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1 Acerca de este trabajo

1.1 Objetivos principales

El objetivo de este trabajo es exponer distintas herramientas de la teoria de categorias para
proveer demostraciones de algunos resultados metamateméaticos clasicos en teoria de modelos.
En primer lugar, se presenta una demostracion del conocido teorema de completitud de Godel
para la 16gica clédsica (el cual ocupard un lugar preponderante) a través de métodos categéricos,
ideada por André Joyal. Usando algunas de estas ideas se proporciona también demostraciones
inéditas del teorema de Lowenheim-Skolem y del criterio conocido como test de Vaught para
teorias completas.

La demostracion aqui expuesta del teorema de completitud se basa en una serie de exposi-
ciones llevadas a cabo por Joyal en 1978 en Montreal, en las que daba cuenta de cémo las
técnicas categoricas usuales permitian formular una correcta interpretacion del teorema y su
demostracién en un lenguaje categérico. La conexién entre la teoria de categorias y la logica
clasica habia sido observada con anterioridad, y ya en la tesis doctoral de William Lawvere de
1963 se explica como la teoria de modelos podia beneficiarse con un enfoque funtorial de la
semantica. Es con las ideas de Joyal que se logré unificar los acercamientos a distintos teoremas
de completitud enunciados para légicas diversas.

Se ha elegido para este trabajo la logica clasica de primer orden por varios motivos. FEn
primer lugar, el teorema de completitud para tal légica, que proporciona el puente entre la
semantica y la sintaxis, es un teorema clasico y célebre; en segundo lugar, la légica clasica es
el cimiento principal del desarrollo del edificio matematico, estando basadas en ella las mas
conocidas axiomatizaciones de la teoria de conjuntos y de otros desarrollos matemaéticos. Por
dltimo, la légica clésica ha sido caracterizada a través de ciertos resultados como la mas fuerte
(en un sentido preciso) entre aquellas que satisfacen determinadas propiedades de uso frecuente
en teoria de modelos.

Siendo el teorema de completitud, el teorema de Lowenheim-Skolem y el test de Vaught resul-
tados metamatematicos, como todo aquel que verse sobre teoria de modelos, la practica comun
es usar la propia teoria de conjuntos como el &mbito metamatemético adecuado para tratar el
estudio de las teoria logicas y sus modelos. Dentro de las axiomatizaciones mas conocidas de la
teoria de conjuntos, el sistema axiomatico de Zermelo-Fraenkel sumado al Axioma de Eleccion
es el mas ampliamente usado, y es en este contexto que se inscriben dichos teoremas, debiendo
sus enunciados ser entendidos como teoremas dentro de tal sistema. Por otro lado, nuestra
intencién ha sido realizar este trabajo teniendo en cuenta el rol que juega el propio Axioma
de Eleccién, mostrando, por ejemplo, como el teorema de completitud se trata de un resultado
no constructivo, en el sentido de que sélo los axiomas de Zermelo-Fraenkel no son suficientes
para derivarlo. Ya Leon Henkin habia demostrado en 1954 la equivalencia entre el teorema de
completitud y el teorema que afirma la existencia de ideales primos en algebras de Boole, que
es de por si un resultado no constructivo. Hemos decidido, pues, exponer la demostracién de
Joyal de manera de poder inferir claramente tal equivalencia, cuyo interés reside principalmente
en el hecho de que el teorema del ideal primo es estrictamente més débil que el Axioma de
Eleccion. Se obtiene también como corolario el teorema de compacidad para la légica clésica de
primer orden, asi como el teorema de la existencia de modelos, ambos equivalentes también al
teorema del ideal primo. Finalmente, haciendo uso de algunas construcciones efectuadas en la
demostracién del teorema de completitud, se exponen por tltimo las demostraciones nuevas de
los teoremas de Lowenheim-Skolem y del test de Vaught para teorias completas.

En cuanto a los fundamentos, adoptamos aqui la axiomatizacién conjuntista de la teoria de
categorias, pero evitando hacer uso explicito de los universos de Grothendieck. Los pasajes
en los que se mencionen categorias grandes se introducen de manera de articular el desarrollo



del trabajo sin oscurecer el hilo del discurso con tecnicismos irrelevantes, pero el lector puede
interpretar correctamente en su contexto las descripciones alli dadas sin necesidad de apelar a
universos.

1.2 Descripcion del trabajo

Salvo la presente introduccion, este trabajo se desarrolla enteramente en idioma inglés. Luego
de presentar en la seccion 2 una breve introduccién al enunciado y significacién del teorema de
completitud de Gddel, basada en su tesis doctoral original (1929), se muestra como es posible
probar su equivalencia con el teorema del ideal primo una vez que se supone que éste es suficiente
para deducir aquel, lo que ocupara las siguientes tres secciones.

La seccién 3 estd destinada a presentar en detalle los resultados propios de la teoria de categorias
necesarios para comprender las ideas de Joyal. Se supone que el lector esta ya familiarizado con
las nociones categéricas bésicas (categorias, funtores, transformaciones naturales, propiedades
universales, adjunciones, limites, colimites), y se procede a desarrollar los lemas especificos
requeridos para la demostracién del teorema de completitud. Se repasan los resultados usuales
asociados al funtor pullback, y se definen y desarrollan los conceptos de categorias regulares
y booleanas, que jugaran un papel importante en la prueba. A continuacién se describen las
principales propiedades de los colimites filtrantes, en especial su relacién con la propiedad de
exactitud de la categoria de conjuntos. Se desarrolla seguidamente la nocién de pseudofuntor
y de bicolimite, y por ultimo, se expone la nocién de categoria fibrada, debida a Grothendieck,
procediendo a demostrar los principales resultados asociados con sus construcciones usuales.

En la seccién 4 se repasan conceptos especificos de la teoria de modelos, de los que se supone
que el lector tiene ciertas nociones, y se procede luego a definir y desarrollar la interpretacién
categorica de las teorias. Esta parte esencial provee el vinculo entre la légica cldsica de primer
orden y las categorias booleanas, y muestra cémo el estudio de estas categorias permite obtener
resultados relacionados con la expresividad y el alcance demostrativo de las teorias logicas.

La seccion 5 esta destinada a la exposicion de la prueba de Joyal, usando los conceptos y
desarrollos de las dos secciones anteriores. Se comienza por observar el cardcter funtorial de la
semantica y su uso en la caracterizacién categérica de la completitud, interpretando los modelos
de determinadas teorfas como funtores de ciertas categorias asociadas con valores en la categoria
de conjuntos. Se exponen luego diversas construcciones ulteriores que permiten identificar una
importante clase de modelos de las teorias légicas, las cuales son utilizadas para llevar a cabo la
demostracién de la completitud.

Finalmente, la secciéon 6 contextualiza la prueba de la seccién 5 al proveer una caracterizacién
funtorial de todos los modelos de una determinada teoria. A diferencia de las otras secciones,
se hace uso aqui del Axioma de Eleccion para poder demostrar correctamente estos resultados.
Se explica también de qué manera puede usarse esta caracterizacién funtorial para derivar el
teorema de Lowenheim-Skolem, lo que proporciona una prueba inédita de este resultado a través
de métodos categdricos y justifica ademds el caracter no constructivo de las ideas que en esta
seccién se desarrollan. Por ltimo, se expone una demostracién también inédita del criterio
conocido como test de Vaught, que permite enunciar condiciones suficientes para que una teoria
de primer orden sea completa.



2 Introduction

2.1 Completeness

In his doctoral dissertation (see [3]), Kurt Godel presented a proof of one of the most celebrated
results in classical logic, the completeness theorem. This achievement generalized previous
results by Paul Bernays (and present in the work of Hilbert and Ackermann) on the completeness
of connective calculus to a wider important class of formulas containing quantifiers (those of first
order classical logic), therefore establishing an important connection between semantic truth
and syntactic provability. The theorem asserts that a formula which is valid in every model of
classical logic is necessarily provable from its axioms using only certain specific rules of inference.
Although the soundness of first order logic (i.e., the property that a provable formula is valid
in every model) is easily verified by induction on the complexity of the formula in question, the
converse result (that is, completeness) is not as direct. In fact, its proof heavily relies on the
specific axiomatic context used to establish it, as there are non constructive aspects that are
crucial for the result to hold.

By a model we mean a Set-valued non trivial one, that is, a nonempty set interpreting the
formulas of the theory in the usual way (see section 4), in which all logical axioms hold. By a
first order theory we shall always refer to a theory within first order classical logic. Assuming
we are working in Zermelo-Fraenkel set theory, ZF, some form of choice principle is needed to
deduce completeness. Godel’s original result was intended for theories based on first order logic
allowing a countable set of formulas (besides those of logic). A stronger version that we shall
prove here holds, where there is no restriction on the cardinality of the set of formulas, namely:

Theorem 2.1.1. Completeness theorem: Given a first order theory T, if a formula ¢ is
valid in every model of T, then it is provable from the axioms of T (including first order logical
azxioms).

It is easy to prove that the Completeness theorem implies the Boolean Prime Ideal theorem
(BPI) in ZF, which is a principle derived from the Axiom of Choice but strictly weaker than it,
although still independent of ZF (see for example [6]). To see this, we proceed by proving the
following chain of implications deduced from completeness:

Theorem 2.1.2. Model existence theorem: A first order theory is consistent if and only if
it has a model.

Proof. If the theory has a model and a contradiction could be derived from the theory, then
1 would be, by soundness, valid in that model, which is absurd; therefore, the theory must be
consistent. Conversely, suppose the theory is consistent. If it had no models, then 1 would be
trivially valid in every model, so by completeness it would be provable, which contradicts the
fact that the theory is supposed to be consistent. Therefore, it must have a model. O

As an immediate consequence we get to the important:

Theorem 2.1.3. Compactness theorem: A first order theory consisting of an infinite number
of formulas has a model if and only if every subtheory consisting of a finite number of such
formulas has a model.

Proof. By the Model existence theorem, the theory has a model if and only if it is consistent,
which is true if and only if every subtheory with finite formulas is consistent. The result then
follows through a second application of the Model existence theorem. O

Finally, we get:



Theorem 2.1.4. The Compactness theorem implies BPI.

Proof. Let B be a Boolean algebra and let £ be a language having a constant term for each
element a € B (which we may identify) and a unary predicative variable I. Consider the theory
given by the following formulas:

1(0), ~I(1)
I(a) VvV I(—a)

for each a € B, and

(1)

i=1 i=1

for all ay,...,ax € B. Then any finite set of formulas has a model, since they involve only a finite
number of elements of B, which generate thus a finite subalgebra where BPI can be proved to
hold (in ZF). By the Compactness theorem, the whole theory has a model, which yields in turn
the prime ideal for B. O

The considerations above motivate the search of a proof of the Completeness theorem that
uses only BPI, since this will therefore establish the equivalence of both theorems over ZF and
will prove that the appeal to some choice principle is not superfluous. This is one of the virtues
of the proof we shall expose in section 5, the main section of this work, for which only BPI is
needed.

