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Introducción

En este trabajo estudiamos una familia de potenciales de Calabi-Yau construidos a partir
de objectos combinatorios muy ricos, los sistemas de Steiner. Estudiamos algunas de las
propiedades homológicas de las álgebras obtenidas y la forma en la que se relacionan
con la combinatoria del objecto inicial en consideración.

La construcción es una generalización de la hecha por Mariano Suárez-Alvarez para
sistemas triples en [SA13], que a su vez se basa en un álgebra presentada por S. Paul
Smith en [SPS11].

Para cada sistema de Steiner S de tipo (s, s + 1, n) tenemos una función de un
espacio afín de parámetros P hacia álgebras conexas asociativas. La idea central de
la construcción es considerar álgebras obtenidas a partir de potenciales, pero solo
permitiendo polinomios con monomios de la forma xi1 . . . xis+1 donde {i1, i2, . . . , is+1} es
un bloque en S. De esa forma, el potencial considerado contiene toda la estructura del
sistema. El conjunto de todos los potenciales con estas características es el espacio afín
de parámetros al cual nos referimos. Este teorema resume algunos de los resultados que
enunciamos y probamos en este trabajo.

Teorema. Sea S un sistema de Steiner de tipo (s, s + 1, n). Para todos los potenciales Φ en un
abierto Zariski del espacio de parámetros, el álgebra correspondiente A(S, Φ) satisface:

(i) Su serie de Hilbert es

hA(t) =
1

1− nt + nts − ts+1 .

(ii) Se trata de un álgebra central, es decir, los únicos elementos en el centro son los escalares
del cuerpo de base.

(iii) Es un álgebra 3-Calabi-Yau, Gorenstein y Koszul generalizado.
Esto resume el contenido de los teoremas 2.3, 4.1 y 5.2 que probamos en las siguientes

secciones. Podemos ilustrar este resultado en el diagrama:{
Sistemas de Steiner
de tipo (s,s+1,n) × P

} A(−) //
{

Álgebras asociativas
graduadas conexas

}
{

Sistemas de Steiner
de tipo (s,s+1,n) ×U

}
� //

?�

OO {
Álgebras 3-CY,

Gorenstein y s-Koszul

}?�

OO

Este trabajo está organizado de la siguiente manera. Comenzamos introduciendo
los conceptos preliminares principales que son usados en la tesis. En la sección 2 pre-
sentamos la construcción del álgebra A(S, Φ) en detalle y en las secciones subsiguientes
continuamos estudiando algunas propiedades homológicas de las álgebras obtenidas.
En la sección 9 presentamos algunos ejemplos diversos. En el apéndice A recordamos
algunas propiedades combinatorias de los sistemas de Steiner que necesitamos y en el
apéndice B incluimos un programa en Python para calcular algunos de los objetos que
aparecen a los largo del trabajo.
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Creemos que aún queda mucho para profundizar en el trabajo. Entre otras cosas,
de la misma forma que sucede para sistemas triples, nos preguntamos si las álgebras
obtenidas son coherentes y si son dominios en el caso general. También nos gustaría
mejorar los algoritmos para encontrar más ejemplos de sistemas donde existan elecciones
de coeficientes con muchas derivaciones. Mas allá de eso, continuar el estudio de las
propiedades homológicas con el objetivo de encontrar invariantes de los sistemas que
se puedan recuperar en el álgebra y por último, idealmente, buscar formulaciones
algebraicas de los resultados negativos de existencia que se conocen para sistemas de
ciertos tipos.
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Introduction

In this work we study a family of Calabi-Yau potentials constructed from a very rich
combinatorial object, Steiner systems. We study some homological properties of the
algebras obtained and the way in which they relate to the combinatorics of the initial
object in consideration.

The construction is a generalization of the one made by Mariano Suárez-Alvarez for
triple systems in [SA13], which is in turn is a generalization of an algebra introduced by
S. Paul Smith in [SPS11].

For each Steiner system S of type (s, s+ 1, n) we have a map from an affine space P of
parameters to graded connected associative algebras. The core idea of the construction
is to consider algebras obtained from potentials, but only allowing polynomials with
monomials of the form xi1 . . . xis+1 where {i1, i2, . . . , is+1} is a block in S. In that way, the
potential in question encodes the whole structure of the Steiner system. The set of all
such potential is the affine space of parameters. The following theorem summarizes
some of the results we state and prove in this work.

Theorem. Let S be a Steiner system of type (s, s + 1, n). For all potentials Φ in a Zariski open
set of the space of parameters, the corresponding algebra A(S, Φ) has the following properties:

(i) Its Hilbert series is

hA(t) =
1

1− nt + nts − ts+1 .

(ii) It is a central algebra, that is, the only elements in the center are the scalars in the ground
field.

(iii) It is a 3-Calabi-Yau, Gorenstein and generalized Koszul algebra.
This summarizes the content of propositions 2.3, 4.1 and 5.2 that are proven in the

thesis. We can illustrate this last result in the diagram:{
Steiner systems

of type (s,s+1,n)× P
} A(−) //

{
Graded connected

associative algebras

}
{

Steiner systems
of type (s,s+1,n)×U

}
� //

?�

OO {
3-CY, Gorenstein
s-Koszul algebras

}?�

OO

This work is organized in the following way. We begin by introducing the main
concepts that are visited through this work. In section 2 we present the construction of
the algebra A(S, Φ) in detail, and continue to study some homological properties in the
subsequent sections. Finally, we present some diverse examples from section 9 until the
end of the document. In appendix A we recall some combinatorial properties of Steiner
systems that we need, and in appendix B we also include a Python program to compute
some of the objects that arise in the construction.
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We believe there is still much work to do in this area. Among other things, as it
happens with triple systems, we wonder if the algebras we obtain are coherent, and if
they are domains in the general case. We would also like to improve the algorithms we
have, to find more examples of systems where we can choose coefficients so that we
have lots of derivations. We want to continue the study of the homological properties,
in order to find invariants of systems that we can recover in the algebra and finally,
ideally, search for algebraic formulations of negative existence results that are known for
systems of certain types.
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1 Preliminaries

1.1 Steiner Systems

A (t, k, n)-Steiner System is a pair (E, S) in which E is a non-empty finite set of points, and
S a set of k-subsets of E, the blocks, such that every t-subset of E is contained in exactly
one block. The number n = |E| is the order of the system; we will assume throughout
that n ≥ t. With a bit of abuse of language, we will refer to S as the Steiner system.

Special cases among these are (2, 3, n) and (3, 4, n) which are called Steiner triple and
Steiner quadruple systems respectively. Those are the main source of our examples.

As Suárez-Alvarez [SA13] focuses on triple systems, our purpose is to generalize his
construction to bigger systems, with the constraint that t + 1 = k: thus we are going to
focus in the case (s, s + 1, n) with 2 ≤ s ≤ n− 1 and from now on (E, S) will be a Steiner
system of that type. In that case we can define a unique operation ? : (E

s)→ E such that
for all {x1, x2, . . . xs} ∈ (E

s), we have:

{x1, x2, . . . xs, ?(x1, x2, . . . xs)} ∈ S.

1.1. Example (The unique cuadruple system of order 8). Let E = F2
3 which we can

identify with the unit cube and

S =

{
{vi}1≤i≤4 :

4

∑
i=1

vi = 0

}
=

 , . . .︸ ︷︷ ︸
6 of these

, , . . .︸ ︷︷ ︸
6 of these

, , . . .︸ ︷︷ ︸
2 of these


This is an example of a cuadruple system. Let us check that it satisfies the condition. Let
v1, v2, v3 ∈ E be three distinct points in E. There is a unique v4, namely v1 + v2 + v3, such
that ∑4

i=1 vi = 0, but it could coincide with one of the other three. Yet if, for example
v4 = v3, then we have v1 + v2 = 0, which contradicts our original assumption.

1.2. Example (W12: The unique (5, 6, 12)-system). Let E = P2(F11) ∼= {0, . . . , 10, ∞} and
B = {0, 1, 3, 4, 5, 9} the set of squares in F11. The group

G = PGL2 (F11) =

{
z 7→ az + b

cz + d
: a, b, c, d ∈ F11, ad− bc 6= 0

}
acts on E and we let S be the orbit of B under G. It can be proved by inspection that
(E, S) is a Steiner system with automorphism group the Mathieu group M12.

Very little is known about the existence of Steiner systems of a given type. In our
case of interest (s, s + 1, n) it is known that a necessary condition is n ≡ s± 1 mod 6. In
appendix A we discuss this and some other necessary conditions.

1.3. Theorem. [CD06] For triple and cuadruple systems this condition is also sufficient.
In the case of triple systems, this is a celebrated theorem of Reverend Thomas

Kirkman [Kir47]. There are 1, 1, 2, 80, and 11 084 874 829 non-isomorphic Steiner triple

1



systems of order 7, 9, 13, 15 and 19, respectively; and 1, 1, 4, and 1 054 163 non-isomorphic
Steiner cuadruple systems of order 8, 10, 14 and 16; see sequences A030129 and A124119
in Sloane’s database [Slo08] and the references therein.

However, as of 2013, it is an open problem in the field of Combinatorics to find
sufficient conditions when s ≥ 4 and, moreover, it is not known whether any system
exists if s ≥ 6. This is why we believe it may be useful to find connections between
systems and algebraic objects which we know in depth.

1.2 Algebras derived from potentials

Throughout this work we construct a family of Calabi-Yau algebras. This sort of algebras
arises naturally in the geometry of Calabi-Yau manifolds and it appears when one tries
to do noncommutative geometry.

As shown by Ginzburg [Gin06], numerous concrete examples of Calabi-Yau algebras
are found “in nature”, and in most cases they arise as a certain quotient of the free
associative algebra in the way described below. We refer the reader to Bocklandt’s work
in [Boc08] for a deeper approach on the subject.

Fix k a ground field of characteristic zero; all tensor products are over k unless we
say otherwise. Let V be a finite dimensional vector space and let X = {x1, x2, . . . , xn}
be a basis of V. We denote by T(V) the tensor unital algebra of V. The basis of T(V)
consisting in non-commutative monomials in x1, . . . , xn is denoted 〈X〉. The set 〈X〉 is a
semigroup and we can see T(V) as its semigroup algebra.

We have a Zn-grading in k〈X〉 such that xi is in degree ei, the ith canonical basis
vector. A second, useful grading is the Z-grading, which is such that xi is in degree
1 for all 1 ≤ i ≤ n. It is also known as the length grading. Unlike the first one, it
does not depend on the choice of a basis and, unless said otherwise, when we talk of
homogeneous elements, we will be referring to the length grading. If w ∈ 〈X〉 has length
d, we will write |w| = d.

A polynomial is called multi-linear if it is homogeneous of degree (1, . . . , 1) = ∑n
i=1 ei.

Similarly we call a polynomial sub-linear if no monomials with repeated variables appear
in it or, equivalently, if it lies in⊕

0≤di≤1 ∀i

k〈X〉(d1,...,dn)
.

Definition. For each x ∈ X the cyclic derivative with respect to x is the vector space morphism
∂x : k〈X〉 → k〈X〉 such that if φ = x1x2 . . . xk is monomial,

∂xφ = ∑
1≤i≤k
xi=x

xi+1 . . . xkx1 . . . xi−1 = ∑
φ=uxv

vu.

While the cyclic derivative ∂xΦ depends heavily on the choice of a basis and not only
on the element x ∈ V, the space generated by all the cyclic derivatives does not. Indeed,
we have the following lemma.

2
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Lemma. If v ∈ T(V), and {xi}1≤i≤n and {yj}1≤j≤n are bases of V, then

〈∂xi v〉1≤i≤n = 〈∂yj v〉1≤j≤n

Proof. Assume for now v = v1v2 . . . vk . . . vn ∈ T(V) is a monomial. Consider {φi} and
{ψj}, the dual bases of {xi} and {yj} respectively, and the matrix g = (gi,j) such that
ψj = ∑n

i=1 gi,jφi. With that notation we have

∂xi v = ∑
u∈V

w1uw2=v

φi(u)w2w1,

which allows us to write

∂yj v = ∑
u∈V

w1uw2=v

ψj(u)w2w1 = ∑
u∈V

w1uw2=v

n

∑
i=1

gi,jφi(u)w2w1 =
n

∑
i=1

gi,j∂xi v.

This extends linearly to every element v ∈ T(V) and proves the lemma.

Let Cd be the cyclic group of order d, and let σ be a generator. We consider the action
of Cd on V⊗d such that σ · (x1x2 . . . xd) = (x2 . . . xdx1). It is easy to see that ∂x ◦ σ = ∂x
for each x ∈ X. If follows immediately from this that ∂xΦ = 0 if Φ ∈ [V, V⊗(d−1)], and
therefore ∂x induces a morphism(

T(V)

[T(V), T(V)]

)
d
=

V⊗d

[V, V⊗(d−1)]
→ T(V).

All this maps taken together give a map

∂x :
T(V)

[T(V), T(V)]
→ T(V).

Two homogeneous polynomials that lie in the same orbit of the action of Cd are
called conjugate. Since k has characteristic zero, among the possible representatives for a
d-homogeneous polynomial we can consider one which is fixed under the action of Cd.
It can be obtained by means of the linear map c : V⊗d → V⊗d such that

c(w) =
1
d ∑

uv=w
vu =

1
d ∑

1≤i≤n
σiw

for each monomial w of degree d. Elements which are invariant under the action of Cd
are called cyclic.

1.4. Lemma (Non-commutative Euler relation). Let Φ ∈ k〈X〉 be a homogeneous cyclic
polynomial of degree d. Then

∑
x∈X

x · ∂xΦ = dΦ = ∑
x∈X

∂xΦ · x. (1)

3



Proof. We may assume by linearity that Φ = c(v) for v ∈ 〈X〉 a monomial of length
d. Let e ≥ 1 and u ∈ 〈X〉 be such that v = ue and e is maximal. All conjugates of v
appear exactly e times when considering all d possible rotations, and the coefficient of
every monomial in dΦ is e. Every conjugate w of v starting (respectively, ending) with x
also appears with coefficient e on the left (right) hand side, recalling that ∂xc(v) = ∂xv.
Finally, every monomial in Φ starts (ends) with one and only one element in X. All this
implies that the identity holds.

The converse is also true, in the following sense.

1.5. Lemma. If (rx)x∈X are homogeneous polynomials of degree d such that

∑
x∈X

[rx, x] = 0

then Φ = ∑x∈X xrx is a cyclic polynomial, and ∂xΦ = drx for all x ∈ X.
This can be viewed as a non-commutative version of the Poincare lemma.

Proof. Consider the unique linear map α : V ⊗ k〈X〉 → k〈X〉 such that

α(x⊗ p) = [x, p], for all x ∈ X.

Fix d > 0. At degree d the domain and codomain of α have the same dimension, so ker αd
and coker αd must also have the same dimension. The dimension of coker αd corresponds
to the dimension of the space of cyclic polynomials of degree d, because dividing out by
commutators is the same as identifying conjugate monomials. But the Euler relation (1)
implies that for each cyclic polynomial Φ of degree d + 1, then ∑x∈X x⊗ ∂xΦ belongs
to ker αd. Note that two different cyclic polynomials yield different elements in the
kernel, because the Euler relation allows us to reconstruct the polynomial from its cyclic
derivatives.

As a consequence, we have one element in the kernel for every cyclic polynomial in
degree d + 1, but as dimensions match, those elements generate the whole kernel. This
is exactly the statement of the lemma.

