c of them in the boundary, which amounts to e = n + c.
Finally, we know that each face is triangular, that any edge in the interior of the surface
belongs to two different faces, and that edges in the boundary belong to only one face.
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Therefore, by counting faces we arrive at 3 f = 2n + c. Putting it all together, we get
that

χ(Σ) = v− e + f

= (c + p)− (n + c) +
(

2
3

n +
1
3

c
)

(2)

= p +
1
3
(c− n)

The result now follows by equating (1) and (2) and solving for n.

1.5 The QP associated to an ideal triangulation

We will now introduce a way to produce a QP out of an ideal triangulation, so one may
speak of the Jacobian algebra associated to the triangulation.

Taking Proposition 1.12 into account, from now on we will restrict ourselves to the
case where no self-folded triangles appear. Although there is a general mechanism to
produce QPs from arbitrary triangulations, as described in Section 3 of [LF09], technical
difficulties arise when dealing with self-folded triangles.

Let T be an ideal triangulation of a surface with marked points (Σ, M). We construct
a quiver Q following these steps:

1. Draw a vertex vi for each edge ei in the triangulation T that does not belong to the
boundary of Σ.

2. Draw an arrow between two vertices vi, vj if ei and ej are edges of the same trian-
gle.

3. Orient all arrows according to the already existing orientation on the surface.

Note that every triangle without edges on the boundary of the surface adds a 3-
cycle to the quiver. Consider the set X formed by all of these 3-cyles and all other cycles
that circle a puncture, and pick a scalar λx in the field k for each cycle x ∈ X. We thus
define the potential P arising from this choice of scalars as

P = ∑
x∈X

λxx.

Notice that this construction is well defined up to cyclic equivalence. Thus, it makes
sense to speak of the Jacobian algebra associated from the QP. From now on, we will
only consider the potential formed by setting all scalars λx = 1, which we will call
the potential associated to the triangulation T, unless we specify otherwise. Moreover,
we will refer to the Jacobian algebra induced by the triangulation as the one that is
construced from this specific QP.
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Example 1.14. Consider the following triangulation of the torus with a single puncture:

The puncture is placed at the corners of the square, which are all identified. We follow
the steps outlined above to obtain the following configuration:

Keep in mind that, since opposing sides of the square are identified, the two triangles
of the triangulation share all of their sides, and so this is actually a quiver with three
vertices, which we will draw as:

1 2

3

α1

α2

β2
β1

γ2
γ1

Here we have two 3-cycles arising from the two triangles, which are γ1β1α1 and γ2β2α2,
and a single 6-cycle that goes around the puncture, which is γ2β2α2γ1β1α1. Therefore,
the associated potential is

P = γ1β1α1 + γ2β2α2 + γ2β2α2γ1β1α1

up to cyclic equivalence.

Example 1.15. Let us now consider a triangulation of a surface with non-empty bound-
ary. The following is a triangulation of the square with a single puncture, placed on its
center:
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Every triangle shares an edge with the boundary of the square, so each triangle accounts
for only one arrow:

a

b

c

d

Since there are no 3-cycles coming from any triangle, the potential P consists simply of
the 4-cycle that circles the puncture, which is

P = dcba.

Notice that we could have chosen cbad, badc or adcb as well, since they all define cycli-
cally equivalent potentials.
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Chapter 2

The diamond lemma

Suppose A is a k-algebra given by a finite number of generators and relations, that is
A = k〈x1, . . . , xn〉/〈R〉. A question that arises immediately is that of how to compute
in A. Ideally, one should be able to provide a family of normal or canonical forms for
monomials, such that every monomial is equal to a unique canonical form after passing
to the quotient. In this way, if one knew how to multiply two elements in normal form,
one would be able to compute the product of two arbitrary monomials in A by reducing
them to their respective canonical forms, taking their product and reducing once again.
This procedure would obviously apply to arbitrary elements in A by linearity.

In order to be able to reduce elements into canonical forms, one should be able to
test for equality in A; in particular, one should be able to distinguish if a certain element
is zero or not. Experience tells us that this problem may very well be untractable: it is
in fact the word problem for algebras, which is known to be undecidable in its full
generality (see [Sti82]).

Nonetheless, under some relatively mild hypotheses, this kind of argument may
be succesfully carried out. In that case, Bergman’s diamond lemma, presented on his
seminal paper [Ber78], states that not only there exists a set of normal forms, but that
they actually form a basis for A as a k-algebra.

2.1 Bergman’s diamond lemma

Let X be a set and let 〈X〉 denote the free monoid on X. A monomial order on 〈X〉 is a
partial order � on 〈X〉 such that:

• 1 � v for all v ∈ 〈X〉, and

• for all u, v, v′, w ∈ 〈X〉, if v � v′, then uvw � uv′w.

We will use the notation u ≺ v for strict inequalities and refer to the length of a mono-
mial u as |u|.

13
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Example 2.1. Suppose ≤ is a total order on X. The graded lexicographical order, or grlex
for short, is the monomial order� defined on 〈X〉 as follows: given u, v ∈ 〈X〉, we have
u � v if

• |u| < |v| or

• |u| = |v| and u = wau′, v = wbv′, with w, u′, v′ ∈ 〈X〉, a, b ∈ X and a ≤ b.

In other words, monomials are sorted first by length and then lexicographically accord-
ing to the total order ≤.

A poset (P,≤) is said to satisfy the descending chain condition if there is no sequence
(pn) ⊆ P such that pn+1 < pn for all n ∈ N. Equivalently, (P,≤) satisfies the descend-
ing chain condition if any sequence (pn) such that pn+1 ≤ pn for all n ∈ N eventually
stabilizes, that is, there exists some k such that pj = pk for all j > k.

Lemma 2.2. Let (X,≤) be a finite, totally ordered set. Then, the graded lexicographical order
on 〈X〉 satisfies the descending chain condition.

Proof. Let (xn) be a decreasing sequence in 〈X〉, l be the length of x1 and k be the cardi-
nality of X. There are exactly kd words in 〈X〉 of length d, and since a word smaller than
x1 must be of length at most d, there are at most j = ∑d

l=0 kl words smaller than x1. Since
j is a finite number, it follows that the sequence (xn) must eventually stabilize.

A rewriting system on X is a subset S ⊆ 〈X〉 × k〈X〉 such that for each σ = (wσ, fσ) ∈
S we have wσ 6= fσ. Every σ ∈ S is called a rewriting rule, which we will sometimes
denote wσ  fσ. If u, v ∈ 〈X〉 and σ ∈ S we call the triple r = (u, σ, v) a basic reduction.
We denote the set of all basic reductions associated to a rewriting system S as BS and
call reductions the elements of the free monoid 〈BS〉.

If u ∈ 〈X〉, there exists a unique k-linear function cfu : k〈X〉 → k such that cfu(u) = 1
and cfu(v) = 0 for all v ∈ 〈X〉 such that v 6= u. If x ∈ k〈X〉, we call cfu(x) the coefficient
of u in x. Given a basic reduction r = (u, σ, v), one can define an associated k-linear map
r̂ : k〈X〉 → k〈X〉 such that, for every x ∈ k〈X〉,

r̂(x) = x− cfuσv(x)u(wσ − fσ)v.

Thus, the map r̂ replaces the word uwσv with u fσv and leaves the rest of the terms of x
unchanged. The assignment r 7→ r̂ induces a monoid morphism 〈BS〉 → Endk(k〈X〉);
given any r ∈ 〈BS〉, we will refer to its image via this morphism as r̂. We say that r̂ acts
trivially on x ∈ k〈X〉 if r̂(x) = x.

An element x ∈ k〈X〉 is said to be:

• S-irreducible if r̂(x) = x for any reduction r ∈ 〈BS〉.

• reduction-finite under S if every time (rn) is a sequence of reductions, there exists
some i0 such that r̂i acts trivally on (ri−1 . . . r1)̂(x) for all i ≥ i0.
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• reduction-unique under S if it is reduction-finite under S and there exists some
rS(x) ∈ k〈X〉 such that if r̂(x) is S-irreducible, then r̂(x) = rS(x).

Consider a 5-uple α = (σ, τ, u, v, w) such that σ, τ ∈ S and u, v, w ∈ 〈X〉. We say
that α is an overlap ambiguity of S if u, v, w are words of positive length, wσ = uv and
wτ = vw. Such an ambiguity is said to be solvable if there exist reductions r, r′ ∈ 〈BS〉
such that r̂( fσw) = r̂′(u fτ). Otherwise, if σ 6= τ, wσ = v and wτ = uvw we say that α

is an inclusion ambiguity of S, and call it solvable if there exist reductions r, r′ ∈ 〈BS〉 such
that r̂(u fσw) = r̂′( fτ).

A monomial order � over 〈X〉 is said to be compatible with a rewriting system S
if for all σ ∈ S we have that any monomial u appearing as a term in fσ is such that
u ≺ wσ.

After all these preliminary definitions, we are now able to formulate the main result
in this section:

Theorem 2.3 (Bergman’s diamond lemma). Let X be a set, S be a rewriting system for X and
� a monomial order on 〈X〉 compatible with S and satisfying the descending chain condition.
Let IS be the ideal given by the relations induced by S, that is, IS = ( fσ − wσ)σ∈S. Then the
following conditions are equivalent:

1. All ambiguities of S are solvable.

2. All elements of k〈X〉 are reduction-unique under S.

3. A set of representatives in k〈X〉 for the elements of the algebra k〈X〉/IS is given by the
k-submodule k〈X〉irr spanned by the S-irreducible monomials of 〈X〉.

If any of these conditions hold, the rewriting system S is said to be confluent. In that case, there
is a k-algebra isomorphism between k〈X〉/IS and k〈X〉irr, where the latter is a k-algebra with
product defined as x · y = rS(xy).

Proof. See [Ber78, Theorem 1.2].

Let us illustrate how the diamond lemma is used in some examples:

Example 2.4. Consider the polynomial algebra A = k[x, y], which is presented by gen-
erators and relations as A = k〈x, y〉/(xy− yx). If we order our variables x and y so that
x < y, then the associated graded lexicographical order on 〈x, y〉 satisfies the descend-
ing chain condition by Lemma 2.2. Consider the terms in the unique relation xy− yx
and sort them using the grlex order. We have that xy � yx, and so the rewriting rule
σ = yx  xy is compatible with our chosen monomial order. Thus, the rewriting
system S consisting of the unique rewriting rule σ is such that:

• the grlex order � is compatible with S,

• the associated ideal IS is 〈xy− yx〉,
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• there are no ambiguities in S, since the monomial yx does not overlap with itself
in any non-trivial way.

The diamond lemma guarantees that a basis for k[x, y] is given by the S-irreducible
monomials. Now, a monomial is S-irreducible iff it does not contain yx as a factor,
and thus the set of S-irreducible monomials is exactly the set {xiyj : i, j ∈ N0}, that
is, the set of ordered monomials. Moreover, taking an arbitrary element in k〈x, y〉 into
its corresponding normal form in A is trivial: it suffices to order the letters in each
monomial term lexicographically.

Example 2.5. Consider the Weyl algebra A1 = k〈x, y〉/(yx− xy− 1). The reasoning car-
ried out in the previous example holds almost verbatim: this time, our unique rewriting
rule is yx  xy + 1, and once again there are no ambiguities. Therefore, the set of or-
dered monomials is a basis for A1. Notice that taking an element into its irreducible
normal form is not as easy as in the previous example. For instance,

y2x y(xy + 1) = (yx)y + y (xy + 1)y + y = xy2 + 2y.

The same thing happens for the quantum polynomial algebra k〈x, y〉/(xy− qyx), where
q ∈ k∗. In that case, the unique rewriting rule is yx  q−1xy, and once again the set of
ordered monomials forms a basis.

Example 2.6. Let us now consider an example in which ambiguities appear. Consider
the polynomial algebra

A = k[x, y, z] = k〈x, y, z〉/(xy− yx, xz− zx, yz− zy).

Once again we consider the standard lexicographical order x < y < z and the induced
grlex monomial order on 〈x, y, z〉, which satisfies the descending chain condition. We
may now produce a rule from each relation by reducing the biggest term in it into the
other term. In this case, we get the rules

σ1 = yx xy

σ2 = zx xz

σ3 = zy yz

The rewriting system S = {σ1, σ2, σ3} is compatible with our monomial order and its
associated ideal IS is exactly (xy− yx, xz− zx, yz− zy). It remains to show that all of
the ambiguities of S are solvable. There is in fact a unique overlap ambiguity, which
is (σ3, σ1, z, y, x), since the monomial zyx may be reduced using both the reduction as-
sociated to σ1 and the one associated to σ3. The following diagram shows that this
ambiguity is indeed solvable and illustrates why the diamond lemma is called that
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way:
zyx

yzx zxy

yxz xzy

xyz

σ3 σ1

σ2 σ2

σ1 σ3

Now that we have checked that the only ambiguity is solvable, by the diamond lemma
we know that the set of S-irreducible monomials form a basis for k[x, y, z], and once
again those turn out to be the set of ordered monomials {xiyjzk : i, j, k ∈ N0}. Sim-
ilar arguments hold for polynomial algebras with an arbitrary number n of variables,
although the amount of ambiguities that one needs to deal with grows with n.

Example 2.7. Consider the k-algebra A = k〈x, y, z〉/(xy − yx, yz − zy). As usual, we
consider the usual lexicographical order x < y < z and the grlex monomial order it
induces on 〈x, y, z〉, which satisfies the descending chain condition. Once again, the
relations xy− yx and yz− zy naturally induce the following rewriting rules:

σ1 = yx xy

σ2 = zy yz

The rewriting system S = {σ1, σ2} is compatible with the grlex monomial order and the
associated ideal IS is precisely (xy− yx, yz− zy). All that remains to check is that all
ambiguities are solvable.