2.2 The axioms

We will now give a brief description of the axiom system and rules of inference used in [3].
Three primitive symbols are used (—, V, V) and others are defined as usual (A, —, <, 3). Individ-
ual variables are referred to by using small letters x,y, z, ... (individual variables and constants
may belong to different sorts), while capital letters X,Y, Z, ... denote either sentential variables
(if alone) or predicative variables (if followed by individual variables). The axioms include the
four axioms of connective calculus, two axioms handling quantifiers and two axioms handling
identity:
HDXVvX—-X
2) X - XVY
3) XVY Y VX
) (X —=Y)—=(ZVX —>ZVY)
5) VaP(x) — P(y)
6) Vz X\/P( ) = X VVaP(x)
) x
) x

N

oo

— (F(z) = F(y))
There are as well four rules of inference specified:

A) The inference scheme: from o and a@ — (3 we can infer
B) The substitution rule for sentential and predicative variables



C) From the formula ¢(x) we can infer Vaeo(x)
D) Individual variables (either free or bounded) can be replaced by any other variables as long
as renaming them does not change the reach of already existing quantifiers

Godel then proceeds to prove the completeness theorem first for a special class of formulas
and then deduces the general case. The proof we shall expose here follows different arguments,
and it is based on methods in categorical logic that were developed a few decades after Godel’s
first proof was published. These methods are based on the use of category theory to explore
the concepts of model theory, and were initiated by Lawvere in his Phd. thesis [9], where
he introduced the concept of functorial semantics. The idea was exploited mainly by Joyal,
who inspired by Henkin’s proof of the Completeness theorem, considered generalized models
of theories that are not necessarily Set-valued but instead have corresponding interpretations
inside appropriate categories. As we shall see, it is possible to construct a category where first
order logic can be interpreted, making use of certain functors from this category to Set to
provide the usual semantics for the theory. We shall start in section 3 with some usual concepts
and results that are known and will play an important role in the next sections. Section 4 will
be devoted to the construction of a special category known as the syntactic category for first
order theories, as well as a categorical model inside it, as exposed in [8]. Finally, section 5 will
describe in detail the argument of Joyal’s proof of Godel’s completeness theorem, and is based
on a series of lectures he gave in 1978. Although these lectures were unpublished, the ideas were
circulated amongstst his students and colleagues, and some related developments can be found,
for example, in [8] and [13].

3 Categorical preliminaries

3.1 Pullbacks

Amongst the finite limits on a category, pullbacks occupy an important place. Recall that in a
category C, the pullback of an arrow g : C' — B along an arrow f : A — B is a commutative
square as shown below satisfying the following universal property: for every pair of arrows
j:@Q — A, k:Q — C such that gk = fj, there exists a unique induced morphism [ : Q — P
such that ¢'l = 7 and f'l = k:

B

The universal property above allows to define the greatest lower bound of two subobjects of
an object X as the pullback of the corresponding monics; therefore, the poset Sub(X) has
intersections (A) provided the category has pullbacks.

Given a category C, we can define for an object A in C the slice category C/A whose objects
are arrows f : C' — A and whose arrows are morphisms ¢ : C' — C’ making commutative the
triangle below:



C/

A

Pullbacks give rise to functors between slice categories in the following way. Given f: A — B,
define the pullback functor f* : C/B — C/A acting on an object g : C' — B by simply taking
its pullback along f, while it acts on an arrow i : C' — C' by assigning to it the unique induced
morphism f*(C") — f*(C):

ey —7" c’
SN ) \\
\& ’
« f
[*(C) C
h' h
gl
g
A ; B

(Note that in the diagram above all three squares are pullbacks).

A certain property of an arrow g : C — B is said to be stable under pullbacks (or under
base change) if each time g has that property, for every f : A — B the corresponding arrow
g : f*(C) — A in the pullback diagram also has the same property. Monomorphisms are stable
under pullback, which leads to the following;:

Definition 3.1.1. The functor f=! : Sub(B) — Sub(A) is the restriction f*lsun() of the
pullback functor.

Remark 3.1.2. Note that since monics are stable under pullbacks, the restriction of the domain
to Sub(B) implies the restriction of the image to Sub(A).

Pullbacks can be used to characterize monomorphisms, as in the following:

Lemma 3.1.3. An arrow f : A — B is a monomorphism if and only if the diagram on the left
1s a pullback:

A Idy
\\A
N
1d
A '] p—= A
Ida
Idy f T2 f
A 7 B A 7 B



Equivalently, f is a monomorphism is and only if the diagonal morphism A to the pullback P
on the right is an isomorphism.

Proof. Clearly, the second assertion follows from the first one. To prove the first assertion, we
just need to realize that if m,n : C' — A satisfy fm = fn, then the diagram on the left is a
pullback if and only if there is an induced morphism [ : C' — A such that m =1 = n, i.e., if and
only if f is monic. O

Another characterization of monomorphisms that uses pullbacks and is sometimes useful is the
following;:

Lemma 3.1.4. An arrow f : A — B is a monomorphism if and only if the following square is
a pullback:

A 2 L AxA
! Fxf
B B x B

Proof. Consider the kernel pair of f (i.e., the pullback of f along itself), 7,72 : Ry =% A. Then
we can see that the following square is a pullback:

(m1,m2)

Rf Ax A
frmi=fm2 xf
B 2 .BxB

Indeed, given a pair of morphisms (g, h) : C — AxAand p : C — B satisfying (fx f)(g,h) = Ag,
we must have fg = fh = p, and hence there is a morphism ¢ : C — Ry, induced by the universal
property of the pullback Ry (of f along itself), that satisfies mq¢ = g and maq = h. But these
two equalities are equivalent to the equality (71, 7m2)q = (g, h), and since fmoq = fh = p, we see
that ¢ is the required induced morphism in the pullback above, and moreover, it is necessarily
the unique such possible morphism.

Finally, to prove the lemma we just need to note that, according to lemma 3.1.3, f is a
monomorphism if and only if Ry = A and m; = m = Ids. But this implies precisely the
statement we wanted to prove. ]

One important fact about pullback functors is stated in the following;:

Lemma 3.1.5. If the category C has pullbacks, then the functor f* : C/B — C/A has a left
adjoint ¥y : C/A — C/B.



Proof. In the special case where B = 1, the terminal object of C, we have C/1 = C and the
pullback functor is just the functor (—) x A : C — C/A, sending each object C into the object
my : C X A — A of C/A. By the universal property of the product, it is easy to see that a left
adjoint for this functor is given by the forgetful functor s : C/A — C which applies the object
g:C — Ain C/A into the object C. The general case follows now easily by noting that the
arrow f: A — B is also an object (f) in the slice category C/B and we have (C/B)/(f) = C/A.
Therefore, the corresponding pullback functor is f* = (=) x (f) : C/B — (C/B)/(f), which
reduces to the previous case. ]

3.2 Boolean categories

In the next sections we shall extend the notion of models using appropriate categories other
than Set, where first order theories can have an appropriate interpretation. This interpretation
will be possible only if the category considered is complex enough to support the complexity of
first order language. As we shall see, the right context to interpret first order theories is that of
Boolean categories (see [13], ch. 1).

Definition 3.2.1. A regular category is a category having the following three properties:

1) It has all finite limits.

2) Every arrow f : A — B can be factored as f : A — C — B, where C, called the image of
f, is the least subobject of B through which f can factor. The arrow f : A — C not factoring
through any proper subobject of C is called a cover.

3) Images are stable under base change (i.e., pullbacks preserve covers).

A regular category is said to be Boolean if it also satisfies the following two conditions:

4) The poset Sub(X) of subobjects of a given object X has finite unions and these are stable
under pullbacks.

5) Every subobject A in the poset Sub(X) has a complement, i.e., there exists a subobject B
such that the intersection A A B is initial in Sub(X) and AV B = X (in particular, Sub(X) is
a Boolean algebra, and we denote B = —A).

Remark 3.2.2. It follows from the definition that in a Boolean category complements are pre-
served by pullback functors =1, that is, f~1(=A) = ~f~1(A).

Definition 3.2.3. A functor between reqular categories is reqular provided it preserves finite
limits and images factorizations. A regular functor between Boolean categories is called Boolean
if it also preserves unions and complements.

Boolean categories are specially adequate to interpret first order logic because all logical con-
nectives have a definite meaning in it, due to the Boolean structure of the poset of subobjects of
a given object. For example, since it has finite limits, the intersection S A S’ of two subobjects
of A is given by simply taking the pullback of the corresponding monics. Furthermore, as first
observed by Lawvere, quantifiers have also a categorical interpretation in this context, which we
mention in the following:

Lemma 3.2.4. For every arrow f : A — B in a reqular category C, the functor f~1 : Sub(B) —
Sub(A) has a left adjoint. Furthermore, if C is Boolean, then f~' also has a right adjoint.

Proof. Suppose C is regular. Now, ip : Sub(B) — C/B has an image Im(ip), and the property
of being the least subobject of its codomain through which i can factor says exactly that
Im :C/B — Sub(B) is left adjoint to ip.

10



c/B c/A
\\ s
B /”Im 1A
Sub(B) ———~ Sub(A)
\“3_,_,/
f

Therefore, we can take the left adjoint of f~1, 3 f, to be defined by the following composition:

Xy

Sub(A)— 4 /A ¢/B—"1" . Sub(B)

where X is the left adjoint of f*:C/B — C/A.

Now suppose C is also Boolean. Then, the fact that each subobject has a complement defines
an operation assigning to each subobject A — X its complement —A in Sub(A). This amounts
to having an idempotent contravariant endofunctor — in Sub(A). Because of remark 3.2.2, we
deduce that the functor f~1 : Sub(B) — Sub(A) also has a right adjoint V;. Indeed, we can
take V¢ = —dy—, which will necessarily be right adjoint to f~1 since — is a (contravariant)
isomorphism. O

Note that any cover A — B is necessarily an epimorphism, for if f equalizes a pair of arrows
of domain B, it would factor through their equalizer. Moreover, as the following proposition
shows, covers are closed under composition:

Lemma 3.2.5. In a reqular category, the following holds:

a) The composition of covers is a cover.

b) If A— 1,B — 1 are covers, then A x B — 1 is a cover.

¢) If A; — 1 are covers fori=1,...,n, and m < n, then the canonical arrow [[}"_; A; — []%, A;
is a cover.

Proof. a) By definition, we have that an arrow h : X — Y is a cover if and only if 35(Y) = X.
Let g : A - B,f : B — C be covers. Therefore, 3;(B) = A and 3;(C) = B. But then
J4¢(C) = 3434(C) = 34(B) = A, and fg is a cover.

b) It suffices to note that A x B — 1 is the composition of covers A x B —» A — 1, where
A x B — A is the pullback of the cover B — 1 along A — 1 (and is therefore a cover itself).

c¢) The given arrow is the pullback of [];_, ., A; — 1 along [[;_; A; — 1, and is hence a cover,
since the morphism [[, . A; — 1 is a cover by b). O

We should also mention that condition 2) of definition 3.2.1 has an equivalent form; instead
of requiring that in the composition f : A — C — B the first morphism be a cover, it can
be required that it is a regular epimorphism, i.e., an epimorphism that occurs as a coequalizer.
Indeed, as shown in [8], A1.3, we have:

Lemma 3.2.6. In a regular category C, the arrow f : A — B is a cover if and only if it is a
regular epitmorphism.

