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Director: Eduardo J. Dubuc

Fecha de Presentación: 22/03/11



Contents

1 Acerca de este trabajo 3
1.1 Objetivos principales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Descripción del trabajo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Introduction 5
2.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Categorical preliminaries 7
3.1 Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Boolean categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Filtered colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Grothendieck fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Categorical models 29
4.1 Theories and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Interpretation of theories in a categorical setting . . . . . . . . . . . . . . . . . . 30
4.3 The syntactic category of a theory . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Joyal’s proof 37
5.1 Idea of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 The finite coproduct completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Making the terminal object projective . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Ultra-representability and Set-valued models . . . . . . . . . . . . . . . . . . . . 42

6 A characterization of models 45
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1 Acerca de este trabajo

1.1 Objetivos principales

El objetivo de este trabajo es exponer distintas herramientas de la teoŕıa de categoŕıas para
proveer demostraciones de algunos resultados metamatemáticos clásicos en teoŕıa de modelos.
En primer lugar, se presenta una demostración del conocido teorema de completitud de Gödel
para la lógica clásica (el cual ocupará un lugar preponderante) a través de métodos categóricos,
ideada por André Joyal. Usando algunas de estas ideas se proporciona también demostraciones
inéditas del teorema de Löwenheim-Skolem y del criterio conocido como test de Vaught para
teoŕıas completas.
La demostración aqúı expuesta del teorema de completitud se basa en una serie de exposi-

ciones llevadas a cabo por Joyal en 1978 en Montreal, en las que daba cuenta de cómo las
técnicas categóricas usuales permit́ıan formular una correcta interpretación del teorema y su
demostración en un lenguaje categórico. La conexión entre la teoŕıa de categoŕıas y la lógica
clásica hab́ıa sido observada con anterioridad, y ya en la tesis doctoral de William Lawvere de
1963 se explica como la teoŕıa de modelos pod́ıa beneficiarse con un enfoque funtorial de la
semántica. Es con las ideas de Joyal que se logró unificar los acercamientos a distintos teoremas
de completitud enunciados para lógicas diversas.
Se ha elegido para este trabajo la lógica clásica de primer orden por varios motivos. En

primer lugar, el teorema de completitud para tal lógica, que proporciona el puente entre la
semántica y la sintaxis, es un teorema clásico y célebre; en segundo lugar, la lógica clásica es
el cimiento principal del desarrollo del edificio matemático, estando basadas en ella las más
conocidas axiomatizaciones de la teoŕıa de conjuntos y de otros desarrollos matemáticos. Por
último, la lógica clásica ha sido caracterizada a través de ciertos resultados como la más fuerte
(en un sentido preciso) entre aquellas que satisfacen determinadas propiedades de uso frecuente
en teoŕıa de modelos.
Siendo el teorema de completitud, el teorema de Löwenheim-Skolem y el test de Vaught resul-

tados metamatemáticos, como todo aquel que verse sobre teoŕıa de modelos, la práctica común
es usar la propia teoŕıa de conjuntos como el ámbito metamatemático adecuado para tratar el
estudio de las teoŕıa lógicas y sus modelos. Dentro de las axiomatizaciones más conocidas de la
teoŕıa de conjuntos, el sistema axiomático de Zermelo-Fraenkel sumado al Axioma de Elección
es el más ampliamente usado, y es en este contexto que se inscriben dichos teoremas, debiendo
sus enunciados ser entendidos como teoremas dentro de tal sistema. Por otro lado, nuestra
intención ha sido realizar este trabajo teniendo en cuenta el rol que juega el propio Axioma
de Elección, mostrando, por ejemplo, como el teorema de completitud se trata de un resultado
no constructivo, en el sentido de que sólo los axiomas de Zermelo-Fraenkel no son suficientes
para derivarlo. Ya Leon Henkin hab́ıa demostrado en 1954 la equivalencia entre el teorema de
completitud y el teorema que afirma la existencia de ideales primos en álgebras de Boole, que
es de por śı un resultado no constructivo. Hemos decidido, pues, exponer la demostración de
Joyal de manera de poder inferir claramente tal equivalencia, cuyo interés reside principalmente
en el hecho de que el teorema del ideal primo es estrictamente más débil que el Axioma de
Elección. Se obtiene también como corolario el teorema de compacidad para la lógica clásica de
primer orden, aśı como el teorema de la existencia de modelos, ambos equivalentes también al
teorema del ideal primo. Finalmente, haciendo uso de algunas construcciones efectuadas en la
demostración del teorema de completitud, se exponen por último las demostraciones nuevas de
los teoremas de Löwenheim-Skolem y del test de Vaught para teoŕıas completas.
En cuanto a los fundamentos, adoptamos aqúı la axiomatización conjuntista de la teoŕıa de

categoŕıas, pero evitando hacer uso expĺıcito de los universos de Grothendieck. Los pasajes
en los que se mencionen categoŕıas grandes se introducen de manera de articular el desarrollo
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del trabajo sin oscurecer el hilo del discurso con tecnicismos irrelevantes, pero el lector puede
interpretar correctamente en su contexto las descripciones alĺı dadas sin necesidad de apelar a
universos.

1.2 Descripción del trabajo

Salvo la presente introducción, este trabajo se desarrolla enteramente en idioma inglés. Luego
de presentar en la sección 2 una breve introducción al enunciado y significación del teorema de
completitud de Gödel, basada en su tesis doctoral original (1929), se muestra como es posible
probar su equivalencia con el teorema del ideal primo una vez que se supone que éste es suficiente
para deducir aquel, lo que ocupará las siguientes tres secciones.
La sección 3 está destinada a presentar en detalle los resultados propios de la teoŕıa de categoŕıas

necesarios para comprender las ideas de Joyal. Se supone que el lector está ya familiarizado con
las nociones categóricas básicas (categoŕıas, funtores, transformaciones naturales, propiedades
universales, adjunciones, ĺımites, coĺımites), y se procede a desarrollar los lemas espećıficos
requeridos para la demostración del teorema de completitud. Se repasan los resultados usuales
asociados al funtor pullback, y se definen y desarrollan los conceptos de categoŕıas regulares
y booleanas, que jugarán un papel importante en la prueba. A continuación se describen las
principales propiedades de los coĺımites filtrantes, en especial su relación con la propiedad de
exactitud de la categoŕıa de conjuntos. Se desarrolla seguidamente la noción de pseudofuntor
y de bicoĺımite, y por último, se expone la noción de categoŕıa fibrada, debida a Grothendieck,
procediendo a demostrar los principales resultados asociados con sus construcciones usuales.
En la sección 4 se repasan conceptos espećıficos de la teoŕıa de modelos, de los que se supone

que el lector tiene ciertas nociones, y se procede luego a definir y desarrollar la interpretación
categórica de las teoŕıas. Esta parte esencial provee el v́ınculo entre la lógica clásica de primer
orden y las categoŕıas booleanas, y muestra cómo el estudio de estas categoŕıas permite obtener
resultados relacionados con la expresividad y el alcance demostrativo de las teoŕıas lógicas.
La sección 5 está destinada a la exposición de la prueba de Joyal, usando los conceptos y

desarrollos de las dos secciones anteriores. Se comienza por observar el carácter funtorial de la
semántica y su uso en la caracterización categórica de la completitud, interpretando los modelos
de determinadas teoŕıas como funtores de ciertas categoŕıas asociadas con valores en la categoŕıa
de conjuntos. Se exponen luego diversas construcciones ulteriores que permiten identificar una
importante clase de modelos de las teoŕıas lógicas, las cuales son utilizadas para llevar a cabo la
demostración de la completitud.
Finalmente, la sección 6 contextualiza la prueba de la sección 5 al proveer una caracterización

funtorial de todos los modelos de una determinada teoŕıa. A diferencia de las otras secciones,
se hace uso aqúı del Axioma de Elección para poder demostrar correctamente estos resultados.
Se explica también de qué manera puede usarse esta caracterización funtorial para derivar el
teorema de Löwenheim-Skolem, lo que proporciona una prueba inédita de este resultado a través
de métodos categóricos y justifica además el carácter no constructivo de las ideas que en esta
sección se desarrollan. Por último, se expone una demostración también inédita del criterio
conocido como test de Vaught, que permite enunciar condiciones suficientes para que una teoŕıa
de primer orden sea completa.
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2 Introduction

2.1 Completeness

In his doctoral dissertation (see [3]), Kurt Gödel presented a proof of one of the most celebrated
results in classical logic, the completeness theorem. This achievement generalized previous
results by Paul Bernays (and present in the work of Hilbert and Ackermann) on the completeness
of connective calculus to a wider important class of formulas containing quantifiers (those of first
order classical logic), therefore establishing an important connection between semantic truth
and syntactic provability. The theorem asserts that a formula which is valid in every model of
classical logic is necessarily provable from its axioms using only certain specific rules of inference.
Although the soundness of first order logic (i.e., the property that a provable formula is valid
in every model) is easily verified by induction on the complexity of the formula in question, the
converse result (that is, completeness) is not as direct. In fact, its proof heavily relies on the
specific axiomatic context used to establish it, as there are non constructive aspects that are
crucial for the result to hold.
By a model we mean a Set-valued non trivial one, that is, a nonempty set interpreting the

formulas of the theory in the usual way (see section 4), in which all logical axioms hold. By a
first order theory we shall always refer to a theory within first order classical logic. Assuming
we are working in Zermelo-Fraenkel set theory, ZF, some form of choice principle is needed to
deduce completeness. Gödel’s original result was intended for theories based on first order logic
allowing a countable set of formulas (besides those of logic). A stronger version that we shall
prove here holds, where there is no restriction on the cardinality of the set of formulas, namely:

Theorem 2.1.1. Completeness theorem: Given a first order theory T , if a formula φ is
valid in every model of T , then it is provable from the axioms of T (including first order logical
axioms).

It is easy to prove that the Completeness theorem implies the Boolean Prime Ideal theorem
(BPI) in ZF, which is a principle derived from the Axiom of Choice but strictly weaker than it,
although still independent of ZF (see for example [6]). To see this, we proceed by proving the
following chain of implications deduced from completeness:

Theorem 2.1.2. Model existence theorem: A first order theory is consistent if and only if
it has a model.

Proof. If the theory has a model and a contradiction could be derived from the theory, then
⊥ would be, by soundness, valid in that model, which is absurd; therefore, the theory must be
consistent. Conversely, suppose the theory is consistent. If it had no models, then ⊥ would be
trivially valid in every model, so by completeness it would be provable, which contradicts the
fact that the theory is supposed to be consistent. Therefore, it must have a model.

As an immediate consequence we get to the important:

Theorem 2.1.3. Compactness theorem: A first order theory consisting of an infinite number
of formulas has a model if and only if every subtheory consisting of a finite number of such
formulas has a model.

Proof. By the Model existence theorem, the theory has a model if and only if it is consistent,
which is true if and only if every subtheory with finite formulas is consistent. The result then
follows through a second application of the Model existence theorem.

Finally, we get:
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Theorem 2.1.4. The Compactness theorem implies BPI.

Proof. Let B be a Boolean algebra and let L be a language having a constant term for each
element a ∈ B (which we may identify) and a unary predicative variable I. Consider the theory
given by the following formulas:

I(0),¬I(1)

I(a) ∨ I(¬a)

for each a ∈ B, and

k∧
i=1

I(ai)→ I

(
k∨
i=1

ai

)

for all a1, ..., ak ∈ B. Then any finite set of formulas has a model, since they involve only a finite
number of elements of B, which generate thus a finite subalgebra where BPI can be proved to
hold (in ZF). By the Compactness theorem, the whole theory has a model, which yields in turn
the prime ideal for B.

The considerations above motivate the search of a proof of the Completeness theorem that
uses only BPI, since this will therefore establish the equivalence of both theorems over ZF and
will prove that the appeal to some choice principle is not superfluous. This is one of the virtues
of the proof we shall expose in section 5, the main section of this work, for which only BPI is
needed.

2.2 The axioms

We will now give a brief description of the axiom system and rules of inference used in [3].
Three primitive symbols are used (¬,∨, ∀) and others are defined as usual (∧,→,↔,∃). Individ-
ual variables are referred to by using small letters x, y, z, ... (individual variables and constants
may belong to different sorts), while capital letters X,Y, Z, ... denote either sentential variables
(if alone) or predicative variables (if followed by individual variables). The axioms include the
four axioms of connective calculus, two axioms handling quantifiers and two axioms handling
identity:

1) X ∨X → X
2) X → X ∨ Y
3) X ∨ Y → Y ∨X
4) (X → Y )→ (Z ∨X → Z ∨ Y )
5) ∀xP (x)→ P (y)
6) ∀x(X ∨ P (x))→ X ∨ ∀xP (x)
7) x = x
8) x = y → (F (x)→ F (y))

There are as well four rules of inference specified:

A) The inference scheme: from α and α→ β we can infer β
B) The substitution rule for sentential and predicative variables
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C) From the formula φ(x) we can infer ∀xφ(x)
D) Individual variables (either free or bounded) can be replaced by any other variables as long
as renaming them does not change the reach of already existing quantifiers

Gödel then proceeds to prove the completeness theorem first for a special class of formulas
and then deduces the general case. The proof we shall expose here follows different arguments,
and it is based on methods in categorical logic that were developed a few decades after Gödel’s
first proof was published. These methods are based on the use of category theory to explore
the concepts of model theory, and were initiated by Lawvere in his Phd. thesis [9], where
he introduced the concept of functorial semantics. The idea was exploited mainly by Joyal,
who inspired by Henkin’s proof of the Completeness theorem, considered generalized models
of theories that are not necessarily Set-valued but instead have corresponding interpretations
inside appropriate categories. As we shall see, it is possible to construct a category where first
order logic can be interpreted, making use of certain functors from this category to Set to
provide the usual semantics for the theory. We shall start in section 3 with some usual concepts
and results that are known and will play an important role in the next sections. Section 4 will
be devoted to the construction of a special category known as the syntactic category for first
order theories, as well as a categorical model inside it, as exposed in [8]. Finally, section 5 will
describe in detail the argument of Joyal’s proof of Gödel’s completeness theorem, and is based
on a series of lectures he gave in 1978. Although these lectures were unpublished, the ideas were
circulated amongstst his students and colleagues, and some related developments can be found,
for example, in [8] and [13].

3 Categorical preliminaries

3.1 Pullbacks

Amongst the finite limits on a category, pullbacks occupy an important place. Recall that in a
category C, the pullback of an arrow g : C → B along an arrow f : A → B is a commutative
square as shown below satisfying the following universal property: for every pair of arrows
j : Q → A, k : Q → C such that gk = fj, there exists a unique induced morphism l : Q → P
such that g′l = j and f ′l = k:

Q
l

��?
?

?
? k

""

j

��

P
f ′ //

g′

��

C

g

��
A

f
// B

The universal property above allows to define the greatest lower bound of two subobjects of
an object X as the pullback of the corresponding monics; therefore, the poset Sub(X) has
intersections (∧) provided the category has pullbacks.
Given a category C, we can define for an object A in C the slice category C/A whose objects

are arrows f : C → A and whose arrows are morphisms g : C → C ′ making commutative the
triangle below:
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C
g //

f

��1
111111111111 C ′

f ′

���������������

A

Pullbacks give rise to functors between slice categories in the following way. Given f : A→ B,
define the pullback functor f∗ : C/B → C/A acting on an object g : C → B by simply taking
its pullback along f , while it acts on an arrow i : C ′ → C by assigning to it the unique induced
morphism f∗(C ′)→ f∗(C):

f∗(C ′)
f ′′ //

h′

��

f∗(i)

$$I
I

I
I

I C ′

h

��

i

��>>>>>>>>

f∗(C)
f ′ //

g′

�����������������
C

g

��














A
f

// B

(Note that in the diagram above all three squares are pullbacks).

A certain property of an arrow g : C → B is said to be stable under pullbacks (or under
base change) if each time g has that property, for every f : A → B the corresponding arrow
g′ : f∗(C)→ A in the pullback diagram also has the same property. Monomorphisms are stable
under pullback, which leads to the following:

Definition 3.1.1. The functor f−1 : Sub(B) → Sub(A) is the restriction f∗|Sub(B) of the
pullback functor.

Remark 3.1.2. Note that since monics are stable under pullbacks, the restriction of the domain
to Sub(B) implies the restriction of the image to Sub(A).