In fact, there is only one ambiguity, which is (σ2, σ1, z, y, x). In other words, the
monomial zyx may be reduced in two different ways, as the following diagram shows:

zyx

yzx zxy

σ2 σ1

We now see that, since both yzx and zxy are S-irreducible, the ambiguity is in fact
unsolvable. However, not all is lost: since the equality yzx = zxy holds in A, we may
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include the rewriting rule σ3 = zxy  yzx in S and still have IS = (xy − yx, yz −
zy, yzx − zxy) = (xy − yx, yz − zy). The addition of rule σ3 now solves our previous
ambiguity, since we have the diagram:

zyx

yzx zxy

yzx

σ2 σ1

σ3

However, there is a new overlap ambiguity, namely (σ3, σ1, zx, y, x). We have

zxyx

yzx2 zx2y

σ3 σ1

and once again we are stuck, since both yzx2 and zx2y are S-irreducible. One may try
to enlarge the current set of rewriting rules as to include the new rule zx2y yzx2, but
this will in turn create another unsolvable ambiguity.

The problem is solved if we consider the rewriting system S′ composed of the
rewriting rules:

σ = yx xy

τn = zxny yzxn

for all n ∈ N0. As we can see, the rewriting system S′ is compatible with the grlex
monomial order, and since the identities zxny = yzxn hold in A, we have that IS′ =

(xy− yx, yz− zy, yzxn − zxny) = (xy− yx, yz− zy). The rules τj and τk do not overlap
or contain each other for any choice of j and k, so the only overlapping ambiguities
are of the form (τn, σ, zxn, y, x), for n ∈ N0. We now check that these ambiguities are
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solvable:
zxnyx

yzxn+1 zxn+1y

yzxn+1

τn σ

τn+1

Therefore, the rewriting system is confluent, and so the set of S′-irreducible monomials
form a basis for the algebra A. In this case, characterizing this set is not as easy as in
the previous examples, since the rewriting system is considerably more complex. This,
of course, reflects the fact that the basis has a richer combinatorial structure.

We now summarize our usual method to produce confluent rewriting systems:

Heuristic 2.8. Let A = k〈x1, . . . , xn〉/(r1, . . . , rm) be a k-algebra given by generators
and relations. The lexicographic order x1 < · · · < xn induces a grlex monomial order
� on 〈x1, . . . , xn〉, which satisfies the descending chain condition by Lemma 2.2. We
can produce a rewriting system following these steps:

1. Write each relation ri as

ri = λi,1wi,1 + λi,2wi,2 + · · ·+ λi,ki wi,ki ,

where wi,j ∈ 〈x1, . . . , xn〉, λi,j ∈ k and wi,1 � wi,2 � · · · � wi,ki .

2. Consider the rules

σi = wi,1  −λ−1
i,1 λi,2wi,2 − · · · − λ−1

i,1 λi,ki wi,ki

which are all compatible with the monomial order� and are such that the rewrit-
ing system S = {σi} induces the ideal IS = (r1, . . . , rm).

3. If all ambiguities arising from this rewriting system are solvable, we are done.
Otherwise, given an unresovable ambiguity (σi, σj, u, v, w), reduce both ri(uv)w
and urj(vw) into irreducible elements, which we will call a and b respectively. We
have that a− b ∈ IS, and so

A = k〈x1, . . . , xn〉/(r1, . . . , rm) = k〈x1, . . . , xn〉/(r1, . . . , rm, a− b).

Treating a − b as another relation, we can follow the steps 1 and 2 to produce a
new rule that will solve the previous ambiguity, but may generate new ones.



20 CHAPTER 2. THE DIAMOND LEMMA

4. Repeat step 3 until the system is confluent.

This procedure, of course, does not always terminate in a finite number of steps, but is
good enough to solve most of the cases that arise throughout this thesis.

2.2 A diamond lemma for path algebras

As seen in the previous section, Bergman’s diamond lemma is a statement about certain
quotients of free algebras. However, we will only apply it on a particular family of
algebras, namely quotients of path algebras. Even though obviously path algebras are
themselves quotients of free algebras, using Bergman’s diamond lemma can be quite
cumbersome in this case. For example, consider the following quiver, which we will
name Q:

u v
α

The path algebra k〈Q〉may be described as the quotient of the free algebra k〈u, v, α〉 by
the ideal

(uv, vu, u2 − u, v2 − v, u + v− 1︸ ︷︷ ︸
u and v are idempotent orthogonal

elements of sum 1

, α2, αu− α, vα− α, αv, uα︸ ︷︷ ︸
relations forced by the way arrows

and vertices concatenate

)

Even in a quiver as simple as Q and without introducing further relations in the path
algebra, many rewriting rules and ambiguities arise. Therefore, it makes sense to pro-
duce a specialized version of the diamond lemma in order to deal with this particular
case in a more efficient manner, in a similar vein to [FFG93].

Given a quiver Q, a rewriting system on Q is a subset S ⊆ Q∗ × k〈Q〉, where Q∗
stands for the set of all paths on Q. A path order on Q∗ is a partial order � on Q∗ such
that if v and v′ are parallel paths (that is, they share the same source and target) and
v � v′, then uvw � uv′w for all u, w ∈ Q∗ with appropriate source and target. All other
previous definitions translate almost verbatim to this new setting. We now are able to
formulate our specialized version of the diamond lemma:

Theorem 2.9. Let Q be a quiver, S be a rewriting system for Q and � a path order on Q∗
compatible with S and satisfying the descending chain condition. Let IS be the ideal given by
the relations induced by S, that is, IS = ( fσ − wσ)σ∈S. Then the following conditions are
equivalent:

1. All ambiguities of S are solvable.

2. All elements of k〈Q〉 are reduction-unique under S.

3. A set of representatives in k〈Q〉 for the elements of the algebra k〈Q〉/IS is given by the
k-submodule k〈Q〉irr spanned by the S-irreducible paths of Q∗.
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If any of these conditions hold, the rewriting system S is said to be confluent. In that case, there
is a k-algebra isomorphism between k〈Q〉/IS and k〈Q〉irr, where the latter is a k-algebra with
product defined as x · y = rS(xy).

Example 2.10. Consider the quiver Q given by the following diagram:

u

v

w

x y

α β

γ δ

ε

We will make use of the diamond lemma to produce a basis for the algebra A =

k〈Q〉/(δγ− βα, εβ, εδ). The usual grlex ordering induced by the lexicographical order
suggests the rewriting rules:

σ1 = δγ βα

σ2 = εβ 0

σ3 = εδ 0

The rewriting system S = {σ1, σ2, σ3} presents a unique ambiguity, which is (σ3, σ1, ε, δ, γ).
The following diagram shows that this ambiguity is solvable:

εδγ

0 εβα

0

σ3 σ1

σ2

The rewriting system S is confluent, and our algebra A has a basis given by the S-
irreducible paths, which are

{eu, ev, ew, ex, ey, α, β, γ, δ, ε, βα},

where ea stands for the stationary path at the vertex a.
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Example 2.11. Let Q be the following quiver:

u

v

w

x y

α β

γ δ

ε

ζ

Consider the algebra A = k〈Q〉/(δγ− βα, εβ, ζδ). Following our usual procedure, we
first consider the rewriting system S given by the rules

σ1 = δγ βα

σ2 = εβ 0

σ3 = ζδ 0

In this case, the rewriting system is not confluent, since the ambiguity (σ3, σ1, ζ, δ, γ)

is unsolvable. However, after enlarging the system as to contain the rule

σ4 = ζβα 0,

we achieve confluence. Thus, a basis is given by the S-irreducible monomials.

2.3 A topological diamond lemma

As Jacobian algebras are quotients of completed path algebras by closed ideals, one
needs to further specialize the diamond lemma in order to account for issues of conver-
gence, as carried out in the works [Hel02] and [SAV15].

Most of the terminology needed to introduce this last version of the lemma has al-
ready been presented; we will only need to provide a slight variation on the descending
chain condition. We say that a monomial order � satisfies the descending chain condition
in norm if every sequence (xn) of monomials in 〈X〉 such that xn+1 ≺ xn for all n ≥ 0
converges to zero in k〈〈X〉〉.

Theorem 2.12. Let X be a set, S be a rewriting system for X and � a monomial order on
〈X〉 compatible with S and satisfying the descending chain condition in norm. Let IS be the
closed ideal given by the relations induced by S, that is, IS = ( fσ − wσ)σ∈S. Then the following
conditions are equivalent:

1. All ambiguities of S are solvable.
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2. All elements of k〈〈X〉〉 are reduction-unique under S.

3. A set of representatives in k〈〈X〉〉 for the elements of the algebra k〈〈X〉〉/IS is given by the
closed k-submodule k〈〈X〉〉irr spanned by the S-irreducible monomials of 〈X〉.

Once again, if any of these conditions hold, the rewriting system S is said to be confluent, and
in that case there is a k-algebra isomorphism between k〈〈X〉〉/IS and k〈〈X〉〉irr, where the latter
is a k-algebra with product defined as x · y = rS(xy).

A similar statement for quotients of complete path algebras may be produced as
well. Indeed, one may modify the statement of Theorem 2.9 replacing "descending
chain condition" by "descending chain condition in norm" and all algebraic objects by
their complete counterparts (algebras and their completions, ideals and closed ideals,
submodules and closed submodules, etc.) to obtain the result.

Given a total order ≤ on a set X, the reverse graded lexicographical order, or revglex for
short, is the monomial order � defined on 〈X〉 as follows: given u, v ∈ 〈X〉, we have
u � v if

• |u| > |v| or

• |u| = |v| and u = wau′, v = wbv′, with w, u′, v′ ∈ 〈X〉, a, b ∈ X and a ≤ b.

Therefore, monomials are sorted first by length (but this time longer terms are smaller
with respect to �) and then lexicographically according to the total order ≤. Analo-
gously one defines the revglex order for paths on a quiver. This will be our preferred
order when dealing with completions, since we have that:

Lemma 2.13. Let (X,≤) be a finite, totally ordered set. Then, the revglex order on 〈X〉 satisfies
the descending chain condition in norm.

Proof. Let (xn) be a strictly decreasing sequence in 〈X〉 and k be the cardinality of X.
There are exactly j = ∑d

l=0 kl words in 〈X〉 of length at most d, and so xj+1 must be of
length at least d + 1, since the sequence (xn) is strictly decreasing. Thus, in k〈〈X〉〉 we
have that ‖xn‖ ≤ e−d−1 for all n ≥ j + 1 and so xn → 0 as we wanted.

Once again, an analogous result holds for quivers and complete path algebras.

Example 2.14. In general, given an ideal I, the algebras k〈X〉/I and its completed coun-
terpart k〈〈X〉〉/I may be quite different. For instance, consider the ideal I = (x2 − x) in
k〈x〉. We may form the algebras A = k〈x〉/I and B = k〈〈x〉〉/I.

Since we know that (x2 − x) = (x) ∩ (x − 1) and the ideals (x) and (x − 1) are
coprime, by the chinese remainder theorem

A =
k〈x〉

(x2 − x)
' k〈x〉

(x)
× k〈x〉

(x− 1)
' k× k.
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We now study B using the diamond lemma. The rewriting system S = {x  x2} is
compatible with the reverse graded path order and is obviously confluent, since the
monomial x does not overlap with itself in any non-trivial way. We see that the only
S-irreducible monomials are the constant ones, so a basis for B is given by {[1]}, and
thus B ' k.

More generally, if I = (xn − x), then

k〈x〉
(xn − x)

' k〈x〉
(x)
× k〈x〉

(xn−1 − 1)
' k× k〈x〉

(xn−1)
,

which is an n-dimensional algebra, while in the completed case we have that k〈〈x〉〉/I '
k by the same reasoning as above, since the rewriting system S = {x xn} is confluent.



Chapter 3

Jacobian algebras from polygonal
subdivisions

We have now introduced all of the definitions and tools needed to start studying Ja-
cobian algebras arising from triangulations of surfaces. Perhaps the simplest invariant
one can study is their dimension. As shown in [Lad12], all Jacobian algebras arising
from surfaces with empty boundary are finite-dimensional, with perhaps the exception
of the sphere with 4 punctures, which is not discussed.

One may ask if the result does not hold in that case or if only Ladkani’s proof does
not apply but the result holds nevertheless. We start off studying the tetrahedron,
which is a nice triangulation of the sphere with 4 punctures, in the sense that it does
not involve self-folded triangles, and determine that its associated Jacobian algebra is
infinite-dimensional.

We then introduce a procedure to generate a QP, and correspondingly a Jacobian
algebra, from an arbitrary polygonal subdivision of a surface. We find that in this sit-
uation, there are both infinite families of subdivisions with finite-dimensional Jacobian
algebra and infinite families with infinite-dimensional ones, so the situation is consid-
erably more complicated than in the triangulated case.

Another result from [Lad12] states that in the triangulated setting the finite-dimen-
sionality of the Jacobian algebra does not depend on the choice of scalars for the poten-
tial. As we will show in this section, this does not generalize to the polygonal case.

Finally, we will make use of the diamond lemma to produce confluent rewriting sys-
tem for three families of polyhedra: pyramids, prisms and antiprisms. These examples
will be further studied in the next section.