Definition. If Φ ∈ T(V) we put

AΦ =
T(V)

〈∂xi Φ〉1≤i≤n

and we refer to Φ as a potential of AΦ and say that the algebra AΦ is derived from Φ.
As mentioned above, in the proper sense, “most” Calabi-Yau algebras of dimension

3 arise in this way from potentials. However, it is very difficult to tell a priori whether a
potential Φ will generate such an algebra; when this is the case we say the potential is
Calabi-Yau. The problem of determining if a potential is Calabi-Yau has been addressed
in depth by Berger and Solotar in [BS13].
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1.3 Monomial orders

We denoted 〈X〉 the set of monomials that generates T(V) as a vector space. We can talk
of monomials as words in the alphabet X, left and right divisors as prefixes and suffixes
respectively. If a word u appears with non-zero coefficient in a polynomial p ∈ k〈X〉 we
will write u ∈ p, or simply say that u appears in p.

Definition. A monomial order is a total order on 〈X〉 satisfying:
(i) The multiplicative property:

For all a, b, c and d ∈ 〈X〉 such that a � b then cad � cbd.

(ii) The decreasing chain condition:

No infinite decreasing sequence w1 � w2 � . . . exists.

If p ∈ k〈X〉 we write tip(p) the maximum among the monomials that appear in p.
If p and q ∈ k〈X〉 then tip(pq) = tip(p)tip(q); this is consequence of the multiplicative
and transitive properties.

We use monomial orders in this work in order to find explicit bases of the algebras
under study via the reduction systems in Bergman’s Diamond Lemma [Ber78]. In
fact, only one such order will be considered: the length-lexicographic order. The way to
construct it is to fix a total order on the set of letters X, and then for any given two words
in v, w ∈ 〈X〉 we put v ≺ w if

• |v| < |w| or,
• |v| = |w| and v is smaller in the lexicographical order obtained from the total order

on X, that is, the first different letter (from left to right) is bigger in w.
The fact that ≺ is multiplicative can be seen by observing that when comparing two
words, common prefixes (or suffixes) can be canceled out. The chain condition holds
since the length grading in 〈X〉 is locally finite.

1.4 Koszulity

Our general reference in the field of homological algebra and the theory of derived
functors is Weibel’s book [Wei94].

Let A be a connected non-negatively graded algebra. Let A+ ⊆ A be the ideal
generated by homogeneous elements of positive degree, and let us identify k with the
quotient A/A+. A graded left A-module is bounded below if for some n0, Mn = 0 for all
n < n0. We write Mod+A the full subcategory of the category of graded modules with
degree preserving homomorphisms spanned by bounded below modules. This is an
abelian category. We begin by going over some widely known facts about the category
Mod+A , which can be traced back to Cartan seminar in [Car58]

1.6. Lemma (Nakayama). If M is a module in Mod+A and A+M = M or, equivalently, if
k⊗A M = 0, then M = 0.

5



Proof. To reach a contradiction, let n0 = min {n ∈ Z : Mn 6= 0} and let m ∈ Mn0 \ {0}.
Then m ∈ A+M = ∑n∈N An Mn0−n = 0 and this is absurd.

1.7. Lemma. If M is a module in Mod+A and j : M/A+M → M is a homogeneous degree
preserving k-linear retraction of the quotient, then the map ̄ : A⊗ (M/A+M)→ M such that
̄(a⊗m) = aj(m) is surjective.

Proof. The map ̄ is surjective in sufficiently low degrees because M is bounded below.
Let d ∈ Z and assume that ̄k is surjective for each k < d. Let us consider the following
diagram of vector spaces:

(A⊗ (M/A+M))d

̄d
�� ))

0 // (A+M)d
� � // Md // // (M/A+M)d // 0

Any element in (A+M)d is in the image of ̄d by the inductive hypothesis. Then ̄d is
surjective if the dotted arrow is surjective, and it is by construction.

The shift M(l) of a module M has the same module structure but the grading is
such that M(l)n = M(l + n). A module M is said to be graded free if M has a basis of
homogeneous elements or, equivalently, if M is isomorphic to a direct sum of shifts A(li)
where the li are bounded below. With this setting we can state the first fact.

Proposition. A module M is projective in Mod+A if and only if M is graded free.

Proof. If M is graded free the fact that it is projective can be easily checked, just as in the
non-graded setting. Let us prove the converse.

Let P be a projective object in the category. Let j : P/A+P→ P be a k-linear retraction
of the quotient, and let ̄ be the epimorphism constructed in the previous lemma. As
P is projective it is then isomorphic to a direct summand of A⊗ (P/A+P). Let Q be a
graded A-module such that

P⊕Q ∼= A⊗ (P/A+P). (2)

To prove that Q = 0, in view of Nakayama lemma, it suffices to see that k⊗A Q = 0.
Applying the functor k⊗A − to equation (2) and observing that the first projection
k⊗A ̄ is the identity we obtain the desired result.

A surjective morphism f : N → M is called essential if, for any morphism g : X → N
with f ◦ g surjective, g is surjective. An essential surjective morphism f : N → M with
N projective is called a projective cover of M in the graded category.

1.8. Lemma. A morphism f : N → M is surjective (respectively, essential) if and only if the
induced map f̂ : k⊗A N → k⊗A M is surjective (bijective).
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Proof. If f is surjective, then f̂ is surjective since k⊗A (−) is right exact. The converse
follows from the Nakayama lemma applied to f (N), that satisfies f (N) + A+M = M.

If f is essential it is surjective and, because of the first part, we can choose a homoge-
neous k-linear retraction i : k⊗A M→ k⊗A N. As A+k = 0, i is actually A-linear and
i(k⊗A M) ⊆ k⊗A N is a submodule. If we denote π : N → k⊗A N the natural projec-
tion, then R = π−1 (i (k⊗A M)) is a submodule of N that satisfies f (R) + A+M = M.
Again by the Nakayama lemma f (R) = M and, since f is essential, we have R = N,
which implies i is surjective and f̂ is an isomorphism, as desired.

R �
� // N

π
����

f // M

τ
����

k⊗A N
f̂
.. k⊗A M

i
mm

(3)

To prove the converse first we observe that the projection π is essential, once again
applying the Nakayama lemma. Standard categoric diagram chasing proves that com-
position of essential morphisms is again essential and that whenever p ◦ q and p are
essential, then q is essential as well. We can apply these facts to the commutative diagram
of A-modules (3). As f̂ is an isomorphism by hypothesis, f̂ ◦ π = τ ◦ f is essential and,
since τ is also essential, the lemma is proved.

A corollary of this lemma is that k⊗A (−) reflects exact sequences, indeed:

1.9. Corollary. The complex of left A-modules in Mod+A

P
g // M

f // N

is exact if

k⊗A P
ĝ // k⊗A M

f̂ // k⊗A N

is exact.

Proof. By hypothesis, we know ĝ co-restricted to ker f̂ is surjective. Also it is clear
that im(ĝ) = k⊗A im(g) and k⊗A ker f ⊆ ker( f̂ ). Therefore im ĝ ⊆ k⊗A ker f and
the corresponding co-rectriction is surjective as well. Finally lemma 1.8 implies that
ker f ⊆ im g and we are done.

The second fact we need is:

Proposition. Any module M has a projective cover in Mod+A , unique up to a non-unique
isomorphism.
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Proof. According to lemma 1.7, there is a surjective morphism ̄ : A⊗ (M/A+M)→ M.
Using lemma 1.8, ̄ is essential because k⊗ ̄ is the identity. Since the A⊗ (M/A+M) is
graded free, it is a projective cover of M.

For the uniqueness part, if f : P→ M and g : Q→ M are projective covers, then as
P is projective and g surjective, there exists a map f̄ : P→ Q such that g ◦ f̄ = f . Then f̄
is also a projective cover. By symmetry, we can construct a projective cover ḡ : Q→ P.
Hence q = f̄ ◦ ḡ and p = ḡ ◦ f̄ are projective covers of Q and P respectively.

The fact that idk⊗A q is a bijection and identifying Q with A⊗ (k⊗A Q) we find that
q is also a bijection; the same applies to p. This implies f̄ and ḡ are isomorphisms.

An immediate consequence of the last result is that any M has a projective resolution
in the graded category.

P•
d• // M // // 0

which is minimal, that is, each surjective morphism di : Pi → im(di) induced by di
is essential. Every two minimal projective resolutions of M are isomorphic, but the
isomorphism is non-unique, and any projective resolution of M contains a minimal one
as direct summand.

1.10. Definition. A module M such that there exists l satisfying M = Ml is said to be concen-
trated in degree l. Similarly, a module M such that there exists l satisfying M = A ·Ml is said
to be pure in degree l.

In both cases, l is uniquely determined if M 6= 0. Concentrated in degree l implies
pure in degree l. Any module concentrated in degree l is isomorphic to a direct sum of
shifts k(−l). Any projective module M pure in degree l is isomorphic to a direct sum of
shifts A(−l) and is isomorphic to A⊗Ml , where Ml is considered as a module concen-
trated in degree l. Note that the objects which are simple (respectively, indecomposable
projective) in the graded category are exactly the modules k(−l) (respectively, A(−l),
l ∈ Z. The next result is a criterion of essentiality in the pure situation.

1.11. Proposition. Let f : M → M′ a surjective morphism in the graded category. Assume
that M is pure in degree l. Then M′ is pure in degree l. Moreover, f is essential if and only if the
linear map fl : Ml → M′l induced by f is bijective.

Proof. The first assertion is clear. Let us prove the second assertion. As stated in
lemma 1.8, f is essential if and only if the linear map f̂ : k⊗A M→ k⊗A M′ naturally
defined by f is bijective. But purity implies that k⊗A M and k⊗A M′ are canonically
identified to Ml and M′l respectively, so that f̂ becomes fl in this identification.

Priddy introduced Koszul complexes in [Pri70] for quadratic augmented algebras
which turn out to be projective resolutions for a large class of such algebras. If the
Koszul complex is in fact exact, the algebra is said to be Koszul. Berger generalized
this concept in [Ber01] to homogeneous augmented algebras generated in degree one,
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not necesarilly quadratic, as algebras having a pure resolution of the ground field, the
same thing that happens in the quadratic case. We need not say that having a simple
and small projective resolution comes in handy for the computation of the Hochschild
homology and cohomology of the algebra.

Let V be a finite dimensional vector space, s ≥ 2 and R ⊆ V⊗s, a space which
we call the space of relations. Then A = T(V)/(R) is an augmented homogeneous
k-algebra. We say that A is an s-homogeneous algebra. We write I = (R), the two sided
ideal in T(V) generated by R, which is graded by the subspaces In given by In = 0 if
0 ≤ n ≤ s− 1 and

In = ∑
i+j+s=n

V⊗i ⊗ R⊗V⊗j, n ≥ s.

The algebra A is graded by the subspaces An = V⊗n/In; clearly An = V⊗n for n < s.
We define vector spaces Jn concentrated in degree n by Jn = V⊗n if 0 ≤ n ≤ s− 1 and

Jn =
⋂

i+j+s=n

V⊗i ⊗ R⊗V⊗j, n ≥ s.

Now we want to know if it is possible to construct a pure resolution of k, the trivial
left A-module. The natural projection ε : A → k is a projective cover of k and its
kernel is pure in degree 1 with (ker ε)1 = V. A projective cover of ker ε is the morphism
A ⊗ V → ker ε induced by the inclusion of V in ker ε. Including ker ε in A, we get
δ1 : A⊗ V → A defined by ā⊗ v 7→ āv, where ā denotes the class of an element a of
T(V) in A and v ∈ V. Clearly ker δ1 vanishes in degree < s and is exactly R in degree s.
For n ≥ s, the equality

(ker δ1)n =
In−1 ⊗V + V⊗n−s ⊗ R

In−1 ⊗V

shows that ker δ1 is pure in degree s. A projective cover of ker δ1 is A ⊗ R → ker δ1
induced by the inclusion of R in ker δ1. From the inclusion ker δ1 ⊆ A ⊗ V, we get
δ2 : A⊗ R → A⊗ V defined by the restriction of the linear map ā⊗ v⊗ w 7→ āv⊗ w,
where v ∈ V⊗(s−1) and w ∈ V.

We can thus begin a pure resolution

A⊗ Js
δ2 // A⊗ J1

δ1 // A⊗ J0
ε // // k (4)

We consider the function n : N→ N such that n(2j) = js and n(2j + 1) = js + 1 for
j ≥ 2, and we define Ki = A⊗ Jn(i) for each i ≥ 0. There is a pure complex (Ki)i≥0 with
differentials δi induced by the inclusions

Jn(i+1) ⊆ V⊗n(i+1)−n(i) ⊗ Jn(i) ⊆ A⊗ Jn(i) = Ki.

It is indeed a complex: δ2(1A ⊗ Jn(i+2)) vanishes since Jn(i+2) ⊆ R⊗ Jn(i). This complex
is called the (left) Koszul complex of the trivial left module Ak.
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1.12. Definition. An s-homogeneous algebra A is said to be (generalized) Koszul if the graded
vector space TorA

i (k,k) is pure in degree n(i) for all i ≥ 3.

1.13. Theorem. [Ber01] Let A = T(V)/I be an s-homogeneous algebra on V, with R as space
of relations. Then A is Koszul if and only if the Koszul complex (K•, δ) is exact.

Observe that if P• is a minimal complex of left bounded A-modules, then the differ-
entials of k⊗A P• vanish. Hence P• is pure if and only if H•(P) is pure. This is because
whenever applying the functor k⊗A (−) to an exact sequence

0 // P �
� i // M π // // N // 0

we have im(idk ⊗ i) ⊆ ker(idk ⊗ π), so idk ⊗ i = 0 if π is essential. All differentials of
P• factor through an inclusion such as the one described above.

Proof. If the Koszul complex is exact, it is a resolution of the ground field k, and applying
the functor k⊗A (−) we obtain a graded complex k⊗A K•. Because Ki is generated
in degree n(i), the complex k⊗A K• is concentrated in degree n(i), and the homology
of that complex also has to be concentrated in the same degrees. This means that A is
Koszul.

Conversely, assume TorA
i (k,k) is pure in degree n(i) for any i ≥ 3. We can begin a

pure resolution of k as in (4) and if 1 ≤ m ≤ s− 1, we have

(ker δ2)s+m = (V⊗m ⊗ R) ∩ (R⊗V⊗m + · · ·+ V⊗m−1 ⊗ R⊗V)

which obviously contains V⊗(s−1) ⊗ Js+1. As TorA
3 (k,k) is pure in degree s + 1 = n(3),

as observed above, we necessarily have that ker δ2 is generated by its homogeneous com-
ponent (ker δ2)s+1 = Js+1. One particular consequence of this is that for 2 ≤ m ≤ s− 1,

(V⊗m ⊗ R) ∩ (R⊗V⊗m) ⊆ V⊗m−1 ⊗ R⊗V. (5)

We will proceed by induction to prove the exactness of the Koszul complex (K•, δ).
Assume that it is exact for all degrees 1 ≤ j < i for some i ≥ 2. We know that
k⊗A ker δi

∼= TorA
i+1(k,k), and by assumption this is pure in degree n(i + 1): it follows

that ker δi is generated by

(ker δi)n(i+1) = R⊗V⊗n(i−1) ∩V⊗n(i+1)−n(i) ⊗ Jn(i). (6)

When i is even, n(i + 1)− n(i) = 1 and the intersection (6) equals Jn(i+1); however, when
i is odd, this is not so clear. Using equation (5), one can prove inductively that for all
2 ≤ m ≤ s− 1

(ker δi)n(i+1) ⊆ R⊗V⊗n(i−1) ∩V⊗m⊗ R⊗V⊗n(i−1)−m ⊆ V⊗m−1⊗ R⊗V⊗n(i−1)+1−m

and we conclude that (ker δi)n(i+1) = Jn(i+1), the same as in the even case. Again by the
hypothesis on the Tor group, ker δi = A · (ker δi)n(i+1) = A · Jn(i+1), and this coincides
with im δi+1: this means that the Koszul complex is exact in degree i, completing the
induction, and therefore we are done.
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We have talked long about resolutions of the ground field but, in order to compute
the Hochschild homology and cohomology, we need a bimodule projective resolution of
A. We will devote the last part of this section to the construction of such a resolution
when A is Koszul.