Pullbacks can be used to characterize monomorphisms, as in the following:

Lemma 3.1.3. An arrow f : A→ B is a monomorphism if and only if the diagram on the left
is a pullback:

A
∆

��@
@

@
@ IdA

""

IdA

��

A
IdA //

IdA

��

A

f

��

P
π1 //

π2

��

A

f

��
A

f
// B A

f
// B

8



Equivalently, f is a monomorphism is and only if the diagonal morphism ∆ to the pullback P
on the right is an isomorphism.

Proof. Clearly, the second assertion follows from the first one. To prove the first assertion, we
just need to realize that if m,n : C → A satisfy fm = fn, then the diagram on the left is a
pullback if and only if there is an induced morphism l : C → A such that m = l = n, i.e., if and
only if f is monic.

Another characterization of monomorphisms that uses pullbacks and is sometimes useful is the
following:

Lemma 3.1.4. An arrow f : A→ B is a monomorphism if and only if the following square is
a pullback:

A //
∆ //

f

��

A×A

f×f

��
B // ∆ // B ×B

Proof. Consider the kernel pair of f (i.e., the pullback of f along itself), π1, π2 : Rf ⇒ A. Then
we can see that the following square is a pullback:

Rf //
(π1,π2) //

fπ1=fπ2

��

A×A

f×f

��
B // ∆ // B ×B

Indeed, given a pair of morphisms (g, h) : C → A×A and p : C → B satisfying (f×f)(g, h) = ∆g,
we must have fg = fh = p, and hence there is a morphism q : C → Rf , induced by the universal
property of the pullback Rf (of f along itself), that satisfies π1q = g and π2q = h. But these
two equalities are equivalent to the equality (π1, π2)q = (g, h), and since fπ2q = fh = p, we see
that q is the required induced morphism in the pullback above, and moreover, it is necessarily
the unique such possible morphism.
Finally, to prove the lemma we just need to note that, according to lemma 3.1.3, f is a

monomorphism if and only if Rf = A and π1 = π2 = IdA. But this implies precisely the
statement we wanted to prove.

One important fact about pullback functors is stated in the following:

Lemma 3.1.5. If the category C has pullbacks, then the functor f∗ : C/B → C/A has a left
adjoint Σf : C/A→ C/B.
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Proof. In the special case where B = 1, the terminal object of C, we have C/1 ∼= C and the
pullback functor is just the functor (−) × A : C → C/A, sending each object C into the object
π2 : C × A → A of C/A. By the universal property of the product, it is easy to see that a left
adjoint for this functor is given by the forgetful functor Σf : C/A→ C which applies the object
g : C → A in C/A into the object C. The general case follows now easily by noting that the
arrow f : A→ B is also an object (f) in the slice category C/B and we have (C/B)/(f) ∼= C/A.
Therefore, the corresponding pullback functor is f∗ = (−) × (f) : C/B → (C/B)/(f), which
reduces to the previous case.

3.2 Boolean categories

In the next sections we shall extend the notion of models using appropriate categories other
than Set, where first order theories can have an appropriate interpretation. This interpretation
will be possible only if the category considered is complex enough to support the complexity of
first order language. As we shall see, the right context to interpret first order theories is that of
Boolean categories (see [13], ch. 1).

Definition 3.2.1. A regular category is a category having the following three properties:
1) It has all finite limits.
2) Every arrow f : A → B can be factored as f : A � C � B, where C, called the image of
f , is the least subobject of B through which f can factor. The arrow f : A � C not factoring
through any proper subobject of C is called a cover.
3) Images are stable under base change (i.e., pullbacks preserve covers).
A regular category is said to be Boolean if it also satisfies the following two conditions:
4) The poset Sub(X) of subobjects of a given object X has finite unions and these are stable
under pullbacks.
5) Every subobject A in the poset Sub(X) has a complement, i.e., there exists a subobject B
such that the intersection A ∧B is initial in Sub(X) and A ∨B = X (in particular, Sub(X) is
a Boolean algebra, and we denote B = ¬A).

Remark 3.2.2. It follows from the definition that in a Boolean category complements are pre-
served by pullback functors f−1, that is, f−1(¬A) ∼= ¬f−1(A).

Definition 3.2.3. A functor between regular categories is regular provided it preserves finite
limits and images factorizations. A regular functor between Boolean categories is called Boolean
if it also preserves unions and complements.

Boolean categories are specially adequate to interpret first order logic because all logical con-
nectives have a definite meaning in it, due to the Boolean structure of the poset of subobjects of
a given object. For example, since it has finite limits, the intersection S ∧ S′ of two subobjects
of A is given by simply taking the pullback of the corresponding monics. Furthermore, as first
observed by Lawvere, quantifiers have also a categorical interpretation in this context, which we
mention in the following:

Lemma 3.2.4. For every arrow f : A→ B in a regular category C, the functor f−1 : Sub(B)→
Sub(A) has a left adjoint. Furthermore, if C is Boolean, then f−1 also has a right adjoint.

Proof. Suppose C is regular. Now, iB : Sub(B) ↪→ C/B has an image Im(iB), and the property
of being the least subobject of its codomain through which iB can factor says exactly that
Im : C/B → Sub(B) is left adjoint to iB.
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C/B f∗ //

Im

��

C/A
Σf

ii

Sub(B)
f−1

//
?�

iB

OO

Sub(A)
?�

iA

OO

∃f

jj

Therefore, we can take the left adjoint of f−1, ∃f , to be defined by the following composition:

Sub(A) � � iA // C/A
Σf // C/B Im // Sub(B)

where Σf is the left adjoint of f∗ : C/B → C/A.

Now suppose C is also Boolean. Then, the fact that each subobject has a complement defines
an operation assigning to each subobject A � X its complement ¬A in Sub(A). This amounts
to having an idempotent contravariant endofunctor ¬ in Sub(A). Because of remark 3.2.2, we
deduce that the functor f−1 : Sub(B) → Sub(A) also has a right adjoint ∀f . Indeed, we can
take ∀f = ¬∃f¬, which will necessarily be right adjoint to f−1 since ¬ is a (contravariant)
isomorphism.

Note that any cover A � B is necessarily an epimorphism, for if f equalizes a pair of arrows
of domain B, it would factor through their equalizer. Moreover, as the following proposition
shows, covers are closed under composition:

Lemma 3.2.5. In a regular category, the following holds:
a) The composition of covers is a cover.
b) If A � 1, B � 1 are covers, then A×B � 1 is a cover.
c) If Ai � 1 are covers for i = 1, ..., n, and m ≤ n, then the canonical arrow

∏n
i=1Ai �

∏m
i=1Ai

is a cover.

Proof. a) By definition, we have that an arrow h : X → Y is a cover if and only if ∃h(Y ) = X.
Let g : A � B, f : B � C be covers. Therefore, ∃g(B) = A and ∃f (C) = B. But then
∃fg(C) = ∃g∃f (C) = ∃g(B) = A, and fg is a cover.
b) It suffices to note that A × B � 1 is the composition of covers A × B � A � 1, where
A×B � A is the pullback of the cover B � 1 along A � 1 (and is therefore a cover itself).
c) The given arrow is the pullback of

∏n
i=m+1Ai � 1 along

∏n
i=1Ai � 1, and is hence a cover,

since the morphism
∏n
i=m+1Ai � 1 is a cover by b).

We should also mention that condition 2) of definition 3.2.1 has an equivalent form; instead
of requiring that in the composition f : A � C � B the first morphism be a cover, it can
be required that it is a regular epimorphism, i.e., an epimorphism that occurs as a coequalizer.
Indeed, as shown in [8], A1.3, we have:

Lemma 3.2.6. In a regular category C, the arrow f : A → B is a cover if and only if it is a
regular epimorphism.

11



Proof. Clearly, if f is a regular epimorphism, it is also a cover, because every factorization of
it through a subobject of its codomain can be easily seen to be a coequalizer of the same pair
of morphisms. Conversely, suppose f is a cover and let a, b : R ⇒ A be its kernel-pair (i.e., the
pullback of f along itself). We shall prove that f is the coequalizer of a and b. For that purpose,
let c : A→ C be a morphism satisfying ca = cb and consider the image factorization:

A
d // // D // (g,h) // B × C

of (f, c) : A → B × C. We shall prove that g is an isomorphism, so that hg−1 : B → C is
a factorization of c through f (which will be clearly unique, since covers are epimorphisms).
Because f and factors through g and f is a cover, g will be a cover as well, so it suffices to prove
that it is monic. Suppose then that k, l : E → D are such that gk = gl. Form the pullback:

P
p //

(m,n)

��

E

(k,l)

��
A×A d×d // D ×D

We have fm = gdm = gkp = glp = gdn = fn, so m,n factor through a, b respectively by a
morphism q : P → R. Therefore, we have hkp = hdm = cm = caq = cbq = cn = hdn = hlp.
Now, d× d is a cover, since it is the composite of the morphisms:

A×A
IdA×d // A×D

d×IdD // D ×D

both of which are pullbacks of d (and therefore covers). Hence, p is a cover, and in particular it
is an epimorphism. This implies that hk = hl, and hence, that (g, h)k = (g, h)l : E → B × C.
Since (g, h) is monic, we must have k = l, which completes the proof.

Definition 3.2.7. A finite coproduct of objects
∐n
i=1Ai is said to be disjoint if the injections into

the coproduct Ai �
∐n
i=1Ai are monomorphisms and their intersection is the initial subobject

of
∐n
i=1Ai.

The following lemma will be needed in section 5:

Lemma 3.2.8. Regular (resp. Boolean) categories are stable under slicing; that is, if C is a
regular (resp. Boolean) category and A is an object of C, then C/A is again regular (resp.
Boolean). Moreover, if C has finite disjoint coproducts, then so does C/A.

Proof. C/A clearly has a terminal object. To see it has pullbacks if C has finite limits, note that
for a pullback diagram we can take the pullback in C of the objects involved together with the
evident arrow to A and verify at once that it is a pullback in C/A. This shows C/A has finite
limits. Now C/A will have images, unions and complements of subobjects respectively provided
C does, for images, unions and complements in C/A are clearly those of C together with the
obvious arrows to A. This implies, in turn, that covers and unions are stable under pullbacks if
they already are in C. Finally, to check that C/A has finite coproducts if C does, note that the
universality of the coproduct in C of a set of objects from C/A endows it with an arrow to A,
thus forming the coproduct in C/A, which inherits then its disjointness.

12



Definition 3.2.9. A functor F : C → D is said to reflect isomorphisms when given an arrow
f : A → B in C, if the arrow F (f) : F (A) → F (B) is an isomorphism in D, then f is an
isomorphism in C.

Functors that reflects isomorphisms are called conservative. Basic is the following:

Lemma 3.2.10. If C is a regular category and a regular functor F : C → D reflects all iso-
morphisms F (f) : F (A)→ F (B) corresponding to monic arrows f , then F is conservative and
faithful.

Proof. Let us first prove that F is faithful. Given two arrows f, g : A→ B such that F (f) = F (g),
take their equalizer m : E → A, which is a monic. Since F preserves finite limits, F (m) is the
equalizer of F (f) and F (g), and therefore F (E) ∼= F (A). This implies that E ∼= A and then
f = g.
Now suppose f : A→ B is any arrow in C such that F (f) : F (A)→ F (B) is an isomorphism.

Consider the image factorization f : A � C � B; then the monic F (C) � F (B) must be a
cover, and hence is an isomorphism. This means that C and B are isomorphic and therefore
f is a cover. To prove it is an isomorphism, it remains to show that it is also monic. But if
a, b : C → A are two morphisms such that fa = fb, then F (f)F (a) = F (f)F (b), which implies
that F (a) = F (b) and therefore a = b.

Lemma 3.2.11. For every cover f : A→ B in a regular (resp. Boolean) category C, the pullback
functor f∗ : C/B → C/A is conservative and regular (resp. Boolean).

Proof. Suppose C is regular. Since pullback functors have left adjoint, they preserve limits. If
f is a cover, then f∗ clearly reflects isomorphisms that correspond to monic arrows in C/B,
and conservativity follows immediately from lemma 3.2.10. Finally, from 4) and 5) in definition
3.2.1 and remark 3.2.2, it follows that pullback functors must preserve unions and complements,
which finishes the proof.

Finally, we state the following basic result that hold in regular categories:

Lemma 3.2.12. In a regular category, if two subobjects B1 � X,B2 � X are disjoint, then
their union is as well their coproduct.

Proof. This proof is mainly due to Joyal, and appears in [13], ch. 1. The lemma follows from a
more general result stating that the following square in Sub(X) is a pushout in C:

B1 ∧B2
// s //

��

t

��

B2

j2

��
B1

j1 // B1 ∨B2

The special case where B1, B2 are disjoint makes this pushout a coproduct. Call A = B1 ∨ B2

and suppose we are given the following commutative diagram:

B1 ∧B2
// s //

��

t

��

B2

f2

��
B1

f1 // Z

13



Let Γf1 : B1 → B1 × Z be the graph of f1 : B1 → Z and define Γf2 similarly. Consider the
following compositions:

B1
//

Γf1 // B1 × Z //
j1×IdZ // A× Z

B2
//

Γf2 // B2 × Z //
j2×IdZ // A× Z

which being monomorphisms are isomorphic to their respective images Mf1 = Im(j1 × IdZ ◦
Γf1),Mf2 = Im(j2 × IdZ ◦ Γf2). Define now α to be the composition:

Mf1 ∨Mf2
// // A× Z π1 // A

The idea is to prove that α is an isomorphism, since then, defining g : A→ Z to be:

A
α−1

//Mf1 ∨Mf2
// // A× Z π2 // Z

we clearly render the following diagram commutative:

B1 ∧B2
s //

��

t

��

B2
��

j2

�� f2

��

B1
j1 //

f1

,,

A

g

  @
@

@
@

@
@

@
@

Z

and g would necessarily be the unique possible morphism that makes the above diagram com-
mute. Now let us prove that α−1(B1) = Mf1 and α−1(B2) = Mf2 , for which it suffices to prove
the first case, since the second is similar. We have on one hand α−1(B1) = π−1

1 (B1) ∧ (Mf1 ∨
Mf2) = (B1×Z)∧(Mf1∨Mf2) = ((B1×Z)∧Mf1)∨((B1×Z)∧Mf2), and since Mf1 ⊆ (B1×Z),
to prove that α−1(B1) = Mf1 it suffices to prove the inclusion (B1 × Z) ∧Mf2 ⊆Mf1 . For that
purpose, consider the morphism f1t = f2s : B1∧B2 → Z and let Γf : (B1∧B2)→ (B1∧B2)×Z
be its graph. Then, in the diagram below:

14



B1 ∧B2

Γf //
��

t

��

(B1 ∧B2)× Z
��

t×IdZ

��

s×IdZ // B1 × Z
��

j1×Z

��
B2
//

Γf2 //

Mf2

22B2 × Z //
j2×IdZ // A× Z

both squares are pullbacks, making the whole diagram a pullback as well, which means that
(B1×Z)∧Mf2 = B1 ∧B2. The sought inclusion can then be easily seen to hold noting that we
have:

B1 ∧B2
// s // B1

//
Γf1 //

Mf1

22B1 × Z //
j1×IdZ // A× Z

As a consequence, the following diagram is a pullback:

Mfi
// //

ri

��

Mf1 ∨Mf2

α

��
Bi

j1 // A

for i = 1, 2. But we can, moreover, affirm that the left arrow ri is an isomorphism, since ji
factors through A× Z as the following diagram shows:

Bi //
ji // A

Bi //
Γfi //

IdBi

<<zzzzzzzzzzzzzzzzz
Bi × Z //

ji×IdZ //

π1

OO

A× Z

π1

OO

We shall now deduce that α must be an isomorphism from the fact that each ri is. Clearly, α is a
cover, since Im(α) ⊇ B1∨B2 = A. Thus we only need to be show that α is a monomorphism. Let
u, v : C →Mf1 ∨Mf1 be arrows such that αu = αv = h; we need to prove that Ker(u, v) = C.
Note that C = h−1(A) = h−1(B1 ∨B2) = h−1(B1) ∨ h−1(B2), and therefore it suffices to prove
that h−1(Bi) ⊆ Ker(u, v), or equivalently, that u|h−1(Bi) = v|h−1(Bi). But if we consider the
following diagram on the left and pull it back along Bi � X to obtain the diagram on the right:
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X

u
**

v 44

h

##FFFFFFFFFFFFFFFFFFFF Mf1 ∨Mf1

α

��

h−1(Bi)

u|h−1(Bi)

))
v|h−1(Bi)

55

h

""EEEEEEEEEEEEEEEEEE
Mfi

ri

��
A Bi

then the fact that ri is an isomorphism implies that u|h−1(Bi) = v|h−1(Bi). This finishes the
proof.