25
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3.1 The tetrahedron

We start by constructing the quiver associated to the tetrahedron, which looks like this:

In the figure, the edges of the triangulation are gray, while arrows in the quiver are
black. The outermost 3-cycle corresponds to the bottom face of the tetrahedron. We
observe that this quiver appears in [VD14, Example 1.4.4], as an example of what the
author calls a quiver with an infinite cyclic sequence. The potential, as we may recall
from Section 1.5, is the sum of the four 3-cycles coming from the triangular faces of the
tetrahedron and the four 3-cycles around each puncture of the sphere.

While this triangulation is very simple, studying its associated Jacobian algebra can
be quite troublesome. Our strategy is to name all arrows, sort paths using the revglex
order and try to apply the diamond lemma in order to produce a basis for it. However,
the fact that there are 12 edges in the quiver makes calculation by hand difficult. Since
every edge induces a different cyclic derivative, and therefore a different relation in the
Jacobian algebra, we have 12 rewriting rules that overlap themselves in various ways.
It is not clear at all if the system is confluent or not, and checking that would imply a
sizeable number of verifications. Moreover, if it turns out not to be confluent, we may
apply Heuristic 2.8 as to enlarge the rule set and try to achieve confluence, but this only
increases the number of verifications one needs to perform.
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The problem is then too large to deal with by hand, but it looks reasonable enough
to try to solve it using a computer. Perhaps the most suitable existing software package
for this is bergman (freely available at http://servus.math.su.se/bergman/), which is
a general purpose Gröbner basis calculator for the non-commutative setting. However,
while bergman operates with arbitrary quotients of free algebras, we are dealing with
a very specialized problem: our algebra is a quotient of a complete path algebra. Imi-
tating the process we described in Section 2.2, we can present complete path algebras
as quotients of the completion of free algebras, but this introduces a huge number of
relations that greatly slows down computation. Thus it makes sense to program our
own piece of software to deal with this particular situation.

We chose SageMath (freely available at http://www.sagemath.org/) as a framework
to develop our program, since it has an extensive general purpose library. On a more
particular note, it also includes a comprehensive directed graphs library that makes it
easier for us to input and work with our quiver.

A description of our algorithms and the code itself are presented in detail in Ap-
pendix A. We will now make use of our software to study the Jacobian algebra associ-
ated to the tetrahedron.

We start by inputting our triangulation; the program will then produce the associ-
ated QP, label the vertices of the quiver and then generate the rewriting system induced
by the revglex order. Then, the system will be tested for confluence and, if that is not
the case, will enlarge the set of rules as described in Heuristic 2.8 until confluence is
achieved. The output reads:

sage : te trahedron = Rewriting_System ( graphs . TetrahedralGraph ( ) )
Tota l r u l e s : 12

As we anticipated, there are 12 rewriting rules, but the program finishes its execution
without adding more of them, which means the obvious rewriting system is indeed
confluent. We now display the labeling of the vertices of the quiver the program used:

sage : te trahedron . quiver . show ( )

The output of this line of code is shown on Figure 3.1. Notice that it is exactly the
same quiver as we have drawn before. We will call it Q. Let us now display the set of
rewriting rules produced:

sage : te trahedron . r u l e s
{ ( 0 , 2 , 1 ) : −(0 , 3 , 1 ) ,

( 0 , 2 , 4 ) : −(0 , 3 , 4 ) ,
( 1 , 0 , 2 ) : −(1 , 5 , 2 ) ,
( 1 , 0 , 3 ) : −(1 , 5 , 3 ) ,
( 2 , 1 , 0 ) : −(2 , 4 , 0 ) ,
( 2 , 1 , 5 ) : −(2 , 4 , 5 ) ,
( 3 , 1 , 0 ) : −(3 , 4 , 0 ) ,
( 3 , 1 , 5 ) : −(3 , 4 , 5 ) ,
( 4 , 0 , 2 ) : −(4 , 5 , 2 ) ,

http://servus.math.su.se/bergman/
http://www.sagemath.org/
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Figure 3.1

( 4 , 0 , 3 ) : −(4 , 5 , 3 ) ,
( 5 , 2 , 1 ) : −(5 , 3 , 1 ) ,
( 5 , 2 , 4 ) : −(5 , 3 , 4 ) }

Paths are described as lists of vertices, meant to be read from left to right. For example,
(0, 2, 1) is the path of length 2 obtained by concatenating the arrow with source 0 and
target 2 to the arrow with source 2 and target 1. Rewriting rules are described as pairs of
paths, where the leftmost path is the one that is replaced by the rightmost. For instance,
following our previous notation, the rule (0, 2, 1) : −(0, 3, 1) may be represented as
(0, 2, 1) −(0, 3, 1).

Since the rewriting system is confluent, a basis for the Jacobian algebra is given by
the set of irreducible paths, which are exactly the ones that do not contain any of the 12
paths that appear in the left side of the rewriting system. We will now draw a different
quiver, called Q′, having the arrows of our old quiver as vertices and we will place an
arrow joining two of them if the path of length 2 formed by concatenating those arrows
is irreducible:
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(3, 4)

(4, 5) (5, 3)

(3, 1)

(2, 3)(4, 2)

(0, 4)

(5, 0) (1, 5)

(0, 1)

(1, 2) (2, 0)

Any path in this new quiver represents a path in the original quiver Q obtained by
concatenating irreducible paths of length 2. Now, since the rewriting rules affect paths
of length 2 only, we see that any path in the new quiver Q′ represents an irreducible
element in the Jacobian algebra. As Q′ is not acyclic, we conclude that there are an
infinite number of irreducible elements, and therefore the Jacobian algebra is infinite-
dimensional.

In fact, we can calculate a finer invariant. Given a graded algebra A =
⊕∞

n=0 An,
its Hilbert series hA(t) is the ordinary generating function induced by the sequence
(dimk(An)). In other words,

hA(t) =
∞

∑
n=0

dimk(An) tn.

Any path algebra is obviously graded by path length. Now, the Jacobian algebra as-
sociated to the tetrahedron (which we will call A for the remainder of this section) is
a quotient of a path algebra by an homogeneous ideal, since the Jacobian ideal is gener-
ated by the 12 homogeneous binomials of degree 2 given by the rewriting rules shown
above. Therefore, the original grading of the path algebra passes to the quotient and so
A itself is graded.

In the light of this fact, it makes sense to calculate its Hilbert series. We know that a
basis for the homogeneous component of degree n of A is given by the set of irreducible
paths of length n, so we just have to count them. Since the rewriting rules involve
paths of length 2 only, all paths of length 0 and 1 are irreducible, and so dimk(A0) = 6
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(the number of vertices in Q) and dimk(A1) = 12 (the number of arrows in Q). We
know that dimk(A2) = 12 as well, since this is the number of arrows in the quiver Q′.
In general, for n ≥ 3, there are as many irreducible paths of length n in Q as paths
of length n − 1 in Q′. An easy counting argument shows that there are exactly 12 of
them for all n ≥ 3, since there are exactly 2 of them starting at each of the vertices
(0, 4), (1, 5), (2, 3), (3, 4), (4, 5) and (5, 3) and none starting at any other vertices. There-
fore, we conclude that the Hilbert series is

hA(t) = 6 +
∞

∑
n=1

12tn = −6
t + 1
t− 1

.

Our program can calculate this Hilbert series up to a specified maximum degree,
by exhaustively generating the list of all paths of length n and checking how many of
them are irreducible. The program outputs

sage : te trahedron . genera t ing_funct ion ( 1 5 )
[ 6 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12]

which agrees with our observations.
We remark that, in general, the Jacobian ideal I is not homogeneous, since relations

may involve paths of different lengths, and so the Jacobian algebra A = k〈〈Q〉〉/I has
no obvious grading. Nevertheless, it is still a filtered algebra (with the filtration induced,
once again, by path length).

3.2 Polygonal subdivisions of surfaces

With the sole exception of Ladkani’s paper covered, the problem of determining whether
a Jacobian algebra arising from a triangulation of a closed surface is finite-dimensional
or not is now settled. We now propose a natural generalization of the problem.

Given a surface Σ, we will say that a non-necessarily maximal family of compatible
arcs in Σ is a polygonal subdivision of the surface. Such a subdivision divides the surface
up into polygons or faces. Just as we did in the previous scenario, we will call a poly-
gon self-folded if some of its sides are identified. We will restrict ourselves only to the
case where the surface has empty boundary and no self-folded polygons appear in the
subdivision.

The exact same process discussed in Section 1.5 translates to this situation and lets
us produce a QP out of a polygonal subdivision, so it now makes sense to speak of the
Jacobian algebra associated to the subdivision.

As we will now see, the situation is not as clear-cut as when dealing with triangu-
lations only, where there was only one example of an infinite-dimensional algebra. In
the following two sections, we will produce infinite families of polygonal subdivisions
of closed surfaces inducing infinite and finite-dimensional Jacobian algebras, respec-
tively.
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3.3 A family of infinite-dimensional examples

Let n > 2. We say that a polygonal subdivision of a surface with empty boundary Σ is
n-regular if all of its faces have exactly n sides and exactly n faces meet at every vertex.
For example, a tetrahedron is a 3-regular subdivision of the sphere, and the following
figures induce 4-regular subdivisions of the torus after identifying the opposing sides
of each square:

Obviously, in this way one can produce an infinite number of these examples on the
torus.

The existence of an n-regular subdivision imposes strong conditions on the surface.
In fact, suppose we have an n-regular subdivision of a surface and let v, e and f denote
its number of vertices, edges and faces respectively. Since every face contains exactly
n vertices and every vertex belongs to exactly n faces, we have that v = f . Moreover,
every face contains n edges and any edge belongs to exactly 2 faces, so e = n f /2.
Recalling the fact that the Euler characteristic of a surface of genus g is 2− 2g, we have
that 2− 2g = v− e + f = (2− n/2) f , or equivalently 4g− 4 = (n− 4) f . If n = 4, the
right hand side of the equation vanishes, and so g = 1. Therefore, the only surface that
can admit a 4-regular subdivision is the torus (and in fact we have already shown there
are an infinite number of them).

Suppose now that n 6= 4. Then

f =
4g− 4
n− 4

, (1)

and so g must be such that this quotient is integral. Moreover, since n faces meet at ev-
ery vertex, there must be at the very least n faces, and so n(n− 4) ≤ 4(g− 1). Therefore,
we have that g ∈ Ω(n2).

All of these are necessary conditions for an n-regular subdivision to exist. We have
already shown an infinite number of examples of these objects, but we do not know if
these subdivisions exist for any genus (or even for arbitrarily high genera).

Example 3.1. Consider the complete graph K8 with vertex set {1, 2, . . . , 8}. One may
glue eight heptagons having the rows of the following matrix as edges:
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1 2 3 4 5 6 7
2 1 3 7 5 8 6
3 2 4 1 6 8 7
4 3 5 2 7 8 1
5 4 6 3 1 8 2
6 5 7 4 2 8 3
7 6 1 5 3 8 4
1 7 2 6 4 8 5

In this way, we obtain an orientable, closed surface of genus seven, such that exactly
seven heptagonal faces meet at every vertex; in other words, a 7-regular surface.

Our main interest in the concept of n-regularity lies in the following fact:

Theorem 3.2. The Jacobian algebra associated to an n-regular subdivision of a surface is infinite-
dimensional.

Proof. We will first prove the case where n > 3. Let (Q, P) be the quiver with potential
associated to the subdivision, I the ideal in k〈Q〉 spanned by the cyclic derivatives of
the potential P and J the closure of I in k〈〈Q〉〉.

Any arrow x in the quiver is a factor of exactly two cycles in P: one of them is
contained in the same face of the subdivision as x and the other surrounds a vertex and
is composed of arrows lying in different faces. The condition of n-regularity forces these
two cycles to be of length n, and so ∂x(P) = a + b, with a and b paths of length n− 1.
Therefore, I is an homogeneous ideal, since it is spanned by homogeneous elements,
and so k〈Q〉/I inherits a grading from k〈Q〉. In fact, we introduced the notion of n-
regularity solely to force the ideal I to be homogeneous.

Since I is homogeneous, the quotient k〈Q〉/I turns out to be
⊕

An/(I ∩ An), where
An stands for the graded component of degree n. The completion is then carried out
componentwise, so k〈〈Q〉〉/J is actually ∏ An/(I ∩ An). We have a natural inclusion
i : k〈Q〉/I → k〈〈Q〉〉/J, which is obviously not the case if the ideal is non-homogeneous,
as one can infer from Example 2.14. In the light of this fact, it suffices to show that
k〈Q〉/I is infinite-dimensional.

The path algebra k〈Q〉, regarded as a k-vector space, admits a direct sum decompo-
sition A⊕ B, where A is the subspace spanned by paths

containing either n − 1 consecutive arrows belonging to the same face or
n− 1 consecutive arrows surrounding the same vertex of the subdivision as
factors

(♣)

and B is the subspace spanned by paths not satisfying (♣). One immediately checks
that A is actually an ideal in k〈Q〉. Even more, since every cyclic derivative is the sum
of two paths satisfying (♣), we have that I ⊆ A. Therefore, any non-zero path c ∈ B is
not contained in I, and in turn is not zero in k〈Q〉/I.
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Figure 3.2: Any cyclic derivative of the potential P associated to a 4-
regular subdivision turns out to be of the form a + b, with both a and
b of length 3.

Suppose now that X is an infinite subset of B composed of non-zero paths, all of dif-
ferent lengths. Since paths are homogeneous elements of k〈Q〉 and I is an homogeneous
ideal, the projection of a path into k〈Q〉/I is an homogeneous element too. Therefore,
the projection of X into k〈Q〉/I is an infinite linearly independent set, since it is com-
posed of non-zero homogeneous elements, each belonging to a different homogeneous
component. So finally, all that remains to show is that one can actually produce such a
set X.