We will now consider the category of left-bounded graded A-A-bimodules, naturally
identified, as usual, with the category of left-bounded graded left Ae = A⊗ Aop modules.
The definition of pure, concentrated and graded-free modules are the ones inherited
from this identification. The graded Nakayama lemma for this category states:

1.14. Lemma. If M is bimodule and k⊗A M⊗A k vanishes, then so does M.
As proved in 1.8, a direct corollary of this lemma is:

1.15. Corollary. A morphism of bimodules f is surjective (respectively, essential) if and only if
the induced map f̂ = idk ⊗A f ⊗A idk is surjective (bijective).

In order to construct a bimodule complex of A let us first look a little deeper into
the construction of the left Koszul complex (KL, δL). Consider the left A-linear map
γL,n : A ⊗ Jn → A ⊗ Jn−1 for each n ∈ N defined as before by the natural inclusion
Jn ⊆ A⊗ Jn−1. It is clear that γs

L = 0 and δL,i = γs−1
L or γL whether i is even or odd,

where the sub-indexes of γL are chosen in the correct degrees.
The tool used to construct δL from γL is a generalization of complexes denoted in the

literature as s-complexes. We refer the reader to [BDVW02] for more information on the
subject.

Symmetrically, we can construct a map of right A-modules γR,n : Jn ⊗ A→ Jn−1 ⊗ A
for each n ∈ N defined by the natural inclusion Jn ⊆ Jn−1⊗ A. In the same way, we have
that γs

R = 0.
The morphisms of bimodules γL ⊗ idA and idA ⊗ γR define maps which we will

denote δ′L and δ′R respectively. Observe that δ′L ⊗A 1k = γL ⊗ idA ⊗A idk ∼= γL and that
δ′R ⊗A idk = idA ⊗ γR ⊗A idk = 0. This will be useful in the proof of out next theorem.

We can now introduce the augmented bimodule Koszul complex, which extends the
multiplication µ : A⊗ A→ A and is defined as:

KLR,i = A⊗ Jn(i) ⊗ A,

with differential

δi = δ′L − δ′R

if i is odd and

δi = δ′L
s−1

+ δ′L
s−2

δ′R + . . . δ′Lδ′R
s−2

+ δ′R
s−1,

if i is even. We obtained a pure projective complex in the category of bimodules. The
fact that δ′L and δ′R commute implies that δ2 is indeed 0.
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1.16. Theorem. Let A be an s homogeneous algebra on V. The augmented bimodule Koszul
complex

. . .
δ3−→ KLR,2

δ2−→ KLR,1
δ1−→ KLR,0

µ−→ A

is exact if and only if A is Koszul.

Proof. Assume that A is Koszul. The complex KLR ⊗A k is isomorphic to KL as left
A-modules, which is exact by Theorem 1.13. Using lemma 1.9 we can conclude that KLR
itself is exact.

Let us prove the converse. We know that the complex KLR is projective resolution of
A in the category of right A-modules, but as A is free as a right A-module, this projective
resolution has to be null-homotopic and its exactness is preserved by any functor. In
particular KL ∼= KLR ⊗A k is exact and, by Theorem 1.13, A is Koszul.

As a corollary, we obtained a symmetric condition for an algebra to be Koszul, so the
left Koszul complex is exact iff the right Koszul complex is exact.
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2 The algebra A(S)

We fix a Steiner system (E, S) of type (s, s + 1, n); we assume whenever it is convenient
that E = {1, . . . , n}. We fix a ground field k of characteristic zero and consider the vector
space V freely spanned by a set X = {xi : i ∈ E} of formal variables indexed by the ele-
ments of E, let T(V) be the free algebra on V, and for each block B = {i1, i2, . . . , is+1} ∈ S
we choose a non-zero cyclic polynomial φB multi-linear in the variables xi1 , xi2 , . . . , xis+1

homogeneous of degree s + 1. Let

Φ = ΦS = ∑
B∈S

φB ∈ Ts+1(V). (7)

For every tuple (i1, i2, . . . , is+1) ∈ Es+1 we define ε i1,i2,...,is+1 as the coefficient of the
monomial xi1 xi2 . . . xis+1 in Φ. Note that it can only be non-zero if {i1, i2, . . . , is+1} is a
block and, as Φ, it is cyclic, so that ε i1,i2,...,is+1 = ε is+1,i1,i2,...,is . For simplicity we can also
define:

ε i1,...,is =

{
0, if |{i1, . . . , is}| ≤ s;

ε i1,...,is,?(i1,...,is), in any other case.

In some wide sense the choice of the ε− corresponds to a “coloring” of the Steiner system,
by assigning a number to the cyclic permutations of each block. The main object studied
in this work is the algebra A = A(S, Φ) which is the quotient of T(V) by the ideal
I = I(S, Φ) generated by the scaled cyclic derivatives

rk = rS
k =

1
s + 1

∂xk Φ = ∑
i1,...,is∈E

εk,i1,...,is xi1 xi2 . . . xis , k ∈ E,

as in [Kon93] or [Gin06]. We let R = RS ⊆ Ts(V) be the subspace spanned by r1, . . . , rn,
so that I = (R). The defining relations are homogeneous of degree s, so A is an N0-
graded algebra.

By construction a sub-linear monomial xi1 xi2 . . . xis of length s may only appear in
the relation r?(i1,...,is). This is the key reason for choosing Steiner systems: the support of
ri and rj in terms of the basis 〈X〉 of T(V), are disjoint whenever i 6= j. In particular, this
and the fact that they are non-zero, imply that the set of the ri is linearly independent.

We want to obtain a basis of A(S) to compute the Hilbert series explicitly. For the
algebra A(S) to have the properties we are looking for, we are going to need some
genericity conditions.

2.1. Definition. A cyclic potential Φ ∈ k〈X〉 will be called t-sincere if for every tuple of distinct
elements i1, . . . , it ∈ E there is a monomial w ∈ Φ with xi . . . xt as a prefix.

Observe that as the potential in consideration is cyclic, the definition remains equiva-
lent when changing prefixes for suffixes.

In the case of Steiner triple systems, when s = 2, requiring potentials to be 2-sincere
is the same as stating that xixjxk appears in Φ for every block {i, j, k} ∈ S. In other
words, for each block B ∈ S the polynomial φB has all six monomials.
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2.2. Proposition. Assume either s > 2 and Φ is 3-sincere, or s = 2 and Φ is 2-sincere. Fix a
pair of distinct elements i1, i2 ∈ E. Then there exist words wi ∈ ri, 1 ≤ i ≤ n such that

(i) There is only one overlap between them, namely xi1 wi1 = xi1 . . . xis+1 = wis+1 xis+1 , where
the set {i1, i2, . . . , is+1} is a block in S.

(ii) If we name αi the coefficient of wi in ri, the only ambiguity in the rewriting system in
T(V) with rules

wi  −
1
αi

ri + wi

is resolvable.
(iii) The set of words on {xi : i ∈ E} which do not contain the words wi as sub-words is a basis

of A.

Proof. There is a monomial of the form xi1 xi2 . . . xis+1 in Φ, because of the 2-sincerity
property. We fix a total order ≺ on the set E such that the s + 1 largest elements are
i1 � i2 � · · · � is+1, and extend it to the set of words on E length-lexicographically.
Let wi = tip(ri) and let αi ∈ k be the coefficient of wi in ri. Observe that the wi are all
distinct, since the variables that appear in each one belong to a unique block together
with xi. By construction wis+1 = xi1 . . . xis and wi1 = xi2 . . . xis+1 .

In the case s > 2, because Φ is 3-sincere, for every j /∈ {i1, i2, is+1} there exists a word
in Φ starting with xjxi1 xi2 . Therefore rj = ∂xj Φ has a monomial starting in xi1 xi2 , so wj
also starts with xi1 xi2 . In the same way, wi2 starts in xi1 xi3 .

If however s = 2, as observed above, this means there is a single monomial starting
in xi1 in ∂xj for every j ∈ E \ {i1, i3}, namely xi1 x?(i1,j) = wj.

We apply Bergman’s Diamond Lemma [Ber78] to the rewriting system in the free
algebra T(V) with rules

wi  −
1
αi

ri + wi.

There are evidently no inclusion ambiguities. Assume v ∈ 〈X〉 is an overlap ambiguity.
First observe that sub-linear monomials with leading xi1 cannot overlap, so wi1 is neces-
sarily part of v. If the other word is wj with j 6= i2 the position of xi2 forces v = xi1 w1 and
j = is+1. If j = i2 then both wi1 and wi2 have xi3 in the second position, so they cannot
overlap either.

Then as wanted, the only overlap is the monomial xi1 xi2 . . . xis+1 and we have to check
that this is resolvable. From lemma 1.4, the difference between the two reductions in the
ambiguity can be written as:

xi1ri1 − ris+1 xis+1 = xi1ri1 −Φ + Φ− ris+1 xis+1 = ∑
i 6=is+1

rixi − ∑
j 6=i1

xjrj.

The fact that xi1 xi2 . . . xis+1 is the highest sub-linear word of length s + 1 in the chosen
order means that the right hand side lies in 〈rixi : i 6= is+1, xjrj : j 6= i1〉k ⊆ Ixi1 ...xis+1

,
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according to the notation defined in [Ber78]. The reason for this is that the leading
monomial in any of the rixi or xjrj involved is a sub-linear word of length s + 1, thus
smaller than x1 . . . xs+1.

As the sincerity conditions also hold for suffixes, we could repeat the proof but
ordering words from right to left, to get a different set of reduction rules, the transposed
of the original.

For a given reduction system {wσ  fσ}σ, we say that the set of wσ are the forbidden
words and we call admissible polynomials, those that do not contain any forbidden word.

2.3. Proposition. Assume either s > 2 and Φ is 3-sincere, or s = 2 and Φ is 2-sincere, then the
Hilbert series of A is

hA(t) =
1

1− nt + nts − ts+1 . (8)

Proof. Define c0 = 1 and for ` ∈ N define c` = |W`|, where W` is the set of words on
length ` which do not contain any wi as a sub-word, thus admissible according to the
rewriting system defined in Proposition 2.2. Clearly c` = n` for ` < s and cs = ns − n.

If ` > s, to find the value of c`, we can add an element of X to an admissible word of
length `− 1;

xw with x ∈ X, w ∈W`−1

So we got ncl−1 possibly admissible words. Of those, we have to subtract words that
should not be counted, namely those of length ` with only one forbidden word as a
prefix.

An upper bound for that are the nc`−s words that arise concatenating a forbidden
word and an admissible word of length `− s;

wiw, with i ∈ E, w ∈W`−s.

However, not all such words are valid, because when there is an overlap as a prefix
forbidden words appear which are not prefixes. This is exactly the case when the word
is the result of concatenating the overlap (of length s + 1) with any admissible word of
length `− s− 1.

This process would continue with overlap of overlaps, but in our case, the only
overlap does not overlap with itself, and we obtain the following recursion

c` = nc`−1 − nc`−s + c`−s−1.

A simple induction based on this recursive relation shows that

hA(t) = ∑
`≥0

c`t` =
(

1− nt + nts − ts+1
)−1

.

15



Definition. Let (E, S) be a Steiner system. A subset F ⊆ E is a subsystem of S if the
point ?(i1, . . . , is) ∈ F for each i1, . . . , is ∈ F. Set T = {B ∈ S : B ⊆ F}. The subsystem
F, together with the blocks T it contains, is a Steiner system in its own right. We often write
(F, T) ⊆ (E, S) to represent a subsystem F with induced set of blocks T. If F ( E we say that
the subsystem is proper.

Our construction behaves well with respect to subsystems. Indeed, if (F, T) ( (E, S)
is a proper subsystem of our fixed Steiner system (E, S), we may consider (φB)B∈T as a
family of multi-linear cyclic polynomials for each block of T, needed to construct A(T).
Let Ψ = ∑B∈T φB the potential associated to the induced choice of coefficients. In that
case we have

2.4. Proposition. The algebra A(T) is quotient of A(S) by an homogeneous ideal.

Proof. Consider the ideals

J = 〈xk : k ∈ E \ F〉 ⊂ k〈xi : i ∈ E〉 and J̄ = 〈x̄k : k ∈ E \ F〉 ⊂ A(S).

Every block B not contained in F has at least two points outside. Therefore, we have
that rk ∈ J if k ∈ E \ F, and rj = ∂xj Φ ≡ ∂xj Ψ mod J if j ∈ F. It follows from this that we
have an isomorphism of graded algebras

A(S)
J̄
∼=

k〈xi : i ∈ E〉
(∂Φ) + J

∼=
k〈xi : i ∈ F〉

(∂Ψ)
= A(T).
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3 Quotients by sub-linear polynomials

In this section we want to study algebras that arise when taking a quotient by a ho-
mogeneous sub-linear polynomial, because this algebras appear as quotients or sub-
algebras of the algebras we are considering. We will need the following result from
Berger [Ber09, Theorem 1.1].

Proposition (Berger). Let V be a k vector space, and R ⊆ V⊗N a one dimensional space. The
algebra T(V)/(R) is N-Koszul iff the following condition holds

R⊗V⊗` ∩V⊗` ⊗ R ⊆ V⊗(`−1) ⊗ R⊗V, for each 1 ≤ ` ≤ N − 1.

This is a powerful tool to prove Koszulity. Indeed, we have the following proposition.

3.1. Proposition. Fix V a k-vector space of dimension m and fix X a basis of V. Let p ∈ T(V)
be a homogeneous sub-linear polynomial of degree N and let R be the vector space generated by
p. Define B = T(V)/(R). Then B is a N-Koszul algebra of global dimension 2 whose Hilbert
series is

hB(t) =
1

1−mt + tN .

Proof. It follows from Berger’s theorem that it suffices to prove that for each ` ∈ N such
that 1 ≤ ` ≤ N − 1:

R⊗V⊗` ∩V⊗` ⊗ R ⊆ V⊗(`−1) ⊗ R⊗V.

Fix a total order on X and extend it lexicographically to V⊗(`+N); recall that lexicographi-
cal orders are multiplicative. If α ∈ R⊗V⊗` ∩V⊗` ⊗ R we can write: α = p⊗ v = u⊗ p
with v, u ∈ V⊗`. The prefix and sufix of length N of w = tip(α) are equal to tip(p), be-
cause of the multiplicativity of the order. The fact |w| < 2N implies that tip(p) overlaps
with itself in w. But as p is sub-linear, so is its tip, and it cannot self overlap. Hence α is
in fact 0, and the intersection considered is trivial.

Now that we know that B is N-Koszul, it remains to find the corresponding Koszul
complex. If we set RN+1 = R⊗V ∩V ⊗ R we know that it equals 0 since it is one of the
intersections considered above and therefore the Koszul complex is of the form:

0 // B⊗ R // B⊗V // B // // k

Since this is exact, we deduce that the Hilbert series hB(t) of B is

hB(t) =
(
1−mt + tN)−1.

17



18



4 Normal elements

An element α ∈ A is normal if the left and right ideals αA and Aα coincide. When A is
graded (as in our case) homogeneous components of normal elements are again normal.
As a first step towards studying A let us try and calculate the set of normal elements.
The technique used hereafter is that if a polynomial p ∈ T(V) is such that tip(p) is
admissible, then it is not zero in A = T(V)/R. The reason for this is that any reduction
replaces a monomial for a sum of smaller monomials, so tip(p) can never be canceled
out.

4.1. Proposition. If Φ is 3-sincere and s ≥ 3, the normal elements of A = T(V)/(∂Φ) are the
scalars.

Proof. Let ᾱ ∈ A, the class of α ∈ T(V), be a d-homogeneous normal element with d > 0.
Using Proposition 2.2 we can choose two elements 1, 2 ∈ E such that there is a total
order on X starting with x1, x2 that constructs a resolvable reduction system. We may
take α to be admissible. Let w = tip(α) be the leading monomial that appears in α.