3.3 Filtered colimits

A special type of categories will prove to be useful for our purposes. Following [10] we give the
following:

Definition 3.3.1. A category C is called filtered if it satisfies the following two conditions:
a) For every pair of objects A,B in C there is an object C such there are arrows f : A→ C and
g : B → C.
b) For every pair of arrows a, b : A ⇒ B there is an arrow c : B → C such that ca = cb.

A colimit diagram Γ : D → C in the category C is called filtered if Γ is a filtered category. In
section 5 we shall need the following result:

Lemma 3.3.2. A filtered colimit of Set-valued left exact functors is left exact.

This is really a special case of the well known exactness property of Set, by which all filtered
colimits commute with finite limits. We present here a different proof of this particular case.

Proof. Suppose I is a filtered category, J is a finite category and {Fi/i ∈ I} are Set-valued left
exact functors. We need to prove that lim−→

i∈I lim←−−
j∈J Fi(xj) = lim←−−

j∈J lim−→
i∈I Fi(xj). We shall do

so by proving that the colimit lim−→
i∈I lim←−−

j∈J Fi(xj) satisfies the universal property of the limit
lim←−−

j∈J lim−→
i∈I Fi(xj). Let x = lim−→

i∈I xi, F = lim←−−
j∈J Fj , and consider the following diagram:

Fi(xj)
θxj

//

Fi(g)

��

F (xj)

F (g)





Fi(x)
θx //

Fi(fj)

iiRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Fi(fj′ )

uullllllllllllllllllllllllllllllll
F (x)

F (fj)

hhRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

F (fj′ )

vvlllllllllllllllllllllllllllllll C
moo_ _ _ _ _ _

aj

mm

aj′

qq

1coo

a′j

ss

a′
j′

kk

l

ll

Fi(xj′)
θxj′ // F (xj′)
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We need to show that F (x) is a limit diagram whose projections are the arrows F (fj) for j ∈ J .
For that purpose, consider a cone aj : C → F (xj); we shall construct an induced morphism
m : C → F (x) by defining the map m on each element c ∈ C. Take, thus, an element c ∈ C.
Since J is finite and I is filtered, there exists some i ∈ I such that all the elements aj(c) of the
corresponding colimits have already representatives in some Fi(xj). Call a′j the maps so defined,
and let θ : Fi → F be the natural transformation which is the injection into the colimit. Because
Fi(fj) : Fi(x)→ Fi(xj) is a universal cone and a′j : 1→ Fi(xj) can be supposed without loss of
generality to be a cone, there is an induced morphism l : 1→ Fi(x) such that Fi(fj)l = a′j . Then
we just define m(c) = θxl. Indeed, we have, F (fj)m(c) = F (fj)θxl = θxjFi(fj)l = θxja

′
j = aj(c),

and similarly, F (fj′)m(c) = aj′(c). To prove that m is unique, suppose there is a morphism
m′ satisfying F (fj)m′ = aj and let c ∈ C be such that m(c) 6= m′(c). Find i ∈ I such that
m′(c) factors as θxl′. From diagram chasing we can infer that θxjFi(fj)l

′ = θxja
′
j . Since there

must be some j ∈ J such that Fi(fj)l′ 6= Fi(fj)l, it follows that Fi(fj)l′, Fi(fj)l are in the
same class in the colimit. Therefore, there is some k ∈ I, η : Fi → Fk for which ηxl, ηxl

′ are two
different morphisms from 1 into the limit Fk(x) commuting with the limiting cone, contradicting
universality of this limit. This finishes the proof.

Lemma 3.3.3. Any colimit of Set-valued left exact functors, each of which preserves covers and
unions of subobjects, preserves as well covers and unions of subobjects.

Proof. Suppose I is category and {Fi / i ∈ I} are Set-valued functors that preserve covers and
unions of subobjects. Let us first prove that the colimit preserves covers, that is, given a cover
f : A → B, let us see that lim−→

i∈I Fi(f) : lim−→
i∈I Fi(A) → lim−→

i∈I Fi(B) is surjective. Take an
element c ∈ lim−→

i∈I Fi(B); it must have a representative c′ ∈ Fi(B) for some i ∈ I. Now, since
colimits of functors are computed pointwise and ki : Fi → lim−→

i∈I Fi are the injections into the
colimit, the following diagram commutes:

Fi(A)

Fi(f)

����

(ki)A // lim−→
i∈I Fi(A)

lim−−→
i∈I Fi(f)

�����
�
�
�
�
�

Fi(B)
(ki)B

// lim−→
i∈I Fi(B)

and since Fi(f) : Fi(A) → Fi(B) is a cover, it is surjective and there is some d ∈ Fi(A) such
that Fi(d) = c′. Hence, lim−→

i∈I Fi((ki)A(d)) = c, which proves that lim−→
i∈I Fi is regular.

Let us now see see that lim−→
i∈I Fi preserves unions of subobjects. Given iA : A � C, iB : B � C

subobjects of C, because the Fi preserve finite limits, then Fi(A∧B) = Fi(A)∧Fi(B), and hence
the universal property of the pushout below (note that it is a pushout according to lemma 3.2.12)
guarantees that the arrows jAB : Fi(A∨B) = Fi(A)∨Fi(B)→ lim−→

i∈I Fi(A)∨ lim−→
i∈I Fi(B) form

a cocone diagram, which induces in turn the arrow m that makes the next diagram commute:
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Fi(A ∧B) = Fi(A) ∧ Fi(B) //
jB //

��

jA

��

Fi(B)
��

j′B

�� (j′
lim−−→

i∈I
Fi(A)

)◦(ki)A

  BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

Fi(A) //
j′A //

(j′
lim−−→

i∈I
Fi(B)

)◦(ki)B

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX Fi(A) ∨ Fi(B)

jAB

((PPPPPPPPPPPPPP

lim−→
i∈I Fi(A) ∨ lim−→

i∈I Fi(B)

Fi(A ∨B) = Fi(A) ∨ Fi(B)
(ki)A∨B //

jAB

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
lim−→

i∈I Fi(A ∨B)

m

���
�
�
�
�
�

lim−→
i∈I Fi(A) ∨ lim−→

i∈I Fi(B)

It is now easy to see that m must be an isomorphism. Indeed, it is surjective, since if c ∈
lim−→

i∈I Fi(A) ∨ lim−→
i∈I Fi(B), supposing without loss of generality that c ∈ lim−→

i∈I Fi(A), it has a
representative c′ in Fi(A) ↪→ Fi(A) ∨ Fi(B) = Fi(A ∨B) for some i ∈ I, and hence jAB(c′) = c.
Therefore, c = m((ki)A∨B(c′)). To prove that m is injective we proceed similarly, noting that if
m(a) = m(b), then we can suppose without loss of generality that a′, b′ are the corresponding
representatives in Fi(A ∨ B) for some i ∈ I. But since jAB must map them into the same
element in lim−→

i∈I Fi(A) ∨ lim−→
i∈I Fi(B) (which we can suppose to be, say, in lim−→

i∈I Fi(A)), then
a′, b′ belong to the same class, i.e., a = b.

As a consequence of lemmas 3.3.2 and 3.3.3 we have now the following:

Corollary 3.3.4. A filtered colimit of Set-valued regular (resp. Boolean) functors is regular
(resp. Boolean).

Proof. Suppose I is a filtered category and {Fi / i ∈ I} are Set-valued regular (resp. Boolean)
functors. By lemma 3.3.2, the colimit lim−→

i∈I Fi preserves finite limits, and by lemma 3.3.3 it also
preserves covers (when the functors are regular) and unions of subobjects (when the functors are
Boolean). In this latter case, since the complement in Set of a subobject s : A→ B is uniquely
determined by the conditions A ∨ ¬A = B and A ∧ ¬A = 0, using that lim−→

i∈I Fi preserves
unions and intersections we can infer that lim−→

i∈I Fi(¬A) = ¬ lim−→
i∈I Fi(A), which completes the

proof.

One construction that we shall use later involves a filtered bicolimit of categories, so we recall
here the definition and present an explicit construction.
We start, following [4], with the concept of pseudofunctor. This is a generalization of functors,

except that it is only required to preserve composition up to isomorphism, and these isomor-
phisms have certain coherence properties, specified in the following:
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Definition 3.3.5. Given a category D, a (normalized) pseudofunctor F : Dop → Cat consists
of the following:
a) A function Ob(F ) : Ob(D)→ Ob(Cat) (for convenience we shall refer to F (D) for the category
corresponding to the object D).
b) An application Ar(F ) : Ar(D) → Ar(Cat) which assigns to every arrow f : C → D in D a
functor f∗ : F (D)→ F (C).
c) An application c defined in Ar(D)2 which assigns to each pair (f, g) of arrows of D a natural
isomorphism cf,g : g∗f∗ → (fg)∗.
Furthermore, the following properties hold:
1) For every object C in D we have (IdC)∗ = IdF (C).
2) For every arrow f : C → D in D, we have cf,IdC = Idf∗ and cIdD,g = Idf∗.
3) For a triple of composable arrows f : C → D, g : D → E and h : E → G, we have
cf,gh(ξ) ◦ cg,h(f∗(ξ)) = cfg,h(ξ) ◦ h∗(cf,g(ξ)).

In the special case when cf,g = Id(fg)∗ the pseudofunctor reduces to a functor.
Following [1], we also have:

Definition 3.3.6. Given a pseudofunctor F : Dop → Cat, a pseudococone with vertex at the
category X consists of a family of functors {φA : F (A) → X / A ∈ D} and a family of natural
isomorphisms {φu : φB ◦ u∗ → φA / (u : A→ B) ∈ D} that satisfy the following conditions:
a) φIdA = IdφA.
b) For u : A→ B and v : B → C, we have φvu = φu ◦ φvIdv∗ ◦ (IdφC ◦ c−1

v,u):

F (C)

F (B)

F (A)

X

v∗

��

u∗

��

u∗v∗

""

φA

��????????????????

φB
//

φC

??����������������

φu

KS

φv

KS

c−1
v,u +3 =

F (C)

F (A)

X(vu)∗

��

φA

��????????????????

φC

??����������������

φvu

KS

Pseudococones allow us to consider a variation of the colimit notion that we shall call bicolimit,
introduced in [14], Ex. VI 6.4.0, under the notation ”Lim−−→” (with capital L). We have:

Definition 3.3.7. Given a pseudofunctor F : Iop → Cat, the bicolimit C = lim−→
i∈I F (i) is the

universal pseudococone associated to F . In other words, it is a pseudococone φ : F ⇒ C such
that for every psedococone ψ : F ⇒ D there is a unique functor λ : C → D such that ψi = λφi
for every i ∈ I:

C λ //______ D

F (i)

φi

>>}}}}}}}}}}}}}}}}}

ψi

77ooooooooooooooooooooooooooo

A construction of the bicolimit is described in [14] by means of categories of fractions applied
to certain fibrations. This will prove to be useful in section 5.
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3.4 Grothendieck fibrations

We now turn to Grothendieck construction of the bicolimit, as done in [14]. We need first some
definitions.

Definition 3.4.1. Let π : C → D be a functor, and f : A→ B a morphism in D. We say that a
morphism m : X → Y in C satisfying π(m) = f is cartesian if, for every morphism m′ : X ′ → Y
in C satisfying π(m′) = f , there exists a unique morphism p : X ′ → X in C such that π(p) = IdA
and mp = m′:

X ′

m′

&&NNNNNNNNNNNNN

p

���
�
�

π

��

X
m // Y

A
f // B

Definition 3.4.2. A fibration is a functor π : C → D such that:
a) For every morphism f : A → B in D and every Y in C satisfying π(Y ) = B there exists a
cartesian morphism m : X → Y in C such that π(m) = f .
b) The composition of cartesian morphisms is cartesian.
In this case C is called fibered over D.

Following [2], we have as well:

Definition 3.4.3. Given a category C, a set S of morphisms of C is said to satisfy a calculus
of left fractions if the following holds:
a) Morphisms of S are closed under composition.
b) If f : B → A and g : C → A are two morphisms and g ∈ S, there are morphisms f ′ : D → B
and g′ : D → C such that fg′ = gf ′ and g′ ∈ S:

B
f

&&NNNNNNNNNNNNN

D

g′
88ppppppp

f ′
&&NNNNNNN A

C

g

88qqqqqqqqqqqqq

c) For every pair of morphisms f, g : A ⇒ B such that there is some s ∈ S satisfying sf = sg,
there exists some t ∈ S satisfying ft = gt.

The terminology of definition 3.4.3 arises from the fact that the stated conditions provides
another construction of the category of fractions. We recall here the definition:

Definition 3.4.4. Given a category C and a set S of morphisms of C, there exists a category
C[S−1], called the category of fractions, that satisfies the following universal property: there is a
functor j : C → C[S−1] such that j(s) is an isomorphism for every s ∈ S, and for every functor
F : C → D such that F (s) is an isomorphism for every s ∈ S, there exists a unique functor
F : C[S−1]→ D such that Fj = F :
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C
j //

F

��1
111111111111 C[S−1]

F

���
�

�
�

�
�

�

D

We have now:

Theorem 3.4.5. Let S be a set of morphisms of C that satisfies a calculus of left fractions.
Then the category of fractions C[S−1] can be constructed as follows:
a) Objects are given by the objects of C.
b) The hom-sets [x, y] are given by the (filtered) colimits lim−−−−−−−−−→

(u→x)∈S(x)
[u, y], where S(x) is the

category whose objects are morphisms f : u→ x of S over x and whose morphisms between the
objects f : u→ x and f ′ : u′ → x are represented by arrows g : u→ u′ such that f ′g = f .

Proof. Given x ∈ C, let us first check that S(x) is cofiltered (i.e., that S(x)op is filtered). For
objects A given by f : u → x and B given by f ′ : u′ → x, because of condition b) of definition
3.4.3 we can find m : u′′ → u and n : u′′ → u′ such that fm = f ′n. Therefore, for the object
C given by f ′n : u′′ → x there exist morphisms C → A and C → B given by the arrows m
and n, respectively, which proves that the first condition for filteredness in S(x)op is fulfilled.
To prove the second condition, suppose there are two arrows A ⇒ B given by g, g′. Then, since
f ′g = f ′g′, because of condition c) of definition 3.4.3 there exists h : v → u in S such that
gh = g′h. Therefore, if D is the object given by fh : v → x, the arrow D → A given by h
equalizes those represented by g and g′.
To define the composition in C[S−1], take representatives f : u→ y whith a : u→ x in S and
g : u′ → z with b : u′ → y in S. Because of condition b) of definition 3.4.3, there are arrows
b′ : v → u and f ′ : v → u′ such that fb′ = bf ′ and b′ ∈ S. Then we define the composite [g] ◦ [f ]
as the class of the arrow gf ′ : v → z, since ab′ : v → x is in S. The conditions of definition 3.4.3
ensure that this composite is independent of the chosen v.
Finally, to verify the universal property of C[S−1] note that we can assume without loss of

generality that S contains all identity arrows, since if S′ is the union of S and all these identities
(which are inversible), it is easy to see that C[S′−1] and C[S−1] satisfy the same universal property.
Define then the functor j by applying x ∈ C into x ∈ C[S−1], and applying the arrow f : x→ y
into the class of f : x → y (which can be done since Idx : x → x is in S). Then, an inverse
for j(s), where s : x → y is in S, is given by the representative of Idx : x → x. Also, it is
easy to verify that the representative f : z → y, where s : z → x is in S, is the composition
j(f)◦(j(s))−1 in C[S−1], from which we deduce that in order to have Fj = F we must necessarily
have F ([f ]) = F (f) ◦ (F (s))−1. This defines the functor F and proves it is the unique such
possible functor.

The next lemma states sufficient conditions so that cartesian morphisms form a calculus of left
fractions:

Lemma 3.4.6. Let π : C → D be a fibration and suppose that D satisfies the following two
conditions:
1) For every pair of morphisms f : B → A and g : C → A, there are morphisms f ′ : D → C
and g′ : D → B such that fg′ = gf ′:
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2) c) For every pair of morphisms f, g : A ⇒ B such that there is some s ∈ S satisfying sf = sg,
there exists some t ∈ S satisfying ft = gt.
Then the set S of cartesian morphisms of C satisfy a calculus of left fractions.