Choose any path of length 2 contained in a single face and name it x2. One may
concatenate any path with exactly two arrows: one which lies on the same face as the
last one and one which does not. If the two last arrows of xk lie on the same face, let
xk+1 be the path obtained from xk by concatenating the arrow lying on a different face.
Otherwise, let xk+1 be the path obtained from xk by concatenating the arrow lying on
the same face as xk’s last arrow. Since this process may be carried out indefinitely, we
obtain a sequence X = (xk)k≥2 of paths, all of them of different lengths. Notice that
every path xk is contained in B, since by construction it contains at most 2 consecutive
arrows on the same face or around the same vertex, and n− 1 > 2 by hypothesis. In
fact, this construction can not be carried out if n = 3, since in that case B is the k-vector
space spanned by paths of length 0 and 1.

This settles the case n > 3 and now we turn to the study of the case n = 3. By
Equation (1), we know that f = (4g− 4)/(3− 4) = 4− 4g. Since the number of faces
in the subdivision must be positive, it follows that g = 0, and so a 3-regular division
of a surface must necessarily be a triangulation of a sphere consisting of 4 faces, or
in other words a tetrahedron. We have already determined that the Jacobian algebra
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associated to the tetrahedron is infinite-dimensional in Section 3.1, and so the proof is
now complete.

3.4 A family of finite-dimensional examples

We now turn to the study of another family of polygonal subdivisions, this time in-
ducing finite-dimensional algebras. Let us start by showing that closed surfaces of any
genus admit a particular decomposition.

A loop f on a surface Σ is a smooth embedding f : S1 → Σ. We will identify a loop
with its image on Σ. A handle is a torus with a disk removed. We recall that, by the
classification theorem, a closed surface of genus g > 0 can be obtained starting with a
disk with g− 1 holes and gluing handles along each hole and the boundary of the disk.

Figure 3.3: A handle.

Proposition 3.3. Let Σ be a closed surface of genus g. There exist finite families R = {ri} and
B = {bj} of loops on Σ such that:

1. Two loops in the same family are disjoint.

2. Any point of the surface belongs to at most two loops.

3. The loops divide the surface into a disjoint family of regions, each of them a disk (up to
homeomorphism).

Proof. We give an explicit construction of such families.
The case in which g = 0 (the sphere) is easily dealt with by choosing a single loop

r1 as the equator, since both hemispheres are homeomorphic to a disk and the other
conditions are vacuously true.

For the cases in which g > 0, we will make use of the handle decomposition we
mentioned previously. We will draw a handle as a square (with opposite edges identi-
fied) having a gray hole in its center.

We first deal with the case in which g = 1. If we glue a handle decomposed as in
Figure 3.4 to the boundary of the disk pictured in Figure 3.5, we obtain a torus with a
single red loop r1 and a single blue loop b1.
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Figure 3.4: A decomposed handle.

Figure 3.5: A decomposed disk.

Once again, the intersection conditions are vacuous. Finally, we observe that the
blue loop cuts the torus into a disk and a handle, so one can check condition 3 in both
objects separately. One sees at once that the disk gets cut up into 5 smaller disks, while
the handle is divided into 3 disks, as we wanted.

While the solution to the case g = 1 may be easier to draw directly on a square
instead of considering a handle decomposition, the latter helps to illustrate the general
case, which we now consider. For the case g > 1, we regard our surface as a disk with
g− 1 holes, with a handle divided as in Figure 3.4 attached to its boundary and to each
of its holes. We exemplify the configuration on the disk with holes for g = 4 in Figure
3.6.
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Figure 3.6: A decomposed disk with holes.

The following is an outline for the construction of the previous figure for general g:

1. Place the g− 1 holes in a straight line inside the disk.

2. Connect the boundary of the left and rightmost holes to the boundary of the disk
using 4 red arcs, mimicking the figure.

3. Cycle through the holes from left to right. If the current hole has a neighboring
hole to its right, draw 4 red arcs connecting their boundaries.

Notice that after gluing the handles, both the red and the blue arcs are now loops.
We now consider the families {ri} and {bj}, consisting of the red and blue loops respec-
tively. Inspecting the figures, we see that conditions 1 and 2 are both satisfied. Finally,
it remains to check condition 3. Since we have already seen that each handle is split up
into disks in the discussion of the case g = 1, it suffices to check this for the disk with
holes, and once again this is easily seen in the drawing.

A band on a surface Σ is a finite sequence {C1, . . . , Cn}, where each Si is a square
on Σ subdivided by one of its main diagonals, arranged as in one of the following two
figures:

. . . Cn−1 Cn C1 C2 . . .
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. . . Cn−1 Cn C1 C2 . . .

Notice that in both cases the choice of diagonal is consistent throughout the band.
We will say a band is positively oriented if it is arranged as in the first figure and nega-
tively oriented otherwise (we stress that this makes sense since the surface is oriented).
We require that the only adjacency relations between squares in a band are the ones ex-
pressed by the figures, so in particular bands have well-defined top and bottom sides.
We remark that two differently oriented bands may intersect as the following figure
shows:

Figure 3.7: Two intersecting bands.

Given a surface Σ of arbitrary genus, we consider families of loops R = {ri} and
B = {bj} on Σ satisfying the conditions stated in Proposition 3.3. We can now pick
suitably small tubular neighborhoods of each loop and place a positively (resp. nega-
tively) oriented band over each neighborhood corresponding to a loop in R (resp. B).
Conditions 1 and 2 of Proposition 3.3 guarantee that all intersections between bands
resemble that of Figure 3.7. Condition 3 guarantees that each connected component of
the complement of the bands is a polygon. We will refer to these polygons as regions.
Therefore, the collection of bands and regions actually define a polygonal subdivision
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of Σ. For technical reasons that will be clearer later, we will require each band to

have at least 5 squares between any pair of intersections with other bands. (�)

This can be easily achieved by refining the division of the band if necessary. From now
on we fix a subdivision as described above for each genus g and call its associated QP
(Qg, Pg). The corresponding Jacobian algebra will be denoted Ag.

Figure 3.8: The configuration of the associated quiver Qg around a region
satisfying (�).

We now turn to the study of some relations that hold in Ag, that will enable us to
prove its finite-dimensionality.

Lemma 3.4. Any path in Ag passing through vertices of both sides of a band is zero.

Proof. Throughout this and the following proofs, we will only consider our bands to
be positively oriented, since the analogous statements for negatively oriented bands
are proved in a similar fashion. We name the arrows in the quiver as in the following
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figure:
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Since our quiver arises from a polygonal subdivision of a surface with empty bound-
ary, we know that there is a cycle around each vertex, and so each x and each y are paths
of length at least 1. We mark those paths in the figure with a dashed arrow. We have
given the same name to arrows occupying the same position in different squares, since
this abuse of notation will be useful for calculation.

Inspecting the figure we see that any path passing through vertices of both sides of
the band must contain a path of the form cba or f ed as factors. It suffices to check that
both of them are zero in Ag.

We have that ∂ f (Pg) = ba + eay, and so ba = −eay in Ag. Therefore, we have that
cba = −ceay. Moreover, ∂d(Pg) = ce + xcb, from which we deduce that ce = −xcb
in Ag. Putting all of this together, we get that cba = −ceay = xcbay (one should note
that the cba factor in the right hand side of the equality consists of arrows placed on the
square immediately left from the one where we started). Proceeding inductively we get
cba = xncbayn for all positive n. Since x and y are paths of length at least 1, this shows
that cba is equal to paths of arbitrarily high length. Therefore, by Observation 1.8, we
conclude that cba = 0 in Ag.

An analogous argument shows that f ed = 0 in Ag as well, concluding the proof.

Lemma 3.5. Any sufficiently long path contained entirely in bands is zero in Ag. More pre-
cisely, any non-zero path contained in a single band (resp. several bands) is of length at most 5
(resp. 9).

Proof. We first prove that any sufficiently long path contained entirely in a single band
is zero. As we have already seen, any path passing through vertices of both sides of the
band is zero, so we will suppose without loss of generality that our path is placed on
the upper part of the band. Maintaining the notation used on the proof of the previous
lemma, this is equivalent to saying our path only has arrows b, c, d or e as factors.

We start by studying paths containing a 3-cycle as a prefix. The 3-cycles edc and
ced only prefix two paths of length 4, namely cedc and dced. Since ∂e(Pg) = dc + ay f ,
the relation dc = −ay f holds, and so cedc = −ceay f = 0 and dced = −ay f ed = 0 by
Lemma 3.4. Moreover, the 3-cycle dce only prefixes two paths of length 5, which are
cbdce and cedce. Clearly, cedce = 0 since we have already shown that cedc = 0, and
using the relation dc = −ay f we get cbdce = −cbay f e = 0 once again by Lemma 3.4.
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Now we turn to paths containing a 3-cycle as a suffix. Once again, the 3-cycles ced
and dce only suffix two paths of length 4, which are cedc and dced, already shown to be
zero. The 3-cycle edc is a suffix to only two paths of length 5, which are edcbd and edced.
We see that edced = 0 since dced = 0 and edcbd = −eay f bd = 0 as we wanted.

Therefore, any path in a band of length greater than 5 containing a 3-cycle is zero,
since we have shown these cycles only admit prefixes and suffixes of length at most 1.

Now, a path of length greater than 5 not containing a 3-cycle is either of the form
dcbdcb, bdcbdc or cdbcbd. All possibilites have cbdc as a factor, which is clearly zero
since cbdc = −cbay f = 0 by Lemma 3.4. Therefore, we conclude that any path of
length greater than 5 contained in a single band is zero.

Finally, consider a path of length greater than 9 contained in possibly different
bands. If its first six arrows lie on the same band, the path is zero as seen previously.
Otherwise, at most five of its first arrows lie on the same band and the sixth is then
placed on a different band intersecting the original one, as seen in the following figure:

Since by hypothesis (�) two intersections in the same band are distanced by at least
five squares, we conclude that at least the next six arrows belong to the same band.
Therefore, any path of length greater than 9 contained entirely in bands is zero in Ag,
as we wanted.

Lemma 3.6. Any non-zero path entirely contained in an n-sided region is of length at most
3n− 4.

Proof. We fix an n-sided region. Consider any band neighboring our region and pick
any of its squares that is at least two squares away from an intersection with another
band, which is always possible by hypothesis (�). Recalling the fact that our region
induces an n-cycle in the quiver, we name the arrow starting at the square we picked
as x0. In general, given j ∈ Z/nZ we call xj the arrow starting at the target of xj−1.



3.4. A FAMILY OF FINITE-DIMENSIONAL EXAMPLES 41

Keeping the previous notation for arrows contained in bands, our current situation is
illustrated by this figure:

b

f a

cd

e
b

f a

cd

e
b

f a

cd

e
b

f a

cd

e
b

f a

cd

e

xn−2 xn−1 x0 x1

We now prove that the path L = xn−1xn−2 . . . x2x1x0xn−1 . . . x3x2 is zero. We have
that ∂x0(Pg) = xn−1xn−2 . . . x2x1 + cbd and ∂x1(Pg) = x0xn−1 . . . x3x2 + cbd. Therefore,
the relations

xn−1xn−2 . . . x2x1 = −cbd

x0xn−1 . . . x3x2 = −cbd

hold in Ag. We stress that cbd denotes a different path in each one of the two equations:
they are similar paths contained in different squares. Using these relations, we see that

xn−1xn−2 . . . x2x1x0xn−1 . . . x3x2 = −cbdx0xn−1 . . . x3x2 = cbdcbd,

and the latter is zero by Lemma 3.5 since cbdcbd is a path of length 6 lying on a single
band.

Finally, since the longest path entirely contained in our region not having L as a
factor is

xn−2xn−1 . . . x0︸ ︷︷ ︸
n− 1 arrows

xn−1xn−2 . . . x0︸ ︷︷ ︸
n arrows

xn−1xn−2 . . . x3︸ ︷︷ ︸
n− 3 arrows

,

which is of length 3n− 4, the result follows.

Lemma 3.7. Any sufficiently long path not having factors from two different regions is zero in
Ag.

Proof. We write our path as Bk+1Rk . . . R2B2R1B1, where the paths Ri are contained in
a same region and the paths Bj are non-trivial (except possibly for B1 and Bk+1) and
contained in bands.

Let 1 < j < k + 1. The path Bj starts and ends at the boundary of our region of
interest. Therefore, it must pass through both of the endpoints of a same arrow, which
we will call x0, belonging to the cycle associated to the region, since otherwise it would
be sufficiently long as to reduce to zero, by Lemma 3.5. Using the relation induced by
∂x0(Pg), we can replace some of the arrows in Bj with a path entirely contained in the
region. After applying this argument repeatedly, we can then suppose our path is of
the form B2R1B1. The proof now follows from Lemmas 3.5 and 3.6, since if our path is
non-zero, then |B1| < 10, |B2| < 10 and |R1| < 3n− 3, where n is the number of sides
of the region.
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After proving all these lemmas, the main result of this section now follows easily:

Theorem 3.8. The algebra Ag is finite-dimensional.

Proof. By Lemma 3.7, any sufficiently long path is zero if it does not have factors from
two different regions, but any path that does must be zero (regardless of length) by
Lemma 3.4, since it must cross a band. Since any sufficiently long path is zero, we
conclude that Ag is finite-dimensional.