For each i ∈ E we have xiᾱ ∈ A1ᾱ = ᾱA1, so there exist scalars ui,j for 1 ≤ j ≤ n
such that xiᾱ = ∑n

j=1 ᾱxjui,j in A. This means that βi = xiα − ∑n
j=1 αxjui,j belongs to

(R) ⊆ T(V).
Observe βi is a difference between a polynomial with tip xiw and a second polynomial

with tip of the form wxj for some j. If w = xd
1 from i = 2 we see all possible values for

tip(β2) are distinct (so they may not cancel out) and admissible, since (because s > 2)
every s sub-word has x1 more than one time. Thus β2 cannot reduce down to zero, and
we get a contradiction. Then xd

1 /∈ α.
Now set i = 1. As w is not a power of x1, all candidates for tip(β1) are different, the

higher among them being x1w. So we deduced that tip(β1) = x1w and as it reduces to
zero, it cannot be admissible. Hence x1w has wi as a prefix for some i 6= 1. Observe that
this implies w = xi1 xi2 . . . with 1 � i1 � i2.

Finally, set i = i1 and as xi1 xi1 · · · � xi1 xi2 . . . we have tip(βi1) = xi1 w which should
again be non-admissible by a prefix. But now it starts with a repeated letter, and all our
reduction rules are sub-linear. So we get a contradiction, which arises from assuming
α 6= 0.

In the case s = 2 and Φ 2-sincere we have to divide in two cases. When n = 3 we get
a really different scenario.

4.2. Proposition. Assume s = 2, n = 3 and Φ is 2-sincere. Then
(i) There exists a scalar q ∈ k× such that A ∼= k〈x,y,z〉

(xy−qyx, yzy−qzy, zx−qxz) ,
(ii) All monomials are normal,

(iii) The element xaybzc belongs to the center whenever a ≡ b ≡ c mod d where d is the
possibly infinite order of q in k×.
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Proof. It is clear that Φ is multiple of c(xyz− qxzy) for a non-zero scalar q and we get
the q-commutative algebra in x, y, z, described in the proposition. The rest of the items
are checked by direct computation.

When n > 3 the same results as when s > 2 hold assuming sufficiently general
conditions for the coefficients ε, but the approach changes radically, to resemble the
proofs in [SA13]. In this case we shall see that A is an Ore extension of another algebra,
and the lack of normal elements in the second one will allow us to prove the same for
the first one in most cases.

To construct an Ore extension of an algebra B we need an injective endomorphism σ,
and a σ-derivation δ. A σ-derivation is a linear morphism δ that satisfies

δ(ab) = δ(a)b + σ(a)δ(b), for each a, b ∈ B.

Then we define B[x; σ, δ] as the sum
⊕

i∈N0
Bxi with the multiplication structure given

by xa = σ(a)x + δ(a) for each a ∈ B.
Among σ-derivations, lies the subspace of inner σ-derivations {[ξ,−]σ : ξ ∈ B} that

satisfy

[ξ, a]σ = ξa− σ(a)ξ, ∀a ∈ B.

4.3. Proposition. Assume s = 2 and Φ is 2-snicere. Let a ∈ E and let Ba be the algebra
generated by {xi : i ∈ E \ {a}} subject to the single relation

∑
{i,j,a}∈S

ε i,jxixj = 0.

Then Ba is a quadratic Koszul algebra of global dimension 2 whose Hilbert series is

hBa(t) =
1

1− (n− 1)t + t2 .

Moreover, there is a unique algebra automorphism σa : Ba → Ba such that

σa(xi) = −
ε i,a

εa,i
xi

and a unique σ-derivation δa : Ba → Ba such that

δa(xi) = −
1

εa,i
∑

{u,v,i?a}∈S
u,v 6=a

εu,vxuxv

for each i ∈ E \ {a}.
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Proof. Let E′ = E \ {a}, let V ′ be the vector space with basis {xi : i ∈ E′} and let
R′ ⊆ V ′ ⊗V ′ be the space spanned by ρ = ∑i,j∈E ε i,j,axi ⊗ xj, so that Ba = T(V ′)/(R′). It
follows from 3.1 and the fact that ρ is sub-linear that Ba is 2-Koszul with Hilbert series

hBa(t) =
(
1− (n− 1)t + t2)−1.

First observe that the formula in the statement defines a unique algebra automor-
phism σa : T(V ′)→ Ba. We have to see that it factors through Ba, so we have to check
σa(ρ) = 0 in Ba. Indeed,

σa(ρ) = σa

(
∑

{i,j,a}∈S
ε i,jxixj

)
= ∑
{i,j,a}∈S

ε i,jσa(xi)σa(xj)

= ∑
{i,j,a}∈S

ε i,j(−
ε i,a

εa,i
)xi(−

ε j,a

εa,j
)xj

= ∑
{i,j,a}∈S

ε i,j(−
ε i,a,j

ε j,a,i
)xi(−

ε j,a,i

ε i,a,j
)xj

= ∑
{i,j,a}∈S

ε i,jxixj = ρ.

Again, the formula in the statement of the lemma defines a unique σa-derivation
δa : T(V ′)→ Ba, and to see that it descends to a σa-derivation δa : Ba → Ba it is enough
to check that δa(ρ) = 0 in Ba. Observe that we can write

δa(xi) =
1

εa,i
∂i?a(φ{i,a,i?a} −Φ).

Using that, we can now compute:

δa(ρ) = δa

(
∑

{i,j,a}∈S
ε i,jxixj

)
= ∑
{i,j,a}∈S

ε i,jδa(xi)xj + ∑
{i,j,a}∈S

ε i,jσa(xi)δa(xj)

= ∑
{i,j,a}∈S

ε i,j
1

εa,i
∂i?a(φ{i,a,i?a} −Φ)xj

+ ∑
{i,j,a}∈S

ε i,j(−
ε i,a

εa,i
)xi

1
εa,j

∂j?a(φ{j,a,j?a} −Φ)

We know the coefficients ε i,a = εa,j = ε j,i and εa,i = ε j,a = ε i,j in every term, becuase ε is
cyclic. Therefore, interchanging the summation variables i and j in the first sum, we find
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that δa(ρ) is equal to

−
(

∑
{i,j,a}∈S

∂j?a(φ{j,a,j?a} −Φ)xi

)
+
(

∑
{i,j,a}∈S

xi∂j?a(φ{j,a,j?a} −Φ)
)

If we define φa =
1
2 ∑i∈E′ φ{a,i,i?a} we have ∂iφa = ∂iφ{a,i,i?a} because there is a single

block containing both a and i. The sum can be rewritten as

−
(

∑
{i,j,a}∈S

∂i(φa −Φ)xi

)
+
(

∑
{i,j,a}∈S

xi∂i(φa −Φ)
)

.

This is zero because it is the Euler relation (1) applied to φa −Φ.

4.4. Proposition. Let a ∈ S, let Ba, σa and δa be as in Proposition 4.3, and let Ba[xa; σa; δa] be
the Ore extension of Ba with respect to σa and δa. Then there is an isomorphism A ∼= Ba[xa; σa; δa]
of graded algebras.

As a consequence, A is a free right (or left) Ba-module on the set {xi
a : i ∈ N0}.

Proof. The existence of an isomorphism A ∼= Ba[xa; σa; δa] is immediate, since commuta-
tion relations in the Ore extension are:

σa(xi)xa + δa(xi)− xaxi = −
1

εa,i
∑

{u,v,i?a}∈S
εu,vxuxv = − 1

εa,i
ri?a for i ∈ E′.

The next proofs are exactly the same as in [SA13], slightly adapted, since in our case
the monomials that appear in relations do not change, only scalars.

4.5. Proposition. Assume s = 2, n ≥ 5 and Φ is 2-sincere. If a ∈ E, the only normal elements
in the algebra Ba of Proposition 4.3 are the scalars.

Proof. Let m = (n− 1)/2; this is an integer because n is congruent to 1 or 3 modulo 6.
Renaming the elements of E, we can assume that E = {1, . . . , n}, that a = n, and that
(1, m + 1, n), (2, m + 2, n), . . . , (m, 2m, n) are the blocks of S that contain n. Then B = Ba
is the free algebra generated by variables x1, . . . , x2m subject to the relation

ε1,m+1x1xm+1 + εm+1,1xm+1x1 + · · ·+ εm,2mxmx2m + ε2m,mx2mxm = 0.

Notice that m ≥ 2 because n ≥ 5. It is clear that B is a graded algebra for the grading
that has all the generating variables in degree 1. Moreover, it is evident from Bergman’s
diamond lemma [Ber78] that the set of words in the variables x1, . . . , x2m that do not
contain the subword x2mxm is a basis of B; recall that these are the admissible words. In
particular, we remark that x1 6= xm in B.

For each d ≥ 0 let Fd ⊆ B be the subspace spanned by all words of the form wxi
2m

with i ≤ d and w a word not ending in x2m; notice such a word is admissible iff w is. We
have Fd ⊆ Fd+1 for all d ≥ 0 and clearly B =

⋃
d≥0 Fd.
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Let u ∈ B be an homogeneous normal element of degree k ≥ 1. There exists an
integer d ≥ 0 and homogeneous elements u0, . . . , ud ∈ B, each a linear combination
of admissible words not ending in x2m, such that u = ∑d

i=0 uixi
2m and ud 6= 0. As u is

normal, there exist α1, . . . , α2m ∈ k such that x1u = ∑2m
j=1 αjuxj. Let us consider the

elements

s = x1u =
d

∑
i=0

x1uixi
2m

and

t =
2m

∑
j=1

αjuxj =
2m

∑
j=1

d

∑
i=0

αjuixi
2mxj

= αmudxd
2mxm + α2mud−1xd

2m + α2mudxd+1
2m

+
2m

∑
j=1

j 6=m,2m

d

∑
i=0

αjuixi
2mxj + αm

d−1

∑
i=0

uixi
2mxm + α2m

d−2

∑
i=0

uixi+1
2m

︸ ︷︷ ︸
∈Fd−1

.

We must have α2m = 0: if that were not the case, we would have Fd 3 s = t ∈ Fd+1 \ Fd,
which is absurd. Using this, we see that

t ≡ αmudxd
2mxm ≡ αmudσ−d

a (xm)xd
2m mod Fd−1

while s ≡ x1udxd
2m mod Fd−1, so in fact (αmudxm − x1ud)xd

2m ∈ Fd−1. This is only possi-

ble if αmudσ−d
a (xm) = αmud

(
εn,m
εm,n

)−d
xm = x1ud, so that αm 6= 0 and, moreover, x1 = xm.

This is a contradiction. It follows that there are no homogeneous normal elements of
positive degree in B. Since elements of degree 0 are normal, the lemma is proved.

4.6. Lemma. No vector in V ′ is zero divisor in Ba.

Proof. We can write v = ∑j∈E′ xjcj for some cj ∈ k. Fix i ∈ E′ such that ci 6= 0. By
choosing any total order on E′ with xi as maximum, it is evident from Bergman’s
diamond lemma [Ber78] that the set of words in the variables (xj)j∈E′ that do not contain
the sub-word xixi?a is a basis of B. If α ∈ T(V ′) is such that αv ∈ (R′) we know that
tip(αv) = tip(α)xi must be non-admissible. We may assume α was admissible to start
with, so tip(α)xi must have one of the xixi?a as a suffix, but this is clearly a contradiction.
By symmetry we deduce v is not a left zero divisor either.

Actually, with a little bit more work we can prove that it is domain.

4.7. Corollary. The algebra Ba is a domain.

Proof. Suppose by contradiction that for some homogeneous irreducible polynomials
α, β ∈ T(V ′), that do not lie in (R′) we have αβ ∈ (R′). By the previous lemma we know
that both α and β live in degrees greater than 1.
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Again by choosing a monomial order with xi as the first letter, and assuming α and
β are admissible tip(αβ) = tip(α)tip(β) must be non-admissible. Then tip(α) ends with
xi and tip(β) starts with xi?a. We can rewrite α = α1xi + α2 and β = xi?aβ1 + β2 where
α1, α2, β1, β2 ∈ T(V ′), α2 does not have xi as a right divisor and β2 does not have xi?a as
a left divisor. As α and β are irreducible polynomials, neither α2 nor β2 are zero.

Necessarily we have tip(α) = tip(α1xi) = tip(α1)xi. In particular tip(α1)xi � tip(α2).
By applying the reduction rule to α1xixi?aβ1 we obtain

αβ = (α1xi + α2)(xi?aβ1 + β2) ≡ α1xiβ2 + α2β + α1r(xixi?a)β1 mod (R)

where r(xixi?a) = xixi?a − ε−1
a,i ρ. But the previous observations imply that the tip of the

reduced polynomial is tip(α1xiβ2) which is admissible, since no word in β2 starts with
xi?a. Thus αβ cannot lie inside (R′) and we get a contradiction.

4.8. Lemma. Let Λ be a graded locally finite connected 1-generated algebra that has no zero
divisors in degree 1 and whose only normal elements are the scalars. Let σ : Λ→ Λ be a graded
automorphism and δ : Λ→ Λ a homogeneous σ-derivation of degree 1. Assume for all d > 0
that ∑d−1

e=0 σeδσ−e is not σ-inner, then the only normal elements in the Ore extension Λ[x; σ, δ]
are the scalars.

Proof. Every non-zero element u ∈ Λ[x; σ, δ] can be written in a unique way as a sum
u = ∑d

i=0 λixi with d ≥ 0, λ0, . . . , λd ∈ Λ and λd 6= 0. Let us say that the weight of u is
then w(u) = d. Also, as all commutation relations that arise from the Ore extension are
homogeneous of degree 2, the algebra Λ[x; σ, δ] with x in degree 1 is naturally graded,
connected and generated in degree 1.

Suppose now that u = ∑d
i=0 λixi, with d ≥ 0, λ0, . . . , λd ∈ Λ and λd 6= 0, is a

non-zero e-homogeneous normal element in Λ[x; σ, δ]. Since u is normal and Λ has no
zero divisors in degree 1, there is an injective morphism φ : Λ1 → Λ[x; σ, δ]1 = Λ1 + 〈x〉
of vector spaces such that vu = uφ(v) for all v ∈ Λ1. However, if φ(v) /∈ Λ1, we would
have w(uφ(v)) = d + 1 which would be a contradiction. In particular, φ restricts to an
isomorphism of vector spaces φ : Λ1 → Λ1.

If d = 0, then u ∈ Λ is a normal element in Λ and therefore a scalar. We may then
suppose that d > 0. Let µ ∈ Λ1. We have that

µu =
d

∑
i=0

µλixi = µλdxd + µλd−1xd−1 + · · ·

and this is equal, by definition of φ, to uφ(µ) or, equivalently, to

d

∑
i=0

λixiφ(µ) = λdσdφ(µ)xd +

(
d−1

∑
e=0

λdσd−1−eδσeφ(µ) + λd−1σd−1φ(µ)

)
xd−1 + · · · ,

where the omitted terms all involve powers of x smaller than d− 1.
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It follows from this that µλd = λdσdφ(µ) for all µ ∈ Λ1, so that λd is a normal
element of Λ, because Λ1 generates Λ. The hypothesis, then, implies that λd is a scalar.
By eventually substituting u by λ−1

d u, we can assume that λd = 1. Then, in fact, we see
that φ(µ) = σ−dµ for all µ ∈ Λ and, looking at the coefficient of xd−1 in µu and in uφ(µ),
that µλd−1 = ∑d−1

e=0 σeδσd−1−eσ−d(µ) + λd−1σd−1σ−dµ for all µ ∈ Λ or, equivalently, by
setting ν = σ−1(µ), that

d−1

∑
e=0

σeδσ−e(ν) = σ(ν)λd−1 − λd−1ν = [−λd−1, ν]σ, ∀µ ∈ Λ.

This is impossible, because by hypothesis ∑d−1
e=0 σeδσ−e is not an σ-inner derivation.