11



Proof. Clearly, if f is a regular epimorphism, it is also a cover, because every factorization of
it through a subobject of its codomain can be easily seen to be a coequalizer of the same pair
of morphisms. Conversely, suppose f is a cover and let a,b: R = A be its kernel-pair (i.e., the
pullback of f along itself). We shall prove that f is the coequalizer of a and b. For that purpose,
let ¢ : A — C be a morphism satisfying ca = ¢b and consider the image factorization:

A d D W e

of (f,c) : A — B x C. We shall prove that g is an isomorphism, so that hg~™' : B — C is
a factorization of ¢ through f (which will be clearly unique, since covers are epimorphisms).
Because f and factors through g and f is a cover, g will be a cover as well, so it suffices to prove
that it is monic. Suppose then that k,[ : E — D are such that gk = gl. Form the pullback:

P P E

(m,n) (k1)

dxd

Ax A D x D

We have fm = gdm = gkp = glp = gdn = fn, so m,n factor through a,b respectively by a
morphism ¢ : P — R. Therefore, we have hkp = hdm = ¢m = caq = cbqg = cn = hdn = hlip.
Now, d x d is a cover, since it is the composite of the morphisms:

Idaxd dxIdp

Ax A AxD DxD

both of which are pullbacks of d (and therefore covers). Hence, p is a cover, and in particular it
is an epimorphism. This implies that hk = hl, and hence, that (g,h)k = (g,h)l : E — B x C.
Since (g, h) is monic, we must have k = [, which completes the proof. ]

Definition 3.2.7. A finite coproduct of objects | [}, A; is said to be disjoint if the injections into
the coproduct A; — i, Ai are monomorphisms and their intersection is the initial subobject

of [Ty 4.
The following lemma will be needed in section 5:

Lemma 3.2.8. Regular (resp. Boolean) categories are stable under slicing; that is, if C is a
reqular (resp. Boolean) category and A is an object of C, then C/A is again regular (resp.
Boolean). Moreover, if C has finite disjoint coproducts, then so does C/A.

Proof. C/A clearly has a terminal object. To see it has pullbacks if C has finite limits, note that
for a pullback diagram we can take the pullback in C of the objects involved together with the
evident arrow to A and verify at once that it is a pullback in C/A. This shows C/A has finite
limits. Now C/A will have images, unions and complements of subobjects respectively provided
C does, for images, unions and complements in C/A are clearly those of C together with the
obvious arrows to A. This implies, in turn, that covers and unions are stable under pullbacks if
they already are in C. Finally, to check that C/A has finite coproducts if C does, note that the
universality of the coproduct in C of a set of objects from C/A endows it with an arrow to A,
thus forming the coproduct in C/A, which inherits then its disjointness. O
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Definition 3.2.9. A functor F : C — D is said to reflect isomorphisms when given an arrow
f:+A— BinC, if the arrow F(f) : F(A) — F(B) is an isomorphism in D, then f is an
isomorphism in C.

Functors that reflects isomorphisms are called conservative. Basic is the following:

Lemma 3.2.10. If C is a reqular category and a regular functor F : C — D reflects all iso-
morphisms F(f) : F(A) — F(B) corresponding to monic arrows f, then F is conservative and
faithful.

Proof. Let us first prove that F is faithful. Given two arrows f,g: A — B such that F(f) = F(g),
take their equalizer m : E — A, which is a monic. Since F preserves finite limits, F'(m) is the
equalizer of F'(f) and F(g), and therefore F(E) = F(A). This implies that £ = A and then
f=g

Now suppose f : A — B is any arrow in C such that F(f): F(A) — F(B) is an isomorphism.
Consider the image factorization f : A - C — B; then the monic F(C) — F(B) must be a
cover, and hence is an isomorphism. This means that C and B are isomorphic and therefore
f is a cover. To prove it is an isomorphism, it remains to show that it is also monic. But if
a,b: C — A are two morphisms such that fa = fb, then F(f)F(a) = F(f)F(b), which implies
that F'(a) = F(b) and therefore a = b. O

Lemma 3.2.11. For every cover f : A — B in a regular (resp. Boolean) category C, the pullback
functor f*:C/B — C/A is conservative and regular (resp. Boolean).

Proof. Suppose C is regular. Since pullback functors have left adjoint, they preserve limits. If
f is a cover, then f* clearly reflects isomorphisms that correspond to monic arrows in C/B,
and conservativity follows immediately from lemma 3.2.10. Finally, from 4) and 5) in definition
3.2.1 and remark 3.2.2, it follows that pullback functors must preserve unions and complements,
which finishes the proof. O

Finally, we state the following basic result that hold in regular categories:

Lemma 3.2.12. In a reqular category, if two subobjects By — X, Bs — X are disjoint, then
their union is as well their coproduct.

Proof. This proof is mainly due to Joyal, and appears in [13], ch. 1. The lemma follows from a
more general result stating that the following square in Sub(X) is a pushout in C:

B1 A By 5 By

J1
By

BV By

The special case where Bj, By are disjoint makes this pushout a coproduct. Call A = By V Bs
and suppose we are given the following commutative diagram:

s

B A By Bs
t f2
By fi 7
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Let I'y, : By — By x Z be the graph of fi; : By — Z and define I'y, similarly. Consider the
following compositions:

F .

By " B x 72 Ay
r i d

By 2 Byx 727 Az

which being monomorphisms are isomorphic to their respective images My, = Im(ji1 x Idz o
I'y), My, = Im(jo x Idz oT'y,). Define now a to be the composition:

1

My, v My, Ax Z A

The idea is to prove that « is an isomorphism, since then, defining g : A — Z to be:

A ol My, vV My, Ax 7 —=2 A
we clearly render the following diagram commutative:
By A By —= By
t AN
1 f2

and g would necessarily be the unique possible morphism that makes the above diagram com-
mute. Now let us prove that a='(By) = My, and a~1(By) = My,, for which it suffices to prove
the first case, since the second is similar. We have on one hand a™'(B;) = 7 *(B1) A (My, V
MfQ) = (Bl X Z)A(Mfl \/MfQ) = ((Bl X Z)/\Mfl)\/((B1 X Z)/\MfQ), and since Mfl - (Bl X Z),
to prove that a~1(By) = My, it suffices to prove the inclusion (By x Z) A My, C My,. For that
purpose, consider the morphism fit = fos: BiABy — Z and let I'y : (ByABy) — (B1ADB2) X Z
be its graph. Then, in the diagram below:

14



r d
Bi A By S BiABy)x 2z 2% B xyz
t txIdy ixZ
1—‘ .
Mf2

both squares are pullbacks, making the whole diagram a pullback as well, which means that
(B1 x Z) N My, = By A Ba. The sought inclusion can then be easily seen to hold noting that we
have:

r j1x1Id
By A By— B, N B xz—2% _Axz
e e —
Mf1

As a consequence, the following diagram is a pullback:

Mfi Mfl v Mf2
B; L A

for ¢ = 1,2. But we can, moreover, affirm that the left arrow r; is an isomorphism, since j;
factors through A x Z as the following diagram shows:

B; J: A

Idp,
T 1

Ly jixIdy
> B X I AX 7

B;

We shall now deduce that a must be an isomorphism from the fact that each r; is. Clearly, « is a
cover, since Im(«) 2 B1V By = A. Thus we only need to be show that « is a monomorphism. Let
u,v: C — My V My, be arrows such that au = av = h; we need to prove that Ker(u,v) = C.
Note that C = h™1(A) = h=Y(By V Ba) = h™1(By1) V h™1(By), and therefore it suffices to prove
that h='(B;) € Ker(u,v), or equivalently, that u|,-1(p, = v|,-1(p,). But if we consider the
following diagram on the left and pull it back along B; — X to obtain the diagram on the right:
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u U1y

T T T
X v My, v My, h_l(Bi) vlp—105,) My,
\___,ﬁ w
h h .
[0 T4
A B;

then the fact that r; is an isomorphism implies that ulj,-1(p,) = v|p-1(p,)- This finishes the
proof. ]

3.3 Filtered colimits

A special type of categories will prove to be useful for our purposes. Following [10] we give the
following:

Definition 3.3.1. A category C is called filtered if it satisfies the following two conditions:

a) For every pair of objects A, B in C there is an object C' such there are arrows f : A — C and
g:B—C.

b) For every pair of arrows a,b: A = B there is an arrow ¢ : B — C such that ca = cb.

A colimit diagram I' : D — C in the category C is called filtered if I is a filtered category. In
section 5 we shall need the following result:

Lemma 3.3.2. A filtered colimit of Set-valued left exact functors is left exact.

This is really a special case of the well known exactness property of Set, by which all filtered
colimits commute with finite limits. We present here a different proof of this particular case.

Proof. Suppose [ is a filtered category, J is a finite category and {F;/i € I} are Set-valued left
exact functors. We need to prove that lim— lim}e—J Fi(zj) = limE] lim;— Fy(z;). We shall do

so by proving that the colimit lim lim}E—J F;(x;) satisfies the universal property of the limit
i T F= lim;a] F}, and consider the following diagram:

lim]eevJ lim;—; Fi(z;). Let z = lim
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We need to show that F'(x) is a limit diagram whose projections are the arrows F(f;) for j € J.
For that purpose, consider a cone a; : C' — F(x;); we shall construct an induced morphism
m : C — F(z) by defining the map m on each element ¢ € C. Take, thus, an element ¢ € C.
Since J is finite and I is filtered, there exists some i € I such that all the elements a;(c) of the
corresponding colimits have already representatives in some Fj(x;). Call a;» the maps so defined,
and let 0 : F; — F be the natural transformation which is the injection into the colimit. Because
Fi(f;) : Fi(z) — Fi(z;) is a universal cone and a : 1 — [F;(x;) can be supposed without loss of
generality to be a cone, there is an induced morphism [ : 1 — Fj(x) such that F;(f;)l = a);. Then
we just define m(c) = ;1. Indeed, we have, F(f;)m(c) = F(f;)0:l = 04, Fi(f;)l = 05;a; = a;(c),
and similarly, F'(fj)m(c) = aj(c). To prove that m is unique, suppose there is a morphism
m/ satisfying F(f;)m’ = a; and let ¢ € C be such that m(c) # m/(c). Find i € I such that
m/(c) factors as 0,0'. From diagram chasing we can infer that 0., Fi(f;)l' = 0,;a’;. Since there
must be some j € J such that F;(f;)l' # F;(f;)l, it follows that F;(f;)l', Fi(f;)! are in the
same class in the colimit. Therefore, there is some k € I,n : F; — F}, for which n,l,n,l' are two
different morphisms from 1 into the limit Fj(z) commuting with the limiting cone, contradicting
universality of this limit. This finishes the proof. O

Lemma 3.3.3. Any colimit of Set-valued left exact functors, each of which preserves covers and
unions of subobjects, preserves as well covers and unions of subobjects.

Proof. Suppose I is category and {F; / i € I} are Set-valued functors that preserve covers and
unions of subobjects. Let us first prove that the colimit preserves covers, that is, given a cover
[+ A — B, let us see that lim:— F;(f) : lim:— F;(A) — lim;—; F;(B) is surjective. Take an
clement ¢ € lim;— F;(B); it must have a representative ¢’ € F;(B) for some i € I. Now, since
colimits of functors are computed pointwise and k; : F; — limiE—I> F; are the injections into the
colimit, the following diagram commutes:

Fi(A) — "4 tim_ F(A)

Fi(f) :lim@ Fi(f)
|
. \
Fi(B) lim;—; F;(B)

(ki)B

and since F;(f) : F;(A) — F;(B) is a cover, it is surjective and there is some d € F;(A) such
that F;(d) = ¢/. Hence, lim;— F;((ki)a(d)) = ¢, which proves that lim;—; F; is regular.