Proof. Since C is fibered over D, condition a) of definition 3.4.3 is satisfied. To check condition
b), suppose we have morphisms f : B → A and g : C → A, which give rise to morphisms
π(f) : π(B) → π(A) and π(g) : π(C) → π(A). By hypothesis there are arrows f ′ : D → π(C)
and g′ : D → π(B) such that π(f)g′ = π(g)f ′, and since π : C → D is a cofibration, there are
cartesian morphisms f ′′ : D′ → C and g′′ : D′′ → B such that π(f ′′) = f ′ and π(g′′) = g′.
Therefore, there is a unique p : D′′ → D′ such that gg′′p = ff ′′, which means that the following
square commutes:

B
f
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as required.
Finally, to verify condition c), suppose we have morphisms f, g : A ⇒ B and a cartesian s

satisfying sf = sg. Then π(s) coequalizes π(f) and π(g). By hypothesis, there is some h in
D such that π(f)h = π(g)h. If h′ in C is a cartesian morphism such that π(h′) = h, then
sfh′ = sgh′, which implies fh′ = gh′, since s is cartesian. This completes the proof.

Corollary 3.4.7. If π : C → D is a fibration and D is cofiltered, the set of cartesian morphisms
in C satisfies a calculus of left fractions.

Proof. It is an immediate consequence of the previous lemma.

A natural type of fibration that often arises is described in the following:

Definition 3.4.8. Grothendieck construction: Let I be a category and F : Iop → Cat a
pseudofunctor. We define the category ΓF as follows:
a) The objects of ΓF are given by pairs (x, i), where i ∈ I and x ∈ F (i).
b) The morphisms (x, i) → (y, j) are given by pairs (f, φ), where f : i → j is an arrow of I
and φ : x→ f∗(y) is a morphism in F (i). Moreover, the composite (g, ψ) ◦ (f, φ) of two objects
(f, φ) : (x, i)→ (y, j) and (g, ψ) : (y, j)→ (z, k) is defined as (gf, (cg,f )z ◦ f∗(ψ) ◦ φ).

Remark 3.4.9. If we define the functor π : ΓF → I by setting π((x, i)) = i and π((f, φ)) = f ,
it can be seen (see [4], Ex. VI 8 for details) that ΓF becomes a fibered category over I, called the
fibration associated to the pseudofunctor F . Furthermore, the cartesian morphisms are precisely
those morphisms (f, φ) for which φ is an isomorphism. Indeed, a morphism (f, φ) : (x, i)→ (y, j)

22



is cartesian if and only if for every morphism of the form (f, ψ) : (x′, i) → (y, j) there exists a
unique morphism of the form (Idi, η) : (x′, i)→ (x, i) such that (f, ψ) = (f, φ)◦(Idi, η) = (f, φη).
But this is equivalent to stating that, in F (i), φ : x→ f∗(y) is such that for every ψ : x′ → f∗(y)
there exists a unique η : x→ x satisfying φη = ψ, which clearly implies that φ is an isomorphism.
Finally, Grothendieck also states in [4] that for an arbitrary fibration over I and a choice of
cartesian morphisms, a pseudofunctor F can be defined in such a way that its associated fibration
is precisely the original one.

Since, given an arbitrary fibration, the existence of the pseudofunctor described in the previous
remark makes an essential appeal to the Axiom of Choice, we shall not use it in our proof in
section 5. Instead, we shall work directly with the fibration in question.
The connection between Grothendieck’s construction of categories of fractions and universal

pseudococones is contained in the following:

Theorem 3.4.10. Let I be category, F : Iop → Cat a pseudofunctor and π : ΓF → I the
fibration associated to F . Then, if S is the set of cartesian morphisms in ΓF , the category of
fractions ΓF [S−1] is the universal pseudococone associated to F .

Proof. The pseudococone is defined through the functors jgi : F (i) → ΓF [S−1], where j is
the functor defined in 3.4.5 and gi(x) = (x, i), gi(l) = (Idi, l), and through the natural iso-
morphisms hf = Idjgf , where gf : giF (f) ⇒ gj is defined for each arrow f : i → j in I by
(gf )x = (f, IdF (f)(x)).
For a pseudococone η : F ⇒ D, there is an induced morphism θ : ΓF → D defined as
θ((x, i)) = ηi(x) and θ((f, φ)) = ηj(φ)(ηf )x. This morphism θ satisfies θgi = ηi, and furthermore,
applies cartesian morphisms in ΓF into invertible morphisms in D. Therefore the universal
property of ΓF [S−1] yields the desired result.

Remark 3.4.11. The usual notion of colimits in Cat (the universal cocone, as given, for in-
stance, in [2]) do not coincide in general with the bicolimit of categories (the universal pseudoco-
cone associated to a functor F , as in definition 3.3.7). In the filtered case both notions coincide
([14], Ex VI 6.8), and the standard construction of [2] of the universal cocone yields a category
which is equivalent to the category constructed in theorem 3.4.5, although they are not strictly
isomorphic.

The following lemma provides evidence of the fact that all finitary constructions in the cate-
gories of a filtered diagram that are preserved by the transition functors are inherited by the
bicolimit:

Lemma 3.4.12. Let I be a cofiltered category and F : Iop → Cat a pseudofunctor such that
each F (i) is a regular (resp. Boolean) category and each transition functor f∗ : F (j) → F (i)
(for f : i → j in I) is regular (resp. Boolean). Then, if S is the set of cartesian morphisms in
the fibered category ΓF over I, the category of fractions ΓF [S−1] is also regular (resp. Boolean).
Moreover, for each i in I, the injection into the bicolimit Ii : F (i)→ ΓF [S−1] is a regular (resp.
Boolean) functor.

Proof. In what follows, we we shall use the construction given in the proof of theorem 3.4.5, as
well as the filteredness of Iop to find specific arrows needed for the constructions.
Using the fact that for, f in I, each functor f∗ is regular (resp. Boolean), it can now be

verified that the following holds: the product of two objects (C, i) and (D, j) is given by the
object (u∗(C) × v∗(D), k), where u : k → i, v : k → j are arrows of I. The corresponding
projections are given by the classes of the arrows on the right:
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(u∗(C)× v∗(D), k) (u∗(C)× v∗(D), k)
(Idk,Idu∗(C)×v∗(D))oo (u,π1) // (C, i)

(u∗(C)× v∗(D), k) (u∗(C)× v∗(D), k)
(Idk,Idu∗(C)×v∗(D))oo (v,π2) // (D, j)

The equalizer of two morphisms represented by the arrows on the right:

(C, i) (X, k)
(v,ψ)oo (u,φ) // (D, j)

(C, i) (X ′, k′)
(v′,ψ′)oo (u′,φ′) // (D, j)

where (v, ψ), (v′, ψ′) are the corresponding cartesian morphisms, i.e., where ψ,ψ′ are isomor-
phisms, is represented by the following morphism on the right:

(E, l) (E, l)
(Idl,IdE)oo (xu,(cx,u)Cg) // (C, i)

where (Idl, IdE) is cartesian, in which u : k → i, v : k → j, u′ : k′ → i, v′ : k′ → j are arrows
of I, x : l → k and y : l → k′ are such that x∗u∗(C) = y∗u′∗(C), x∗v∗(D) = y∗v′∗(D) and
g : E → x∗u∗(C) is the equalizer of the arrows x∗(φψ−1), y∗(φ′ψ′−1) : x∗u∗(C) → y∗u′∗(D) in
Cl. The image of a morphism represented by the arrow on the right:

(C, i) (X, k)
(v,ψ)oo (u,φ) // (D, j)

where (v, ψ) is the corresponding cartesian morphism, i.e., where ψ is an isomorphism, is given
by the subobject represented by the following right morphism:

(M,k) (M,k)
(Idk,Id(M,k))oo (v,m) // (v∗(D), k)

where (Idk, Id(M,k)) : (M,k) → (M,k) is cartesian, in which u : k → i, v : k → j are arrows of
I and m : M � v∗(D) is the subobject corresponding to the image of φψ−1 : u∗(C) → v∗(D)
in Ck. In particular, the class of (u, φ) is a cover if and only if φψ−1 : u∗(C)→ v∗(D) is a cover
in Ck, from which it can be proved, using the fact that each Ci is regular, that covers are stable
under pullbacks. The union of two subobjects represented by arrows on the right:

(C, i) (X, k)
(v,ψ)oo (u,φ) // (D, j)

(C, i) (X ′, k′)
(v′,ψ′)oo (u′,φ′) // (D, j)

where (v, ψ), (v′, ψ′) are the corresponding cartesian morphisms, i.e., where ψ,ψ′ are isomor-
phisms, is given by the subobject represented by the following right morphism:

(U, l) (U, l)
(Idl,Id(U,l))oo

(yv′,(cy,v′ )Dg)// (D, j)
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where (Idl, Id(U,l)) is cartesian, in which u : k → i, v : k → j, u′ : k′ → i′, v′ : k′ → j are
arrows of I, x : l → k and y : l → k′ are such that x∗v∗(D) = y∗v′∗(D) and g : U � y∗v′∗(D)
is the subobject corresponding to the union of the subobjects x∗(φψ−1) : x∗u∗(C) � y∗v′∗(D)
and y∗(φ′ψ′−1) : y∗u′∗(C) � y∗v′∗(D) in Cl. In case each Ci is also Boolean, it can be verified
from the definitions above that unions are stable under pullbacks too. On the other hand, the
complement of a subobject represented by right arrow:

(C, i) (X, k)
(v,ψ)oo (u,φ) // (D, j)

where (v, ψ) is cartesian, i.e., where ψ is an isomorphism), is given by the subobject represented
by the following morphism on the right:

(V, k) (V, k)
(Idk,Id(V,k))oo (s,v) // (D, j)

where (Idk, Id(V,k)) is cartesian, in which u : k → i, v : k → j are arrows of I and s : V → v∗(D)
is the complement of the subobject φψ−1 : u∗(C) � v∗(D) in Ck. Finally, it is straightforward to
check that with these specifications the functors Ii : Ci → ΓF [S−1] are regular (resp. Boolean).

Theorem 3.4.10 and lemma 3.4.12 require the existence of a pseudofunctor F : Iop → Cat. In
many contexts in which the Axiom of Choice is not used, this pseudofunctor is not available,
and therefore a new approach must be taken. This leads to the following:

Definition 3.4.13. Let π : C → I be a fibration such that each fiber Fi over i is a regular
category. We say that the set S of cartesian morphisms is locally regular if for every arrow
f : i→ j in I, the following conditions hold:
a) For every finite limit diagram kl : L → Cl in Fj and every choice of cartesian morphisms
gl : C ′l → Cl, gL : L′ → L satisfying π(gl) = π(gL) = f , the unique induced arrows k′l : L′ → C ′l
in Fi form a limit diagram there.
b) For every cover p : C → D in Fj and every choice of cartesian morphisms gC : C ′ → C,
gD : D′ → D satisfying π(gC) = π(gD) = f , the unique induced arrow p′ : C ′ → D′ is a cover in
Fi.
In case the fibers Fi are also Boolean categories, we say that S is locally Boolean if, in addition:
c) For every pair of subobjects s : C1 � D, t : C2 � D in Fj and every choice of cartesian
morphisms gi : C ′i → Ci, gD : D′ → D, g : U → C1 ∨ C2 satisfying π(gi) = π(gD) = π(g) = f ,
then U is the union, in Fi, of the unique induced subobjects s′ : C ′1 � D′, t′ : C ′2 � D′.
d) For every subobject s : C � D in Fj and every choice of cartesian morphisms gC : C ′ → C,
gD : D′ → D, g : V → ¬C satisfying π(gC) = π(gD) = π(g) = f , then V is the complement, in
Fi, of the unique induced subobject s′ : C ′ � D′.

The definition above allows to consider the preservation of regularity (resp. Booleanness) in
a local sense, in a context where we may not have a global choice of cartesian morphisms that
define a functor between fibers. This leads to the following reformulation of lemma 3.4.12 that
does not appeal to the existence of a pseudofunctor:

Lemma 3.4.14. Let π : C → I be a fibration such that C and the fibers Fi are regular (resp.
Boolean) categories, I is a cofiltered category with a terminal object and the set S of cartesian
morphisms in C is locally regular (resp. locally Boolean). Then, the category C1 = C[S−1] is
regular (resp. Boolean). Furthermore, there exists a regular (resp. Boolean) functor I1 : C → C1.
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Proof. In what follows, we we shall use the filteredness of Iop to find specific arrows of it that
will be used in the constructions. Being these finitary constructions, we can choose some fixed
cartesian morphisms for each one of the objects involved (a finite number of them), in case such
a morphism is not determined by the context. In such a case, the notation (−)∗ will indicate a
specific choice of a cartesian morphism over the corresponding arrow (−) of I. We shall use as
well the construction of the category of fractions used in the proof of theorem 3.4.5.
Using the local regularity (resp. local Booleanness) of S, it can now be verified that the following

holds: the product of two objects C and D is given by the object u∗(C)×v∗(D), where u : k → i,
v : k → j are arrows of I and u∗(C)×v∗(D) is the product in Fk. The corresponding projections
are given by the classes of the morphisms corresponding to the composition of the arrows on
the right (the first arrows on the left are cartesian morphisms):

π

��

u∗(C)× v∗(D) u∗(C)× v∗(D)
π1 //oo u∗(C) // C

k k
Idk

//
Idk

oo k u
// i

π

��

u∗(C)× v∗(D) u∗(C)× v∗(D)
π2 //oo v∗(D) // D

k k
Idk

//
Idk

oo k v
// j

To get the equalizer of two morphisms between C and D represented by the arrows on the right:

π

��

C u∗(C)oo a // D

i ku
oo

v
// j

π

��

C u′∗(C)oo a′ // D

i k′
u′

oo
v′

// j

we first find arrows x : l → k and y : l → k′ in I such that x∗u∗(C) = y∗u′∗(C) and x∗v∗(D) =
y∗v′∗(D). Then the equalizer is given by the morphism represented by the composition of the
two right arrows in the following diagram:

π

��

E E
h //oo x∗u∗(C) // C

l l
Idl

//
Idl
oo l ux

// i

where h : E → x∗u∗(C) is the equalizer of the arrows x∗(φ), y∗(ψ) : x∗u∗(C) → x∗v∗(D) in Fl,
and φ : u∗(C)→ v∗(D), ψ : u′∗(C)→ v′∗(D) are the unique arrows induced by the corresponding
cartesian morphisms v∗(D)→ D and v′∗(D)→ D.
The image of a morphism C → D represented by the arrow on the right:
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π

��

C u∗(C)oo a // D

i ku
oo

v
// j

is given by the subobject represented by the composition of the two right arrows:

π

��

M M // m //oo v∗(D) // D

k k
Idk

//
Idk
oo k v

// j

where u : k → i, v : k → j are arrows of I and m : M � v∗(D) is the subobject corresponding to
the image in Fk of φ : u∗(C)→ v∗(D), the arrow induced by the cartesian morphism v∗(D)→ D.
In particular, such a morphism is a cover if and only if φ : u∗(C)→ v∗(D) is a cover in Fk, from

which it can be proved, using the fact that Fk is regular, that covers are stable under pullbacks.
To get the union of two subobjects C � D and C ′ � D represented by the arrows on the

right:

π

��

C u∗(C)oo a // D

i ku
oo

v
// j

π

��

C ′ u∗(C)oo a′ // D

i′ k′
u′

oo
v′

// j

we first find arrows x : l→ k and y : l→ k′ in I such that x∗v∗(D) = y∗v′∗(D). Then the union
is given by the subobject represented by the composition of the two right arrows:

π

��

U U //
h //oo x∗v∗(D) // D

l l
Idl

//
Idl
oo l vx

// j

where h : U � x∗v∗(D) is the subobject corresponding to the union of the subobjects x∗(φ) :
x∗u∗(C) � x∗v∗(D) and y∗(ψ) : y∗u′∗(C) � y∗v′∗(D) in Fl, and where φ : u∗(C) → v∗(D),
ψ : u′∗(C) → v′∗(D) are the unique arrows induced by the corresponding cartesian morphisms
v∗(D)→ D and v′∗(D)→ D.
In case C is also Boolean, it can be verified from the definitions above that unions are stable

under pullbacks too. On the other hand, the complement of a subobject represented by the
arrow on the right:
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π

��

C u∗(C)oo a // D

i ku
oo

v
// j

is given by the subobject represented by the composition of the following right arrows:

π

��

V V // s //oo v∗(D) // D

k k
Idk

//
Idk
oo k v

// j

where s : V → v∗(D) is the complement, in Fk, of the subobject φ : u∗(C) � v∗(D), the arrow
induced by the cartesian morphism v∗(D)→ D.
Finally, the functor I1 : C → C1 can be defined by applying the object C in C into the object
C in C1, and applying each morphism f : C → D in C into the morphism represented by the
arrow on the right:

π

��

C Coo f // D

1 1oo // 1

A straightforward verification, using the constructions above, shows now that the functor so
defined is regular (resp. Boolean).