3.5 Pyramids

A pyramid is a polyhedron formed by placing a regular polygon (called the base) and a
single point (called the apex) in different parallel planes, and then taking their convex
hull. One immediately checks that if the base is an n-sided polygon, then the pyramid
has exactly n + 1 faces, n of them triangles and the last one being the base itself. Any
pyramid is a polygonal subdivision of the sphere, so we now study the properties of its
associated Jacobian algebra. We first label the arrows in the associated quiver as shown
in Figure 3.9.

b

c

d

a

b c

d

a
b

c

d

a

bc

d

a

Figure 3.9: The quiver arising from a pyramid with a square base.

The 4-cycle placed outside of the square is the cycle corresponding to the base, and
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each 3-cycle inside of the square corresponds to a triangular face of the pyramid. We
will name the arrows of the base as a and the arrows surrounding the apex as b. The
rest of the arrows corresponding to triangular faces are named c and d in such a way
that dcb is the only path of length 3 taking place in a single triangle.

Theorem 3.9. Let n ≥ 3. The Jacobian algebra associated to a pyramid with an n-sided base is
finite-dimensional iff n is even.

Proof. The case n = 3 has already been covered in Section 3.1, since a pyramid with a
3-sided base is just a tetrahedron. We will then suppose that n > 3.

We call (Q, P) the QP associated to the pyramid and A its Jacobian algebra. We
will study A making heavy use of the diamond lemma. To do so, we will order terms
according first to length (longer terms being smaller) and then lexicographically from
right to left. For instance, a5 ≺ bd and bda ≺ b3. This is a minor modification of the
usual revglex order (since words are sorted lexicographically but from right to left),
and the same argument as in Lemma 2.13 proves that it satisfies the descending chain
condition in norm.

The careful reader will note that, a priori, we are not under the hypotheses of the
diamond lemma, since we have not specified a term order for the entire set of paths,
but rather we have given an equivalence relation on the set of paths (where two paths
are considered to be equal if they are given the same label) and then ordered the set of
equivalence classes. This is of course no obstruction, since we may number the arrows
carrying the same label and sort them first by their labels and then by their numbering.
For instance, two different paths of the form a3 may be numbered as, say, a2a1a0 and
a3a2a1.

We now have to find a confluent reduction system compatible with our term order.
We start off by computing the cyclic derivatives of the potential P, which turn out to be:

∂a(P) = an−1 + cd

∂b(P) = bn−1 + dc

∂c(P) = bd + da

∂d(P) = ac + cb

This suggests the following reduction system, which we will call Γ:

cd −an−1 (∂a)

dc −bn−1 (∂b)

bd −da (∂c)

ac −cb (∂d)

Every reduction rule is compatible with our term order, since the right hand side terms
are either longer (since n > 3) or of the same length but lexicographically smaller.
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Notice that the ideal IΓ generated by this reduction system is exactly the Jacobian ideal,
so if the system turns out to be confluent, then the set of irreducible paths forms a
basis for the Jacobian algebra A. The system Γ presents only a few ambiguities, namely
the ones arising from the monomials cdc, dcd, bdc and acd. We now check if they are
solvable:

cdc

−an−1c

−cbn−1

(−1)ncbn−1
∂a

∂b

∂d (n− 1 times)

dcd

−bn−1d

−dan−1

(−1)ndan−1
∂b

∂a

∂c (n− 1 times)

bdc

−dac

−bn

dcb −bn
∂c

∂b

∂d ∂b

acd

−cbd

−an

cda −an
∂d

∂a

∂c ∂a

As we can see, the rewriting system Γ turns out to be confluent iff n is odd, since our
ground field k is of characteristic zero. In that case, we know that the set of irreducible
terms forms a basis of the Jacobian algebra. Since paths of the form ak and bk are irre-
ducible for any k, we conclude that the Jacobian algebra is infinite-dimensional for odd
values of n.

As for the even case, we may try to enlarge the set of rewriting rules as to make the
system confluent. From our previous computation using our old rewriting system Γ,
we know that cbn−1 = dan−1 = 0. Moreover, 0 = dcbn−1 = −b2n−2 and 0 = cdan−1 =

−a2n−2. We may consider the rewriting system Γ′, composed of the old set of rewriting
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rules from Γ and the following new rules:

dan−1  0

cbn−1  0

a2n−2  0

b2n−2  0

We remark that this system is compatible with our term order. Moreover, the ideal
IΓ′ coincides with the Jacobian ideal as well, since the new rules come from identities
holding in the Jacobian algebra A. It suffices to check that Γ′ is indeed a confluent
system in order to be in the hypotheses of the diamond lemma. The set of ambiguities
is now slightly larger: it contains all of the old ones (which are now solvable, thanks to
the rules dan−1  0 and cbn−1  0) plus the ambiguities arising from the following set
of monomials:

bdan−1, cdan−1, acbn−1, dcbn−1, dan−1c, cbn−1d, da2n−2, cb2n−2, a2n−2c, b2n−2d

After a straightforward but somewhat tedious check one sees that all of these ambigu-
ities are solvable (in fact, rather easily, since every term reduces to zero). Once again
by the diamond lemma, we know that the set of irreducible paths forms a basis for the
Jacobian algebra A. We will now prove that there are no irreducible paths of length
greater than 2n− 2, which in turn implies the finite-dimensionality of A.

Indeed, suppose x is an irreducible path starting with an a arrow. As we see in
Figure 3.9, an a arrow is only concatenable with another a arrow or with a d arrow.
Since da is a reducible path, it follows that any irreducible path starting with an a arrow
is of the form ak, and since a2n−2 is reducible, that k < 2n− 2. The same argument holds
for paths starting with a b arrow.

Finally, we notice that an irreducible path starting with a c arrow must be c itself,
since the only possible successors are a or d, and both ac and dc are reducible. Using the
same idea we see that d is the only irreducible path starting with a d arrow, and thus
there is no irreducible path of length greater than 2n− 2, concluding the proof.

Since we used the same heuristic as our software does, we may now check our
computation against it. We will try to see if our rewriting system produces the same
number of irreducible monomials of each length. If n is odd, the only reducible mono-
mials are ac, bd, cd and dc, so the irreducible monomials of positive length are of the
form ak, bk, dak−1 or cbk−1 for k ≥ 1, and there are exactly n paths with each of these
names. Therefore, there are 4n paths of each possible positive length (and 2n stationary
paths). Notice that this fits with the Hilbert series corresponding with the tetrahedral
case studied previously by setting n = 3, even though the rewriting system we obtained
for general pyramids is a different one.
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As for the case where n is even, one has to consider that the monomials dan−1,
bcn−1, a2n−2 and b2n−2 are reducible as well. Therefore, paths ak and bk are irreducible
iff 1 ≤ k ≤ 2n − 3 and paths daj and cbj are irreducible iff 0 ≤ j ≤ n − 2. An easy
counting argument then shows that there are

• 2n stationary paths,

• 4n irreducible paths of length k, where k ranges from 1 to n− 1,

• 2n irreducible paths of length j, where j ranges from n to 2n− 3.

We may now check our computations against our piece of software:

sage : Rewriting_System ( pyramid ( 6 ) ) . genera t ing_funct ion ( 1 2 )
15 r u l e s added .
21 r u l e s added .
9 r u l e s added .
4 r u l e s added .
4 r u l e s added .
Tota l r u l e s : 77
[ 1 2 , 24 , 24 , 24 , 24 , 24 , 12 , 12 , 12 , 12 , 0 , 0 ]

sage : Rewriting_System ( pyramid ( 7 ) ) . genera t ing_funct ion ( 1 2 )
13 r u l e s added .
8 r u l e s added .
2 r u l e s added .
2 r u l e s added .
Tota l r u l e s : 53
[ 1 4 , 28 , 28 , 28 , 28 , 28 , 28 , 28 , 28 , 28 , 28 , 28]

As we can see, these results agree with our computations.

3.6 Scalars in the polygonal case

We recall that, so far, we have only considered potentials in which all scalars involved
were set to 1. One of the main results from Sefi Ladkani’s paper [Lad12] states:

Theorem 3.10. Let (Σ, M) be a surface with marked points and empty boundary.

1. If (Σ, M) is not a sphere with 4 punctures, then for any choice of scalars the Jacobian
algebra associated to the QP arising from any ideal triangulation of (Σ, M) is finite-
dimensional.

2. If (Σ, M) is a sphere with 4 punctures, then the same conclusion holds provided that the
product of the scalars is not equal to 1.

The family of pyramids studied in the previous section shows that this result does
not hold for polygonal subdivions in general. Keeping the notation previously used,
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consider the potential P which arises from assigning the scalar 1 to cycles of the form
an+1 and bdc, and the scalar−1 to cycles of the form bn+1 and acd. The cyclic derivatives
of this potential are then

∂a(P) = an−1 − cd

∂b(P) = −bn−1 + dc

∂c(P) = bd− da

∂d(P) = −ac + cb

Therefore, the obvious rewriting system

cd an−1 (∂a)

dc bn−1 (∂b)

bd da (∂c)

ac cb (∂d)

turns out to be confluent. An easy way to show this is to carry out the exact same
computation that proved that this system is confluent for odd n, but deleting all the
minus signs from it. In the light of this fact, we conclude that the Jacobian algebra
associated to this potential is infinite-dimensional, since for instance cycles of the form
akn and bkn are irreducible for all natural k. Nevertheless, we have already seen that
for even values of n, the Jacobian algebra arising from the standard potential is finite-
dimensional. This shows that, when dealing with polygonal subdivisions, the finite-
dimensionality of the Jacobian algebra is highly dependent on the choice of scalars for
the potential.

3.7 Prisms and antiprisms

In this section we will introduce two families of convex polyhedra, which are polygonal
subdivisions of the sphere. We will then show confluent rewriting systems for their
respective Jacobian algebras, so as to have more examples in which we may compute
invariants in the following chapter.

A prism is a polyhedron composed of two parallel copies of an n-sided polygon,
which we will call base faces, joined by parallelograms.

We will label the arrows in the quiver associated to a prism in a similar way as we
did for pyramids, in order to help us simplify the description of the rewriting system.
This is illustrated in Figure 3.11, where we have drawn the prism as a planar figure in
which the left and right sides are identified. In the drawing, the black edges represent
the edges of the prism and the red arrows are the ones from the associated quiver.
Arrows labeled a (resp. b) correspond to the n-cycle inside the top (resp. bottom) base
face. The arrows corresponding to 4-cycles inside parallelograms are labeled as c, d, e
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Figure 3.10: A prism with a pentagonal base.
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Figure 3.11: The quiver associated to a prism.

or f , in such a way that a 4-cycle having a vertex from the top base as source is labeled
dc f e.

After naming the arrows in this way, a confluent rewriting system for the associated
Jacobian algebra in the case n > 3 is given by the rules:

de −an−1 dc f e an

f c −bn−1 f edc bn

ad −dc f c f ed edc f

b f  − f ed an+1  0

ea −c f e bn+1  0

cb −edc
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As one may easily check, all cycles in the quiver are reducible, except for an, bn and
edc f . Nevertheless, all powers of these cycles are reducible, and so the Jacobian alge-
bra is finite-dimensional. In fact, once again we may count the number of irreducible
monomials of each length, which are

• 3n stationary paths,

• 6n paths of lengths k, for 1 ≤ k ≤ 3,

• 3n paths of length 4,

• 2n paths of length j, for 5 ≤ j ≤ n.

Our second family of polyhedra is the family of antiprisms, which are once again
composed of two parallel copies of an n-sided polygon, but this time they are joined by
triangles.

Figure 3.12: Top view of an antiprism with square base.

Our labeling of the arrows in the quiver will be:
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Once again, the polyhedron is assembled by identifying the left and right sides of
the figure. Arrows labeled a (resp b) correspond to the top (resp. bottom) n-cycle.
Arrows inside a triangle sharing a side with the top (resp. bottom) face are labeled f ,
g or h (resp. c, d, e), in such a way that a 3-cycle having a vertex from the top (resp.
bottom) face as source is labeled f hg (resp. ced).

If n > 3, a confluent rewriting system for the Jacobian algebra associated to an
antiprism with an n-sided base is given by:

f eg −an−1 hdbc ega f

chd −bn−1 ga f e dbch

ed −hbd gan−1  0

ce −bch an−1 f  0

dc −ga f dbn−1  0

hg −ega bn−1c 0

f h −a f e a2n−2  0

g f  −dbc b2n−2  0

Although it is not as easy as with prisms, it is still straightforward to check that all
squares of cycles are reducible, and therefore the Jacobian algebra turns out to be finite-
dimensional as well. It is easy, although a bit tedious, to enumerate all of the irreducible
monomials. It turns out that there are

• 4n stationary paths,

• (6 + 2k)n irreducible paths of length k, for 1 ≤ k ≤ 6,

• 18n irreducible paths of lengths 6 to n− 1,

• 14n irreducible paths of length n,

• 8n irreducible paths of length n + 1,

• 4n irreducible paths of length n + 2,

• 2n irreducible paths of lengths n + 3 to 2n− 3.