Let us now see see that limi?l F; preserves unions of subobjects. Givenig : A — C,ip: B — C
subobjects of C, because the F; preserve finite limits, then F;(AAB) = F;(A) A F;(B), and hence
the universal property of the pushout below (note that it is a pushout according to lemma 3.2.12)
guarantees that the arrows jap : Fi(AV B) = F;(A) V Fi(B) — lim—; F;(A) Vlim;—; F5(B) form
a cocone diagram, which induces in turn the arrow m that makes the next diagram commute:
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limie_f Fi(A) v hmie_f F;(B)

F(AV B) = Fy(A) v Fy(B) —%ave lim__; F;(A v B)

X m
JAB

|
|
|
|
|
. \V .
lim;— F;(A) V lim:—; F;(B)

It is now easy to see that m must be an isomorphism. Indeed, it is surjective, since if ¢ €
limie—j Fi(A) v lim— F;(B), supposing without loss of generality that ¢ € lim-— F;(A), it has a
representative ¢ in F;(A) — F;(A) V F;(B) = F;(AV B) for some i € I, and hence jap(c) = c.
Therefore, ¢ = m((ki) avp(c')). To prove that m is injective we proceed similarly, noting that if
m(a) = m(b), then we can suppose without loss of generality that a’,b’ are the corresponding
representatives in F;(A V B) for some i € I. But since jap must map them into the same
element in lim;— F;(A) V lim;—; F5(B) (which we can suppose to be, say, in lim;—; F5(A4)), then
a’, b belong to the same class, i.e., a = b. O

As a consequence of lemmas 3.3.2 and 3.3.3 we have now the following:

Corollary 3.3.4. A filtered colimit of Set-valued reqular (resp. Boolean) functors is regular
(resp. Boolean).

Proof. Suppose I is a filtered category and {F; / i € I} are Set-valued regular (resp. Boolean)
functors. By lemma 3.3.2, the colimit limi?[ F; preserves finite limits, and by lemma 3.3.3 it also
preserves covers (when the functors are regular) and unions of subobjects (when the functors are
Boolean). In this latter case, since the complement in Set of a subobject s : A — B is uniquely
determined by the conditions AV -A = B and A A =A = 0, using that limie—l> F; preserves
unions and intersections we can infer that lim:— Fj(~A) = —lim;—; F;(A), which completes the
proof. O

One construction that we shall use later involves a filtered bicolimit of categories, so we recall
here the definition and present an explicit construction.

We start, following [4], with the concept of pseudofunctor. This is a generalization of functors,
except that it is only required to preserve composition up to isomorphism, and these isomor-
phisms have certain coherence properties, specified in the following:
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Definition 3.3.5. Given a category D, a (normalized) pseudofunctor F : D°P — Cat consists
of the following:

a) A function Ob(F') : Ob(D) — Ob(Cat) (for convenience we shall refer to F(D) for the category
corresponding to the object D).

b) An application Ar(F) : Ar(D) — Ar(Cat) which assigns to every arrow f : C — D in D a
functor f*: F(D) — F(C).

¢) An application c defined in Ar(D)? which assigns to each pair (f,g) of arrows of D a natural
isomorphism cg g : g* f* — (fg)*.

Furthermore, the following properties hold:

1) For every object C' in D we have (Idc)* = Idp ).

2) For every arrow f : C — D in D, we have cf 1q, = Ids and crqp,,g = Idg.

3) For a triple of composable arrows f : C — D, g : D — E and h : E — G, we have
crgh(§) 0 cgn(f*(§)) = crgn(§) o h(crg(E))-

In the special case when ¢y, = Idt4)~ the pseudofunctor reduces to a functor.
Following [1], we also have:

Definition 3.3.6. Given a pseudofunctor F' : D°P — Cat, a pseudococone with vertex at the
category X consists of a family of functors {¢ : F(A) — X | A € D} and a family of natural
isomorphisms {¢y : ppou* — ¢4 / (u: A — B) € D} that satisfy the following conditions:

a) ¢ra, = Idg,.

b) Foru: A — B andv: B — C, we have ¢y = ¢y 0 ppldy o (Idy,, oc;ﬂll):

F(O) F(0O)

X = (vu)* X

F(A) F(A)

Pseudococones allow us to consider a variation of the colimit notion that we shall call bicolimit,
introduced in [14], Ex. VI 6.4.0, under the notation ” Lim” (with capital L). We have:

Definition 3.3.7. Given a pseudofunctor F : I°? — Cat, the bicolimit C = lim;— F (i) is the
universal pseudococone associated to F. In other words, it is a pseudococone ¢ : F' = C such
that for every psedococone 1 : F = D there is a unique functor A\ : C — D such that 1; = A\¢;
for every i € I:

F(i)

A construction of the bicolimit is described in [14] by means of categories of fractions applied
to certain fibrations. This will prove to be useful in section 5.
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3.4 Grothendieck fibrations

We now turn to Grothendieck construction of the bicolimit, as done in [14]. We need first some
definitions.

Definition 3.4.1. Let m : C — D be a functor, and f : A — B a morphism in D. We say that a
morphism m : X — Y in C satisfying w(m) = f is cartesian if, for every morphismm’ : X' =Y
in C satisfying m(m') = f, there exists a unique morphismp : X' — X in C such that w(p) = Ida
and mp = m/:

X/
| /
P (&
V m
l X Y
A—71 B

Definition 3.4.2. A fibration is o functor m : C — D such that:

a) For every morphism f : A — B in D and every Y in C satisfying m(Y') = B there exists a
cartesian morphism m : X — Y in C such that w(m) = f.

b) The composition of cartesian morphisms is cartesian.

In this case C is called fibered over D.

Following [2], we have as well:

Definition 3.4.3. Given a category C, a set S of morphisms of C is said to satisfy a calculus
of left fractions if the following holds:

a) Morphisms of S are closed under composition.

b)If f: B— Aandg:C — A are two morphisms and g € S, there are morphisms ' : D — B
and g’ : D — C such that f¢g' = gf' and g’ € S:

c¢) For every pair of morphisms f,g: A = B such that there is some s € S satisfying sf = sg,
there exists some t € S satisfying ft = gt.

The terminology of definition 3.4.3 arises from the fact that the stated conditions provides
another construction of the category of fractions. We recall here the definition:

Definition 3.4.4. Given a category C and a set S of morphisms of C, there exists a category
C[S™1], called the category of fractions, that satisfies the following universal property: there is a
functor j : C — C[S™Y] such that j(s) is an isomorphism for every s € S, and for every functor

F : C — D such that F(s) is an isomorphism for every s € S, there exists a unique functor
F:C[S™'] — D such that Fj = F:

20



‘We have now:

Theorem 3.4.5. Let S be a set of morphisms of C that satisfies a calculus of left fractions.
Then the category of fractions C[S™!] can be constructed as follows:

a) Objects are given by the objects of C.

b) The hom-sets [x,y] are given by the (filtered) colimits limm(—;)[u,y], where S(x) is the
category whose objects are morphisms f : u — x of S over x and whose morphisms between the
objects f :u — x and f':u' — x are represented by arrows g : u — u’ such that f'g = f.

Proof. Given x € C, let us first check that S(z) is cofiltered (i.e., that S(x)° is filtered). For
objects A given by f :u — z and B given by f’ : v’ — x, because of condition b) of definition
3.4.3 we can find m : v’ — w and n : v” — ' such that fm = f'n. Therefore, for the object
C given by f'n : u” — x there exist morphisms C — A and C — B given by the arrows m
and n, respectively, which proves that the first condition for filteredness in S(x)° is fulfilled.
To prove the second condition, suppose there are two arrows A = B given by g, ¢’. Then, since
f'g = f'g’, because of condition c) of definition 3.4.3 there exists h : v — u in S such that
gh = ¢'h. Therefore, if D is the object given by fh : v — x, the arrow D — A given by h
equalizes those represented by ¢ and ¢'.

To define the composition in C[S™!], take representatives f : u — y whith a : v — z in S and
g:u — zwith b: 4 — yin S. Because of condition b) of definition 3.4.3, there are arrows
b :v—wand f':v— o such that fo/ =bf" and ¥/ € S. Then we define the composite [g] o [f]
as the class of the arrow gf’ : v — z, since ab’ : v — x is in S. The conditions of definition 3.4.3
ensure that this composite is independent of the chosen v.

Finally, to verify the universal property of C[S™!] note that we can assume without loss of
generality that S contains all identity arrows, since if S’ is the union of S and all these identities
(which are inversible), it is easy to see that C[S’~!] and C[S™!] satisfy the same universal property.
Define then the functor j by applying = € C into x € C[S™!], and applying the arrow f :z — y
into the class of f : x — y (which can be done since Id, : © — x is in S). Then, an inverse
for j(s), where s : * — y is in S, is given by the representative of Id, : © — z. Also, it is
easy to verify that the representative f : z — y, where s : z — x is in 5, is the composition
§(£)o(j(s))~tin C[S™Y], from which we deduce that in order to have F'j = F we must necessarily
have F([f]) = F(f) o (F(s))~!. This defines the functor F and proves it is the unique such
possible functor. ]

The next lemma states sufficient conditions so that cartesian morphisms form a calculus of left
fractions:

Lemma 3.4.6. Let m : C — D be a fibration and suppose that D satisfies the following two
conditions:

1) For every pair of morphisms f : B — A and g : C — A, there are morphisms f' : D — C
and g’ : D — B such that fg' = gf’':
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2) ¢) For every pair of morphisms f,g : A = B such that there is some s € S satisfying sf = sg,
there exists some t € S satisfying ft = gt.
Then the set S of cartesian morphisms of C satisfy a calculus of left fractions.

Proof. Since C is fibered over D, condition a) of definition 3.4.3 is satisfied. To check condition
b), suppose we have morphisms f : B — A and g : C — A, which give rise to morphisms
7(f) : m(B) — w(A) and 7(g) : 7(C) — w(A). By hypothesis there are arrows f’ : D — 7(C)
and ¢’ : D — 7(B) such that 7(f)g’ = 7(g)f’, and since 7 : C — D is a cofibration, there are
cartesian morphisms f” : D’ — C and ¢” : D" — B such that «(f”) = f' and 7(¢") = ¢'.
Therefore, there is a unique p : D” — D’ such that g¢”p = ff”, which means that the following
square commutes:

as required.

Finally, to verify condition c), suppose we have morphisms f,g : A = B and a cartesian s
satisfying sf = sg. Then 7(s) coequalizes 7(f) and m(g). By hypothesis, there is some h in
D such that 7(f)h = w(g)h. If A’ in C is a cartesian morphism such that 7(h') = h, then
sfh' = sgh’, which implies fh’ = gh’, since s is cartesian. This completes the proof. O

Corollary 3.4.7. If 1 : C — D is a fibration and D is cofiltered, the set of cartesian morphisms
in C satisfies a calculus of left fractions.

Proof. It is an immediate consequence of the previous lemma. ]
A natural type of fibration that often arises is described in the following;:

Definition 3.4.8. Grothendieck construction: Let I be a category and F : I°? — Cat a
pseudofunctor. We define the category I'r as follows:

a) The objects of T'r are given by pairs (x,i), where i € I and x € F(i).

b) The morphisms (z,i) — (y,j) are given by pairs (f,$), where f : i — j is an arrow of I
and ¢ : x — f*(y) is a morphism in F(i). Moreover, the composite (g,v) o (f,$) of two objects
(1,6) : (2,3) = (5:) and (9,) : (4,9) — (2 k) ds defined as (g, (co. )2 © F* () 0 6).

Remark 3.4.9. If we define the functor w: T'r — I by setting 7((x,i)) = ¢ and ©((f,¢)) = f,
it can be seen (see [4], Ex. VI 8 for details) that I'r becomes a fibered category over I, called the
fibration associated to the pseudofunctor F'. Furthermore, the cartesian morphisms are precisely
those morphisms (f,d) for which ¢ is an isomorphism. Indeed, a morphism (f, ®) : (z,i) — (y,J)
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is cartesian if and only if for every morphism of the form (f,) : (2',i) — (y,J) there exists a
unique morphism of the form (Id;,n) : (¢',1) — (x,4) such that (f,v) = (f, ¢)o(Id;,n) = (f, én).
But this is equivalent to stating that, in F(i), ¢ : x — f*(y) is such that for every 1 : ' — f*(y)
there exists a unique n : x — x satisfying ¢n = 1, which clearly implies that ¢ is an isomorphism.
Finally, Grothendieck also states in [4] that for an arbitrary fibration over I and a choice of
cartesian morphisms, a pseudofunctor F' can be defined in such a way that its associated fibration
1s precisely the original one.