A natural type of fibration that often arises involves a category described in the following:

Definition 3.4.15. Let C be a category with pullbacks and I a subcategory. The category AI of
arrows over I is defined as follows:
a) Objects are given by arrows u : c→ i where i is in I.
b) The arrows between two objects [u : c→ i] and [v : d→ j] are given by commutative squares:

c

u

��

g // d

v

��
i

f
// j

where f is an arrow of I. Composition is defined in the obvious way.

There is a functor ∂1 : AI → I which assigns to each arrow its codomain, and to each commu-
tative square the arrow of I at the base. The fiber over i is given by the slice category C/i. It
is easy to check that ∂1 is a fibration and that the cartesian morphisms correspond precisely to
those commutative squares in C that are pullbacks. If a choice of pullbacks is not assumed, and
hence no pseudofunctor F can be defined, this fibration may be used instead of the fibration
associated to F , which allows to use lemma 3.4.14. This will be done in section 5.
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4 Categorical models

4.1 Theories and models

For the sake of completeness we recall here the main notions from model theory. Following [5],
we have:

Definition 4.1.1. A (multityped) structure A consists of the following:
a) A family of sets {Ai / i ∈ I}, each of which is called the sort of its corresponding elements.
b) A family of elements of the sets Ai called constants, denoted by constant symbols c (each of
a given sort).
c) A set of n-ary relations, i.e., subsets of Ai1 × ...×Ain, denoted by relation symbols R.
d) A set of n-ary operations, i.e., functions from Ai1 × ... × Ain to Ain+1, denoted by function
symbols f .

Definition 4.1.2. The signature Σ of a structure A consists of the set of all constants of A,
the set of all n-ary relations symbols and the set of all n-ary function symbols, for n ∈ N.

Given a signature Σ, we can build the language of a first order theory through the definition
of terms and formulas:

Definition 4.1.3. A term of a language over a signature Σ is defined to be one of the following
elements: a variable x or a constant symbol c of given sorts, or a function symbol f(x1, ..., xn)
(symbolizing the value of f at (x1, ..., xn)).
A formula of the language is a string of terms and logical symbols (∀,∃,∨,∧,¬) built according
to the following recursive clauses:
a) Atomic formulas. These have either the form R(x1, ..., xn) for a relation symbol R and
variables xi of adequate sorts, or s = t where s, t are terms of the same sort.
b) Formulas built from connectives. If φ, ψ are formulas, then ¬φ, φ ∨ ψ, φ ∧ ψ are formulas.
c) Quantified formulas. If φ(x) is a formula where x is a free variable of a given sort, then
∀xφ(x), ∃xφ(x) are formulas.

Remark 4.1.4. The recursive clauses above define the class of all formulas within a language.
At the metamathematical level, a proposition is said to hold for the class of all formulas if there
are inductively verified with respect to the complexity of the formula; that is, if it holds for all
formulas of type a), and whenever they hold for formulas of a certain type, they hold as well for
combinations of these with logical symbols that define the next level of complexity.

A first order theory consists of the class of all formulas derived through the use of the rules of
inference from both the logical axioms and a certain set of non logical axioms.
Finally, we have:

Definition 4.1.5. Given a first order theory T over a signature Σ, a (Set-valued) interpretation
of T is given by a so called Σ-structure M(Σ), that has a constant symbol M(c) for every constant
term c in T , a function symbol M(f) for every function f and a relation symbol M(R) for every
predicative variable R.

A sentence is a formula with no free variables. Therefore, interpretations assign to sentences
of a language corresponding sentences in terms of relationships within the structure. More
concretely:

Definition 4.1.6. We say that the interpretation M(T ) is a (Set-valued) model of T if M(T )
satisfies all formulas of T in the sense defined recursively as follows:
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a)If φ is the atomic sentence s = t, then M(T ) satisfies φ if s, t are interpreted by the same
element in M(T ).
b)If φ = ψ ∨ η, then M(T ) satisfies φ if it satisfies ψ or if it satisfies η. Similarly, φ = ψ ∧ η is
satisfied if both ψ and η are satisfied, and φ = ¬ψ is satisfied if M(T ) does not satisfy ψ.
c)If φ = ∀xψ(x), M(T ) satisfies φ if it satisfies all sentences of the form ψ(a) where a ∈M(T )
ranges over all elements of the same sort as x. Similarly, if φ = ∃xψ(x), M(T ) satisfies φ if
there exists some a ∈M(T ) of the same sort as x such that it satisfies ψ(a).

In order to introduce the notion of submodel we give the following:

Definition 4.1.7. A substructure N of a (multityped) structure M is a structure whose sorts
and corresponding set of constants are subsets of those of M , and whose functions and relations
are the restriction of those of M to elements of N .

We have now:

Definition 4.1.8. A submodel N of a given model M of certain theory is a substructure of
M that is itself a model of the theory and satisfies the following condition: for every formula
φ(x1, ..., xn) and all n-tuples (a1, ..., an) in N where each ai is of the same sort as xi, then
φ(a1, ..., an) is true in M if and only if it is true in N .

These definitions will be referred to later.

4.2 Interpretation of theories in a categorical setting

Following [8], D1.2, given a Boolean category C, for each signature Σ of a first order lan-
guage we can associate the so called Σ-structure within C in a way that generalizes the Set-
valued interpretations to all Boolean categories. More precisely, for each sort A of variables
in Σ there is a corresponding object M(A); for each function symbol f there is a morphism
M(f) : M(A1, ..., An) = M(A1)× ...×M(An)→M(B) and for each n-ary predicative variable
R there is a subobject M(R) � M(A1, ..., An), where Ai are the sorts corresponding to the
individual variables related to R (which will specify, by definition, the type of f and R). The
Σ-structure will serve as a setup for interpreting all formulas of the language considered. Due
to the need of distinguishing the free variables of the formula for the purpose of a correct inter-
pretation, we shall adopt the notation (x, φ) to represent a formula φ whose free variables occur
within x = x1...xn. We now define the interpretation of such formulas by induction on their
complexity:

Definition 4.2.1. Given a term s of a first order theory, its interpretation within the Boolean
category C is a morphism of C defined in the following way:

1) If s is a variable, it is necessarily some xi, and then the corresponding morphism is [[x, xi]] =
πi : M(A1, ..., An)→M(Ai), the i-th product projection.
2) If s is a function symbol f(x1, ..., xn), its interpretation is M(f) : M(A1, ..., An)→M(B).

The interpretation in C of the formula (x, φ), where x = x1...xn and xi is a variable of sort
Ai, is defined as a subobject [[x, φ]] � M(A1, ..., An) in the following way:

3) If φ is the formula R(t1, ..., tn), where R is a n-ary predicative variable of type B1, ..., Bn,
then [[x, φ]] is given by the pullback:
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[[x, φ]] //
��

��

M(R)
��

��
M(A1, ..., An)

([[x,t1]],...,[[x,tn]])//M(B1, ..., Bn)

4) If φ is the formula s = t where s, t are variables of sort B, then [[x, φ]] is the equalizer of the
arrows:

M(A1, ..., An)

[[x,s]]

**

[[x,t]]

44M(B)

Equivalently, [[x, φ]] is the pullback of the diagonal M(B) � M(B)×M(B) along the morphism
([[x, s]], [[x, t]]).
5) If φ is the formula η ∨ ψ, then [[x, φ]] is the union [[x, η]] ∨ [[x, ψ]] in Sub(M(A1, ..., An)).
Similarly, if φ is the formula ¬ψ, the corresponding subobject is ¬[[x, ψ]].
6) The formulas > and ⊥ are interpreted respectively as M(A1, ..., An) and the initial subobject
in Sub(M(A1, ..., An)).
7) If φ is the formula ∃y(ψ), then [[x, φ]] is the image of the composite:

[[xy, ψ]] // //M(A1, ..., An, B) π //M(A1, ..., An)

where π is the projection to the first n coordinates.

For the corresponding notion of substructure we have the following:

Definition 4.2.2. A substructure Σ′ of a (multityped) structure Σ consists of a set of monic
arrows hA : MΣ′(A)→MΣ(A) indexed by the sorts of Σ such that:
i) for each function symbol f the following square commutes:

MΣ′(A1, ..., An)
MΣ′ (f) //

��

hA1
×...×hAn

��

MΣ′(B)
��

hB

��
MΣ(A1, ..., An)

MΣ(f)
//MΣ(B)

ii) for each relation symbol R there is a commutative square:

MΣ′(R) // //
��

��

MΣ′(A1, ..., An)
��

hA1
×...×hAn

��
MΣ(R) // //MΣ(A1, ..., An)
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The reader should be able to verify that in the particular case where C = Set, the definitions
above coincide with the Set-valued one as in 4.1.5, 4.1.6 and 4.1.7. They provide a translation
of the language over Σ into a subcategory of C, interpreting notions that are purely syntactical
in nature through the use of categorical concepts. Furthermore, as we shall see, there is a tight
relation between the categorical properties of C and the properties of theories defined over that
language. For that purpose it is useful to derive a concept of validity, inside C, for subobjects
that interpret certain formulas.

Definition 4.2.3. The formula ∀x(φ(x) → ψ(x)) is said to be satisfied by the Σ-structure M
if the corresponding subobjects for φ, ψ satisfy [[x, φ]] ≤ [[x, ψ]] in Sub(M(A1, ..., An)). More
generally, the formula φ(x) is said to be satisfied by M if M satisfies ∀x(> → φ(x)), (or,
equivalently, if [[x, φ]] = [[x,>]]). In this case φ(x) is said to have full extension.

Definition 4.2.4. Given a theory T over a language Σ interpretable in C, we say that the Σ-
structure M is a model for T if M satisfies all the axioms of T (including first order logical
axioms).

Note that this reveals the functorial nature of semantics: if F : C → Set is a Boolean functor
(i.e., a functor that preserves finite limits, covers, unions and complements), then such a functor
applies any model of T in C into a model of the theory in the sense of definition 4.1.6. This
provides a new insight to the study of the relationship between semantics and syntax, since we
can specify models of a theory by specifying Boolean functors to Set from a Boolean category
that contains a (categorical) model of the theory. Joyal’s proof of the Completeness theorem
can now be seen to have two instances:

a) Constructing a canonical categorical model of a theory inside a convenient Boolean cate-
gory, such that a formula is satisfied by that model if and only if it is provable in the theory.

b) Constructing a special family of Boolean functors from that category to Set which jointly
reflect the satisfiability of the formulas, providing thus the link between semantics and the
syntactical properties of the theory.

4.3 The syntactic category of a theory

Given a first order theory T , we shall define, as done in [8], D1.4, its syntatic category CT and
a categorical model MT inside in such a way that a formula in T will be provable if and only
if its interpretation in CT is satisfied by the model MT . This already gives a hint regarding
what the objects of CT should be. We will say that two formulas (x, φ), (y, ψ) are equivalent if
the formula φ(x) ↔ ψ(y) is provable in T through the use of logical and non-logical axioms as
well as the rules of inference specified in section 2. We therefore take the objects of CT to be
the provable-equivalence classes of formulas (x, φ) (note that the set of free variables specified
may be empty {}). To describe the morphisms, consider two objects [x, φ], [y, ψ], and assume,
without loss of generality, that their set of variables x = x1, ..., xn, y = y1, ..., ym are disjoint.
Consider now a formula θ that satisfies the following conditions:

a) Its free variables are amongstst xy.
b) The following formulas are provable in T :

∀xy(θ(x, y)→ φ(x) ∧ ψ(y))
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∀xy(φ(x)→ ∃y(θ(x, y)))

∀xyz(θ(x, y) ∧ θ(x, z)→ (y = z))

Define now the morphisms between [x, φ] and [y, ψ] to be the provable-equivalence class of all
those formulas of T that satisfy conditions a) and b) above (note that the formula θ(x, z) denotes
the formula θ(xy) after variables occurring in y have been replaced for those occurring in z; in
particular, these two sets are implicitely assumed to contain the same number of variables. Also,
∃y stands for ∃y1...∃ym, and similarly, y = z stands for y1 = z1, ..., ym = zm).
The idea behind this definition is to allow only those morphisms that are exactly needed for our

purposes. More precisely, the first formula in condition b) restricts the interpretation [[θ(x, y)]]
in any model to be a subobject of [[φ(x)∧ψ(y)]], while the last two formulas imply, if the category
has finite limits, that it will be the graph of a morphism from [[φ(x)]] to [[ψ(y)]]. Because of the
particular construction of the model MT , this says exactly that the class [θ(x, y)] is a morphism
from [φ(x)] to [ψ(y)].
The composite of two morphisms:

[x, φ]
[xy,θ] // [y, ψ]

[yz,δ] // [z, η]

is defined to be the class [xz, ∃y(θ ∧ δ)]. It can be verified that this definition does not depend
on the choice of representatives θ, δ and that this morphism so defined satisfies conditions a)
and b) above. It can also be verified that composition of morphisms is associative. Finally, the
identity morphism on an object [x, φ] can be defined to be arrow:

[x, φ]
[xy,φ(x)∧(x=y)]// [y, φ]

where x = x1, ..., xn and y = y1, ..., yn have both the same number of variables and the rep-
resentative formula of the codomain class has been obtained by replacing each xi by yi in the
representative formula of the domain (in what follows we shall assume this is the case provided
the morphism between them contains the subformula x = y). Again, it is easily checked that
this morphism satisfies condition a) and b) and that it is the unity for composition. Also, note
that these definitions do not depend on the choices of representatives in each class.
This makes CT a small category. But we can actually prove a much stronger result, namely:

[[x, φ]] ≤ [[x, ψ]]

Theorem 4.3.1. If T is a first order theory, then CT is a Boolean category.

Proof. We proceed to verify conditions 1)-5) in definition 3.2.1. To prove CT has finite limits it
suffices to prove it has binary products and equalizers. As the product of two objects [x, φ], [y, ψ]
(where x and y are assumed to be disjoint) we can take the class [xy, φ ∧ ψ] together with the
projections indicated below:

[z, χ]

[zxy,θ∧δ]

���
�
�
�
�
�

[zx′,θ]

vvnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

[zy′,δ]

((PPPPPPPPPPPPPPPPPPPPPPPPPPPPP

[x′, φ] [xy, φ ∧ ψ]
[x′xy,φ∧ψ∧(x′=x)]oo [xyy′,φ∧ψ∧(y′=y)] // [y′, ψ]
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Given morphisms [zx, θ] and [zy, δ], the induced morphism into the product is given by the class
[zxy, θ∧φ], since it can be easily verified that this is the only morphism that makes the diagram
commute.
For the equalizer of a parallel pair of morphisms [xy, θ], [xy, δ], we take:

[x′, ∃y(θ(x′, y) ∧ δ(x′, y))]
[x′x,∃y(θ∧δ∧(x′=x))] // [x, φ]

[xy,θ]
))

[xy,δ]

55 [y, ψ]

[z, χ]

[zx,η]

55llllllllllllllllllllllllllllllllllllllllllllllll

[zx′,η]

OO�
�
�
�
�
�
�
�
�

and the universal property is satisfied with the indicated induced morphism. This proves that
CT has finite limits. Note as well that there is an initial object given by [[{},⊥]], and a terminal
object given by [[{},>]].
To prove point 2) of definition 3.2.1, given a morphism [xy, θ] : [x, φ] → [y, ψ] we take its

image as the subobject [y,∃x(θ)] � [y, ψ]. In particular, [xy, θ] is a cover if and only if the
formula ∀y(ψ(y)→ ∃x(θ(x, y))) is provable in T . Then, from the construction of limits above, it
can be verified straightforwardly that covers are stable under pullbacks, proving point 3) of the
definition. To prove condition 4), take two subobjects [x, ψ], [x, η] from [x, φ] and define their
union to be [x, ψ∨η]. Finally, point 5) is easily verified by considering a subobject [x, ψ] � [x, φ]
and taking its complement to be [x,¬ψ ∧ φ]. This concludes the proof.