As usual, we check this computation against the output of our software:

sage : Rewriting_System ( prism ( 7 ) , True ) . genera t ing_funct ion ( 9 )
105 r u l e s added .
Tota l r u l e s : 231
[ 2 1 , 42 , 42 , 42 , 21 , 14 , 14 , 14 , 0 ]
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sage : Rewriting_System ( ant ipr ism ( 7 ) , True ) . genera t ing_funct ion ( 1 3 )
98 r u l e s added .
48 r u l e s added .
Tota l r u l e s : 230
[ 2 8 , 56 , 70 , 84 , 98 , 112 , 126 , 98 , 56 , 28 , 14 , 14 , 0 ]

Note that we set the parameter zero_rules_flag as True, since there are rules in the
rewriting system which are induced by the topology (namely, there are paths that re-
duce to zero since they may be extended to arbitrarily high lengths).
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Chapter 4

Cohomological properties

In the previous chapter, we produced confluent rewriting systems for several Jacobian
algebras. By the diamond lemma, such a rewriting system provides a basis for the al-
gebra as a k-vector space, which is given by the irreducible monomials. In this chapter,
we will make use of these bases to compute some invariants of the families of algebras
considered previously. These invariants are closely related to the first two Hochschild
cohomology modules of those algebras, which we will now introduce.

Given an associative k-algebra A, we define its enveloping algebra as Ae = A⊗k Aopp.
The product on Ae is given by (a⊗ b)(c⊗ d) = ac⊗ db. There is a natural equivalence
between the category of A-A-bimodules and the category of left Ae-modules, which we
will consider an identification. Therefore, if M is an A-A-bimodule, it makes sense to
compute Ext•Ae(A, M), which we will call the Hochschild cohomology of A with coefficients
in M and denote H•(A, M). If M = A, this module will be plainly called the Hochschild
cohomology of A, and will be denoted as HH•(A).

We refer the reader to [Wei94, Chapter 9] for a detailed introduction to Hochschild
cohomology.

4.1 The center

Let A be an associative k-algebra. The center of A, denoted as Z(A), is the subset of all
elements x ∈ A such that xa = ax for all a ∈ A, and is in fact a subalgebra of A. An
algebra is called central if Z(A) = k. For example, the matrix algebra Mn(k) is a central
k-algebra.

Lemma 4.1. Let A be an associative k-algebra. Then HH0(A) = Z(A).

Proof. See [Red01].

We will now compute the center of the Jacobian algebras associated to pyramids,
prisms and antiprisms. In order to do so, we first make a useful observation:

53
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Remark 4.2. Let x be a central element in a Jacobian algebra A. Then x is a linear combination
of loops, that is, paths with identical source and target.

Proof. First of all, we stress that two paths which are equivalent in the Jacobian algebra
must share the same endpoints, since the Jacobian ideal is generated by sums of paths
satisfying this property. Therefore, it makes sense to speak of endpoints and loops in
A.

Suppose now that x is central in A. We write x as a combination of linearly inde-
pendent classes of paths ∑n

i=1 λi pi. Let vj be the stationary path corresponding to the
source of pj. Since x is central, we have that

n

∑
i=1

λi pivj = (
n

∑
i=1

λi pi)vj = xvj = vjx = vj(
n

∑
i=1

λi pi) =
n

∑
i=1

λivj pi.

The scalar corresponding to pj in the left hand side of the equation is λj, since pjvj = pj.
However, the scalar corresponding to pj on the right hand side is λj if pj has the vertex
at vj as target, and 0 otherwise. Therefore, if pj is not a loop, then λj = 0, and so x is a
linear combination of loops, as we wanted.

We remark that, by definition, stationary paths are loops. Moreover, it is easy to see
that any loop commutes with all stationary paths.

As a consequence of the diamond lemma, we know that given a confluent rewriting
system for a Jacobian algebra, the set of irreducible monomials forms a basis for it. This
will be an essential tool to compute its center. For the remainder of this chapter, we will
use the labeling of arrows presented in the previous chapter for the quivers associated
to each polygonal subdivision.

We will start by proving a fact about the quiver associated to a polygonal subdivi-
sion that will be particularly useful in this situation:

Lemma 4.3. The quiver Q associated to a polygonal subdivision of a surface Σ is strongly
connected, that is, given any pair of vertices v1, v2 in Q there exists a path with source v1 and
target v2.

Proof. Given two faces X, Y of the subdivision of Σ, let d(X, Y) be the minimum n ∈ N

such that there exists a sequence Z0, . . . , Zn with X = Z0, Y = Zn and such that Zi

shares an edge with Zi+1 for all 0 ≤ i ≤ n− 1. The fact that the surface is connected
guarantees that d(X, Y) is well defined.

Let v1, v2 be vertices in Q and pick F1, F2 faces of the subdivision such that v1 (resp.
v2) is a vertex which corresponds to an edge of Fi (resp. F2). If d(F1, F2) = 0, then F1 = F2

and so there is a path going from v1 to v2, since there is a cycle in the quiver joining all
of the vertices arising from the same face. If d(F1, F2) = 1 such a path exists as well,
since there is an arrow in Q with source v1 which is part of the cycle corresponding
to F2, since F1 and F2 are contiguous. Since d(F1, F2) is a finite number and we have
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already shown that we can connect vertices from neighbouring faces, an easy inductive
argument finishes the proof.

Proposition 4.4. The Jacobian algebra associated to a pyramid with n-sided base, where n > 3,
is central.

Proof. Suppose first that n is even. The confluent rewriting system found previously
induces the basis of irreducible paths

B = {ev, ak, bk, cbj, daj},

where v runs through the set of vertices Q0, 1 ≤ k ≤ 2n− 3 and 0 ≤ j ≤ n− 2. Notice
that the label ak denotes n different cycles, each starting at a different vertex. We will
enumerate those vertices from 0 to n− 1, in such a way that if i + 1 = j mod n then
there exists an a arrow such that a : i → j. We will denote the path starting at vertex
k consisting of j arrows labeled a as aj

k. For example, using this notation, we have that
a1a0 = a2

0. Notice that an
k both starts and ends at k, since it is a cycle. We will use the

same idea to name the n different cycles of the form bn.
Now, the only irreducible loops are of the form ev, an or bn, and so if we write a

central element x in terms of our basis B, by Observation 4.2 we get that

x = ∑
v∈Q0

λvev + ∑
i∈Z/nZ

(µian
i + ηibn

i ),

where all greek letters are scalars. Since x is central, it must commute with ai, and so:

λs(ai)ai + µi−1an+1
i−1 = aix = xai = λt(ai)ai + µi+1an+1

i .

Exactly the same identity holds if we replace ai with bi throughout. Running down
through all possible values of i, this set of equalities imply that all µ (resp. η) scalars are
zero and that λu = λv if u and v are vertices which are sources of a (resp. b) arrows.

We now observe that every vertex of the quiver is either the source of an a or a b
arrow. Therefore x = λ1y + λ2z, where y (resp. z) denotes the sum of all stationary
paths corresponding to vertices which are sources of a (resp. b) arrows. Now, since x is
central, it must commute with any c arrow, and thus

λ2c = cx = xc = λ1c,

from where we obtain λ1 = λ2. Therefore, any central element must be a scalar multiple
of the sum of all stationary paths, which is the identity element of the algebra. Thus,
we conclude that the Jacobian algebra is central, as we wanted.

The case where n is odd is entirely analogous. The only minor difficulty is that
cycles of different lengths appear in the generic expression of a central element, since
cycles of the form akn or bkn are irreducible even if k > 1. Nevertheless, the only differ-
ence this introduces is that the equations we used are somewhat more cumbersome to
write down.
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Proposition 4.5. Let A be the Jacobian algebra associated to a prism with n-sided base, where
n > 3. Then, Z(A) = 〈1, an, bn, edc f 〉, where 1 stands for the identity element of A.

Proof. First of all, we notice that any cycle x of the form an, bn or edc f is central. Indeed,
they commute with stationary paths since they are loops, and if y is any path of positive
length then the rewriting system shows that yx = xy = 0.

Since the only irreducible loops are either stationary or of the form an, bn or edc f , an
arbitrary central element x can be written down as

x = ∑
v∈Q0

λvev + y,

where y ∈ 〈an, bn, edc f 〉 and is thus central. Considering that Z(A) is a subspace and
both x and y are central, we get that x − y = ∑v∈Q0

λvev is as well. Now, let p be any
arrow in the quiver. Then, by centrality we have that

λs(p)p = p ∑
v∈Q0

λvev = ∑
v∈Q0

λvev p = λt(p)p,

and so λs(p) = λt(p). But then, since the quiver is strongly connected, an easy induction
on the distance between any pair of paths shows that λu = λv for all u, v ∈ Q0. Thus,
x = λ1 + y, proving our claim.

Proposition 4.6. Let A be the Jacobian algebra associated to an antiprism with n-sided base,
where n > 3. Then, Z(A) = 〈1, ega f , dbch〉, where 1 stands for the identity element of A.

Proof. We will only sketch the proof, since it uses the same arguments as the previous
two propositions. The loops ega f and dbch are easily seen to be central, because any
product involving them and a path of positive length is zero, just as what happened in
the proof of the previous proposition.

Now, in this case, the irreducible loops are stationary or of the form an, bn, ega f or
dbch. Thus, a generic central element x is of the form

x = ∑
v∈Q0

λvev + y + z,

where y ∈ 〈an, bn〉 and z ∈ 〈ega f , dbch〉 ⊆ Z(A). Using the same argument as in the
pyramidal case, namely multiplying by a, b on the left and right, we see that y = 0.

Since x and z are central, so is x − z = ∑v∈Q0
λvev, and once again a connection

argument shows that x − z must be a scalar multiple of the identity. Therefore, x =

λ1 + z, as we wanted.
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4.2 Derivations

Let A be a k-algebra. A derivation of A is a k-linear morphism f : A → A satisfying the
Leibniz rule

f (ab) = f (a)b + a f (b).

The set of derivations of A, which we will denote as D(A), is a Lie algebra with Lie
bracket given by the commutator

[ f , g] = f ◦ g− g ◦ f .

If x ∈ A, the map fx(y) = xy− yx is a derivation. The set of such maps, which we call
inner derivations, is denoted Inn(A), and is actually a k-subspace of D(A). Our main
interest in derivations relies on the following fact:

Lemma 4.7. Let A be an associative k-algebra. Then HH1(A) = D(A)/ Inn(A).

Proof. See [Red01] or [Wei94, Lemma 9.2.1].

Recall that, given a quiver Q, we denote its vertex span kQ0 as R. Since a Jacobian
algebra A is an R-bimodule, it makes sense to consider the Lie subalgebra of R-linear
derivations of A, which we will denote DR(A). The following easy observations will
greatly simplify our work:

Remark 4.8. Let A be a k-algebra and I ⊆ A an ideal. If f is a derivation of A such that
f (I) ⊆ I, then the induced linear map f̂ : A/I → A/I is a derivation of A/I. Moreover, if R
is a set of generators for I, it suffices to see that f (R) ⊆ I to show that f (I) ⊆ I.

Proof. Since f (I) ⊆ I, the ideal I is contained in the kernel of π ◦ f : A→ A/I, where π

denotes the natural projection. Thus there is a well defined linear map f̂ : A/I → A/I
which obviously satisfies the Leibniz rule, since f does.

As for the second assertion, suppose x ∈ I. Then x = ∑n
i=1 airibi, where ri ∈ R and

ai, bj ∈ A. Therefore, the Leibniz rule implies that

f (x) =
n

∑
i=1

f (airibi) =
n

∑
i=1

( f (ai)ribi + ai f (ri)bi + airi f (bi)) ∈ I

since by hypothesis f (R) ⊆ I.

Remark 4.9. Let v ∈ R be a stationary path in a Jacobian algebra A. If f is an R-linear
derivation of A, then f (v) = 0.

Proof. Using the Leibniz rule, the R-linearity of f and the fact that v = v2, we have that

f (v) = f (v2) = f (v)v + v f (v) = f (v2) + f (v2) = 2 f (v2) = 2 f (v)

and so f (v) = 0.
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Remark 4.10. Let B be a path basis for a Jacobian algebra A. If f is an R-linear derivation of
A and p ∈ B, then f (p) is a linear combination of elements of B only involving paths sharing
the same endpoints as p.

Proof. Since B is a basis for A, we have that

f (p) = ∑
q∈B

λqq

for some scalars λq ∈ k. Let x, y ∈ R be the source and the target of p, respectively.
Then

∑
q∈B

λqq = f (p) = f (ypx) = y f (p)x = ∑
q∈B

λqyqx,

and so λq = 0 if q has different endpoints than p.

From now on, we will refer to R-linear derivations plainly as derivations.

4.2.1 Pyramids with an even-sided base

Let n be an even number greater than 3. In Section 3.5, we proved that the Jacobian
algebra A associated with a pyramid having an n-sided base is finite-dimensional. Fol-
lowing the notation used in that section, a basis of irreducible monomials for the corre-
sponding rewriting system we found is given by

B = {ev, ak, bk, cbj, daj},

where v runs through the set of vertices Q0, 1 ≤ k ≤ 2n− 3 and 0 ≤ j ≤ n− 2. Once
again, we are abusing notation, since for instance a denotes several different paths of
length 1. For simplicity, we will only study derivations f that assign the same value
to all paths sharing the same name. Thus, we may speak of the value of f (a) in an
unambigous manner.

If f is such a derivation of A, then by Observation 4.10 we have that

f (a) = αa + α̂an+1

f (b) = βb + β̂bn+1

f (c) = γc

f (d) = δd,

(1)

where all greek letters are scalars in k. We recall that the following relations generate
the Jacobian ideal I:

an+1 + cd (2)

bn+1 + dc (3)

bd + da (4)

ac + cb (5)
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By relation (2) and the Leibniz rule, we have that

−(γ + δ)cd = − f (c)d− c f (d)

= f (−cd)

= f (an+1)

=
n

∑
m=0

am f (a)an−m

=
n

∑
m=0

am(αa + α̂an+1)an−m

= (n + 1)(αan+1 + α̂a2n+2)

= (n + 1)αan+1

= −(n + 1)αcd,

and so γ + δ = (n + 1)α. Reasoning analogously using relation (3), we conclude that
γ + δ = (n + 1)β, and thus α = β.