The condition that ∑d−1
e=0 σeδσ−e is not an σ-inner derivation may seem difficult to

proof, but we have the following lemma.

4.9. Lemma. If ∆d = ∑d−1
e=0 σeδσ−e is a σ-inner derivation for some d > 0, then ∆d = 0.

Proof. Suppose ∆d is σ-inner, so that there exists ξ ∈ B such that ∆d = [ξ,−]σ. Since ∆d
is homogeneous of degree 1, we can assume that ξ itself is of degree 1, and then there
exist ξi ∈ k for i ∈ E′ such that ξ = ∑i∈E′ ξixi.

Let i ∈ E′ and let αu,v ∈ k be the coefficient of xuxv in ∆d(xi). Then we have that

∆d(xi) = ∑
{u,v,i?a}∈S

u,v 6=a

αu,vxuxv

is the same as

[ξ, xi]σ = ∑
k∈E′

ξk[xk, xi]σ,

so there exists a scalar λ ∈ k such that

∑
(u,v,i?a)∈S

u,v 6=a

αu,vxuxv − ∑
k∈E′

ξk[xk, xi]σ = λ ∑
(u,v,n)∈S

εu,vxuxv.

in the free algebra T(V ′). We can rewrite this equality as

∑
(u,v,i?a)∈S

u,v 6=a

αu,vxuxv − ∑
k∈E′

k?i 6=a

ξk[xk, xi]σ = λ ∑
(u,v,a)∈S

εu,vxuxv + ξi?a[xi?a, xi]σ.

On the left we have a possibly empty sum of monomials xsxt with s ? t 6= a, while on the
right only monomials xsxt with s ? t = a appear. It follows that both sides of the equality
vanish, so that

λ ∑
(u,v,a)∈S

εu,vxuxv + ξi?a[xi?a, xi]σ = 0.
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If j ∈ E \ {a, i, i ? a}, then the coefficient of xjxj?a on the left hand side of this last equation
is ε j,j?aλ, so we see that λ = 0 and, as a consequence, that ξi?a = 0. Every element of E′

is of the form i ? a for some i ∈ E′, so we have shown that ξ = 0.

4.10. Corollary. Fix a ∈ E and define for every i ∈ E′, ci = − εi,a
εa,i

. Assume that for some block
B = {i, j, k} ∈ S with a /∈ B we have cicjck is not a nontrivial root of the unity. Then the only
normal elements in A are the scalars and, in particular, the center Z(A) is spanned by 1.

Proof. If B and σ, δ : B → B are as in Proposition 4.3, the algebra A can be identified
with the Ore extension B[xn; σ; δ]. In view of lemma 4.8, to prove the proposition it is
enough to show that ∆d = ∑d−1

e=0 σeδσ−e is not a σ-inner derivation for any value of d
greater than zero, and in view of the last lemma, it suffices to prove that it is not zero.

Let us first calculate ∆d(xi) for some i ∈ E′. Observe that by definition σ(xi) = cixi,
and also cici?a = 1. For a given e ∈ N0, we have

σeδσ−e(xi) = c−e
i σeδ(xi) = −

1
εa,i

∑
{u,v,i?a}∈S

u,v 6=a

εu,v(ci?acucv)
exuxv

This means that if {i, j, k} is a block, the coefficient of xjxk in ∆d(xi?a) is a fixed multiple

of ∑d−1
e=0 (cicjck)

e which equals d if cicjck = 1 or (cicjck)
d−1

cicjck−1 , in other case. The hypothesis
tells us exactly that ∆d is non-zero, and we are done.

It remains to think whether the converse is true. That is the existence of non trivial
normal elements when cicjck is a non-trivial root of the unity for every {i, j, k} ∈ S.

Another desirable property we can prove in the same spirit is the following

4.11. Proposition. Assume either s > 2 and Φ is 3-sincere, or s = 2 and Φ is 2-sincere, then v
is not a zero divisor for each v ∈ V.

Proof. We can write v = ∑n
i=1 xici for some ci ∈ k. Fix i such that ci 6= 0. Again choose

any total order on X with xi as maximum as in 2.2. If α ∈ T(V) is such that αxi ∈ (R) we
know that tip(αxi) = tip(α)xi must be non-admissible. We may assume α was admissible
to start with, so tip(α)xi must have one of the wj as a suffix, but non of them end with
the biggest letter xi. By symmetry we deduce v is not a left zero divisor either.

As Ore extensions of domains are domains, we actually know that A is a domain for
s = 2, the question remains whether A can have zero divisors at all for s > 2.
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5 Homological properties

In the section we are going to try to obtain a homological identikit of A(S). Assume
throughout the whole section either s > 2 and Φ is 3-sincere, or s = 2 and Φ is 2-sincere.
This are the hypothesis that allowed as to compute most results in the previous section.

5.1. Proposition. The space

Rs+1 = (R⊗V) ∩ (V ⊗ R) ⊆ Ts+1(V)

is 1-dimensional and generated by the element Φ defined in equation (7) on page 13, and

R2s =
⋂

i+j=s

(V⊗i ⊗ R⊗V⊗j) ⊆ T2s(V)

is the trivial subspace.

Proof. Let α ∈ Ts+1(V) be an element in Rs+1, so that there exist scalars ui,j, vi,j ∈ k for
each i, j ∈ E, such that

α = ∑
i,j∈E

ui,jrixj (9)

and

α = ∑
i,j∈E

vi,jxirj. (10)

If for some i 6= j, ui,j 6= 0 we know from by 2-sincerity that ri has a monomial ending
in xj. So in (9) we see that there is a monomial ending in x2

j in α. It cannot be canceled
out, since all the ri have disjoint support in term of the basis of words of length s in the
alphabet X. But it is clear from (10) that there cannot be such a monomial. In that way
ui,j = 0 when i 6= j. By a similar argument vi,j = 0 when i 6= j, and we are left with

α = ∑
i∈E

uirixi (11)

and

α = ∑
j∈E

vjxjrj. (12)

At this point we have to make the key observation that again by 2-sincerity, there is
a monomial in Φ with non-zero coefficient starting with xj and ending with xi for all
i 6= j ∈ E. This is xiwxj ∈ Φ with coefficient β for some monomial w.

In (11), w appears with coefficient βui but in (12), w appears with coefficient βvj.
Hence ui = vj for every i 6= j, which clearly implies ui = vj for all i, j ∈ E. Then
α = u ∑i∈E rixi = uΦ by 1.4. Again from 1.4 follows the fact that Φ ∈ Rs+1.

For a simple proof of the second part we are going to have to jump a little ahead of
us by considering one of the morphisms in the Koszul complex in disguise.
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Let α ∈ T2s(V) be an element in R2s, then we can view it as an element a⊗ Φ of
As−1 ⊗ kΦ. We can also write α = ∑i∈E a⊗ xi ⊗ ri, and by definition of R2s this means
a ⊗ b ∈ R if we take b = ∑i∈E xi. We know by Proposition 4.11 that A has no zero
divisors in degree 1. Hence a = 0, which implies α = 0, recalling that the projection to A
is an isomorphism in degree s− 1.

A connected graded algebra Λ is Gorenstein of dimension d and parameter ` if we have
an isomorphism Extd

Λ(k, Λ) ∼= k(`) and Ext
p
Λ(k, Λ) = 0 for all p 6= d. In a similar vein, Λ

is Calabi-Yau of dimension d if Extd
Λ(Λ, Λ⊗Λ) ∼= Λ as a bimodule and Ext

p
Λ(Λ, Λ⊗Λ) = 0

for all p 6= d, and it has finite global dimension.

5.2. Proposition. The algebra A is a s-Koszul algebra of global dimension 3. It is a Gorenstein
algebra of dimension 3 and parameter s + 1 and Calabi-Yau of dimension 3.

The following theorem from Berger and Solotar [BS13, Theorem 2.7] will save as lots
of computations in our proof.

Proposition (Berger, Solotar). Let A = T(V)/(R) be a N-Koszul algebra of gldim A = 3,
with Hilbert series hA(t) = 1− nt + ntN − tN+1 for some n ∈ N. Then A is 3-Calabi-Yau.

The proof is omitted. Now we can proceed and prove 5.2.

Proof. For each i,j ∈ E we define the polynomials rk,i and r̃i,k such that

rk = ∑
i∈E

rk,ixi = ∑
i∈E

xi r̃i,k.

It is easy to see that rk,i equals the sum of monomials in Φ that end in xixk with
corresponding coefficient. And in the same manner r̃i,k equals the sum of monomials in
Φ that end in xkxi with corresponding coefficient. So ri,k = r̃i,k for each i, k ∈ E.

It follows from Proposition 5.1 that the Koszul complex [Ber01] KL for the homoge-
neous algebra A as defined in section 1.4 is of the form

0 // A⊗ Rs+1
d3 // A⊗ R

d2 // A⊗V
d1 // A // // k (13)

with the canonical augmentation A→ k and differentials given by

d1(a⊗ xk) = axk,

d2(a⊗ rk) = ∑
i∈E

ark,i ⊗ xi,

d3(a⊗Φ) = ∑
i∈E

axi ⊗ ri (14)

for all a ∈ A and all k ∈ E.
This complex is exact at k, at A and at A⊗V. Since A has no zero divisors in degree

1, we see from (14) that the differential d3 is an injective map, so the complex (13) is also
exact at A⊗ R3. Let η(t) be the Hilbert series for the cohomology space of (13) at A⊗ R.
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Since that is the only possible non-zero cohomology space of the complex, and since the
Euler characteristic does not change when passing to homology, we see that

η(t) = 1− hA(t) + nthA(t)− ntshA(t) + ts+1hA(t)

= 1− (1− nt + nts − ts+1)hA(t) = 0.

In view of the expression (8) for hA(t), we conclude that the complex (13) is also exact
at A⊗ R, so that A is a Koszul algebra, plainly of global dimension 3.

In order to prove A is Gorenstein we will compute Ext∗A(k, A) by hand. However, we
know it is Gorenstein since we will prove it is Calabi-Yau, but we find this computation
illustrative.

Let V∗, R∗ and R∗s+1 be the spaces dual to V, R and Rs+1, and let {x̂1, . . . , x̂n},
{r̂1, . . . , r̂n} and {Φ̂} be the bases of these spaces which are dual to {x1, . . . , xn}, to
{r1, . . . , rn} and to {Φ}, respectively. The complex obtained by applying the functor
homA(−, A) to the Koszul complex (13) is, up to standard identifications,

A
d∗1 // V∗ ⊗ A

d∗2 // R∗ ⊗ A
d∗3 // R∗s+1 ⊗ A (15)

with differentials given by

d∗1(a) = ∑
i∈E

x̂i ⊗ xia,

d∗2(x̂k ⊗ a) = ∑
i∈E

r̂i ⊗ ri,ka,

d∗3(r̂k ⊗ a) = Φ̂⊗ xka

for all a ∈ A and all k ∈ E. We can also write down the differentials of the Koszul
complex KR of k as right A-module. We know it is exact for the same reason the left
complex is.

0 // Rs+1 ⊗ A
d3 // R⊗ A

d2 // V ⊗ A
d1 // A // // k (16)

with the canonical augmentation A→ k and differentials given by

d′1(xk ⊗ a) = xka,

d′2(rk ⊗ a) = ∑
i∈E

xi ⊗ r̃i,ka,

d′3(Φ⊗ a) = ∑
i∈E

ri ⊗ xia

for all a ∈ A and all k ∈ E.
Comparing these formulas with those of the differential in the Koszul dual complex

we see at once that the complexes (16) and (15) are isomorphic as right A-module
complexes, since ri,k = r̃i,k. It follows from this that

Ext
p
A(k, A) ∼=

{
0, if p 6= 3;

k(s + 1), if p = 3.
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By definition, then, A is Gorenstein of dimension 3 and parameter s + 1.
Let us now consider the diagram of A-bimodules

0 // A⊗ Rs+1 ⊗ A
d3 // A⊗ R⊗ A

d2 // A⊗V ⊗ A
d1 // A⊗ A

µ // // A (17)

where µ : A⊗ A→ A is the multiplication map, and

d1(a⊗ xk ⊗ b) = axk ⊗ b− a⊗ xkb,

d2(a⊗ rk ⊗ b) = ∑
{i1,...is,k}∈S

ε i1,i2,...,is ∑
1≤j≤s

a . . . xij−1 ⊗ xij ⊗ xij+1 , . . . xis b

d3(a⊗Φ⊗ b) = ∑
i∈E

(
axi ⊗ ri ⊗ b− a⊗ ri ⊗ xib

)
for all a, b ∈ A and all k ∈ E. A straightforward computation, which we leave to the
reader, shows that this is a complex, which we write KLR. Moreover, KLR is known as
the bimodule Koszul complex of A and it follows from [Ber01, Theorem 5.6] that it is
exact iff A is Koszul, which we have already proven.

In order to compute Ext•Ae(A, A⊗ A) from the complex obtained from (17) one has
to apply the functor homAe(−, A⊗ A). We could compute the dual complex and check
by hand that is isomorphic to the original one, in the same manner as with K∗L (16) and
KR (13), but we are able to skip the computation recalling [BS13, Theorem 2.7] which
allows us to deduce from the fact that A is Koszul, gldim A = 3 and the knowledge of
the Hilbert series that KLR (17) is indeed self dual as A bimodule complex.
This tells us that A is 3-Calabi-Yau.

5.3. Corollary. For each A-bimodule M, there is a natural isomorphism

HH•(A, M) ∼= HH3−•(A, M).

This follows immediately from Proposition 5.2 using the main result of van den
Bergh [vdB98]. Now that we know that A has finite global dimension, we can also prove
the following.

5.4. Proposition. If (n, s) 6= (3, 2), the algebra A is neither left nor right noetherian and has
infinite Gel′fand-Kirillov dimension.

Proof. Let i1, i2,. . . , is ∈ E be s distinct points, and consider the ideal

I = 〈xk : k ∈ E \ {i1, . . . , is}〉 ⊂ A.

Set j = ?(i1, . . . , is) and let B = {i1, . . . , is, j} ∈ S. We have rk ∈ I if k ∈ E is different
from j, and rj ≡ ∂xj φB mod I, a certain sub-linear polynomial of degree s. From 3.1 it
follows that the Hilbert series of the left A-module A/I is hA/I(t) = (1− st + ts)−1.

Suppose now that A is left noetherian. Since gldim A < ∞, A/I has a free resolution
of finite length by finitely generated graded modules and, in particular, there is a
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polynomial p ∈ Z[t] such that hA/I = hA p. In the case s = 2 the order of the pole 1 at
both rational functions brings a contradiction. If s > 2, it suffices to find a pole in hA/I
that does not appear in hA. As it is easy to check that hA/I has only simple poles, so it is
equivalent to prove that q = 1− st + ts does not divide f = 1− nt + nts − ts+1. But the
remainder f + tq− nq has non-zero constant term so it is non-zero.

By symmetry, looking at the Hilbert series of the right A-module A/I, we prove the
first claim.

The second claim, that the Gel′fand-Kirillov dimension of A is infinite, follows
from [SZ97, Corollary 2.2] and the fact that the Hilbert series of A computed in Proposi-
tion 2.3 has poles at points which are not roots of unity. Indeed,

1− nt + nts − ts+1 = (1− t)
( s

∑
i=0

ti − nt(
s−2

∑
i=0

ti)
)
,

and the second factor has a real root between 0 and 1 by Bolzano’s theorem.
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6 Derivations

Let gl(V) be the Lie algebra of endomorphisms of V, which we identify with gl(n,k) by
fixing the basis X = {xi : i ∈ E} of V. Considering V⊗(s+1) as a gl(V)-module with its
natural diagonal action, we let

s = s(S) = {g ∈ gl(V) : g ·Φ = 0}. (18)

This is a Lie subalgebra of gl(V).