Our goal is to relate syntactical provability in T with semantic validity in the categorical model
MT . One aspect of this relation is given by the following lemma, which highlights the syntactical
aspects of the properties of CT :

Lemma 4.3.2. 1) A morphism [xy, θ] : [x, φ] → [y, ψ] is an isomorphism if and only if
[xy, θ] : [y, ψ] → [x, φ] is a valid morphism in CT (i.e., it satisfies conditions a) and b) of
the definition of morphism).
2) A morphism [xy, θ] : [x, φ]→ [y, ψ] is a monomorphism if and only if the formula ∀xyz(θ(x, y)∧
θ(z, y)→ x = z) is provable in T .
3) Every subobject of [x, φ] is isomorphic to one of the form:

[x, ψ] //
[ψ∧(x=y)] // [y, φ]

where ψ is such that the formula ∀x(ψ(x)→ φ(x)) is provable in T . Moreover, any two subobjects
[x, ψ], [x, η] in Sub([y, φ]) satisfy [x, ψ] ≤ [x, η] if and only if the formula ∀x(ψ(x) → η(x)) is
provable in T .

Proof. To prove 1), suppose [xy, θ] is a valid morphism from [y, ψ] to [y, φ]. Then it can be easily
checked that [xy, θ] itself is an inverse for [xy, θ]. Conversely, if [xy, θ] : [x, φ] → [y, ψ] has an
inverse [xy, δ] (which is a valid morphism), then it can be verified that θ and δ are necessarily
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provable-equivalent in T , from which the result follows.

To prove 2), construct the kernel pair of [xy, θ] : [x, φ] → [y, ψ], which, using the construction
of products and equalizers given in the proof of theorem 4.3.1, can be verified to be the class
[xz, ∃y(θ(x, y) ∧ θ(z, y))]. Then, as can be easily checked, the provability of the stated formula
is equivalent, by 1), to the fact that the diagonal morphism from [x, φ] to this kernel pair is an
isomorphism, which is in turn equivalent, by lemma 3.1.3, to the fact that [xy, θ] is a monomor-
phism.

Finally, suppose we have a monomorphism [xy, θ] : [y, ψ] → [x, φ]. By 1), the morphism
[xy, θ] : [y, ψ] → [x,∃y(θ(x, y))] is an isomorphism. Then, composing its inverse with the
original monomorphism we have a subobject of the stated form, where ψ(x) is the formula
∃y(θ(x, y)). Now, two subobjects [y, ψ], [y, η] of [x, φ] satisfy [y, ψ] ≤ [y, η] if and only if there
exists a monomorphism [y, ψ] � [y, η], which by the previous argument must have the form
[ψ′ ∧ (x = y)] : [x, ψ′] � [y, η] for some ψ′. But then, since ψ and ψ′ must be provable
equivalent, this is a valid morphism if and only if the formula ∀x(ψ(x) → η(x)) is provable in
T . This completes the proof of 3).

To construct the desired model MT in the syntactic category of T , note that there is a natu-
ral Σ-structure assigning to the sort A the formula [x,>] where x is a variable of sort A, and
to the predicative variable R over variables x1, ..., xn of sorts A1, ..., An respectively, the sub-
object [x1, ..., xn, R(x1, ..., xn)] � [x1, ..., xn,>]. We have now finally gotten to the important
relationship between syntactic provability and semantic validity in MT :

Theorem 4.3.3. The formula ∀x(φ(x) → ψ(x)) is satisfied by the model MT if and only if it
is provable in T . Consequently, a formula η(x) has full extension in MT if and only if it is
provable in T .

Proof. By definition, the stated formula is satisfied by MT if and only if the corresponding
subobjects in the interpretation satisfy [[x, φ]] ≤ [[x, ψ]]. By the construction of MT , a straight-
forward induction on the complexity of φ (see remark 4.1.4) proves that the interpretation [[x, φ]]
is the subobject [x, φ] � [x,>]. For example, the base of the induction corresponds to the ver-
ification of this property for atomic formulas. If [x, φ] is the formula [R(x1, ..., xn)] (which in
the described interpretation has a sort corresponding to [x1, ..., xn,>]), the interpretation [[x, φ]]
is by definition the pullback of [R(x1, ..., xn)] � [x1, ..., xn,>] along [x1, ..., xn,>], that is, it is
precisely the subobject [R(x1, ..., xn)] � [x1, ..., xn,>]. If [x, φ] is the atomic formula x = x′, the
sort of the variables x, x′ correspond to [y,>] and hence, by definition, the interpretation [[x, φ]]
is the equalizer of [x, x], [x′, x′] : [xx′,>] � [y,>], that is, the subobject [xx′, x = x′] � [xx′,>].
Similarly, the rest of the cases of the induction process can be carried out.
Therefore, the assertion [[x, φ]] ≤ [[x, ψ]] is equivalent to the fact that the two subobjects

[x, φ], [x, ψ] of [x,>] satisfy [x, φ] ≤ [x, ψ], which, by lemma 4.3.2 3), is in turn equivalent to the
fact that ∀x(φ(x)→ ψ(x)) is provable in T .

Theorem 4.3.3 says in a way that the model MT reflects all syntactical relations in the theory
T ; therefore, the analysis of categorical properties of MT will reveal facts about provability in T .
This is the start of Joyal’s proof of the Completeness theorem, which we shall expose in section
5.
To conclude this section, we state some results concerning the identification of models of a first

order theory with Set-valued Boolean functors:
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Theorem 4.3.4. Every Boolean functor F : CT → Set determines a Set-valued model M of T
whose domain is given by the image of F . Conversely, for every Set-valued model M of T there
is a Boolean functor F : CT → Set whose image is the domain of M .

Proof. The first assertion follows after a straightforward induction on the complexity of the
formulas of T . To prove the converse result, suppose we have a Set-valued model M , and define
F on objects by assigning to the object [x, φ] the extension of the formula φ(x) within M ,
and to the arrow [xy, θ], the function whose graph corresponds to the extension of the formula
θ(x, y) (note that, by soundness, these definitions do not depend on the choice of representatives
φ(x), θ(x, y)). It is immediate to verify that this defines a functor, and from the construction of
finite limits, images, unions and complements specified in the proof of theorem 4.3.1, it follows
that this functor is Boolean.

With the above identification, natural transformations between two Boolean functors repre-
senting models of the same theory correspond, as we shall soon see, to the notion of submodel
embedding, defined as follows:

Definition 4.3.5. A submodel of a model M of T is a substructure N such that for every
formula φ the following square is a pullback:

[[x, φ]]N // //

��

MΣ′(A1, ..., An)

hA1
×...×hAn

��
[[x, φ]]M // //MΣ(A1, ..., An)

It is immediate to verify that this definition generalizes definition 4.1.8, which is a particular
case for Set-valued models.

Lemma 4.3.6. If there exists a natural transformation η : N ⇒M between two Boolean functors
N,M : CT → Set which give models of T , then N is a submodel of M . Conversely, for every
submodel there is a corresponding natural transformation between the involved functors.

Proof. The last sentence follows easily from the definition of submodel. To prove the first
sentence, note that, by definition, if Σ′,Σ are the signatures corresponding to N,M respectively,
we have arrows ηA : MΣ′(A) → MΣ(A) for each sort A, as well as commutative squares of the
form:

[[x, φ]]N // //

��

MΣ′(A1, ..., An)

ηA1
×...×ηAn

��
[[x, φ]]M // //MΣ(A1, ..., An)

for every formula φ, since [[x,>]] ∼= M(A1, ..., An). Moreover, the commutativity of the square
above for all formulas φ imply that it is necessarily a pullback square. Indeed, consider two
complementary formulas φ and ¬φ, together with the pullbacks P,Q along ηA1 × ... × ηAn of
their respective interpretations in M :
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P // //

��

MΣ′(A1, ..., An)

ηA1
×...×ηAn

��

Qoooo

��
[[x, φ]]M // //MΣ(A1, ..., An) [[x,¬φ]]Moooo

Then P,Q are subobjects ofMΣ′(A1, ..., An) which must be disjoint (since [[x, φ]]M and [[x,¬φ]]M
are disjoint) and must contain [[x, φ]]N and [[x,¬φ]]N respectively (because of the universal
property of pullbacks). It follows then that P = [[x, φ]]N and Q = [[x,¬φ]]N , as asserted.
It only rests to prove that each ηA is a monomorphism. But since the square above is a pullback

for atomic formulas (in particular, for the equality x = y, where x, y are variables of sort A), it
follows that the square below is a pullback:

MΣ′(A) // ∆ //

ηA

��

MΣ′(A)×MΣ′(A)

ηA×ηA

��
MΣ(A) // ∆ //MΣ(A)×MΣ(A)

Hence, a simple application of lemma 3.1.4 proves that each ηA is monic, which completes the
proof.

Remark 4.3.7. Lemma 4.3.6 can be generalized in a precise way by showing that the bijection
between natural transformations and submodel embeddings is functorial. As a consequence, it
can be shown that the category of Set-valued models of a first order theory, where the morphisms
are given by submodel embeddings, is equivalent to the full subcategory of Boolean functors in
SetCT .

5 Joyal’s proof

5.1 Idea of the proof

In section 3 we have established a correspondence between provability in a first order theory T
and satisfiability in the canonical model MT of its syntactic category. As mentioned in section
2, this allows to analyze usual Set-valued models of the theory by means of Boolean functors
F : CT → Set.
We are interested now in functors that provide models, but such that the converse process can

take place, that is, from properties of Set-valued models we would like to decide satisfiability
conditions in MT , which would be linked directly to syntactic provability. One of the properties
that makes such a reverse process possible is conservativity of those functors. Semantically,
this means that satisfiability in a Set-valued model implies satisfiability in MT . Of course, this
is almost never the case, but instead we can ask whether a certain class of functors is jointly
conservative (i.e., whether for a subobject A � B, F (A) ∼= F (B) for every F in the class implies
A ∼= B). In fact, jointly conservativity is exactly the concept that will lead to completeness:

Theorem 5.1.1. A first order theory T satisfies the Completeness theorem if and only if there
exists a family of jointly conservative Boolean functors from CT to Set.
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Proof. If a formula is valid in every Set-valued model, its interpretation has full extension in
every one of them. Therefore, its interpretation in MT will have full extension (that is, the
formula will be provable in T ) if and only if there exists a family of Boolean functors that is
jointly conservative.

Thus, the whole proof reduces to find the appropriate class of jointly conservative Boolean
functors. Should representable functors be Boolean, then such a class would provide an answer,
since representable functors are jointly conservative by Yoneda’s lemma. However, they fail to
satisfy all conditions needed for a functor to be Boolean, and we must look for a somewhat
different aproach.

It should also be noted that since we are planning to carry out the proof within ZF, it is not
possible to mention the large category Set, since it requires either an axiomatic system suitable
for handling proper classes, such as von Neumann-Bernays-Gödel NBG system, or some extra
assumption regarding the existence of inaccessible cardinals, which support the construction
of appropriate Grothendieck universes. It is known, however, that such an assumption is not
provable within ZF (see, for example, [7]), and therefore we shall be compelled to work in a
convenient small subcategory of Set, big enough to support all Boolean functors of a jointly
conservative class.

5.2 The finite coproduct completion

The first step of the proof shall be to find an appropriate immersion of CT into a Boolean
category that has finite disjoint coproducts, since these will be needed for the construction of
Boolean functors. Note that although CT has finite limits, it is not true that it has even finite
coproducts, which means we shall need to enlarge it to admit them. This is done in [13], ch. 4,
by considering the category of sheaves ¬¬CT for the double negation topology, which is known
to be Boolean (see, for instance, [11]). However, we shall follow a much simpler and elementary
approach, which is to consider the completion of CT by finite coproducts, as explained in [8],
A1.4. This alternative has the essential advantage of avoiding large topoi and fits better for our
purposes.

Lemma 5.2.1. If C is a regular (resp. Boolean) category, there exists an immersion J of C into
a regular (resp. Boolean) category P (C) that also has finite disjoint coproducts. Moreover, P (C)
satisfies the following universal property: for every regular (resp. Boolean) functor F : C → D
where D is regular (resp. Boolean) and has finite disjoint coproducts, there exists a regular
(resp. Boolean) functor F : P (C) → D satisfying FJ = F , such that for any other functor
G : P (C) → D satisfying GJ = F , there exists a unique natural isomorphism φ : G ⇒ F such
that φIdJ = IdF :

C P (C)

D

J //

F

��/
///////////////////

F

����������������������

G

ss

φks
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Proof. Consider the category P (C) whose objects are n-tuples (A1, ..., An) of objects of C. Define
a morphism between (A1, ..., An) and (B1, ..., Bm) to be specified by the following:
i) A m-fold decomposition of each Ai, that is, a set of m pairwise disjoint subobjects Ai1 , ..., Aim
of Ai such that

∨m
j=1Aij = Ai (we allow some of the subobjects to be 0, the initial object of C).

ii) A set of C-morphisms fij : Aij → Bj for each i = 1, ..., n, j = 1, ...,m.
Given morphisms F : (A1, ..., An) → (B1, ..., Bm) associated to arrows fij : Aij → Bj and
G : (B1, ..., Bm) → (C1, ..., Cp) associated to arrows gjk : Bjk → Ck, define the composite GF :
(A1, ..., An) → (C1, ..., Cp) to be the morphism given by the arrows hik = (∃g1kfi1 , ...,∃gmkfim) :∨n
j=1(f−1

ij (Bjk) ∧ Aij ) → Ck, where f−1
ij : Sub(Bj) → Sub(Ai) is the usual restriction of the

pullback functor. Note that this definition uses here the fact asserted in lemma 3.2.12 that
the union of disjoint subobjects is their coproduct, since the morphism (∃g1kfi1 , ...,∃gmkfim) is
well defined only if

∨n
j=1(f−1

ij (Bjk) ∧ Aij ) is a coproduct. Also, the fact that composition of
arrows is associative is similar to the fact that matrix multiplication is, given the resemblance
of
∨n
j=1(f−1

ij (Bjk)∧Aij ) with the (k, i)-th entry
∑n

j=1 bjkaij of a matrix product. Finally, define
the identity morphism Id(A1,...,An) to be given by trivial decompositions of each Ai and the
arrows fii = IdAi , fij initial for i 6= j. With these specifications, P (C) becomes a category that
contains C as the full subcategory of all 1-tuples.
Suppose now that C is regular (resp. Boolean), and let us see that P (C) is necessarily regular

(resp. Boolean). It is a straightforward verification that the following works: the product
of two objects (A1, ..., An) and (B1, ..., Bm) is given by the nm-tuple whose entries are the
products Ai × Bj , with the obvious projections. Their coproduct is just given by the (n + m)-
tuple (A1, ..., An, B1, ..., Bm); moreover, it can be checked that coproducts are disjoint. The
equalizer of a pair of morphisms M,N : (A1, ..., An) → (B1, ..., Bm) associated with arrows
fij , gij respectively, is given by the morphism (C1, ..., Cn) → (A1, ..., An), where Ci =

∨m
j=1Eij

and the associated arrows e : Eij → Aj are the equalizers of the arrows fij , gij : Aij → Bj . The
image of a morphism M : (A1, ..., An)→ (B1, ..., Bm) associated to the arrows fij : Aij → Bj is
given by the subobject (M1, ...,Mm) � (B1, ..., Bm), where Mj =

∨m
i=1 Im(fij) is a subobject

of Bj . This explicit expression for the image provides as well a criterion for a morphism to be
a cover, and it follows from the regularity (resp. Booleanness) of C that covers must be stable
under pullbacks.
In case that C is Boolean, then since P (C) has images and coproducts, it follows that it also

has finite unions for subobjects and that these are stable under pullbacks. On the other hand,
given a subobject M : (A1, ..., An) � (B1, ..., Bm) we can form its complement as the subobject
(D1, ..., Dm) � (B1, ..., Bm), where Dj =

∨n
i=1 ¬Aij is a subobject fj : Dj � Bj and the

monomorphism is given by the trivial decomposition on each Dj , while the associated arrows
are given by hii = fi and hij initial for i 6= j.
Finally, by construction, for every regular (resp. Boolean) functor F : C → D we can consider

the functor F defined in the evident manner, i.e., applying each n-tuple (A1, ..., An) into the
coproduct

∐n
i=1 F (Ai) in D, and each morphism into the corresponding induced morphism

between coproducts. A straightforward calculation shows it must be regular (resp. Boolean).
Moreover, if there are two functors F ,G with the stated properties that extend F , then they can
only differ in the choice of the coproducts above, and hence there are canonical isomorphisms
φC : G(C) → F (C), induced by the universal property of the coproduct. Given a morphism
f : C → D, the arrows φDF (f) and G(f)φC would be two induced morphisms between the
coproducts F (C) and G(D); therefore, they must coincide, and then the isomorphisms φC
define a natural isomorphism φ : G⇒ F , as stated. Finally, it is clear that φIdJ = IdF .
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5.3 Making the terminal object projective

Once we have a (Boolean) immersion of CT into a Boolean category with finite disjoint coprod-
ucts (by using the construction in the proof of lemma 5.2.1), we are interested in finding Boolean
functors to (a small subcategory of) Set. As we have already seen, in general representable func-
tors are not even regular, mainly because they do not preserve covers. In fact, for a representable
functor [A,−] to preserve covers it is necessary that A be projective with respect to covers (i.e.,
to be cover-projective), since covers in Set are precisely the surjections. For a regular category,
we can find an equivalent condition:

Lemma 5.3.1. The representable functor [A,−] preserves covers (i.e., A is cover-projective) if
and only if every cover p : X � A has a section.