Since, given an arbitrary fibration, the existence of the pseudofunctor described in the previous
remark makes an essential appeal to the Axiom of Choice, we shall not use it in our proof in
section 5. Instead, we shall work directly with the fibration in question.

The connection between Grothendieck’s construction of categories of fractions and universal
pseudococones is contained in the following:

Theorem 3.4.10. Let I be category, F' : I°° — Cat a pseudofunctor and w : I'r — I the
fibration associated to F'. Then, if S is the set of cartesian morphisms in I'r, the category of
fractions T[S~ is the universal pseudococone associated to F.

Proof. The pseudococone is defined through the functors jg; : F(i) — T'p[S™!], where j is
the functor defined in 3.4.5 and g¢;(z) = (z,4),9:(1) = (Id;,1), and through the natural iso-
morphisms hy = Id;jgs, where gy : g;F(f) = g; is defined for each arrow f : 4 — j in I by
(97)2 = (f; 1dr(p)@))-

For a pseudococone 1 : F = D, there is an induced morphism 6 : I'r — D defined as
0((x,1)) = ni(z) and O((f, ¢)) = nj(¢)(nf)e. This morphism 6 satisfies 6g; = 7;, and furthermore,
applies cartesian morphisms in I'r into invertible morphisms in D. Therefore the universal
property of I'[S™!] yields the desired result. O

Remark 3.4.11. The usual notion of colimits in Cat (the universal cocone, as given, for in-
stance, in [2]) do not coincide in general with the bicolimit of categories (the universal pseudoco-
cone associated to a functor F, as in definition 3.5.7). In the filtered case both notions coincide
([14], Ex VI 6.8), and the standard construction of [2] of the universal cocone yields a category
which is equivalent to the category constructed in theorem 3.4.5, although they are not strictly
isomorphic.

The following lemma provides evidence of the fact that all finitary constructions in the cate-
gories of a filtered diagram that are preserved by the transition functors are inherited by the
bicolimit:

Lemma 3.4.12. Let I be a cofiltered category and F : I°P — Cat a pseudofunctor such that
each F(i) is a regular (resp. Boolean) category and each transition functor f* : F(j) — F(i)
(for f i — j in I) is reqular (resp. Boolean). Then, if S is the set of cartesian morphisms in
the fibered category U over I, the category of fractions T p[S™!] is also regular (resp. Boolean,).
Moreover, for each i in I, the injection into the bicolimit I; : F (i) — T'p[S™!] is a regular (resp.
Boolean) functor.

Proof. In what follows, we we shall use the construction given in the proof of theorem 3.4.5, as
well as the filteredness of I°P to find specific arrows needed for the constructions.

Using the fact that for, f in I, each functor f* is regular (resp. Boolean), it can now be
verified that the following holds: the product of two objects (C,i) and (D, j) is given by the
object (u*(C) x v*(D), k), where u : k — i, v : k — j are arrows of I. The corresponding
projections are given by the classes of the arrows on the right:
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Td Tdys (o) s+
(u*(C) x v*(D), k)~ @2 0D (0 ¥ (D), k)

(uvﬂ-l)

(Idi,Idyx (Cyxv* (D)) (v,m2)

(u*(C) x v*(D), k) (u™(C) x v*(D), k)

The equalizer of two morphisms represented by the arrows on the right:

(v,)) (u,9)

(&) (X, k) (D, 7)

(V') (uv',¢')

(C,4) (X', &) (D, )

where (v,), (v',1)) are the corresponding cartesian morphisms, i.e., where 1,1’ are isomor-
phisms, is represented by the following morphism on the right:

(Idy,ldg) ) (zu,(cx,u)cg) (

(E,1) (E,l C,i)

where (Idy, Idg) is cartesian, in which w : k — 4, v : k — j, v’ : k' — i, v/ : k' — j are arrows
of I,z : 1 — k and y : | — k' are such that z*u*(C) = y*u™*(C), z*v*(D) = y*v*(D) and

g: E — xz*u*(C) is the equalizer of the arrows z*(¢pyp~1), y*(¢'v'~1) : 2*u*(C) — y*u/*(D) in
C;. The image of a morphism represented by the arrow on the right:

(v)) (u,9)

(&) (X, k) (D, )

where (v,)) is the corresponding cartesian morphism, i.e., where 1 is an isomorphism, is given
by the subobject represented by the following right morphism:

(Idk,Id(pr,k)) (v,m)
- MR

(M, k) (M, k)

(v*(D), k)

where (Idg, Id( ) @ (M, k) — (M, k) is cartesian, in which w: k — 4, v : k — j are arrows of
I and m : M — v*(D) is the subobject corresponding to the image of ¢p¢p~1 : u*(C) — v*(D)
in Ci. In particular, the class of (u,¢) is a cover if and only if ¢! : u*(C) — v*(D) is a cover
in Cg, from which it can be proved, using the fact that each C; is regular, that covers are stable
under pullbacks. The union of two subobjects represented by arrows on the right:

(v,)) (w,9)

(&) (X, k) (D, )

(V') (uv',¢")

(C,4) (X', &) (D, )

where (v,), (v',1)) are the corresponding cartesian morphisms, i.e., where 1,1’ are isomor-
phisms, is given by the subobject represented by the following right morphism:

(Idlald(U,l)) (yvla(cy,vl)Dg)
-

(U,1) (U,1)

(D, )
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where (Idy, Id(yy)) is cartesian, in which u : k — i, v : k — j, o' : &' — ', ' : k' — j are

arrows of I, x : Il — k and y : | — k' are such that x*v*(D) = y*v™* (D) and g : U — y*v™*(D)
is the subobject corresponding to the union of the subobjects z*(¢yp~1) : z*u*(C) — y*v'*(D)
and y*(¢'v'~1) : y*u*(C) — y*v"*(D) in C;. In case each C; is also Boolean, it can be verified
from the definitions above that unions are stable under pullbacks too. On the other hand, the
complement of a subobject represented by right arrow:

(v,)) (u,9)

(&) (X, k) (D, 7)

where (v,1)) is cartesian, i.e., where v is an isomorphism), is given by the subobject represented
by the following morphism on the right:

(Idg,1d(v,)) (s,0)
i\

(V. k) (V. k)

(D, )

where (Idy, Idy ) is cartesian, in which u : k — 4, v : k — j are arrows of [ and s : V — v*(D)
is the complement of the subobject ¢gyp~! : u*(C) » v*(D) in Cj. Finally, it is straightforward to
check that with these specifications the functors I; : C; — T'r[S™!] are regular (resp. Boolean).

O

Theorem 3.4.10 and lemma 3.4.12 require the existence of a pseudofunctor F' : I°? — Cat. In
many contexts in which the Axiom of Choice is not used, this pseudofunctor is not available,
and therefore a new approach must be taken. This leads to the following:

Definition 3.4.13. Let w : C — I be a fibration such that each fiber F; over i is a regqular
category. We say that the set S of cartesian morphisms is locally reqular if for every arrow
f:i—jin I, the following conditions hold:

a) For every finite limit diagram k; : L — Cj in F; and every choice of cartesian morphisms
g1 :C] — C, g1 : L' — L satisfying m(q;) = n(gr) = f, the unique induced arrows k] : L' — C]
in F; form a limit diagram there.

b) For every cover p : C — D in F; and every choice of cartesian morphisms gc : C' — C,
gp : D' — D satisfying w(gc) = w(gp) = f, the unique induced arrow p' : C' — D' is a cover in
F;.

In case the fibers F; are also Boolean categories, we say that S is locally Boolean if, in addition:
c¢) For every pair of subobjects s : Cy — D, t : Cy — D in F; and every choice of cartesian
morphisms g; : C! — Ci, gp : D' — D, g : U — C1 V Cy satisfying w(g;) = w(gp) = 7(g) = [,
then U is the union, in F;, of the unique induced subobjects s' : C1 — D', t' : Cy — D'.

d) For every subobject s : C — D in F; and every choice of cartesian morphisms gc : C' — C,
gp : D' — D, g:V — =C satisfying (g9c) = w(gp) = 7(g) = f, then V is the complement, in
F;, of the unique induced subobject s’ : C' — D’.

The definition above allows to consider the preservation of regularity (resp. Booleanness) in
a local sense, in a context where we may not have a global choice of cartesian morphisms that
define a functor between fibers. This leads to the following reformulation of lemma 3.4.12 that
does not appeal to the existence of a pseudofunctor:

Lemma 3.4.14. Let m : C — I be a fibration such that C and the fibers F; are regular (resp.
Boolean) categories, I is a cofiltered category with a terminal object and the set S of cartesian
morphisms in C is locally reqular (resp. locally Boolean). Then, the category C; = C[S™1] is
reqular (resp. Boolean). Furthermore, there exists a reqular (resp. Boolean) functor Iy : C — Cj.
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Proof. In what follows, we we shall use the filteredness of I°P to find specific arrows of it that
will be used in the constructions. Being these finitary constructions, we can choose some fixed
cartesian morphisms for each one of the objects involved (a finite number of them), in case such
a morphism is not determined by the context. In such a case, the notation (—)* will indicate a
specific choice of a cartesian morphism over the corresponding arrow (—) of I. We shall use as
well the construction of the category of fractions used in the proof of theorem 3.4.5.

Using the local regularity (resp. local Booleanness) of S, it can now be verified that the following
holds: the product of two objects C' and D is given by the object u*(C) x v*(D), where u : k — 1,
v: k — jare arrows of I and u*(C') x v*(D) is the product in Fi. The corresponding projections
are given by the classes of the morphisms corresponding to the composition of the arrows on
the right (the first arrows on the left are cartesian morphisms):

1

L u*(C) x v*(D) =<—u*(C) x v*(D) u*(C) —=C
k Idy, k Idy, k u i
L u*(C) x v*(D) =— u*(C) x v*(D) ik v*(D) —= D
k Idy, k Idy, k v J

To get the equalizer of two morphisms between C' and D represented by the arrows on the right:

l C u*(C) ! D
i m k " J
L ) w(C) —2 D
¢ u’ K v’ J

we first find arrows x : | — k and y : | — K’ in I such that 2*u*(C) = y*u*(C) and z*v*(D) =
%, 1%

y*v"™*(D). Then the equalizer is given by the morphism represented by the composition of the
two right arrows in the following diagram:

!

where h : E — z*u*(C) is the equalizer of the arrows x*(¢),y*(¢) : z*u*(C) — x*v*(D) in F,
and ¢ : u*(C) — v*(D), ¢ : u'*(C) — v™*(D) are the unique arrows induced by the corresponding
cartesian morphisms v*(D) — D and v*(D) — D.

The image of a morphism C' — D represented by the arrow on the right:

E E h z*u*(C) —=C

Id, 1d, uz
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1

is given by the subobject represented by the composition of the two right arrows:

1

where u : k — i, v : k — j are arrows of I and m : M — v*(D) is the subobject corresponding to
the image in Fj, of ¢ : w*(C) — v*(D), the arrow induced by the cartesian morphism v*(D) — D.
In particular, such a morphism is a cover if and only if ¢ : u*(C') — v*(D) is a cover in Fj, from
which it can be proved, using the fact that Fj, is regular, that covers are stable under pullbacks.
To get the union of two subobjects C »— D and C’ — D represented by the arrows on the
right:

- J

m

M M v (D) —D

Idy Idy v

l C u*(C) —= D
i " k > J
L . u(C) —2 D
i - K " J

we first find arrows z : I — k and y : | — k" in I such that z*v*(D) = y*v"*(D). Then the union
is given by the subobject represented by the composition of the two right arrows:

1

where h : U — x*v*(D) is the subobject corresponding to the union of the subobjects z*(¢) :
*u*(C) — z*v*(D) and y*(¥) : y*u*(C) — y*v™*(D) in F}, and where ¢ : u*(C) — v*(D),
¥ u*(C) — v*(D) are the unique arrows induced by the corresponding cartesian morphisms
v*(D) — D and v"™*(D) — D.