6.1. Proposition. Suppose that n ≥ s + 1 and Φ is 2-sincere.
(i) The matrix g = (gi,j)i,j∈E ∈ gl(V) is in s iff

s+1

∑
j=1

ε ij+1,...,is+1,i1,...,ij−1 g?(i1,...,îj,...,is+1),ij
= 0 (E1

i1,i2,...,is+1
)

for all choices of (i1, . . . , is+1) ∈ Es+1 with |{i1, . . . , is+1}| = s + 1 and

(ε ij+1,...,is+1,i1,...,ij−1 + ε ik+1,...,is+1,i1,...,ik−1)gl,i = 0 (E2
i1,i2,...,is+1

)

for all choices of (i1, . . . , is+1) ∈ Es+1 with |{i1, . . . , is+1}| = s where ij = ik = i are the
only repeated elements in the tuple and the s-set points to l in the Steiner system. If that is
the case, then g has zero diagonal.

(ii) If we let gl(V) act on V⊗s diagonally, then s⊕ k id is precisely the subalgebra of gl(V) of
elements that preserve the subspace R spanned by {r1, . . . , rn} and s = (s⊕k id)∩ sl(V).
The s-modules R and V∗ are isomorphic and s is an algebraic Lie subalgebra of gl(V).

(iii) The Lie algebra s⊕ k id acts faithfully by homogeneous derivations of degree 0 on A,
and this action provides an isomorphism s⊕ k id → Der0(A) to the space of all such
derivations.

Proof. As exposed in the proof of Proposition 5.1, 2-sincerity implies (V ⊗ R) ∩ (R⊗V)
is spanned by Φ.

(i) We can compute

g ·Φ = ∑
i1,...,is+1,l∈E

(s+1

∑
j=1

ε i1,...,is+1 gij,l xi1 . . . xij−1 xlxij+1 . . . xis+1

)
= ∑

i1,...,is+1∈E
∑
l∈E

(s+1

∑
j=1

ε l,ij+1,...,is+1,i1,...,ij−1 gl,ij

)
xi1 . . . xis+1

so g ∈ s iff for all (i1, . . . , is+1) ∈ Es+1 we have

∑
l∈E

(s+1

∑
j=1

ε l,ij+1,...,is+1,i1,...,ij−1 gl,ij

)
= 0. (21)
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The statement follows from this since, for example,

∑
l∈E

ε l,ij+1,...,is+1,i1,...,ij−1 gl,ij = ε ij+1,...,is+1,i1,...,ij−1 g?(i1,...,îj,...,is+1),ij
,

whenever the elements i1, . . . , îj, . . . , is+1 are all distinct and the fact that equation (21)
holds trivially when |{i1, . . . , is+1}| < s. This is because if |{i1, . . . , is+1}| < s when we
switch one of the elements for a different one we get a tuple of s + 1 points but at most
with s different elements, and ε = 0 whenever the indexes are not distinct.

Let us suppose now that g ∈ s. If B = {i1, . . . , is+1} ∈ S, labeled in a way such that
ε i1,...,is+1 6= 0, which is possible since φB 6= 0. Then the condition (E1

i1,i2,...,is+1
) tells us that

∑i∈B gi,i = 0. so summing over all blocks and using the fact that each element appears
in (n−1

s−1)/s blocks due to A.1, we see that (n−1
s−1)/s tr g = 0.

Moreover if we now sum over all the blocks that contain a given element i ∈ E, again
applying lemma A.1 we see that

0 =
(n−1

s−1)

s
gi,i +

(n−2
s−2)

s− 1 ∑
j∈E\{i}

gj,j =

(
(n−1

s−1)

s
−

(n−2
s−2)

s− 1

)
gi,i +

(n−2
s−2)

s− 1
tr g.

The coefficient of gi,i in the right hand side is non-zero because it equals the neces-
sarily positive amount of blocks that contain a given point, but do not contain a second
given point. As a consequence of this and the fact that tr g = 0, we see that gi,i = 0.

(ii) At this point it is clear that s∩ k id = 0, and it is obvious that id preserves R. Let
g = (gi,j)i,j∈E ∈ s. To see that g preserves R, it is enough to show that for all k ∈ E we
have

g · rj = −∑
i∈E

gi,jri. (22)

One readily computes that

0 = g ·Φ = g ·∑
i∈E

xiri = ∑
i∈E

(xi(g · ri) + (g · xi)ri) = ∑
i∈E

(
xi(g · ri) +

(
∑
j∈E

gi,jxj

)
ri

)

and interchanging the summation variables i and j in the first sum and regrouping, we
get

∑
j∈E

xj

(
g · rj + ∑

i∈E
gi,jri

)
= 0.

So g · rj +
(
∑i∈E gi,jri

)
= 0, and equation (22) holds. We see that the algebra s⊕ k id

preserves R.
Conversely, suppose that g = (gi,j)i,j∈E ∈ gl(V) preserves R. Then g preserves the

subspaces V ⊗ R and R⊗ V of V⊗(s+1) and, as a consequence, also their intersection
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Rs+1 = (V ⊗ R) ∩ (R⊗V), which we know is spanned by Φ. It follows that g ·Φ = λΦ
for some scalar λ ∈ k. We can write g = (g− λ

s+1 id) + λ
s+1 id ∈ s⊕ k id.

That s = (s⊕ k id) ∩ sl(V) is clear, because the elements of s have zero diagonal.
Since s⊕ k id is precisely the subalgebra of gl(V) which preserves R ⊆ V⊗s, the criterion
given by Claude Chevalley in [Che47, Lemma 1] implies at once that s ⊕ k id is an
algebraic subalgebra of gl(V) and therefore s, which is its intersection with sl(V), is also
algebraic.

(iii) As usual, gl(V) acts on the tensor algebra T(V) by homogeneous derivations of
degree 0, and by restriction so does s. Since s⊕ k id preserves R, it preserves the ideal I
generated by R, and then there is an induced action of s on the quotient A = T(V)/I,
which is evidently homogeneous of degree 0. This action is faithful, because its restriction
to the degree one component A1 = V of T(V) is the tautological representation.

Finally, suppose that d : A → A is an homogeneous derivation of degree 0. Iden-
tifying the homogeneous component A1 with V, we get by restriction a linear map
g = d|V : V → V. The diagonal action of g on V⊗s clearly preserves R, so (ii) implies
that g ∈ s⊕ k id. This proves the last statement.

It is to be expected, in view of the description given in Proposition 6.1, that the
structure of the Lie algebra s will strongly depend, in general, on the combinatorial
information of the Steiner system under consideration. One possible way to approach
the this problem is to focus first on local combinatorial information. Examples of this are
presented in [SA13].

However, in the examples exposed there ε is always anti-symmetric, making condi-
tion (E2

i1,i2,...,is+1
) trivial. If ε being anti-symmetric fails for “enough” values of indexes we

find s = 0.

6.2. Proposition. Suppose that n ≥ s + 1 and Φ is 2-sincere. If for each distinct a, b ∈ E there
exists a block B = {i1, . . . , is+1} ∈ S containing a and b such that anti-symmetry fails when
interchanging a and b, namely

ε i1,...,a,...,b,...,is+1 + ε i1,...,b,...,a,...,is+1 6= 0

then s = 0.

Proof. Fix a matrix g ∈ s. For each distinct a, b ∈ E let Ia,b = (i1, . . . , is+1) be the ordered
block we get by hypothesis. If I′a,b is the tuple (i1, . . . , is+1) but replacing a for b and I′′a,b is
the result of replacing b for a, the equation (E2

i1,i2,...,is+1
) E2

I′a,b
and E2

I′′a,b
imply ga,b = gb,a = 0.

We also know from 6.1 that g has zero diagonal, then g = 0.

We have so far studied the structure of the degree preserving derivations, and another
group we would like to study is the vector space of derivations of degree −1. However,
the structure of HH1 (A (S))−1 does not depend at all on the structure of the Steiner
system, but on the nature of the potential considered.
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6.3. Proposition. If {x̂i}i∈E is the dual basis of our fixed basis {xi}i∈E of V, there exists an
isomorphism

HH1 (A (S))−1
∼= 〈x̂i : ri ∈ [V, V⊗(s−1)]〉k

Proof. As in the previous example, V∗ acts on T(V) by homogeneous derivations of
degree −1. For a lineal form α ∈ V∗ to act on A(S), we need that α(ri) ∈ (R) for each
i ∈ E, but as α(R) ∈ A(S)s−1 = V⊗(s−1), this implies α(ri) = 0 for all i ∈ E.

We can write α = ∑i∈E αi x̂i for some scalars αi ∈ k. By evaluating in monomials, one
can check that the following identity holds:

x̂j · ri = x̂j · ∂xi Φ = ∂xi ∂xj Φ = ∂xi rj.

This implies that α(R) = 0 is equivalent to ∂xj (∑i∈E αiri) = 0 for all j ∈ E. Applying the
Euler relation (1) this means that c(∑i∈E αiri) = 0, so ∑i∈E αiri and zero are conjugates
by the cyclic action, which happens if and only if ∑i∈E αiri ∈ [V, V⊗(s−1)]. As the space
of commutators is homogeneous using the Zn grading, and all the ri lie in disjoint
homogeneous spaces, this is again equivalent to the fact that ri ∈ [V, V⊗(s−1)] for each
i ∈ E such that αi 6= 0, which completes the proof.
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7 Automorphisms

In this section we will study the group of homogeneous automorphisms of A(S), denoted
Aut (A(S)), locally around the identity. Observe that one can think of Aut (A(S)) as the
subgroup of GL(V) that fixes the vector space R. Throughout this section, the ground
field k will be the field of complex numbers C.

Let GL(V) be the Lie group of automorphisms of V, which we identify with GL(n,k)
by fixing the basis X = {xi : i ∈ E} of V. Considering V⊗(s+1) as a GL(V)-module with
its natural diagonal action, we let

S = S(S) = {g ∈ GL(V) : g ⇀ Φ = Φ}.

This is a subgroup of GL(V). We use the notation ⇀ to distinguish between the Lie
algebra and Lie group actions. A second trivial observation is that the actions commute
when the corresponding matrices commute.

7.1. Proposition. Suppose that n ≥ s + 1 and Φ is 2-sincere.
(i) The group S is a algebraic Lie subgroup of GL(V).

(ii) The Lie algebra Lie(S) of S is s, as defined in equation (18).
(iii) The Lie group k×S acts faithfully by homogeneous automorphisms of A(S), and this action

provides a group isomorphism k×S→ Aut (A (S)).

Proof. (i) The equations that determine if a matrix g belongs to S, namely g ⇀ Φ = Φ,
are algebraic in the coefficients of the matrix g. Thus S is an algebraic subgroup of GL(V),
hence it is closed. It follows that it is a Lie subgroup.

(ii) First observe that if g ∈ s, we can construct the map α : R→ V⊗(s+1) such that
α(t) = exp(tg) ⇀ Φ. Clearly α(0) = Φ. Also, one can compute the derivative α′(t)
which equals

α′(t) = g · (exp(tg) ⇀ Φ) = exp(tg) ⇀ (g ·Φ) = 0.

As a consequence, exp(tg) belongs to S for each t ∈ R. This implies that s ⊆ Lie(S).
For the converse, if g ∈ Lie(S) is a tangent vector, then one can define the same

curve α, and as exp(tg) falls inside S, then α is constant and equal to Φ. This implies that
0 = α′(0) = g ·Φ. Hence Lie(S) ⊆ s.

(iii) Let g ∈ GL(V) be an automorphism that fixes R. Using the same argument we
used for derivations, one can deduce that g fixes V ⊗ R and R⊗V and as a consequence
their intersection Rs+1 = 〈Φ〉k. Therefore g ⇀ Φ = λΦ for some scalar λ ∈ k. It cannot
be zero, since g−1 ⇀ (g ⇀ Φ) = Φ. As k is algebraically closed, there exists a scalar
µ ∈ k× such that (µg) ⇀ Φ = Φ. This proves that every element of Aut (A (S)) is
included in k×S. For the converse, if g ∈ S we will prove that g ⇀ ri = ∑j∈E gj,irj if
(gi,j)1≤i,j≤n is the inverse matrix of g. Indeed we have:

∑
j∈E

xjrj = Φ = g ⇀ Φ = ∑
i∈E

(g ⇀ xi)(g ⇀ ri) = ∑
i,j∈E

gi,jxj(g ⇀ ri)
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which implies

rj = ∑
i∈E

gi,j(g ⇀ ri).

If we fix k ∈ E and sum over j ∈ E, multiplying by gj,k we obtain:

∑
j∈E

gj,krj = ∑
i,j∈E

gi,jgj,k(g ⇀ ri) = ∑
i∈E

δk
i (g ⇀ ri) = g ⇀ rk.

This proves that g ⇀ R ⊆ R, as we wanted.

Note that the knowledge of the Lie algebra s allows us to describe the Lie group S in
the connected component of the identity. Although this gives us a good characterization
of the group of automorphisms locally, we can expect to have automorphisms in different
connected components. For example if we have an automorphism σ of the Steiner system
that preserves the choice of scalars, clearly σ will induce an automorphism of V that
preserves the space of relations.

38



8 About HH2(A) and HH3(A)

In order to compute higher cohomology groups, the first step would be to calculate
the complex that generates those groups. We have already constructed a free bimodule
resolution of A(S) in (17), which we called KLR, assuming either s > 2 and Φ is 3-sincere,
or s = 2 and Φ is 2-sincere. We will maintain those assumptions throughout this section
as well. Applying the functor homAe(−, A) and modulo standard identifications, we
obtain the following complex of vector graded spaces.

0 A⊗ R∗s+1
oo A⊗ R∗

d∗3
oo A⊗V∗

d∗2
oo A

d∗1
oo (23)

with differentials given by

d∗1(a) = ∑
k∈E

[xk, a]⊗ x̂k,

d∗2(a⊗ x̂i) = ∑
k∈E

 ∑
{i1,...,ij=i,...is,k}∈S

ε i1,i2,...,is xi1 . . . xij−1 axij+1 , . . . xis ⊗ r̂k


d∗3(a⊗ r̂i) = [xi, a]⊗ Φ̂

for all a ∈ A and all i ∈ E.
The dual spaces should be regarded as concentrated in the opposite degree of

their pre-duals, so that all differentials preserve degrees. Observe that the rather com-
plicated definition of d∗2 can be very much simplified by considering an element of
A⊗ V∗ ∼= homk(V, A) acting as a derivation on T(V) with the diagonal action. Then
d∗2(a⊗ x̂i) can actually be written as ∑k∈E(a⊗ x̂i) · rk ⊗ r̂k.

A second observation is that we can easily compute the Euler characteristic of
HH•(A).

8.1. Lemma. The Euler characteristic χ(t) of HH•(A) is

χ(t) = −t−s−1.

Therefore it is −1 in degree −s− 1 and zero in all the other degrees.

Proof. As HH•(A) is the homology of the complex (23), their Euler characteristic coincide.
We can now compute the Euler characteristic of (23) using the knowledge of the Hilbert
series of A and find that

χ(t) = hA(t)− t−1nhA(t) + t−snhA(t)− t−s−1hA(t)

= −t−s−1hA(t)(1− nt + nts − ts+1)

= −t−s−1.
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Before we can continue our calculations, we need to recall some combinatoric facts.
The number of equivalence classes of conjugate words of length ` in n letters is exactly
the same as the amount of necklaces with ` circularly connected beads of up to n different
colors, taking all rotations as equivalent. This number, denoted Nn(`) is known to be

Nn(`) =
1
` ∑

d|`
ϕ(d)n`/d.

where ϕ is Euler’s totient function.

Now we can begin making some computations. Note that structure of the space of
relations does not appear at all in the lowest degrees.