Proof. If [A,−] is cover-projective, given a cover p : X � A we can take the factorization of
IdA : A → A through X, which provides a section for p. Conversely, suppose that every cover
over A has a section. Given a morphism f : A→ Y and a cover p : X � Y , form the pullback
P of p along f :

P
f ′ //

p′

����

X

p

����
A

f //

s

FF

Y

Then p′ must be a cover over A, and if s : A → P is a section, we get the factorization
f = pf ′s.

Lemma 5.3.1 motivates the search of those objects for which every cover on them has a section.
Our next step will be enlarging our category P (C) appropriately so that the terminal object

becomes projective. This idea can be interpreted as the categorical version of Henkin’s proof of
the Completeness theorem, where the process of making the terminal object projective corresponds
to the process of adding constants to the language of the theory.

Lemma 5.3.2. If C is a regular (resp. Boolean) category and f : A � B is a cover in P (C),
then the pullback functor f∗ is a conservative regular (resp. Boolean) functor that preserves
finite coproducts.

Proof. Because of lemma 3.2.11, we just need to prove that f∗ preserves coproducts. But because
injections into the coproduct are monomorphisms whose intersection is initial, the coproduct is
their union and is thus preserved by pullbacks.

Let C0 = P (C); our goal is to make the terminal object cover-projective. We shall do so by
constructing succesive categories {Cn/n ∈ N}, each one embedded in the next, such that the
terminal object of Cn is cover-projective for all covers that are images of covers in Cn−1.
First, let us describe an embedding I1 : C0 → C1 that has this property for all covers in C0. Let

Γ be the indexing set of all such covers {Ai � 1/i ∈ Γ}. Consider, for each finite F ⊆ Γ, the set
of covers {Ai � 1/i ∈ F} together with the canonical projections πFG :

∏
i∈GAi �

∏
i∈F Ai for

F ⊆ G. Define the category I whose objects are all finite products of objects PF =
∏
i∈F Ai,

F ⊆ Γ, and whose arrows are given by the corresponding canonical (induced) morphisms πFG
between such products. Note that even if the products are not canonical, the morphisms are
nevertheless canonical (even those morphisms between isomorphic products). Then I is clearly

40



filtered, since between any two objects there is at most one morphism, and for a pair of objects
PF , PG we can consider the object PF∪G along with the corresponding pullback functors.
Consider now in C0 the category AI of arrows over I, with the corresponding fibration π :
AI → I (see definition 3.4.15 and the following comments). If we denote by S the set of
cartesian morphisms, we have the following:

Lemma 5.3.3. The category C1 = AI [S−1] is a regular (resp. Boolean) category that has finite
disjoint coproducts, and there is a conservative regular (resp. Boolean) functor I1 : C0 → C1 that
preserve coproducts. Furthermore, if A′ � A is a proper subobject in C0 and A � 1 is a cover,
the corresponding cover I1(A) � 1C1 in C1 has a section not factoring through I1(A′).

Proof. Since the same argument in the proof of lemma 5.3.2 proves that S is locally regular
(resp. locally Boolean), then, by lemma 3.4.14, C1 is a regular (resp. Boolean) category and the
functor I1 : C0 → C1 is regular (resp. Boolean); moreover, since finite coproducts are the unions
of the corresponding injections, I1 must preserve them as well. Let us prove it is conservative. If
a morphism f : A→ B has an inverse f−1 in C1, it must necessarily be of the form represented
by the right square:

B

��

B × C
π2

��

π1oo // A

��
1 Coo // 1

But there are isomorphisms [A→ 1] ∼= [π2 : A× C → C] and [B → 1] ∼= [π2 : B × C → C], and
thus f−1 corresponds to the morphism represented by the right square:

B × C
π2

��

B × C
π2

��

oo g // A× C
π2

��
C C

IdC
oo // C

for some g : B ×C → A×C. Regarding this as a morphism over C in C/C, we see that it is an
inverse of the morphism f × IdC : A×C → B×C over C. This latter morphism can be written
as π∗FG(f), where F = ∅ and G = C, and hence we conclude that the arrow πFG maps f into
an invertible morphism in C/C. Therefore, the same argument used in the proof of lemma 5.3.2
shows that ”local” conservativity holds and f has already an inverse in C0.
Finally, given a proper subobject A′ � A in C0, then the dual of the morphism represented by

the commutative square on the left:

1

��

A

IdA
��

oo IdA // A

��
1 Aoo // 1

provides a section for I1(A) � 1C1 not factoring through I1(A′). Indeed, there are isomorphisms
[A→ 1] ∼= [π2 : A×A→ A] and [1→ 1] ∼= [IdA : A→ A], and the section above corresponds to
the morphism represented by the following right square:
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A

IdA
��

A

IdA
��

IdAoo ∆ // A×A
π2

��
A A

IdA
oo

IdA
// A

Hence, if the section factored through I1(A′), the diagonal ∆ would factor through A′×A, which
is impossible. This completes the proof.

Remark 5.3.4. In the presence of the axiom of choice, the construction above can be performed
with the aid of theorem 3.4.10 and lemma 3.4.12. Indeed, it suffices to define a pseudofunctor
F : Iop → Cat such that the category C1 is its bicolimit, constructed as the category of fractions
of the fibration associated to F . This issue is therefore reduced to the problem of finding a
pseudofunctor F whose associated fibration is precisely the fibration corresponding to the category
of arrows over I. This can be done as follows: define F on an object PF as the slice category
C/PF ; for each identity arrow IdPF define F as the corresponding identity IdC/PF , and for each
arrow πFG of I select a fixed pullback functor π∗FG and set it as the value of F on such an arrow.
Then, if for arrows f, g of I we define cf,g as the corresponding induced natural isomorphism
between pullbacks, F becomes a pseudofunctor, as can be easily checked. Finally, the fibration
corresponding to the category of arrows over I can be interpreted as the fibration associated to
F , since each commutative square can be completely defined by specifying the arrow at its base
and the morphism from the upper left corner to the selected pullback along that arrow (see [4],
Ex. VI 8).

Note that the procedure described above allows to have a section for each cover I1(Ai) � 1C1 ,
where Ai � 1 is in the set of covers of C. The next step to take is to extend this property
to every cover A � 1C1 in C1. But the process to follow now is clear: repeating the whole
construction above for C1 instead of C we get an embedding I2 : C1 → C2 preserving all the
structure, such that in the new category C2 every cover I2(A) � 1C2 has a section for each A
in the set of covers A � 1C1 of C1. Iterating this construction, we can obtain a sequence of
conservative regular (resp. Boolean) embeddings preserving coproducts, In : Cn−1 → Cn. This
amounts to having a functor F : ω → Cat, or, formally dualizing, a functor F : ωop → Cat, and
if T is the set of cartesian morphisms in the fibration ΓF associated to F , we can consider the
category Cω = ΓF [T−1]. It is now easy to verify that Cω is the category we need, as shown in
the following:

Theorem 5.3.5. There is a regular (resp. Boolean) conservative functor I0 : C0 → Cω, where
Cω is a regular (resp. Boolean) category with finite disjoint coproducts such that every cover over
the terminal object 1ω has a section. Moreover, for every proper subobject f : S � A such that
A � 1ω is a cover, there exists a section s : 1ω → A not factoring through S.

Proof. The fact that Cω is a regular (resp. Boolean) category and the induced functors Cn → Cω
are regular (resp. Boolean) follows from lemma 3.4.12, and it is not difficult to see that these in-
duced functors are conservative and preserve finite coproducts. Finally, given a proper subobject
A′ � A in C1, where A � 1 is a cover, there exists some n ∈ N such that f has a representative
that lies in some Cn, and in Cn+1 we can find a representative of a section 1Cω → A not factoring
through A′.

5.4 Ultra-representability and Set-valued models

Our work so far has been developed in a parallel way for regular and Boolean categories. In
order to get the desired jointly conservative family of functors that will prove the Completeness
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theorem, we have to apply theorem 5.3.5 to the category C0 = CT . This latter category will have
different properties according to which type of theory is under consideration. In particular, for
first order classical logic we shall now make explicit use of the fact that CT has complements. It is
at this point where our work leaves the main course, since it is possible to develop completeness
theorems for different types of logic by considering different theories T . Also, the consideration
of first order theories will need the Axiom of Choice (or a weaker choice principle) as we shall
see, while for weaker types of logics this is not needed.
We have obtained a conservative Boolean functor CT → Cω, where Cω has finite coproducts and

satisfies the property that 1(= 1ω) is cover-projective. Actually, we can get a better result:

Lemma 5.4.1. Every subobject of 1 in Cω is cover-projective.

Proof. Let S � 1 be a subobject and S′ its complement in Sub(1). If π : A � S is a cover, then
we also have a cover π

∐
IdS′ : A

∐
S′ � S

∐
S′ ∼= 1. Since 1 is projective, this cover splits,

and because coproducts are disjoint, its section must map S into A, which yields a section for
π.

Consider now the (small) category Cω and define in ZF the set of all its hom-sets. Consider all
possible finite limits and coproducts as well as colimits indexed over diagrams in Sub(1) (note
that because limits and colimits in Set can be constructively described, there is a canonical
choice for each one of them). Call the resulting set P and consider the full subcategory of Set,
S, whose objects are elements of P. Clearly, every finite limit, coproduct and colimit (of the type
specified) of representable functors, has image in S. Thus, from now on these functors will be
always understood to be constructed in this way, to avoid any mention to the large category Set
(which is replaced by S) or multiple choices between colimits. Note that it is essential for this to
be carried out that finite limits in Cω be determined effectively and not just up to isomorphism.
This in turn can be possible due to the special care taken when defining Cω through the use of
lemma 3.4.14 instead of lemma 3.4.12, avoiding therefore choices of the corresponding pullback
functors. Furthermore, the reader may verify that all constructions made upon CT to obtain Cω
were done in a constructive way (particularly the choice of a canonical filtered bicolimit in Cat),
from which we can be sure to be able to formalize the whole argument entirely within ZF+BPI.
So far the construction of Cω makes the representable functors [s,−] for subobjects s � 1 have

all properties of a Boolean functor except preservation of unions. To get this latter property we
introduce the following:

Definition 5.4.2. A functor h : Cω → S is said to be ultra-representable if there is C ∈ Cω such
that it can be expressed as a (filtered) colimit h = lim−−−→

A∈Φ
[A,−] for some ultrafilter Φ in Sub(C).

Note that we can use BPI to ensure the existence of such ultrafilters, and then these functors
are well defined. We have now:

Theorem 5.4.3. If Φ is an ultrafilter in Sub(S) for a subobject S � 1, the ultra-representable
functor hΦ : Cω → S is Boolean.

Proof. According to lemma 3.3.2, filtered colimits of representable functors (which are left exact)
preserve finite limits in Set. Hence, h will necessarily preserve finite limits. As for images, note
that since the injections into the colimit form a jointly regular epimorphic family and this
property is preserved by h, it is mapped onto a jointly epic family in Set (where covers are
surjections), and hence h will preserve covers provided each representable functor [A,−] does,
which is clearly the case because each subobject A is cover-projective by lemma 5.4.1. Therefore,
we just have to prove that h preserves unions, i.e., given B,C subobjects of D, we need to prove
that h(B ∨C) = h(B) ∨ h(C). Clearly, h(B) ∨ h(C) ≤ h(B ∨C), since h preserves finite limits,
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and therefore monomorphisms. To prove the converse inequality, note that, according to the
usual construction of filtered colimits in Set (see [10]), we have h(X) =

∐
A∈Φ[A,X]/ ∼, where

∼ is the equivalence relation which identifies f : U → X with g : V → X if and only if there
exists some W ∈ Φ such that the following square commutes:

U
f // X

W
OO

OO

// // V

g

OO

Take (some representative of) an arrow f : U → B ∨C, for some U ∈ Φ. Since unions are stable
under pullback, we have U = f−1(B)∨ f−1(C). Now, since Φ is an ultrafilter, either f−1(B) or
f−1(C) is in Φ; suppose without loss of generality f−1(B) ∈ Φ. Then the following pullback:

B // s // B ∨ C

f−1(B)

f ′

OO

// // U

f

OO

shows that f and sf ′ are in the same class in h(B ∨ C). We may therefore assign to each
f ∈ h(B ∨ C) either an arrow f ′ ∈ h(B) or an arrow f ′′ ∈ h(C), from which we conclude that
h(B ∨ C) ≤ h(B) ∨ h(C). Hence, we must have h(B ∨ C) = h(B) ∨ h(C) in S.

The final step in Joyal’s proof is given by the following:

Theorem 5.4.4. The family of ultra-representable functors hΦ : Cω → S, where Φ ranges over
all ultrafilters in Sub(1), is jointly conservative.

Proof. Suppose we have a proper subobject t : A � X. We shall prove that there exists
some ultra-representable functor h such that h(A) � h(X) is a proper subobject in S. Since
X
∐

1 � 1 is a cover, by theorem 5.3.5 there exists a section u : 1 → X
∐

1 not factoring
through the proper subobject A

∐
1 � X

∐
1. Pulling back along the first injection, we obtain

a subobject S � 1 and an arrow s : S → X not factoring through A. Form the further pullback
P along s:

A //
t // X

W

f

EE�������������
P

OO

// // S

s

OO

Q
OO

OO

99

99sssssssssssssssssssssssFF

FF�
�

�
�

�
�

�
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Clearly, P � S will be then a proper subobject. Consider the ideal I in Sub(1) of all subobjects
of P . Since S 6∈ I, we deduce from BPI that there must be some ultrafilter Φ in Sub(1) containing
S and disjoint from I. Then define h = lim−−−→

U∈Φ
[U,−]; it is now easy to check that the class of

s in h(X) is an element not belonging to h(A). Indeed, if s were in the same class that tf for
some f : W → A, then there would exist some Q ∈ Φ making commutative the diagram above.
This would, hence, induce a monomorphism Q � P , contradicting the fact that Q 6∈ I.

Theorem 5.4.4 finishes the study of completeness for first order theories, according to the result
stated in theorem 5.1.1.

6 A characterization of models

6.1 Boolean models and the Löwenheim-Skolem theorem

The proof of the Completeness theorem as presented in section 5 only requires to verify validity
in those models defined by means of ultra-representable functors associated to ultrafilters in
Sub(1). Assuming the Axiom of Choice, and if the signature of the language of a given theory
has cardinality κ, it is not difficult to see that the objects and morphisms of the category CT both
have cardinality κ. Furthermore, an analysis of the construction of lemmas 5.3.3 and 5.3.5 shows
that the same holds for the category Cω, which implies that the mentioned ultra-representable
functors h : Cω → S provide models of cardinality at most κ. Thus, we have actually proved the
following:

Theorem 6.1.1. If a formula of a first order theory is valid in all models of cardinality not
greater than that of the signature, then the formula is provable within the theory.

Note that according to the well known generalized version of the Löwenheim-Skolem theorem,
a theory with an infinite model has models of all infinite cardinalities. This implies that the
theorem above provides a stronger notion of completeness, since it follows that in order to deduce
the provability of a formula it is enough to verify its satisfiability in a (small) set of models rather
than in the (large) class of all models. In fact, assuming the Axiom of Choice, we can actually
provide a detailed description of all Boolean models of a given theory, of which those used in
the proof of the Completeness theorem form a relatively small subclass.
We start with the following:

Lemma 6.1.2. Let C be a regular (resp. Boolean) category and let A be an object with full
support (i.e. such that f : A � 1 is a cover); let F : C → D be a regular (resp. Boolean) functor
and let s be a section of F (A) � F (1) in the regular (resp. Boolean) category D. Then, for
each fixed pullback functor f∗, there is a regular (resp. Boolean) functor F : C/A→ D satisfying
F (∆) = s and Ff∗ = F , such that for every functor G : C/A → D and natural isomorphism
ψ : Gf∗ ⇒ F , there exists a unique natural isomorphism φ : G⇒ F such that φIdf∗ = ψ:

C C/A

D

f∗ //

F

��/
///////////////////

F

����������������������

G

ss

φks
=

C C/A

D

f∗ //

F

��/
///////////////////

G

����������������������

ψks
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Proof. The square of the left diagram is a pullback in C, which implies that the square on the
right is a pullback in C/A:

[p : C → A]

π1g

��:
:

:
:

:
:

:
:

:
:

:
:

g

$$h

��

C
π1g

��?
?