In case C is also Boolean, it can be verified from the definitions above that unions are stable
under pullbacks too. On the other hand, the complement of a subobject represented by the
arrow on the right:

U U " 2*v* (D) —> D

1d; Id, VT J
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1

!

where s : V' — v*(D) is the complement, in F}, of the subobject ¢ : u*(C) — v*(D), the arrow
induced by the cartesian morphism v*(D) — D.

Finally, the functor I; : C — C; can be defined by applying the object C' in C into the object
C in C1, and applying each morphism f : C' — D in C into the morphism represented by the
arrow on the right:

Idy Idy v J

C C D

1 1 1

A straightforward verification, using the constructions above, shows now that the functor so
defined is regular (resp. Boolean). O

A natural type of fibration that often arises involves a category described in the following:

Definition 3.4.15. Let C be a category with pullbacks and I a subcategory. The category Ar of
arrows over I is defined as follows:

a) Objects are given by arrows u : ¢ — i where i is in I.

b) The arrows between two objects [u: c — i] and [v:d — j| are given by commutative squares:

g

c——>(d

i——>J

f

where f is an arrow of I. Composition is defined in the obvious way.

There is a functor 01 : Af — I which assigns to each arrow its codomain, and to each commu-
tative square the arrow of I at the base. The fiber over i is given by the slice category C/i. It
is easy to check that 0 is a fibration and that the cartesian morphisms correspond precisely to
those commutative squares in C that are pullbacks. If a choice of pullbacks is not assumed, and
hence no pseudofunctor F' can be defined, this fibration may be used instead of the fibration
associated to F', which allows to use lemma 3.4.14. This will be done in section 5.
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4 Categorical models

4.1 Theories and models

For the sake of completeness we recall here the main notions from model theory. Following [5],
we have:

Definition 4.1.1. A (multityped) structure A consists of the following:

a) A family of sets {A; /i € I}, each of which is called the sort of its corresponding elements.

b) A family of elements of the sets A; called constants, denoted by constant symbols ¢ (each of
a given sort).

c) A set of n-ary relations, i.e., subsets of A;; X ... x A; , denoted by relation symbols R.

d) A set of n-ary operations, i.e., functions from A;; x ... x A;, to A;, ., denoted by function
symbols f.

Definition 4.1.2. The signature ¥ of a structure A consists of the set of all constants of A,
the set of all n-ary relations symbols and the set of all n-ary function symbols, for n € N.

Given a signature >, we can build the language of a first order theory through the definition
of terms and formulas:

Definition 4.1.3. A term of a language over a signature X is defined to be one of the following
elements: a variable x or a constant symbol ¢ of given sorts, or a function symbol f(x1,...,Ty)
(symbolizing the value of f at (x1,...,2x)).

A formula of the language is a string of terms and logical symbols (¥, 3,V, A, =) built according
to the following recursive clauses:

a) Atomic formulas. These have either the form R(xy,...,xy,) for a relation symbol R and
variables x; of adequate sorts, or s =t where s,t are terms of the same sort.

b) Formulas built from connectives. If ¢, are formulas, then —¢, ¢V ¥, ¢ A are formulas.

¢) Quantified formulas. If ¢(x) is a formula where x is a free variable of a given sort, then
Vzo(z), Jxp(x) are formulas.

Remark 4.1.4. The recursive clauses above define the class of all formulas within a language.
At the metamathematical level, a proposition is said to hold for the class of all formulas if there
are inductively verified with respect to the complexity of the formula; that is, if it holds for all
formulas of type a), and whenever they hold for formulas of a certain type, they hold as well for
combinations of these with logical symbols that define the next level of complexity.

A first order theory consists of the class of all formulas derived through the use of the rules of
inference from both the logical axioms and a certain set of non logical axioms.
Finally, we have:

Definition 4.1.5. Given a first order theory T over a signature 3, a (Set-valued) interpretation
of T is given by a so called X-structure M (X)), that has a constant symbol M (c) for every constant
term c in T, a function symbol M (f) for every function f and a relation symbol M (R) for every
predicative variable R.

A sentence is a formula with no free variables. Therefore, interpretations assign to sentences
of a language corresponding sentences in terms of relationships within the structure. More
concretely:

Definition 4.1.6. We say that the interpretation M(T) is a (Set-valued) model of T if M (T)
satisfies all formulas of T in the sense defined recursively as follows:
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a)If ¢ is the atomic sentence s = t, then M(T) satisfies ¢ if s,t are interpreted by the same
element in M(T).

b)If o =1V, then M(T) satisfies ¢ if it satisfies 1 or if it satisfies . Similarly, ¢ =1 An is
satisfied if both v and n are satisfied, and ¢ = — is satisfied if M(T) does not satisfy 1.
c)If ¢ =Vaip(x), M(T) satisfies ¢ if it satisfies all sentences of the form ¥ (a) where a € M(T)
ranges over all elements of the same sort as x. Similarly, if ¢ = Jxip(x), M(T) satisfies ¢ if
there exists some a € M(T) of the same sort as x such that it satisfies (a).

In order to introduce the notion of submodel we give the following:

Definition 4.1.7. A substructure N of a (multityped) structure M is a structure whose sorts
and corresponding set of constants are subsets of those of M, and whose functions and relations
are the restriction of those of M to elements of N.

We have now:

Definition 4.1.8. A submodel N of a given model M of certain theory is a substructure of
M that is itself a model of the theory and satisfies the following condition: for every formula
d(x1,...,xn) and all n-tuples (ai,...,an) in N where each a; is of the same sort as x;, then
d(ar,...,ap) is true in M if and only if it is true in N.

These definitions will be referred to later.

4.2 Interpretation of theories in a categorical setting

Following [8], D1.2, given a Boolean category C, for each signature ¥ of a first order lan-
guage we can associate the so called Y-structure within C in a way that generalizes the Set-
valued interpretations to all Boolean categories. More precisely, for each sort A of variables
in X there is a corresponding object M(A); for each function symbol f there is a morphism
M(f): M(Ay,...,An) = M(A;) X ... x M(A,) — M(B) and for each n-ary predicative variable
R there is a subobject M(R) — M(A,...,A,), where A; are the sorts corresponding to the
individual variables related to R (which will specify, by definition, the type of f and R). The
Y-structure will serve as a setup for interpreting all formulas of the language considered. Due
to the need of distinguishing the free variables of the formula for the purpose of a correct inter-
pretation, we shall adopt the notation (T, @) to represent a formula ¢ whose free variables occur
within T = z1...x,. We now define the interpretation of such formulas by induction on their
complexity:

Definition 4.2.1. Given a term s of a first order theory, its interpretation within the Boolean
category C is a morphism of C defined in the following way:

1) If s is a variable, it is necessarily some x;, and then the corresponding morphism is [[T, z;]] =
mi s M(Aq, ..., Ay) — M(A;), the i-th product projection.
2) If s is a function symbol f(x1,...,xy), its interpretation is M (f) : M (A4, ..., An) — M(B).

The interpretation in C of the formula (T, ¢), where T = xi...x, and x; is a variable of sort
A;, is defined as a subobject [[T, ¢|] — M (A1, ..., Ay) in the following way:

3) If ¢ is the formula R(ty,...,t,), where R is a n-ary predicative variable of type Bi, ..., By,
then [[Z, ¢]] is given by the pullback:
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M(Ay, ..., An)(b’tl”"“’Hf’t"”}w(Bl, ey By)

4) If ¢ is the formula s =t where s,t are variables of sort B, then [[T, @]] is the equalizer of the
arrows:

([Z,s]]
— T
([z:t]]

Equivalently, [[Z, ¢]] is the pullback of the diagonal M(B) — M (B) x M(B) along the morphism

([, s]], [z, 2]])-

5) If ¢ is the formula nV 1, then ([T, ¢]] is the union [[Z,n]] V [[Z,]] in Sub(M(Ai,...,An)).
Similarly, if ¢ is the formula —), the corresponding subobject is —[[T, 1]].

6) The formulas T and L are interpreted respectively as M(Aq, ..., Ayp) and the initial subobject
in Sub(M (A1, ..., Ap)).

7) If ¢ is the formula Jy(¢), then [[Z, ]| is the image of the composite:

[Ty, Y]] M (A1, ..., Ap, B) —— M (Ay, ..., Ap)

where m is the projection to the first n coordinates.
For the corresponding notion of substructure we have the following:

Definition 4.2.2. A substructure X' of a (multityped) structure X consists of a set of monic
arrows hy : Msy(A) — Mx(A) indexed by the sorts of ¥ such that:
i) for each function symbol f the following square commutes:

Mz/(f)

My (Aq, ..., Ap) My, (B)

hayX...Xha, hp
M (f)

My (Aq, ..., Ay) — Ms(B)

i) for each relation symbol R there is a commutative square:

Msy (R) Msy(Ayq, ..., Ay)
hAl ><...><hAn
Ms(R) Myx(Aq, ..., Ap)
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The reader should be able to verify that in the particular case where C = Set, the definitions
above coincide with the Set-valued one as in 4.1.5, 4.1.6 and 4.1.7. They provide a translation
of the language over X into a subcategory of C, interpreting notions that are purely syntactical
in nature through the use of categorical concepts. Furthermore, as we shall see, there is a tight
relation between the categorical properties of C and the properties of theories defined over that
language. For that purpose it is useful to derive a concept of validity, inside C, for subobjects
that interpret certain formulas.

Definition 4.2.3. The formula VZ(p(Z) — ¥(T)) is said to be satisfied by the X-structure M
if the corresponding subobjects for ¢, satisfy [[T, ¢]] < [[T,v]] in Sub(M(A1,...,Ay)). More

generally, the formula ¢(T) is said to be satisfied by M if M satisfies YVZ(T — ¢(T)), (or,
equivalently, if [[Z, ¢]] = [[Z, T]]). In this case ¢(T) is said to have full extension.

Definition 4.2.4. Given a theory T over a language 3 interpretable in C, we say that the 3-
structure M is a model for T if M satisfies all the azioms of T (including first order logical
azioms).

Note that this reveals the functorial nature of semantics: if F': C — Set is a Boolean functor
(i.e., a functor that preserves finite limits, covers, unions and complements), then such a functor
applies any model of T" in C into a model of the theory in the sense of definition 4.1.6. This
provides a new insight to the study of the relationship between semantics and syntax, since we
can specify models of a theory by specifying Boolean functors to Set from a Boolean category
that contains a (categorical) model of the theory. Joyal’s proof of the Completeness theorem
can now be seen to have two instances:

a) Constructing a canonical categorical model of a theory inside a convenient Boolean cate-
gory, such that a formula is satisfied by that model if and only if it is provable in the theory.

b) Constructing a special family of Boolean functors from that category to Set which jointly
reflect the satisfiability of the formulas, providing thus the link between semantics and the
syntactical properties of the theory.