Relation (4) implies

−(β + δ)bd = −(β + δ)bd− β̂bdn+1

= − f (b)d− b f (d)

= f (−bd)

= f (da)

= f (d)a + d f (a)

= (δ + α)da + α̂dan+1

= (δ + α)da

= −(δ + α)bd,

and thus we get the equation α = β again. Relation (5) implies the same identity as
well.

Now, if g is a derivation of k〈Q〉 satisfying the set of equations (1), its values on
a, b, c and d completely determine it, since any path is either a stationary path (which
is mapped to zero by Observation 4.9) or equal to a unique product of a, b, c and d, and
thus its image is uniquely determined by the Leibniz rule. Moreover, as we have just
seen, if α = β and γ + δ = (n + 1)α then the image of a set of generators of I by g is
contained in I, and so g induces a derivation of the Jacobian algebra by Observation
4.8.

We now write the values of a generic derivation of the form we described in terms
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of the basis B:

g(ev) = 0

g(ak) =
k−1

∑
m=0

amg(a)ak−1−m = k(αak + α̂an+k)

g(bk) =
k−1

∑
m=0

bmg(b)bk−1−m = k(αbk + β̂bn+k)

g(cbj) = g(c)bj + cg(bj) = (γ + jα)cbj

g(daj) = g(d)aj + dg(aj) = (δ + jα)daj = ((n + j + 1)α− γ) daj

It is clear that these derivations make up a vector space V of dimension 4. A basis for
this space is given by {α∗, γ∗, α̂∗, β̂∗}, where α∗ stands for the map defined by setting
α = 1 and α̂ = β = γ = 0, and the other maps are defined analogously. We now write
down the image of the basis B by these maps to ease computation:

α∗ γ∗ α̂∗ β̂∗

ev 0 0 0 0
ak kak 0 kan+k 0
bk kbk 0 0 kbn+k

cbj jcbj cbj 0 0
daj (n + j + 1)daj −daj 0 0

From this table we see that B is a basis of eigenvectors for both α∗ and γ∗, and
thus these two maps commute. Moreover, γ∗, α̂∗ and β̂∗ commute with each other
as well, since they act trivially outside of 〈cbj, daj〉, 〈ak〉 and 〈bk〉 respectively, and
these three spaces are in direct sum. These facts imply the vanishing of the brackets
[α∗, γ∗], [γ∗, α̂∗], [γ∗, β̂∗] and [α̂∗, β̂∗]. By direct computation using the table we see that
[α∗, α̂∗] = nα̂∗ and [α∗, β̂∗] = nβ̂∗. Therefore, V is actually closed under the Lie bracket
and so is a 4-dimensional Lie subalgebra of the algebra of derivations of A.

In fact, we may further characterize the Lie structure on V. Given Lie algebras L1

and L2 and an action by derivations · of L1 on L2, the semi-direct product L1 n L2 is the
k-vector space L1 ⊕ L2 with Lie bracket given by

[(x1, x2), (y1, y2)] = ([x1, y1], [x2, y2] + x1 · y2 − y1 · x2).

It is now easy to see that V is a semi-direct product of the abelian Lie algebras 〈α∗〉 and
〈γ∗, α̂∗, β̂∗〉, where α∗ acts trivially over γ∗ and by multiplication by n over α̂∗ and β̂∗.

Following the exact same modus operandi, we will now produce non-trivial deriva-
tions for the Jacobian algebras arising from prisms and antiprisms. Since in these cases
there are more relations generating the Jacobian ideal than in the pyramidal case, the
derivations will have to satisfy more constraints.
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4.2.2 Prisms

As in the previous subsection, any derivation ψ of the Jacobian algebra A associated
to a prism with an n-sided base must send paths to paths sharing the same endpoints.
Therefore, by writing the image of the paths of length 1 by ψ in the basis of irreducible
monomials, we find that ψ must satisfy:

ψ(a) = αa

ψ(b) = βb

ψ(c) = γc

ψ(d) = δd

ψ(e) = εe

ψ( f ) = ζ f

Notice that in this case there are no pairs of different paths sharing the same endpoints,
which will make the rest of the computation quite easier. Mimicking the process car-
ried out in the pyramidal case, we obtain constraints (in the right column) for the greek
scalars using the relations that span the Jacobian ideal (in the left column) and the Leib-
niz rule:

de + an−1 δ + ε = (n− 1)α

f c + bn−1 ζ + γ = (n− 1)β

ad + dc f α + δ = δ + γ + ζ

b f + f ed β + ζ = ζ + ε + δ

ea + c f e ε + α = γ + ζ + ε

cb + edc γ + β = ε + δ + γ

Solving the linear system of equations on the right column, we find that α = β = 0,
δ = −ε and γ = −ζ. Once again, any set of scalars satisfying these constraints induces
a derivation of the path algebra that passes to the quotient and induces a bonafide
derivation of A. We thus obtain two linearly independent derivations of A, γ∗ and δ∗,
which are defined on paths of length 1 as

γ∗ δ∗

a 0 0
b 0 0
c c 0
d 0 d
e 0 −e
f − f 0
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4.2.3 Antiprisms

We follow the usual procedure, this time for antiprisms. We start by writing down the
image of the paths of length 1 by an eventual derivation ψ in the basis of irreducible
monomials, and find that ψ must satisfy:

ψ(a) = αa + α̂an+1

ψ(b) = βb + β̂bn+1

ψ(c) = γc

ψ(d) = δd

ψ(e) = εe

ψ( f ) = ζ f

ψ(g) = ηg

ψ(h) = θh

Once again, we have two pairs of paths sharing the same endpoints. We now find the
constraints the scalars must verify using the relations in the Jacobian ideal:

f eg + an−1 ζ + ε + γ = (n− 1)α

chd + bn−1 γ + θ + δ = (n− 1)β

ed + hbd ε + δ = θ + β + δ

ce + bch γ + ε = β + γ + θ

dc + ga f δ + γ = η + α + ζ

hg + ega θ + η = ε + η + α

f h + a f e ζ + θ = α + ζ + ε

g f + dbc η + ζ = δ + β + γ

The linear system of equations on the right column imposes the following constraints:

α = β = 0

δ = −γ− ε

η = −ε− ζ

θ = −ε

Any solution for this system of equations induces a derivation of the Jacobian algebra
of the antiprism in the usual manner. We thus obtain five linearly independent deriva-
tions: α̂∗, β̂∗, γ∗, ε∗ and ζ∗, which values on the set of paths of length 1 we present on
the following table:
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α̂∗ β̂∗ γ∗ ε∗ ζ∗

a an+1 0 0 0 0
b 0 bn+1 0 0 0
c 0 0 c 0 0
d 0 0 −d −d 0
e 0 0 0 e 0
f 0 0 0 0 f
g 0 0 0 −g − f
h 0 0 0 −h 0
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Appendix A

A path algebra SageMath class

We have developed a SageMath class to deal with the long and tedious process of check-
ing the hypotheses of the diamond lemma, and to automatically generate bases and
compute some invariants of the Jacobian algebra associated to a polygonal subdivision,
with the only input being the subdivision itself. We now present the source code, which
we will then discuss in more detail:

def n _ s l i c e s ( n , l i s t _ ) :
for i in xrange ( len ( l i s t _ ) + 1 − n ) :

y i e l d l i s t _ [ i : i +n ]

def i s _ s u b l i s t ( l i s t _ , s u b _ l i s t ) :
for s l i c e _ in n _ s l i c e s ( len ( s u b _ l i s t ) , l i s t _ ) :

i f s l i c e _ == s u b _ l i s t :
return True

return Fa lse

def g r l e x _ s o r t ( l i s t _ ) :
return sorted ( sorted ( l i s t _ ) , key=len )

c l a s s Term :
def _ _ i n i t _ _ ( s e l f , body , s ign ) :

s e l f . body = body
s e l f . s ign = sign

def __eq__ ( s e l f , other ) :
i f s e l f . body == ( ) :

return ( s e l f . body == other . body )
e lse :

return ( s e l f . body == other . body ) and ( s e l f . s ign == other . s ign )

def __repr__ ( s e l f ) :
i f s e l f . s ign == −1:

return ’− ’ + s t r ( s e l f . body )
e lse :

65
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return s t r ( s e l f . body )

def __len__ ( s e l f ) :
return len ( s e l f . body )

c l a s s Rewriting_System :
def _ _ i n i t _ _ ( s e l f , t r i a n g u l a t i o n , z e r o _ r u l e s _ f l a g =Fa l se ) :

s e l f . t r i a n g u l a t i o n = t r i a n g u l a t i o n
s e l f . generate_qp ( )
s e l f . ambiguity_depth = 20
s e l f . zero_depth = 50
s e l f . r u l e s = { }
s e l f . z e r o _ r u l e s _ f l a g = z e r o _ r u l e s _ f l a g
s e l f . r e w r i t i n g _ r u l e s ( )

def generate_qp ( s e l f ) :
d i c t = { }
edges = s e l f . t r i a n g u l a t i o n . edges ( l a b e l s =Fa l se )
f a c e s = [map( tuple , map( sorted , f a c e ) ) for f a c e in s e l f . t r i a n g u l a t i o n

. f a c e s ( ) ]

for i , edge in enumerate ( edges ) :
key = [ ]
for f a c e in f a c e s :

i f edge in f a c e :
ind = f a c e . index ( edge )
i f ind == len ( f a c e )−1:

key . append ( edges . index ( f a c e [ 0 ] ) )
e lse :

key . append ( edges . index ( f a c e [ ind +1 ] ) )
d i c t [ i ] = key

s e l f . quiver = DiGraph ( d i c t )
s e l f . p o t e n t i a l = [ ]

# c y c l e s from f a c e s
for f a c e in f a c e s :

s e l f . p o t e n t i a l . append (map( edges . index , f a c e + [ f a c e [ 0 ] ] ) )

# c y c l e s from p u n c t u r e s
for puncture in s e l f . t r i a n g u l a t i o n :

unordered_cycle = map( edges . index , s e l f . t r i a n g u l a t i o n .
edges_inc ident ( puncture , l a b e l s =Fa l se ) )

c y c l e = [ unordered_cycle [ 0 ] ]
for _ in xrange ( len ( unordered_cycle ) ) :

c y c l e . append ( [ ver tex for ver tex in d i c t [ c y c l e [−1]] i f ver tex
in unordered_cycle ] [ 0 ] )

s e l f . p o t e n t i a l . append ( c y c l e )

def c y c l i c _ d e r i v a t i v e ( s e l f , edge ) :
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d e r i v a t i v e = [ ]
for c y c l e in s e l f . p o t e n t i a l :

i f i s _ s u b l i s t ( cycle , edge ) :
i f edge [ 1 ] == c y c l e [ 0 ] :

d e r i v a t i v e . append ( c y c l e [ : −1 ] )
e lse :

i = c y c l e . index ( edge [ 1 ] )
d e r i v a t i v e . append ( c y c l e [ i : ] + c y c l e [ 1 : i ] )

return g r l e x _ s o r t ( d e r i v a t i v e )

def reduce ( s e l f , term ) :
term_length = len ( term )
body = term . body
for i in xrange ( 0 , term_length ) :

for j in s e l f . r u l e s . keys ( ) :
r u l e _ l e n g t h = len ( j )
i f ( term_length − i >= r u l e _ l e n g t h ) and body [ i : i +r u l e _ l e n g t h ]

== j :
rep = s e l f . r u l e s [ j ]
i f rep :

return Term ( body [ : i ] + rep . body + body [ i +r u l e _ l e n g t h
: ] , rep . s ign ∗ term . s ign )

e lse :
return Term ( ( ) , 1 )

return term

def n_paths ( s e l f , n ) :
return [ path for path in s e l f . quiver . a l l _ p a t h s _ i t e r a t o r ( max_length=n