8.2. Lemma. In degree −s− 1 we have that

HHp(A)−s−1 =

{
k, if p = 3
0, otherwise,

(24)

and if e ∈ Z is such that −(s + 1) < e < −1,

HHp(A)e =

{
V⊗(s+1+e)

[V,V⊗(s+e)]
∼= kNn(s+1+e), if p = 2, 3

0, otherwise.
(25)

Proof. First observe that when looking at the complex (23) at degree −(s + 1), only one
of the vector spaces is non zero, which proves equation (24).

For the second part let −(s + 1) < e < −1. Then it is evident that all the graded
components of A(S) that appear in the complex at degree e are in a degree smaller than
the degree of the relations, so everything happens on T(V). Also, there are only non-zero
spaces at homological degrees 2 and 3. Hence, we have

HH3(A)e = coker(d∗3)e =
V⊗(s+1+e)

[V, V⊗(s+e)]
.

This is isomorphic to the space of cyclic polynomials of degree s + 1 + e, which has di-
mension Nn(s + 1 + e), identifying the cyclic polynomial c(m) associated to a monomial
m with the corresponding necklace. Since the Euler characteristic is zero at degree e,
which follows from lemma 8.1, we know that HH2(A)e = ker(d∗3)e will have the same
dimensionNn(s + 1 + e). Actually we have a natural bijection between the two spaces.
In view of lemmas 1.4 and 1.5 we know that

ker(d∗3)e = 〈∑
i∈E

∂xi α⊗ r̂i : α ∈ V⊗(s+1+e)〉k.

and if we only allow α to be a cyclic polynomial we get a basis of ker(d∗3)e. The result
from equation (25) follows from that.
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At degree −1 things begin to get more interesting. The space R of relations appears
in the quotient that computes HH3(A)−1, since one needs to consider the homogeneous
space A(S)s. Indeed, we can prove the following.

8.3. Proposition. The dimension of HH3(A)−1 is

dim HH3(A)−1 = Nn(s)− #
{

i : ri /∈ [V, V⊗(s−1)]
}

and the dimension of HH2(A)−1 equals

dim HH2(A)−1 = Nn(s) + 2#
{

i : ri ∈ [V, V⊗(s−1)]
}
− n.

Proof. First observe that

HH3(A)−1 = coker(d∗3)−1 =
V⊗s

[V, V⊗(s−1)] + R
.

If we want to know the dimension of the quotient, it suffices to compute the dimension
of the intersection [V, V⊗(s−1)] ∩ R. Observe that [V, V⊗(s−1)] is homogeneous in the Zn

grading that counts the degree of each x ∈ X. As no pair of monomials u ∈ ri and v ∈ rj
have the same degree, when i 6= j, we deduce that

[V, V⊗(s−1)] ∩ R = 〈ri : ri ∈ [V, V⊗(s−1)]〉k.

Thus the dimension of HH3(A)−1 is Nn(s) − #
{

i : ri /∈ [V, V⊗(s−1)]
}

, as we wanted.
The morphism c identifies this space with the space of cyclic polynomials modulo
〈c(ri) : ri /∈ [V, V⊗(s−1)]〉k. We already know the dimension of HH1(A)−1 from Proposi-
tion 6.3. Finally the fact that Euler characteristic is zero allows us to deduce that

dimk HH2(A)−1 = Nn(s)− #
{

i : ri /∈ [V, V⊗(s−1)]
}
+ #

{
i : ri ∈ [V, V⊗(s−1)]

}
= Nn(s) + 2#

{
i : ri ∈ [V, V⊗(s−1)]

}
− n,

which proves the proposition.

To understand the nature of the space HH2(A)−1 we may first observe that ker(d∗3)−1
has dimension

dim ker(d∗3)−1 = n dim(As−1)− dim im(d∗3)−1

= dim coker(d∗3)−1 + n dim(As−1)− dim(As)

= Nn(s)− #
{

i : ri /∈ [V, V⊗(s−1)]
}
+ n

= Nn(s) + #
{

i : ri ∈ [V, V⊗(s−1)]
}

.
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As before, this corresponds with cyclic polynomials of length s that generate elements of
the kernel, but this time we need to add more elements. For each i ∈ E such that ri is a
commutator, we can find (aj)j∈E ∈ V⊗(s−1) such that ∑j∈E[xj, aj] = ri, and in that way
construct an element ∑j∈E aj ⊗ r̂j inside the kernel. Similarly, we know that im(d∗2)−1 has
a basis consisting of ∑j∈E x̂i · rj ⊗ r̂j, where i ∈ E is such that c(ri) 6= 0 and x̂i is regarded
as a derivation of degree −1 acting on V⊗s.

For the last part of this section we will study the cohomology space at degree 0.

8.4. Proposition. The dimension of HH3(A)0 is

dim HH3(A)0 = Nn(s + 1)− n2 + dim s.

and the dimension of HH2(A)0 equals

dim HH2(A)0 = Nn(s + 1)− n2 + 2 dim s.

Proof. As in degree −1, we find that

HH3(A)0 = coker(d∗3)0 =
V⊗(s+1)

[V, V⊗s] + V ⊗ R + R⊗V
=

V⊗(s+1)

[V, V⊗s] + R⊗V
.

The last equality holds because xi ⊗ rj = rj ⊗ xi + [xi, rj] ∈ R⊗ V + [V, V⊗s] for each
i, j ∈ E. Then we need to compute the intersection [V, V⊗s] ∩ (R ⊗ V). An element
∑i,j∈E gi,jrixj belong to [V, V⊗s] if and only if the sum of the coefficients of all the rotations
of a single monomial is zero. Namely, if and only if

s+1

∑
k=1

ε ik+1,...,is+1,i1,...,ik−1 g?(i1,...,îk ,...,is+1),ik
= 0, for all tuples i1, . . . , is+1 ∈ E.

Observe that these are exactly the equations that a matrix (gi,j) ∈ s satisfies, according
to equation (21). Hence we know that

dim HH3(A)0 = Nn(s + 1)− n2 + dim s

as stated in the proposition. Finally, one can compute dim HH2(A)0 using once again the
knowledge of the Euler characteristic.

We can also compute the dimension of the space of 2-cocycles, that generates
HH2(A)0.

dim ker(d∗3)0 = n dim(As)− dim im(d∗3)0

= dim coker(d∗3)0 + n dim(As)− dim(As+1)

= Nn(s + 1) + dim s− n2 + n(ns − n)− (ns+1 − 2n2 + 1)

= Nn(s + 1) + dim s− 1.

42



This space can be expressed as a sum of two parts. First we have, as always, the space
of cyclic polynomials of degree s + 1, which generate elements in the kernel via cyclic
derivatives, but divided by 〈Φ〉k, since all its derivatives are zero in A.

Secondly, we have for each g in a fixed basis of s a commutator ∑i∈E gi,jrixj which can
be expressed in a non-unique way as ∑i∈E[xi, ai] for some ai ∈ V⊗s. So we can construct
an element ∑i∈E ai ⊗ r̂i in the kernel. We can check that those are linearly independent
and, by a dimension argument, that is all there is.

At this point, we can observe a relation between HH1(A) and HH3(A) at degrees −1
and 0. More concretely, we have shown that the dimensions of [V, V⊗(s−1] ∩ R and that
of Der−1(A) coincide, and the dimensions of [V, V⊗s] ∩ R⊗V and Der0(A) differ only
by one. So the question arises as to whether this relation occurs in higher degrees.

In that direction, we have found the following:

8.5. Lemma. Fix d ≥ 0. Let Γk
i1,...,id

∈ k be a scalar for each sequence (i1, . . . , id) of length d
and each k in E. We can construct a polynomial p in V⊗d ⊗ R defined as

p = pΓ = ∑
i1,...,id,k∈E

Γk
i1,...,id

xi1 . . . xid rk.

We can also construct a morphism g : V → V⊗d which acts diagonally as a derivation of degree
d− 1 on T(V), such that

g = gΓ = ∑
i1,...,id,k∈E

Γk
i1,...,id

xi1 . . . xid ⊗ x̂k.

Then for each j ∈ E we have that

∂xj p = g · rj + ∑
k,i1,...,id−1∈E

(
d

∑
t=1

Γk
i1,...,it−1,j,it,...,id−1

xit . . . xid−1rkxi1 . . . xit−1

)
.

We omit the proof because it requires new notation and is very technical. Recall that
a derivation in A is simply a derivation in T(V) that fixes R and that an element is a
commutator if and only all its cyclic derivatives vanish. Then a corollary of this is that
gΓ defines a derivation on A if and only if pΓ falls inside (R). In particular if pΓ is cyclic,
then gΓ is a derivation.

In degrees −1 and 0, it was easy to determine the quotient space between Γs where
∂pΓ falls in (R), and when pΓ is commutator. However in higher degrees this does not
seem to work so well. We believe that when A is Koszul the conditions imposed on the
intersections of spaces that involve R may help to simplify the computations.
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9 Examples

9.1 Lie Potentials

For one of our examples we are interested in the case when the generating relations are
all Lie polynomials. We will show that in this case A(S) is automatically a domain.

Fix a ground field k of characteristic zero, and a vector space V. We define Lie
polynomials as the elements of the Lie-subalgebra in T(V) generated by V or, equivalently,
the minimal Lie algebra inside T(V) containing V; from now on we denote it 〈V〉Lie.

An alternate approach is the fact that Lie polynomials are a realization of the free
Lie algebra on V. So we have a functor L from the category of vector spaces Vectk
to the category of Lie algebras Liek, that is the left adjoint to the forgetful functor
F : Liek → Vectk. In the language of categories, we have an isomorphic natural
transformation

Vectk[V, F (g)] ∼= Liek[L (V), g] for every g ∈ Liek.

Before we begin studying the functor L , we need to prove its existence. For that
we are going to invoke algebras with no structure at all, the linearization of magmas. A
magma is a set M with a function µ : M×M → M. Morphisms between magmas are
functions that preserve the product.

The free magma MX on a set X is the “most general possible” magma generated
by the set X. It can be identified with the set of non-associative words on the alphabet
X where µ is concatenation or, equivalently, as the magma of binary trees with leaves
labeled by elements of X. The operation is that of joining trees at the root. A free magma
has the universal property such that, if f : X → N is a function from the set X to any
magma N, then there is a unique extension of f to a morphism of magmas f̄ : MX → N.

If X is a basis of V, then the formal k-linearization M(V) = 〈MX〉k of MX is the
free (non-associative, non-Lie) algebra of V, with the multiplication structure inherited
from MX. The length of words in MX induces a N-grading on M(V). This allow us to
represent M(V) recursively with M(V)1 = V and

M(V)d =
⊕

0<i<d

M(V)i ⊗M(V)d−i.

Finally we obtain a construction of the free Lie algebra L (V) by taking the quotient
of M(V) by all the anti-symmetric and Jacobi relations of Lie algebras. Namely,

L (V) ∼=
M(V)

〈µ(a, b) + µ(b, a), µ(µ(a, b), c) + µ(µ(b, c), a) + µ(µ(c, a), b) : a, b, c ∈ M(V)〉 .

The universal property is deduced from the universal characterization of the quotient.
This construction however is impossible to work with, so we shall prove it is isomorphic
to the set of Lie polynomials.
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As the composition of the forgetful functors from the category of associative algebras
Assk → Liek → Vectk is isomorphic to the forgetful functor Assk → Vectk and
composition of left adjoint functors is again a left adjoint, we have that

U (L (V)) ∼= T(V).

where U is the universal enveloping algebra functor, the free functor from Liek → Assk.
By applying the universal property of free objects, we can prove that the isomorphism
fixes V.

This, together with the fact that L (V) ↪→ U (L (V)) is injective, because of Poincaré-
Birkhoff-Witt’s theorem, implies that L (V) can be identified with a Lie subalgebra
of T(V). Because of the minimality condition, we know 〈V〉Lie ⊆ L (V), and using
the universal property, the inclusion L (V) ↪→ T(V) factors through 〈V〉Lie. Hence,
L (V) = 〈V〉Lie as subspaces of T(V).

The algebra T(V) has a bi-algebra structure given by the co-multiplication ∆ which
is defined as:

∆(v) = v⊗ 1 + 1⊗ v for v ∈ V.

An element α ∈ T(V) satisfying ∆(α) = α⊗ 1 + 1⊗ α is called primitive. Of course all
elements of V are primitive. Also, if α and β ∈ T(V) are primitive, then

∆([α, β]) = [∆(α), ∆(β)] = [α⊗ 1 + 1⊗ α, β⊗ 1 + 1⊗ β] = [α, β]⊗ 1 + 1⊗ [α, β].

So primitive elements form a Lie subalgebra of T(V), and includes L (V). Actually
the converse is true and every primitive element is a Lie polynomial, as shown by
Reutenauer in [Reu93, Theorem 1.4].

Therefore, we can think of Lie polynomials in two ways, as the vector space L ⊆ T(V)
which contains V, closed under taking commutators, or the primitive elements in T(V) un-
der the co-multiplication ∆. Since ∆ is graded with the natural grading in T(V)⊗ T(V),
L is a graded subspace. We will fix X = {x1, x2, . . . , xn} a basis of V so that

T(V) ∼= k〈X〉 = k〈x1, x2, . . . , xn〉.

Fix d ∈ N and 1 ≤ j ≤ d− 1. The second characterization means that if p ∈ k〈X〉
is an d-homogeneous primitive element and (xi1 , . . . , xid) ∈ Xd, the coefficient of
xi1 xi2 . . . xij ⊗ xij+1 . . . xid in ∆(p) is zero. That equals the sum of the (d

j) coefficients
in p that correspond to monomials that arise when mixing together xi1 , xi2 , . . . , xid with-
out changing the relative order of the first j variables, nor the order of the last d− j. This
is commonly known as a shuffle.

Lie brackets preserve Zn-grading in k〈X〉. For most cases, we are going to focus
in sub-linear polynomials, which means we will not allow monomials with repeated
variables, although some of the results exposed are also true in general. Two monomials
w1, w2 are called disjoint if they do not share common variables and two polynomials p1,
p2 are called disjoint when every pair of monomials w1 ∈ p1, w2 ∈ p2 are disjoint.
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First let us use the two descriptions we have, to obtain some useful combinatorial
facts about Lie polynomials.

9.1. Lemma. We set τ the anti-algebra automorphism in T(V) such that τ(x) = −x for x ∈ V.
Let p ∈ T(V) be a Lie polynomial , then τ(p) = −p.

Proof. As τ is an anti-ring morphism, for any polynomials u,v ∈ T(V), we have that
τ([u, v]) = −[τ(u), τ(v)] so the vector space of elements that satisfy τ(p) = −p contains
V and is closed under brackets, therefore it contains all Lie polynomials.

9.2. Corollary. If p ∈ k〈X〉 is a homogeneous Lie polynomial of degree d, then the coefficient of
xi1 xi2 . . . xid in p equals (−1)d+1 times the coefficient of xid xid−1 . . . xi1 .

Proof. As τ(xi1 xi2 . . . xid) = (−1)dxid xid−1 . . . xi1 and the monomial on the left appears
in p, then the monomial on the right appears with the same coefficient in −p, thus
obtaining the result we wanted.

We can combine Lie polynomials two at a time using brackets in several ways starting
with elements in the set X, to obtain d-homogeneous brackets, which generate all Lie
polynomials, as seen before. A good way to think about this is as a binary tree T with d
leaves, with an element of X at every leaf and each fork represents a bracket. There are
d− 1 forks. This is illustrated in figure 1. Let p be the polynomial obtained following
the associations that T yields. [[

x, y
]
,
[
[z, w] , v

]]

[x, y]

x y

[
[z, w] , v

]

[z, w]

z w

v

Figure 1. A binary tree with leaves labeled by elements of X, and its associated Lie
polynomial in the root of the tree.

If we swap left and right children of any node we get a binary tree s(T) that yields−p.
We call m(T) the monomial which arises when reading leaf elements from left to right.
In the case of sub-linear polynomials (in other words, every leaf has a distinct element
in X) we know that a given monomial q appears in p with coefficient 1 (respectively, −1)
iff there exists a finite sequence of children swaps such that m(s1s2 . . . sl(T)) = q with l
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even (odd). Thus, we obtain 2d−1 monomials and the coefficient of every monomial is
either 1 or −1.