4.3 The syntactic category of a theory

Given a first order theory T', we shall define, as done in [8], D1.4, its syntatic category Cp and
a categorical model Mr inside in such a way that a formula in 7" will be provable if and only
if its interpretation in Cr is satisfied by the model Mp. This already gives a hint regarding
what the objects of Cp should be. We will say that two formulas (z, ¢), (v, 1) are equivalent if
the formula ¢(Z) < 1 (y) is provable in T through the use of logical and non-logical axioms as
well as the rules of inference specified in section 2. We therefore take the objects of Cr to be
the provable-equivalence classes of formulas (7, ¢) (note that the set of free variables specified
may be empty {}). To describe the morphisms, consider two objects [Z, ¢], [¥, 1], and assume,
without loss of generality, that their set of variables * = 1, ..., xn, ¥ = ¥y1, ..., Y are disjoint.
Consider now a formula 6 that satisfies the following conditions:

a) Its free variables are amongstst Zy.
b) The following formulas are provable in 7"

vzy(0(z,y) — o(T) AY(y))
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vag(6(z) — F5(0(z, 7))
VETE(0(Z, ) A0z, 7) — (7= 7))

Define now the morphisms between [z, ¢| and [y, ] to be the provable-equivalence class of all
those formulas of T" that satisfy conditions a) and b) above (note that the formula 6(, Z) denotes
the formula 6(Ty) after variables occurring in 7 have been replaced for those occurring in z; in
particular, these two sets are implicitely assumed to contain the same number of variables. Also,
Jy stands for Jy;...3ym,, and similarly, ¥ = Z stands for y1 = 21, ..., Ym = 2m).

The idea behind this definition is to allow only those morphisms that are exactly needed for our
purposes. More precisely, the first formula in condition b) restricts the interpretation [[0(Z,7)]]
in any model to be a subobject of [[¢(Z) A (7)]], while the last two formulas imply, if the category
has finite limits, that it will be the graph of a morphism from [[¢(Z)]] to [[¢'(7)]]. Because of the
particular construction of the model My, this says exactly that the class [0(Z,7)] is a morphism

from [¢(T)] to [¢(7)]-

The composite of two morphisms:

iz, ¢8| 2% 7,41 B 7,0

is defined to be the class [Tz, Fy(0 A §)]. It can be verified that this definition does not depend
on the choice of representatives 0,0 and that this morphism so defined satisfies conditions a)
and b) above. It can also be verified that composition of morphisms is associative. Finally, the
identity morphism on an object [Z, ¢| can be defined to be arrow:

[Zy.9@)N(T=Y)] _

[z, ¢] [, ¢

where T = z1,...,x, and ¥ = y1,...,y, have both the same number of variables and the rep-
resentative formula of the codomain class has been obtained by replacing each x; by y; in the
representative formula of the domain (in what follows we shall assume this is the case provided
the morphism between them contains the subformula T = 7). Again, it is easily checked that
this morphism satisfies condition a) and b) and that it is the unity for composition. Also, note
that these definitions do not depend on the choices of representatives in each class.

This makes Cr a small category. But we can actually prove a much stronger result, namely:

[z, ¢l] < [z, 1]
Theorem 4.3.1. If T is a first order theory, then Cr is a Boolean category.

Proof. We proceed to verify conditions 1)-5) in definition 3.2.1. To prove Cr has finite limits it
suffices to prove it has binary products and equalizers. As the product of two objects [Z, @], [y, ¢]
(where T and 7 are assumed to be disjoint) we can take the class [Ty, ¢ A 9] together with the
projections indicated below:

| [775.000]
|
— EERINONCESH) [Zyy $APA (Y =7)) —

\
X 77,6 A U] v, )
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Given morphisms [z, 0] and [zy, ], the induced morphism into the product is given by the class
[zZ7, 0 \ @], since it can be easily verified that this is the only morphism that makes the diagram
comimute.

For the equalizer of a parallel pair of morphisms [Zy, ], [Ty, ¢], we take:

— [+'Z,35(ONSA (2" =7))] . S

[/, Fy(0(2’,y) A 6(2',7))]

A T~ T
|

|

|

|

|

|

|

|

e i

[z, x]

and the universal property is satisfied with the indicated induced morphism. This proves that
Cr has finite limits. Note as well that there is an initial object given by [[{}, L]], and a terminal
object given by [[{}, T]].

To prove point 2) of definition 3.2.1, given a morphism [zy,0] : [T, ¢] — [7,1] we take its
image as the subobject [y,3%(0)] — [y,%]. In particular, [Ty, 0] is a cover if and only if the
formula Yy (1 (y) — 3z(6(7,7))) is provable in T'. Then, from the construction of limits above, it
can be verified straightforwardly that covers are stable under pullbacks, proving point 3) of the
definition. To prove condition 4), take two subobjects [T, 4], [Z,n] from [T, ¢] and define their
union to be [T, Vn]. Finally, point 5) is easily verified by considering a subobject [Z, ¥] — [T, ¢]
and taking its complement to be [T, -1 A ¢]. This concludes the proof. O

Our goal is to relate syntactical provability in 1" with semantic validity in the categorical model
M. One aspect of this relation is given by the following lemma, which highlights the syntactical
aspects of the properties of Cr:

Lemma 4.3.2. 1) A morphism [Ty,0] : [T,¢] — [y,¢] is an isomorphism if and only if
[xy,0] : [y,¥] — [Z,¢] is a valid morphism in Cp (i.e., it satisfies conditions a) and b) of
the definition of morphism).

2) A morphism [Ty, 0] : [T, d] — [y, ] is a monomorphism if and only if the formula VZyz(0(Z,y)A
0(z,y) — T = %) is provable in T.

3) Every subobject of [T, @] is isomorphic to one of the form:

[bA(@=D)]

[z, ¢] [, ¢l

where 1) is such that the formula V(Y (ZT) — ¢(T)) is provable in T. Moreover, any two subobjects
[, 4], [z, n] in Sub([y, ¢]) satisfy [z, 4] < [Z,n] if and only if the formula VE(¢(T) — n(T)) is

provable in T.

Proof. To prove 1), suppose [T7, 0] is a valid morphism from [y, 1] to [y, ¢]. Then it can be easily
checked that [z, 0] itself is an inverse for [Ty, #]. Conversely, if [zy, 0] : [T, $] — [7,] has an
inverse [Ty, 0] (which is a valid morphism), then it can be verified that 6 and ¢ are necessarily
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provable-equivalent in 7', from which the result follows.

To prove 2), construct the kernel pair of [z7, 6] : [Z, ¢| — [7, ], which, using the construction
of products and equalizers given in the proof of theorem 4.3.1, can be verified to be the class
[zz,3y(0(Z,y) A 0(Z,7))]. Then, as can be easily checked, the provability of the stated formula
is equivalent, by 1), to the fact that the diagonal morphism from [Z, ¢] to this kernel pair is an
isomorphism, which is in turn equivalent, by lemma 3.1.3, to the fact that [zy, 6] is a monomor-
phism.

Finally, suppose we have a monomorphism [z7,0] : [g,9] — [Z,¢]. By 1), the morphism
[7y,6] : [y,¢] — [z,3g(0(Z,7))] is an isomorphism. Then, composing its inverse with the
original monomorphism we have a subobject of the stated form, where (%) is the formula
Jy(0(Z,y)). Now, two subobjects [g, ], [y, n] of [T, ¢] satisty [g,¢] < [7,n] if and only if there
exists a monomorphism [y, 1] — [y, 7], which by the previous argument must have the form
W AN (@ =7)]: [7¢] — [y,n] for some ¢'. But then, since 1) and ¢’ must be provable
equivalent, this is a valid morphism if and only if the formula VZ(¢(Z) — n(%)) is provable in
T. This completes the proof of 3). O

To construct the desired model M7 in the syntactic category of T', note that there is a natu-
ral Y-structure assigning to the sort A the formula [z, T] where x is a variable of sort A, and
to the predicative variable R over variables x1,...,z, of sorts Aj,..., A, respectively, the sub-
object [x1,...,2pn, R(z1,...,20)] — [21,...,Zn, T]. We have now finally gotten to the important
relationship between syntactic provability and semantic validity in Myp:

Theorem 4.3.3. The formula VZ(¢(ZT) — (X)) is satisfied by the model My if and only if it
is provable in T. Consequently, a formula n(T) has full extension in My if and only if it is
provable in T.

Proof. By definition, the stated formula is satisfied by My if and only if the corresponding
subobjects in the interpretation satisfy [[Z, ¢]] < [[Z,]]. By the construction of My, a straight-
forward induction on the complexity of ¢ (see remark 4.1.4) proves that the interpretation [[Z, ]|
is the subobject [z, ¢] — [T, T]. For example, the base of the induction corresponds to the ver-
ification of this property for atomic formulas. If [z, ¢] is the formula [R(z1,...,2y)] (which in
the described interpretation has a sort corresponding to [x1, ..., Zn, T]), the interpretation [[Z, ¢]]
is by definition the pullback of [R(x1,...,zn)] — [Z1,...,Zpn, T] along [x1, ..., 2y, T], that is, it is
precisely the subobject [R(x1, ..., Zy)] = [21, ..., Tn, T]. If [T, ¢] is the atomic formula z = 2/, the
sort of the variables x, 2’ correspond to [y, T| and hence, by definition, the interpretation [[Z, ¢]]
is the equalizer of [z, z], [/, 2] : [x2’, T] — [y, T], that is, the subobject [zz', z = 2] — [z2/, T].
Similarly, the rest of the cases of the induction process can be carried out.

Therefore, the assertion [[Z,¢]] < [[Z,v]] is equivalent to the fact that the two subobjects
(@, ¢, [T, 9] of [z, T]| satisty [z, ¢] < [Z, 1], which, by lemma 4.3.2 3), is in turn equivalent to the
fact that VZ(¢(Z) — 9(T)) is provable in T O

Theorem 4.3.3 says in a way that the model Mr reflects all syntactical relations in the theory
T'; therefore, the analysis of categorical properties of My will reveal facts about provability in 7.
This is the start of Joyal’s proof of the Completeness theorem, which we shall expose in section
5.

To conclude this section, we state some results concerning the identification of models of a first
order theory with Set-valued Boolean functors:
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Theorem 4.3.4. Every Boolean functor F : Cp — Set determines a Set-valued model M of T
whose domain is given by the image of F. Conversely, for every Set-valued model M of T' there
18 a Boolean functor F' : Cp — Set whose image is the domain of M.

Proof. The first assertion follows after a straightforward induction on the complexity of the
formulas of T'. To prove the converse result, suppose we have a Set-valued model M, and define
F on objects by assigning to the object [T, ¢] the extension of the formula ¢(Z) within M,
and to the arrow [zy, 0], the function whose graph corresponds to the extension of the formula
0(Z,y) (note that, by soundness, these definitions do not depend on the choice of representatives
o(T),0(T,7)). It is immediate to verify that this defines a functor, and from the construction of
finite limits, images, unions and complements specified in the proof of theorem 4.3.1, it follows
that this functor is Boolean. O

With the above identification, natural transformations between two Boolean functors repre-
senting models of the same theory correspond, as we shall soon see, to the notion of submodel
embedding, defined as follows:

Definition 4.3.5. A submodel of a model M of T is a substructure N such that for every
formula ¢ the following square is a pullback:

[z, olln Msy (A1, ..s Ayp)
hA1 X...xXha,
[[Ev (bHM ME(Ala-"vAn)

It is immediate to verify that this definition generalizes definition 4.1.8, which is a particular
case for Set-valued models.

Lemma 4.3.6. If there exists a natural transformationn : N = M between two Boolean functors
N,M : Cp — Set which give models of T, then N is a submodel of M. Conversely, for every
submodel there is a corresponding natural transformation between the involved functors.