?
? g

%%

h

��

X
(IdX×f)◦∆X //

f

��

X ×A

f×IdA

��

[f : X → A]
(IdX×f)◦∆X//

f

��

[π2 : X ×A→ A]

f×IdA

��
A

∆
// A×A [IdA : A→ A]

∆
// [π2 : A×A→ A]

This leads to define F on [f : X → A] as the pullback of F (f) : F (X) → F (A) along
s : 1→ F (A), in order to preserve the pullback above. More precisely, since f∗A is the ar-
row π2 : X × A → A, to get Ff∗ = F we just need to select, amongst all pullbacks of
π2 : F (X) × F (A) → F (A) along s : 1 → F (A), precisely the arrow F (X) → 1, while the
choice of the rest of the pullbacks is arbitrary. As for arrows, we define F in the obvious way
using the induced arrows between pullback diagrams. It can now be shown that the functor so
defined enjoys all the required properties. Moreover, if there is another extension of F , G, with
the stated properties, then there are canonical isomorphisms φC : G(C) → F (C), induced by
the universal property of the pullback. Given a morphism f : C → D, the arrows F (f)φC and
φDG(f) would be two induced morphisms between the pullbacks G(C) and F (D); therefore,
they must coincide, and then the isomorphisms φC define a natural isomorphism φ : G⇒ F , as
stated. Finally, it is clear that φIdf∗ = ψ.

As an application of the preceding lemma we have the following:

Lemma 6.1.3. For any Boolean functor F : CT → Set there exists a Boolean functor F : Cω →
Set such that FI = F , where I is the composition I0J : CT → Cω and I0, J are the embeddings
defined in lemmas 5.3.5 and 5.2.1 respectively:

CT
I //

F

��2
222222222222 Cω

F

���������������

S

Proof. Because of lemma 5.2.1, we can choose a functor F0 : C0 = P (C)→ S such that F0J = F .
We shall use the axiom of choice to define succesive functors Fi : Ci → S that form a pseudoco-
cone (see definition 3.3.6). Then, the universal property of the bicolimit Cω will give the desired
functor F , according to remark 5.3.4 and theorem 3.4.10. In fact, this is the idea that will be
used to get F1 from F0 (we only show here this case since the others are similar).

46



Consider then the set of all finite products of covers {tPF : PF =
∏
i∈F Ai � 1 / F ⊆ Γ, finite}

in C0 (as in the considerations preceding lemma 5.3.3), which are mapped by F0 into corre-
sponding surjections F0(tPF ) : F0(PF ) � F0(1) = 1. Choose a section sPF for each one of the
surjections. Let π∗FG be the pullback corresponding to πFG through the pseudofunctor consid-
ered in remark 5.3.4. By lemma 6.1.2, F0 provides Boolean functors HP : C0/P → S such that
HP t

∗
P = F , where each t∗P is the pullback selected by the pseudofunctor.

We shall now prove that the functors HP form a pseudococone diagram in Cat. To do this we
need to define natural isomorphisms φFG : HPGπ

∗
FG ⇒ HPF , where F ⊆ G, for each morphism

π∗FG. Now, note that we have a natural isomorphism given by IdHPG ctPF ,πFG : HPGπ
∗
FGt

∗
PF
⇒

HPGt
∗
PG = F0, and since HPF satisfies the universal property stated in lemma 6.1.2 with respect

to the triangular diagram below with vertices C, C/PF ,S, there is a unique natural isomorphism
φFG : HPGπ

∗
FG ⇒ HPF such that φFGIdt∗PF = IdHPG ctPF ,πFG .

C0 C0/PF C0/PG C0/PT

S

t∗PF

//

t∗PG

%%

t∗PT

##

π∗FG

//
π∗GT

//

F0

��*
******************

HPF

��






















HPG

tt

HPT

pp

φFGks φGTks

ctPF
,πFG

KS
ctPG

,πGT

KS

If for F ⊆ G ⊆ T we define similarly φGT and φFT , we just need to verify that with these natural
isomorphisms the diagram becomes a pseudococone, which reduces in turn to verify condition
b) of definition 3.3.6. But this is again a consequence of the universal property of lemma 6.1.2,
since the natural isomorphism φFG ◦ φGT Idπ∗FG ◦ IdHPT c

−1
πFG,πGT

: HPT π
∗
FT ⇒ HPF satisfies:

(φFG ◦ φGT Idπ∗FG ◦ IdHPT c
−1
πFG,πGT

)Idt∗PF = φFGIdt∗PF
◦ φGT Idπ∗FGIdt∗PF ◦ IdHPT c

−1
πFG,πGT

Idt∗PF

= IdHPT Idπ
∗
GT
ctPF ,πFG ◦ IdHPT ctPG ,πGT ◦ IdHPT c

−1
πFG,πGT

Idt∗PF

= IdHPT (Idπ∗GT ctPF ,πFG ◦ ctPG ,πGT ◦ c
−1
πFG,πGT

Idt∗PF
) = IdHPT ctPF ,πFT

according to property 3) of definition 3.3.5. Then, because of the uniqueness of φFT , we must
have φFT = φFG ◦ φGT Idπ∗FG ◦ IdHPT c

−1
πFG,πGT

, as we wanted to prove. Therefore, the diagram
is a pseudococone and the required functor F1 : C1 → Set is induced.
Finally, because the functors HPF in the pseudococone diagram are Boolean, the construction

of the filtered colimit in Cat shows, after a straightforward verification, that F1 preserves finite
limits, covers, unions and disjoint coproducts; in particular, it is Boolean, which finishes the
proof.
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We finally get to the important characterization of Boolean models of a first order theory. This
achievement is a reformulation, due mainly to Joyal, of existing results on limit ultrapowers (see
[13]):

Theorem 6.1.4. Every model of a first order theory T is given by (the image of) a functor
M ◦I : CT → Set, where I : CT → Cω is the immersion defined in lemma 6.1.3 and M : Cω → Set
is a filtered colimit of ultra-representable functors. Moreover, if the ultra-representable functors
correspond to ultrafilters in Sub(S) for subobjects S � 1, every such composition M ◦ I defines
a model of T .

Proof. According to theorem 5.4.3, if Φ is an ultrafilter in Sub(S), for a subobject S � 1 ,
every ultra-representable functor hΦ : Cω → Set is Boolean, and hence, by corollary 3.3.4, every
filtered colimit of these functors is as well Boolean. This proves that the composition F ◦ I is
always Boolean and thus defines a model of the theory.
Supose now that M ′ : CT → Set is a Boolean functor corresponding to a model MT of T . By

lemma 6.1.3 there exists a Boolean functor M : Cω → Set such that MI = M ′. Define the
category X whose objects are pairs (A, ξ) where A is an object of Cω and ξ ∈M(A), and whose
morphisms (A, ξ) → (B, η) are given by those arrows f : A → B in Cω such that η = M(f)(ξ).
Because Cω has finite limits and M preserves them, X will have finite limits. Therefore, its
dual W = X op is a (small) filtered category. We shall now define a functor H from W to the
category of ultra-representable functors. For each object (A, ξ) ∈ W, let Φ(A, ξ) be the set of all
subobjects C � A such that ξ ∈M(C). Because M is Boolean, it is easy to check that Φ(A, ξ)
is an ultrafilter in Sub(A). Define then H((A, ξ)) = hΦ(A,ξ), the ultra-representable functor
corresponding to Φ(A, ξ). Given an arrow f : (A, ξ) → (B, η), the mapping C 7→ f−1(C),
defined for each C ∈ Φ(B, η), determines a natural transformation H(fop) : hΦ(B,η) → hΦ(A,ξ) in
the following way: for each representative a : C → X in hΦ(B,η)(X) we let H(f)X([a]) = [af ′],
where f ′ : f−1(C) → C is the arrow arising from the pullback of C � B along f . This
application is well defined and makes H a functor.
We shall prove that lim−−−−−−→

(A,ξ)∈W hΦ(A,ξ)
∼= M . To define an isomorphismK : lim−−−−−−→

(A,ξ)∈W hΦ(A,ξ) →
M it suffices to define natural transformations ψ(A,ξ) : hΦ(A,ξ) → M which will induce the re-
quired morphism. This can be done by setting (ψ(A,ξ))X([f ]) = M(f)(ξ), where f : C → X
and C ∈ Φ(A, ξ). It can be easily checked that the definition does not depend on the repre-
sentative of the class [f ]; also, note that C ∈ Φ(A, ξ) implies that ξ ∈ M(C), and therefore
M(f)(ξ) ∈M(X) and (ψ(A,ξ))X is well defined.
Let us first prove that K is a monomorphism. For this it is enough to verify that each
ψ(A,ξ) : hΦ(A,ξ) →M is monic, for which it suffices in turn to check that each (ψ(A,ξ))X is injective.
So suppose that we have arrows f : C → X, g : C ′ → X such that (ψ(A,ξ))X([f ]) = (ψ(A,ξ))X([g]).
Then, M(f)(ξ) = M(g)(ξ). Take the intersection C ∧ C ′ in Sub(A), which gives monics
a : C ∧ C ′ � C and b : C ∧ C ′ � C ′. Consider the equalizer E of fa and gb. Since M
preserves equalizers and ξ ∈M(C ∧C ′), then ξ ∈M(E), that is, E ∈ Φ(A, ξ). Therefore, f and
g belong to the same class, i.e., [f ] = [g].
Finally, let us prove that K is an epimorphism, for which it suffices to show that each
K(D) : lim−−−−−−→

(A,ξ)∈W hΦ(A,ξ)(D) → M(D) is surjective. Given an element χ ∈ M(D), con-
sider the ultrafilter Φ(D,χ), that contains D. Since (ψ(D,χ))D : hΦ(D,χ)(D) → M(D) satisfies
(ψ(D,χ))D([IdD]) = M(IdD)(χ) = χ, we conclude that the family {(ψ(A,ξ))D/(A, ξ) ∈ W} is
jointly epic, from which we can deduce that K(D) is necessarily surjective.

Corollary 6.1.5. Löwenheim-Skolem theorem: Every model M of a first order theory T
with countable signature has a submodel for T which is at most countable.
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Proof. Suppose that T is a first order theory with countable signature that has a model M ′ :
CT → S. By theorem 6.1.4, M ′ has an extension M : Cω → S that is a filtered colimit of
ultra-representable functors. Furthermore, since M is not trivial, we see from the proof of that
theorem that (1, ∗) is an object in W, and hence the corresponding ultrafilter Φ(1, ∗) in Sub(1)
(defined as {S ∈ Sub(1) / M(S) 6= ∅}) gives an ultra-representable functor hΦ(1,∗) that belongs
to the colimit diagram for M . But then, because of lemma 4.3.6, it is not difficult to see that
hΦ(1,∗)I is a submodel for T which is at most countable, which finishes the proof.

Remark 6.1.6. The use of the Axiom of Choice throughout this section is not entirely avoidable,
in the sense that some form of choice is needed to deduce theorem 6.1.4. For suppose we could
prove in ZF that M ′ has an extension M : Cω → S; then, the Löwenheim-Skolem theorem would
be derivable in ZF, while it is known to be unprovable there (see [12] for references). As a
consequence, the existence of the Boolean extension M must as well be unprovable in ZF.

A stronger form of the Löwenheim-Skolem theorem (the downward form) can also be proven
introducing a slight modification into the proof above:

Theorem 6.1.7. For every model M of a first order theory T of cardinality κ, every cardinal
µ ≤ κ at least equal to the cardinality of the signature of T , and every subset S ⊆M of cardinality
λ ≤ µ, there exists a submodel of M of cardinality µ that contains S.

Proof. Consider the theory T ′ whose language has µ many constants and whose axioms are
those of T plus a set of axioms expressing that the constants are pairwise different. Then M
can be turned into a model of T ′ by interpreting the constants as elements of a subset S′ such
that S ⊆ S′ ⊆ M . Hence, T ′ is consistent. Let F : CT ′ → S be the corresponding Boolean
functor for this new model, and F ′ : Cω → S its corresponding extension. Then, if Φ(1, ∗) is the
ultrafilter in Sub(1) defined as {S ∈ Sub(1) / F ′(S) 6= ∅}), it can be seen that hΦ(1,∗)I is the
required submodel.

Remark 6.1.8. Note that the previous proof does not make reference to the usual Skolem func-
tions, which are commonly used in the proofs of this theorem.

6.2 Complete theories and Vaught’s test

Theorem 6.1.4 characterizes Boolean models by giving an explicit description of the functors as-
sociated to them. Ultra-representable functors in Sub(1) are therefore a relatively small subclass
of these, but as seen in section 5, they suffice nevertheless to deduce the Completeness theorem.
Another application of this set of models is related to a result in model theory known as Vaught’s
test, which provides a sufficient condition for a theory to be complete. Recall that a theory T
is said to be complete if, for every sentence φ (i.e., every formula with no free variables), either
φ or ¬φ is provable in T . We say that T is κ-categorical for some cardinal κ if any two models
of T of cardinality κ are isomorphic. We have now:

Theorem 6.2.1. Vaught’s test: Let T be a first order theory that has no finite models and is
κ-categorical for some cardinal κ at least equal to the cardinality of the signature of T . Then T
is complete.

Proof. Consider the theory T ′ defined by adding κ many constant symbols to the language of
T , whose axioms are those of T plus a set of axioms expressing that the constants are pairwise
different. Then, the model of T of cardinality κ is also a model for T ′, which is therefore
consistent; moreover, since T is κ-categorical, then so is T ′. Consider the models of T ′ given
by ultra-representable functors in Cω, hΦI : CT ′ → S for ultrafilters Φ in Sub(1). Since these
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models are non-trivial, they contain κ many distinct individuals, and since they have cardinality
at most κ, it follows that their cardinality is exactly κ; moreover, because T ′ is κ-categorical, all
these models are isomorphic. Let [{}, φ] be the object in CT ′ corresponding to the sentence φ;
then [{}, φ] is a subobject of [{},>] = 1CT ′ . Let s = I([{}, φ]) be the corresponding subobject
in Cω. Then, if s = 0, it follows by the conservativity of I that [{}, φ] = 0CT ′ = [{},⊥], and
hence ¬φ is provable in T ′. If, on the other hand, s 6= 0, then s belongs to some ultrafilter Ψ
in Sub(1), and therefore hΨ(s) = 1. But since all models hΦI are isomorphic, it follows from
lemma 4.3.6 that for every Φ there is a natural isomorphism hΨI → hΦI, and hence for every Φ
we have hΦ(s) = 1. This implies that s belongs to the intersection of all ultrafilters in Sub(1),
and consequently, s = 1. Since I is conservative, it follows then that [{}, φ] = [{},>], and hence
that T ′ proves φ. We have thus established that T ′ is complete.
To see that T must also be complete, let φ be a sentence in the language of T . Suppose without

loss of generality that T ′ proves φ, and note that a deduction of φ in T ′ must use only a finite
number of the extra added axioms. Therefore, if T ′′ is the theory whose axioms are those of
T plus a countable set of axioms expressing that some countable set of constant symbols are
pairwise distinct, then T ′′ is already complete. Since T has no finite models, all models given
by the functors hΦI : CT → S have cardinality greater or equal than ℵ0, and hence they are also
models of T ′′ for some adequate interpretation of the constants. Because T ′′ proves φ, it must
be valid in all these models, which implies that hΦI([{}, φ]) = 1 for all ultrafilters Φ. But then
an argument similar to the one used before implies that [{}, φ] = [{},>] in CT , which finishes
the proof.

The proof above should also convince the reader of the flexibility of categorical methods in prov-
ing metamathematical results, making Joyal’s characterization of Boolean models an important
line of approach to the study of model theory.
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(1963/64) - Théorie des topos et cohomologie étale des schémas, Tome 2 -
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