+1 , t r i v i a l =True ) i f len ( path ) ==n+1]

def i s _ z e r o ( s e l f , term ) :
for _ in xrange (2∗ s e l f . zero_depth ) :

next_term = s e l f . reduce ( term )
i f next_term == term :

break
term = next_term

return ( len ( next_term ) > s e l f . zero_depth ) or ( len ( next_term ) == 0)

def null_n_paths ( s e l f , n ) :
return [ tuple ( path ) for path in s e l f . n_paths ( n ) i f s e l f . i s _ z e r o ( Term (

tuple ( path ) , 1 ) ) ]

def ambigui t ies ( s e l f ) :
forbidden_terms = s e l f . r u l e s . keys ( )
length = max (map( len , forbidden_terms ) )−1
ambs = [ ]
for n in xrange ( 1 , length ) :

for x in forbidden_terms :
for y in forbidden_terms :

i f x != y and x[−n−1:] == y [ : n + 1 ] :
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ambs . append ( [ x , y , x + y [ n + 1 : ] ] )
return ambs

def i s_unso lvab le ( s e l f , amb) :
ru le0 = s e l f . r u l e s [amb [ 0 ] ]
ru le1 = s e l f . r u l e s [amb [ 1 ] ]
i f ru le0 . body == ( ) :

l e a f 0 = Term ( ( ) , 1 )
e lse :

l e a f 0 = Term ( rule0 . body + amb [ 2 ] [ len (amb [ 0 ] ) : ] , ru le0 . s ign )
i f ru le1 . body == ( ) :

l e a f 1 = Term ( ( ) , 1 )
e lse :

l e a f 1 = Term (amb[ 2 ] [ : − len (amb [ 1 ] ) ] + ru le1 . body , ru le1 . s ign )

for _ in xrange ( s e l f . ambiguity_depth ) :
l e a f 0 = s e l f . reduce ( l e a f 0 )
l e a f 1 = s e l f . reduce ( l e a f 1 )
i f l e a f 0 == l e a f 1 :

return Fa lse

i f l e a f 0 . body == ( ) :
return [ l e a f 1 . body , Term ( ( ) , 1 ) ]

e l i f l e a f 1 . body == ( ) :
return [ l e a f 0 . body , Term ( ( ) , 1 ) ]

e l i f ( l e a f 0 . body == l e a f 1 . body ) and ( l e a f 0 . s ign != l e a f 1 . s ign ) :
return [ l e a f 0 . body , Term ( ( ) , 1 ) ]

e lse :
r1 , r2 = g r l e x _ s o r t ( [ l e a f 0 . body ] + [ l e a f 1 . body ] )
return [ r1 , Term ( r2 , l e a f 0 . s ign ∗ l e a f 1 . s ign ) ]

def needed_rules ( s e l f ) :
new_rules = { }
for amb in s e l f . ambigui t ies ( ) :

new_rule_needed = s e l f . i s_unso lvab l e (amb)
i f new_rule_needed :

new_rules [ new_rule_needed [ 0 ] ] = new_rule_needed [ 1 ]
return new_rules

def r e w r i t i n g _ r u l e s ( s e l f ) :
for ver tex in s e l f . quiver . v e r t i c e s ( ) :

for neighbor in s e l f . quiver . n e i g h b o r _ o u t _ i t e r a t o r ( ver tex ) :
d e r i v a t i v e = s e l f . c y c l i c _ d e r i v a t i v e ( [ vertex , neighbor ] )
s e l f . r u l e s [ tuple ( d e r i v a t i v e [ 0 ] ) ] = Term ( tuple ( d e r i v a t i v e [ 1 ] ) ,

−1)
i f s e l f . z e r o _ r u l e s _ f l a g :

zero_paths = [ ]
n = 3
while not zero_paths :
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zero_paths = s e l f . nul l_n_paths ( n )
n += 1

s e l f . r u l e s . update ( d i c t . fromkeys ( zero_paths , Term ( ( ) , 1 ) ) )

miss ing_rules = s e l f . needed_rules ( )
while miss ing_rules :

s e l f . r u l e s . update ( miss ing_rules )
print len ( miss ing_rules ) , ’ r u l e s added . ’
miss ing_rules = s e l f . needed_rules ( )

s e l f . r u l e s . update ( miss ing_rules )
print ’ Tota l r u l e s : ’ , len ( s e l f . r u l e s )

def i s _ a d m i s s i b l e ( s e l f , path ) :
for forbidden in s e l f . r u l e s . keys ( ) :

i f i s _ s u b l i s t ( path , l i s t ( forbidden ) ) :
return Fa lse

return True

def b a s i s ( s e l f , max_degree ) :
homogeneous_bases = [ s e l f . n_paths ( n ) for n in xrange ( 2 ) ]
for _ in xrange ( 2 , max_degree ) :

cur_degree_paths = [ ]
for j in homogeneous_bases [−1] :

cur_degree_paths += [ [ k]+ j for k in s e l f . quiver .
n e i g h b o r _ i n _ i t e r a t o r ( j [ 0 ] ) ]

admiss ib le_paths = f i l t e r ( lambda path : s e l f . i s _ a d m i s s i b l e ( path ) ,
cur_degree_paths )

homogeneous_bases . append ( sorted ( admiss ib le_paths ) )
return homogeneous_bases

def genera t ing_funct ion ( s e l f , max_degree ) :
return map( len , s e l f . b a s i s ( max_degree ) )

We will explain how the program works by following an example execution in which
we will compute some invariants of pyramids, as studied in Section 3.5.

An instance of the Rewriting_System class is constructed from an undirected graph
representing a polygonal subdivison of the sphere. The associated quiver and standard
potential will be automatically generated. We only implemented this feature for the
spherical case since an enumeration of the faces of the polygonal subdivision is carried
out by finding a planar embedding of the graph on the surface, and SageMath only
provides such an algorithm for the sphere.

We would like to generate the rewriting system associated to a pyramid with an
odd-sided base. In order to do that, we use the following snippet, which produces a
pyramid with an n-sided base:

def pyramid ( n ) :
edges = { }
for i in xrange ( 1 , n ) :

edges [ i ] = [ i +1 , n+1]
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edges [ n ] = [ 1 , n+1]
return Graph ( edges )

We now instantiate our desired triangulation:

sage : odd_pyramid = pyramid ( 5 )
sage : odd_pyramid . show ( )

Before producing the rewriting system, let us explain how the class constructor works.
As mentioned previously, the QP will be automatically generated. If the zero_rules_flag
is set to False, the rewriting_rules() method will produce the set of usual rewriting
rules (the ones associated to the revglex order) and perform Heuristic 2.8 indefinitely
until confluence is achieved. In order to test confluence, for every ambiguity we re-
duce both of its branches a maximum of ambiguity_depth times and compare if both
branches eventually reduce to the same element.

If the zero_rules_flag is set to True, the following heuristic will be executed just
after producing the first set of rewriting rules, which are the ones that arise from the
Jacobian relations:

Heuristic A.1. As we have seen in Observation 1.8, any path that may be prolonged
to a path of arbitrarily high length is zero. Reductions of the form x  0 are highly
desirable, since the ambiguities they generate are usually simple to solve. Obviously,
if x = 0, then yxz = 0 for all y, z, and so we are interested in finding only the shortest
paths that reduce to zero. Therefore, we perform the following steps:

1. Let n = 2.

2. Produce a list of all paths of length n.
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3. Apply rewriting rules to each path until either they are irreducible or they are
longer than zero_depth.

4. If a path x is equal to a path of length greater than zero_depth, add the rewriting
rule x 0.

5. If no path was found to reduce to zero, increase n by 1 and repeat steps 2 to 5.

We now generate the rewriting system associated to our pyramid:

sage : odd_rs = Rewriting_System ( odd_pyramid )
9 r u l e s added .
4 r u l e s added .
Tota l r u l e s : 33

As we can see, the program had to enlarge the set of rules twice before achieving conflu-
ence. Let us examine the quiver and its associated potential, which both were generated
automatically out of the triangulation:

sage : odd_rs . quiver . show ( )

sage : odd_rs . p o t e n t i a l
[ [ 8 , 5 , 6 , 8 ] ,

[ 3 , 4 , 6 , 3 ] ,
[ 0 , 3 , 5 , 7 , 1 , 0 ] ,
[ 7 , 8 , 9 , 7 ] ,
[ 1 , 9 , 2 , 1 ] ,
[ 4 , 0 , 2 , 4 ] ,
[ 0 , 2 , 1 , 0 ] ,
[ 0 , 3 , 4 , 0 ] ,
[ 3 , 5 , 6 , 3 ] ,
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[ 5 , 7 , 8 , 5 ] ,
[ 1 , 9 , 7 , 1 ] ,
[ 2 , 4 , 6 , 8 , 9 , 2 ] ]

As the output shows, there are five 3-cycles coming from the triangular faces, a 5-cycle
from the pentagonal face, five 3-cycles from punctures where three faces meet and an-
other 5-cycle from the puncture corresponding to the apex of the pyramid.

The confluent rewriting system found by the software is given by this set of 33 rules:
sage : odd_rs . r u l e s
{ ( 0 , 2 , 1 ) : −(0 , 3 , 5 , 7 , 1 ) ,

( 0 , 2 , 4 ) : −(0 , 3 , 4 ) ,
( 1 , 0 , 2 ) : −(1 , 9 , 2 ) ,
( 1 , 0 , 3 , 4 ) : ( 1 , 9 , 2 , 4 ) ,
( 1 , 0 , 3 , 5 , 6 ) : −(1 , 9 , 2 , 4 , 6 ) ,
( 1 , 0 , 3 , 5 , 7 , 8 ) : ( 1 , 9 , 2 , 4 , 6 , 8 ) ,
( 1 , 9 , 2 , 4 , 6 , 8 , 9 , 7 ) : ( 1 , 0 , 3 , 5 , 7 , 1 , 0 , 3 , 5 , 7 ) ,
( 1 , 9 , 7 ) : −(1 , 0 , 3 , 5 , 7 ) ,
( 2 , 1 , 0 ) : −(2 , 4 , 0 ) ,
( 2 , 1 , 9 ) : −(2 , 4 , 6 , 8 , 9 ) ,
( 3 , 4 , 0 ) : −(3 , 5 , 7 , 1 , 0 ) ,
( 3 , 4 , 6 ) : −(3 , 5 , 6 ) ,
( 4 , 0 , 2 ) : −(4 , 6 , 8 , 9 , 2 ) ,
( 4 , 0 , 3 ) : −(4 , 6 , 3 ) ,
( 5 , 6 , 3 ) : −(5 , 7 , 1 , 0 , 3 ) ,
( 5 , 6 , 8 ) : −(5 , 7 , 8 ) ,
( 5 , 7 , 1 , 0 , 3 , 4 ) : −(5 , 7 , 8 , 9 , 2 , 4 ) ,
( 6 , 3 , 4 ) : −(6 , 8 , 9 , 2 , 4 ) ,
( 6 , 3 , 5 ) : −(6 , 8 , 5 ) ,
( 6 , 8 , 9 , 2 , 4 , 0 ) : ( 6 , 8 , 9 , 7 , 1 , 0 ) ,
( 7 , 1 , 0 , 3 , 5 , 6 ) : ( 7 , 8 , 9 , 2 , 4 , 6 ) ,
( 7 , 1 , 9 ) : −(7 , 8 , 9 ) ,
( 7 , 8 , 5 ) : −(7 , 1 , 0 , 3 , 5 ) ,
( 7 , 8 , 9 , 7 ) : ( 7 , 1 , 0 , 3 , 5 , 7 ) ,
( 8 , 5 , 6 ) : −(8 , 9 , 2 , 4 , 6 ) ,
( 8 , 5 , 7 ) : −(8 , 9 , 7 ) ,
( 8 , 9 , 2 , 4 , 6 , 3 ) : −(8 , 9 , 7 , 1 , 0 , 3 ) ,
( 9 , 2 , 1 ) : −(9 , 7 , 1 ) ,
( 9 , 2 , 4 , 0 ) : ( 9 , 7 , 1 , 0 ) ,
( 9 , 2 , 4 , 6 , 3 ) : −(9 , 7 , 1 , 0 , 3 ) ,
( 9 , 2 , 4 , 6 , 8 , 5 ) : ( 9 , 7 , 1 , 0 , 3 , 5 ) ,
( 9 , 2 , 4 , 6 , 8 , 9 , 7 ) : −(9 , 7 , 1 , 0 , 3 , 5 , 7 ) ,
( 9 , 7 , 8 ) : −(9 , 2 , 4 , 6 , 8 ) }

Rules are stored as a dictionary, where keys are reducible monomials. The value asso-
ciated to a key is a Term object, which consists of a monomial and a sign, representing
the term into which the key reduces.

We may now compute the set of all irreducible paths up to a certain length. This is
performed by just filtering the list of all paths. For instance, we may produce the list of
all irreducible paths of length 4:
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sage : odd_rs . b a s i s ( 5 ) [−1]
[ [ 0 , 3 , 5 , 7 , 1 ] ,

[ 0 , 3 , 5 , 7 , 8 ] ,
[ 1 , 0 , 3 , 5 , 7 ] ,
[ 1 , 9 , 2 , 4 , 6 ] ,
[ 2 , 4 , 6 , 8 , 5 ] ,
[ 2 , 4 , 6 , 8 , 9 ] ,
[ 3 , 5 , 7 , 1 , 0 ] ,
[ 3 , 5 , 7 , 8 , 9 ] ,
[ 4 , 6 , 8 , 9 , 2 ] ,
[ 4 , 6 , 8 , 9 , 7 ] ,
[ 5 , 7 , 1 , 0 , 3 ] ,
[ 5 , 7 , 8 , 9 , 2 ] ,
[ 6 , 8 , 9 , 2 , 4 ] ,
[ 6 , 8 , 9 , 7 , 1 ] ,
[ 7 , 1 , 0 , 3 , 5 ] ,
[ 7 , 8 , 9 , 2 , 4 ] ,
[ 8 , 9 , 2 , 4 , 6 ] ,
[ 8 , 9 , 7 , 1 , 0 ] ,
[ 9 , 2 , 4 , 6 , 8 ] ,
[ 9 , 7 , 1 , 0 , 3 ] ]

The generating_function() method counts the number of irreducible paths up to a
specified length:

sage : odd_rs . genera t ing_funct ion ( 1 5 )
[ 1 0 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20]

Finally, we include a snippet that generates the triangulations corresponding to
prisms and antiprisms:

def prism ( n ) :
edges = { }
for i in xrange ( 1 , n ) :

edges [ i ] = [ i +1 , i +n ]
edges [ i +n ] = [ i +n+1]

edges [ n ] = [ 1 , 2∗n ]
edges [2∗n ] = [ n+1]
return Graph ( edges )

def ant ipr ism ( n ) :
edges = { }
for i in xrange ( 1 , n ) :

edges [ i ] = [ i +1 , i +n ]
edges [ i +n ] = [ i +n+1 , i +1]

edges [ n ] = [ 1 , 2∗n ]
edges [2∗n ] = [ 1 , n+1]
return Graph ( edges )
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