9.3. Lemma. If p ∈ k〈X〉 is a homogeneous Lie polynomial of degree d, x ∈ X, such that x
appears in p, then there is a word in u ∈ p with x as a prefix.

By symmetry, or using lemma 9.2, the same is valid for suffixes.

Proof. Without loss of generality assume p is Zn-homogeneous, so that x appears
1 ≤ k ≤ n times in every monomial in p. Now proceed by induction to prove x
does not appear in p at all. By the inductive hypothesis we know no monomial in p has
an x in its first j ≤ n− k− 1 places. Then choose any word u = xi1 xi2 . . . xid with the
same Zn-grading, with the first x in the position j + 1. We will see that u /∈ p. Indeed,
look at the coefficient of xi1 xi2 . . . xij ⊗ xij+1 . . . xid in ∆(p), as a sum of (d

j) coefficients as
described at the beginning of the section. All of them are zero by hypothesis, except the
one of the word u we started with. Then u does not appear in p.

When working with sub-linear d-homogeneous polynomials, any derivative ∂xΦ
determines Φ if it is cyclic, but the monomials that do not contain x. Simply take
Φ = c(x∂xΦ) So we would like to characterize potentials that generate derivatives
which are primitive. The following lemma will come in handy with that purpose.

9.4. Lemma. Let p, q ∈ k〈X〉 be two disjoint sub-linear Lie polynomials and x ∈ X, and
Φ = pq. Then ∂xΦ is also Lie.

Proof. If x does not appear in p or q, the result is trivial. Assume p and q are homoge-
neous. Again, proceed by induction in the degree of the polynomial that contains x, say
q.
If q = x, the result follows immediately. If not, by linearity of ∂x we may assume q is a
bracket. Write q = [q1(x), q2]. Then

∂x
(

pq
)
= ∂x

(
pq1(x)q2 − pq2q1(x)

)
= ∂x

(
q2 pq1(x)− pq2q1(x)

)
= ∂x

(
[q2, p]q1(x)

)
.

But q1 is bracket with lower degree, so we can use the inductive hypothesis.

As a corollary of this lemma, if we want a homogeneous potential such that all its
derivatives are Lie polynomials, it suffices to take any sub-linear Lie polynomial p, and
multiplying it by another variable, disjoint from p. Using this, we know it is really easy
to find Lie potentials, or at least as easy as to find Lie polynomials. For this family of
examples we will ask φB to be a Lie potential for each block.

If for each k ∈ E we have by construction that rk is a Lie-polynomial in the elements
of X, and we can consider the free Lie algebra g = g(S) generated by the set X subject
to the relations {ri : i ∈ E}. Then g is a N-graded Lie algebra, and there is an obvious
isomorphism A ∼= U (g) that extends the identity of V.

Observe that choosing Φ that way automatically ensures it is 2-sincere, using 9.3,
however for s > 2, 3-sincerity needs be asked explicitly. A second consequence of Φ
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being a Lie potential is that all its cyclic derivatives are commutators, a question that
appeared when computing HH•(A)−1 in Propositions 6.3 and 8.3.

Proposition. The algebra A is an integral domain isomorphic to its opposite algebra Aop.

Proof. All enveloping algebras of Lie algebras have these properties.

If we want to study g we should first look at its Hilbert series.

9.5. Proposition. Assume Φ is a 3-sincere Lie potential. Let ξ0 = 1, ξ1, . . . , ξs be the roots of
the polynomial 1− nt + nts − ts+1. The Hilbert series of g is

hg(t) = ∑
k≥1

(
1
k ∑

d|k
µ
( k

d

)
(

s

∑
i=0

ξd
i )
)

tk.

Using this formula we can readily compute the dimensions of the homogeneous
components of g for small values of n, since it depends only on the coefficients of h−1

A .

Proof. For each k ≥ 1 let gk = dim gk, so that hg(t) = ∑k≥1 gktk. The Poincaré-Birkhoff-
Witt theorem implies that the Hilbert series of the enveloping algebra U (g) is then
hU (g)(t) = ∏k≥1(1− tk)−gk , and the isomorphism A ∼= U (g) implies that we have

∏
k≥1

1
(1− tk)gk

=
1

(1− nt + nts − ts+1)
.

Taking logarithms, we see that

∑
k≥1

gk ln(1− tk) =
s

∑
i=0

ln(1− ξit)

so

∑
k≥1

gk ∑
l≥1

1
l tkl = ∑

k≥1

1
k (

s

∑
i=0

ξk
i )t

k.

Looking at the coefficient of tk in both sides of this equality we find that

∑
d|k

dgd =
s

∑
i=0

ξk
i .

Using the classical Möbius inversion formula [Sta97, §3.7], then, we conclude that

gk =
1
k ∑

d|k
µ
( k

d

)
(

s

∑
i=0

ξd
i ),

for each k ≥ 1, as we wanted.
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9.2 Steiner Quadruple Systems

Through this section, we will focus on quadruple systems, and as in the previous
example, on Lie potentials. In appendix A we discussed that n ≡ 2 or 4 mod 6 is a
necessary and sufficient condition for the existence of quadruple systems.

If B ∈ S is a block, we will consider the dihedral orders on its elements. Namely, two
orders are the same if one can be obtained from the other by means of rotation and/or
reflection. It is clear that there are only 3 possible orders, for instance if {i, j, k, l} ∈ S is a
block, the dihedral orders are:

i ≺ j ≺ k ≺ l, i ≺ k ≺ l ≺ j, i ≺ l ≺ j ≺ k

We will call an orientation of a cuadruple system a choice of a scalar ε i,j,k,l ∈ k for
each dihedral-order of every block B = {i, j, k, l} ∈ S such that the sum of the 3 scalars
of orders associated with the same block is zero. We can construct a polynomial φB as

φB = ∑ ε i,j,k,lxixjxkxl ,

where the sum is over all permutations of the elements in B. Summing over all blocks
we get the cyclic potential Φ we need to construct A(S, Φ).

As always, we can extend ε i,j,k,l = 0 for every non necessarily distinct i,j,k,l ∈ E such
that B = {i, j, k, l} /∈ S. Also, as before, we write

ε i,j,k =

{
0, if |{i, j, k}| ≤ 2;

ε i,j,k,?(i,j,k), in any other case.

Observe that in this case we have ε i,j,k,l = ε i,l,k,j = ε j,k,l,i and ε i,j,k,l + ε i,k,l,j + ε i,l,j,k = 0 by
definition of ε. In the same way, ε i,j,k = εk,j,i and ε i,j,k + εk,i,j + ε j,k,i = 0. It is clear that
any two of the last three determines the orientation of S.

The next proposition shows that all derivatives of Φ are Lie polynomials. As stated
in the previous section, using Lie potentials simplifies some of the computations and,
among other things, automatically proves that the algebra A(S, Φ) is an integral domain.

9.6. Proposition. Every sub-linear 4-homogeneous potential in xi, xj, xk, xl such that all its
cyclic derivatives are Lie polynomials is of the form

α(xixjxkxl + xkxjxixl) + β(xixkxjzl + xjxkxixl) + γ(xjxixkxl + xkxixjxl),

with α + β + γ = 0, the equality being up to projection to the space of cyclic potentials.

Proof. Multi-linear Lie polynomials of three variables are generated by [xi, [xj, xk]] and
[[xi, xj], xk], and so is a 2-dimensional space, and it is easy to check that it can be rewritten
as the vector space

{α(xixjxk + xkxjxi) + β(xixkxj + xjxkxi) + γ(xjxixk + xkxixj), with α+ β+ γ = 0}.

From lemma 9.4 we know that the only way to achieve our potential is multiplying a Lie
polynomial by another variable. Hence we obtain the result we wanted.
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A next step would be to try and use the automorphism group of a small cuadruple
system in order to search for natural orientations to consider.

9.3 Antisymmetrizers

In this family of examples we assume s is even. For each block B in S, we can define an ori-
entation as an equivalence class of total orders on its elements, where two orders are said
to be conjugate, if they differ by an even permutation. Thus if B = (i1 ≺ i2 ≺ · · · ≺ is+1)
is an ordered block, we define

φB = ∑
σ∈Ss+1

sg(σ) xiσ(1)
. . . xiσ(s+1)

.

The fact that s + 1 is odd makes Φ = ∑B∈S φB a cyclic potential.
It is clear that Φ is 3-sincere whenever s > 2. A positive aspect of this family of

examples is that there are very few choices to make in order to construct A(S), only one
out of the two possible orientations for each block.

A second positive aspect is that we get a much smaller system of linear equations
when computing the Lie algebra of derivations, so one can expect to encounter bigger
cohomology groups. Indeed (E2

i1,i2,...,is+1
) becomes trivial for antisymmetric potentials

and the equations of (E1
i1,i2,...,is+1

) may differ only up to a factor when swapping two
indexes. So we can index (E1

i1,i2,...,is+1
) only by subsets of E of order s + 1, rather than

ordered tuples.
A third consequence of Φ being antisymmetric of odd degree is that all its cyclic

derivatives are commutators, the same that happened when considering Lie potentials.
This question appeared when computing HH•(A)−1 in Propositions 6.3 and 8.3.

For this family of examples we have developed an algorithm to compute the Lie
algebra of homogeneous derivations s, that can be found in appendix B. The smallest
instance of a system with s > 2 even is the quintuple system obtained by derivation
from the Witt system of type (5, 6, 12) presented in example 1.2. Using our algorithms,
we have not been able to find orientations with large symmetry group and, in all those
cases, s is zero.
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Appendix A Some results on Steiner systems

The first question to ask whenever encountering a Steiner system (E, S) of type (t, k, n)
is the order of S.

If X = {(p, b) ∈ (E
t )× S : p ⊂ b}, then the first projection X → (E

t ) is a bijection, and
the fibers of the second projection X → S have exactly (k

t) elements, provided |E| ≥ k.
We see that

|S| =
(

n
t

)/(
k
t

)
. (26)

It follows that (n
t) ≡ 0 mod (k

t).
A common operation among Steiner systems is removing a point i ∈ E, and defin-

ing the blocks as S′ = {b \ {i} : b ∈ S and i ∈ b}, thus obtaining a system of type
(t− 1, k− 1, n− 1). The resulting system S′ is sometimes denoted in the literature as the
derived system of S with respect to i.

Applying equation (26) to S′ we see that the amount of blocks that contain a given
point is constant and equals |S′| = (n−1

t−1)/(
k−1
t−1). A simple inductive argument proves

that the amount of blocks that contain a given set of 0 ≤ j ≤ t given points is also
constant and equals (n−j

t−j)/(
k−j
t−j).

In the particular kind of systems we are interested in, we have the following lemma.

A.1. Lemma. If (E, S) is a Steiner system of type (s, s + 1, n) then the amount of blocks that
contain a given set of 0 ≤ j ≤ s distinct elements is (n−j

s−j)/(s + 1− j).

This of course yields some more divisibility conditions that n must satisfy for a
system of that order to exist. For example setting j = s− 1 we get n− s is odd, and
j = s− 2 yields (n− s + 2)(n− s + 1) ≡ 0 mod 6. From these two conditions together
we can conclude that n ≡ s± 1 mod 6.
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Appendix B A python class to compute derivations

We have developed a python class that, given the list of blocks of the Steiner system
of type (s, s + 1, n) with s even, it can construct the matrix of linear equations that
determine the Lie algebra s, defined in equation (18).

It can either calculate the rank of the matrix for a given choice of antisymmetric
coefficients ε(−), or generate the matrix with the unknown parameters corresponding
to the orientation of each block, in a format that we can enter into Mathematica. There
we can calculate the determinant of the principal minors in terms of the unknowns, to
determine which choice of orientation will yield a bigger space of derivations. Note that
when s ≥ 4, if the matrix has maximum rank n(n− 1), the s is zero, so we are looking
for matrices with small rank.

We choose to tackle this sort of potentials because for the other cases the linear system
is much bigger and harder to solve.

Listing 1. Steiner.py

import functools , operator , random , numpy

from itertools import combinations

def perm_parity(lst):

'''\

Given a permutation of the digits 0..N in order

as a list , returns its sign.

'''

parity = 1

for i in range(0,len(lst)-1):

if lst[i] != i:

parity *= -1

mn = min(range(i,len(lst)), key=lst.__getitem__)

lst[i],lst[mn] = lst[mn],lst[i]

return parity

class Steiner:

'''\

The points of the system should be consecutive integers

starting from 0,1,... Usage example:

s = Steiner(blocks = [...])

s.printGenericMatrix ()

s.tryRandomOrientations ()

'''

def __init__(self , blocks ):
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self.count = 0

self.blockStrings = [

'.'.join(map(str ,sorted(block ))) for block in blocks

]

self.size = len(blocks [0])

self.order = max([max(block) for block in blocks ]) + 1

self.orientation = [1 for block in blocks]

self.reset()

def setRandomOrientation(self):

self.orientation = [

random.choice ([1,-1]) for block in blocks

]

def reset(self):

self.count += 1

self.matrix = []

def isBlock(self , block):

key = '.'.join(map(str ,sorted(block )))

return key in self.blockStrings

def blockSign(self , block):

# assert(isBlock(l))

sortedBlock = sorted(block)

key = '.'.join(map(str ,sortedBlock ))

ind = self.blockStrings.index(key)

blockOrientation = self.orientation[ ind ]

perm = [block.index(x) for x in sortedBlock]

parity = perm_parity(perm)

sign = blockOrientation * parity

if self.useGenericCoefficients:

ans = 'e['+str(ind)+']'

if sign < 0:

ans = '-'+ans

return ans

else:

return sign

def star(self , lst):

'''\

Given a list of size -1, calculates the point missing
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to complete a block.

'''

valid = list(

x for x in range(self.order) if self.isBlock(lst+[x])

)

return valid [0]

def eqlist(self , gij):

'''\

Given the coefficients that multiply each matrix entry

g_{i,j} it generates the associated row in the linear

system , skipping diagonal entries , since they are zero.

'''

res = []

for i in range(self.order):

for j in range(self.order):

if i == j:

continue

res.append(gij[i][j])

return res

def matrixrow(self , pts):

'''\

Given a tuple of size points , populate a matrix g_{i,j}

with the coefficients in the linear equation associated

to that tuple.

'''

gij = [

[0] * range(self.order) for x in range(self.order)

]

for j in range(self.size):

block = list(pts)

s = self.star(block[j+1:] + block[:j] )

block[j] = s

gij[s][pts[j]] = self.blockSign(block)

self.matrix.append( self.eqlist(gij) )

def generateMatrix(self):

self.reset()

for vec in combinations(range(self.order), self.size):

l = list(vec)

if self.isBlock(l):
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continue

self.matrixrow(l)

def printGenericMatrix(self):

'''\

Print the matrix with generic coefficients , in a

Mathematica compatible format.

'''

self.useGenericCoefficients = True

self.orientation = [1 for block in blocks]

self.generateMatrix ()

print('{')

for i in range(len(self.matrix )):

line = '{' + ','.join(map(str ,self.matrix[i])) + '}'

if i != len(self.matrix) - 1:

line = line + ','

print(line)

print('}')

def getMatrixRank(self):

'''\

Computes the rank of a matrix if an assignment of

signs was chosen for each block.

'''

self.useGenericCoefficients = False

self.generateMatrix ()

nMat = numpy.matrix(self.matrix)

return numpy.linalg.matrix_rank(nMat)

def tryRandomOrientations(self , times = -1):

'''\

Try random orientations , until a matrix with small

rank is found.

'''

self.count = 0

while self.count != times:

self.setRandomOrientation ()

rank = self.getMatrixRank ()

print(self.count , rank)

if (rank < self.order*(self.order -1)):

print(orientation)

break
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