Proof. The last sentence follows easily from the definition of submodel. To prove the first
sentence, note that, by definition, if ¥/, ¥ are the signatures corresponding to N, M respectively,
we have arrows n4 : My/(A) — Mx(A) for each sort A, as well as commutative squares of the

form:
H§7 d)HN ME/(Ala"‘aAn)
NAy X XN Ay,
[[ja QSHM ME(Aly---yAn)

for every formula ¢, since [[Z, T]] & M (A, ..., A;,). Moreover, the commutativity of the square
above for all formulas ¢ imply that it is necessarily a pullback square. Indeed, consider two
complementary formulas ¢ and —¢, together with the pullbacks P, along na, X ... X n4, of
their respective interpretations in M:
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P MZ/(Al,...,An) Q
NAy X XNAp
[[fa ¢HM ME(Ala"'aAn) va _'qszM

Then P, Q) are subobjects of My (Aj, ..., A,) which must be disjoint (since [[Z, ¢]]as and [[Z, =] pr
are disjoint) and must contain [[Z, ¢|]y and [[Z,~¢]|n respectively (because of the universal
property of pullbacks). It follows then that P = [[Z, ¢]|ny and Q = [[Z, ~¢]]n, as asserted.

It only rests to prove that each 14 is a monomorphism. But since the square above is a pullback
for atomic formulas (in particular, for the equality x = y, where z,y are variables of sort A), it
follows that the square below is a pullback:

My (A) 2 . My/(A) x Msy(A)
nA NAXNA
Ms(A) 2 . Ms(A) x Ms(A)

Hence, a simple application of lemma 3.1.4 proves that each 14 is monic, which completes the
proof. O

Remark 4.3.7. Lemma 4.53.6 can be generalized in a precise way by showing that the bijection
between natural transformations and submodel embeddings is functorial. As a consequence, it
can be shown that the category of Set-valued models of a first order theory, where the morphisms
are given by submodel embeddings, is equivalent to the full subcategory of Boolean functors in
SetCr.

5 Joyal’s proof

5.1 Idea of the proof

In section 3 we have established a correspondence between provability in a first order theory T
and satisfiability in the canonical model My of its syntactic category. As mentioned in section
2, this allows to analyze usual Set-valued models of the theory by means of Boolean functors
F:Cp — Set.

We are interested now in functors that provide models, but such that the converse process can
take place, that is, from properties of Set-valued models we would like to decide satisfiability
conditions in M7, which would be linked directly to syntactic provability. One of the properties
that makes such a reverse process possible is conservativity of those functors. Semantically,
this means that satisfiability in a Set-valued model implies satisfiability in M. Of course, this
is almost never the case, but instead we can ask whether a certain class of functors is jointly

conservative (i.e., whether for a subobject A — B, F(A) = F(B) for every F in the class implies
A = B). In fact, jointly conservativity is exactly the concept that will lead to completeness:

Theorem 5.1.1. A first order theory T satisfies the Completeness theorem if and only if there
exists a family of jointly conservative Boolean functors from Cp to Set.
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Proof. If a formula is valid in every Set-valued model, its interpretation has full extension in
every one of them. Therefore, its interpretation in My will have full extension (that is, the
formula will be provable in T) if and only if there exists a family of Boolean functors that is
jointly conservative. O

Thus, the whole proof reduces to find the appropriate class of jointly conservative Boolean
functors. Should representable functors be Boolean, then such a class would provide an answer,
since representable functors are jointly conservative by Yoneda’s lemma. However, they fail to
satisfy all conditions needed for a functor to be Boolean, and we must look for a somewhat
different aproach.

It should also be noted that since we are planning to carry out the proof within ZF, it is not
possible to mention the large category Set, since it requires either an axiomatic system suitable
for handling proper classes, such as von Neumann-Bernays-Gédel NBG system, or some extra
assumption regarding the existence of inaccessible cardinals, which support the construction
of appropriate Grothendieck universes. It is known, however, that such an assumption is not
provable within ZF (see, for example, [7]), and therefore we shall be compelled to work in a
convenient small subcategory of Set, big enough to support all Boolean functors of a jointly
conservative class.

5.2 The finite coproduct completion

The first step of the proof shall be to find an appropriate immersion of Cr into a Boolean
category that has finite disjoint coproducts, since these will be needed for the construction of
Boolean functors. Note that although Cr has finite limits, it is not true that it has even finite
coproducts, which means we shall need to enlarge it to admit them. This is done in [13], ch. 4,
by considering the category of sheaves =—Cr for the double negation topology, which is known
to be Boolean (see, for instance, [11]). However, we shall follow a much simpler and elementary
approach, which is to consider the completion of Cr by finite coproducts, as explained in [8],
Al.4. This alternative has the essential advantage of avoiding large topoi and fits better for our
purposes.

Lemma 5.2.1. IfC is a reqular (resp. Boolean) category, there exists an immersion J of C into
a reqular (resp. Boolean) category P(C) that also has finite disjoint coproducts. Moreover, P(C)
satisfies the following universal property: for every regular (resp. Boolean) functor F : C — D
where D is reqular (resp. Boolean) and has finite disjoint coproducts, there exists a regular
(resp. Boolean) functor F : P(C) — D satisfying FJ = F, such that for any other functor
G : P(C) — D satisfying GJ = F, there erists a unique natural isomorphism ¢ : G = F such
that ¢Idy = Idp:

C 2 P(C)
F
F ¢
G
D
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Proof. Consider the category P(C) whose objects are n-tuples (Ay, ..., Ay,) of objects of C. Define
a morphism between (A, ..., A,) and (B, ..., By,) to be specified by the following:

i) A m-fold decomposition of each A;, that is, a set of m pairwise disjoint subobjects A;,, ..., A;
of A; such that \/;n:1 A;, = A; (we allow some of the subobjects to be 0, the initial object of C).
ii) A set of C-morphisms f;; : A;; — Bj foreachi=1,..,n,j=1,..,m.

Given morphisms F : (Ai,...,A,) — (B1,..., By) associated to arrows f;; : A;; — Bj; and
G : (By,..., Bm) — (Cy,...,Cp) associated to arrows g : Bj, — C}, define the composite GF :
(Ay,...,Ay) — (Ch, ...,Cp) to be the morphism given by the arrows Ay, = (Jg,, firs s gpi fim)
\/?:1(fi;1(3jk) A Ai;) — Cy, where 131 : Sub(Bj) — Sub(A4;) is the usual restriction of the
pullback functor. Note that this definition uses here the fact asserted in lemma 3.2.12 that
the union of disjoint subobjects is their coproduct, since the morphism (3g,, £\ -+, g, firm) 1S
well defined only if \/%_, ( fi;I(Bjk) A A;;) is a coproduct. Also, the fact that composition of
arrows is associative is similar to the fact that matrix multiplication is, given the resemblance
of V?:1(f¢;1(Bjk) A Ai;) with the (k,7)-th entry > %, bj,a;; of a matrix product. Finally, define
the identity morphism Id4, . a,) to be given by trivial decompositions of each A; and the
arrows f;; = Ida,, fij initial for i # j. With these specifications, P(C) becomes a category that
contains C as the full subcategory of all 1-tuples.

Suppose now that C is regular (resp. Boolean), and let us see that P(C) is necessarily regular
(resp. Boolean). It is a straightforward verification that the following works: the product
of two objects (A, ...,A,) and (By,..., Bp) is given by the nm-tuple whose entries are the
products A; x Bj, with the obvious projections. Their coproduct is just given by the (n + m)-
tuple (Ai,..., Ay, B1, ..., Biy); moreover, it can be checked that coproducts are disjoint. The
equalizer of a pair of morphisms M, N : (Ay,...,A,) — (By,..., By) associated with arrows
fijs gij respectively, is given by the morphism (C,...,Cy) — (A1, ..., A;), where C; = \/;”:1 E;;
and the associated arrows e : E;; — A; are the equalizers of the arrows f;;, g;; Aij — Bj. The
image of a morphism M : (Ay, ..., A,) — (Bu, ..., By,) associated to the arrows fi; : A;; — Bj is
given by the subobject (Mj, ..., My,) — (B, ..., Bim), where M; = \/i", Im(f;;) is a subobject
of Bj. This explicit expression for the image provides as well a criterion for a morphism to be
a cover, and it follows from the regularity (resp. Booleanness) of C that covers must be stable
under pullbacks.

In case that C is Boolean, then since P(C) has images and coproducts, it follows that it also
has finite unions for subobjects and that these are stable under pullbacks. On the other hand,
given a subobject M : (A1, ..., Ay) — (B, ..., Bpy) we can form its complement as the subobject
(D1,..., Dyy) — (Bu, ..., Bi), where D; = \/i_ | ~A;. is a subobject f; : D; ~» Bj and the
monomorphism is given by the trivial decomposition on each D;, while the associated arrows
are given by h;; = f; and h;; initial for i # j.

Finally, by construction, for every regular (resp. Boolean) functor F' : C — D we can consider
the functor F' defined in the evident manner, i.e., applying each n-tuple (A1, ..., 4,) into the
coproduct [[ ; F(4;) in D, and each morphism into the corresponding induced morphism
between coproducts. A straightforward calculation shows it must be regular (resp. Boolean).
Moreover, if there are two functors F', G with the stated properties that extend F, then they can
only differ in the choice of the coproducts above, and hence there are canonical isomorphisms
¢c : G(C) — F(C), induced by the universal property of the coproduct. Given a morphism
f : C — D, the arrows ¢pF(f) and G(f)¢pc would be two induced morphisms between the
coproducts F(C) and G(D); therefore, they must coincide, and then the isomorphisms ¢¢
define a natural isomorphism ¢ : G = F, as stated. Finally, it is clear that ¢Id; = Idp. O
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5.3 Making the terminal object projective

Once we have a (Boolean) immersion of Cr into a Boolean category with finite disjoint coprod-
ucts (by using the construction in the proof of lemma 5.2.1), we are interested in finding Boolean
functors to (a small subcategory of) Set. As we have already seen, in general representable func-
tors are not even regular, mainly because they do not preserve covers. In fact, for a representable
functor [A, —] to preserve covers it is necessary that A be projective with respect to covers (i.e.,
to be cover-projective), since covers in Set are precisely the surjections. For a regular category,
we can find an equivalent condition:

Lemma 5.3.1. The representable functor [A, —] preserves covers (i.e., A is cover-projective) if
and only if every cover p: X — A has a section.

Proof. 1f [A, —] is cover-projective, given a cover p : X — A we can take the factorization of
Idy : A — A through X, which provides a section for p. Conversely, suppose that every cover
over A has a section. Given a morphism f: A — Y and a cover p: X — Y, form the pullback
P of p along f:

P ! X
slp p
A d Y

Then p’ must be a cover over A, and if s : A — P is a section, we get the factorization
f=npf's. O

Lemma 5.3.1 motivates the search of those objects for which every cover on them has a section.

Our next step will be enlarging our category P(C) appropriately so that the terminal object
becomes projective. This idea can be interpreted as the categorical version of Henkin’s proof of
the Completeness theorem, where the process of making the terminal object projective corresponds
to the process of adding constants to the language of the theory.

Lemma 5.3.2. If C is a regular (resp. Boolean) category and f : A — B is a cover in P(C),
then the pullback functor f* is a conservative reqular (resp. Boolean) functor that preserves
finite coproducts.

Proof. Because of lemma 3.2.11, we just need to prove that f* preserves coproducts. But because
injections into the coproduct are monomorphisms whose intersection is initial, the coproduct is
their union and is thus preserved by pullbacks. ]

Let Cy = P(C); our goal is to make the terminal object cover-projective. We shall do so by
constructing succesive categories {C,/n € N}, each one embedded in the next, such that the
terminal object of C,, is cover-projective for all covers that are images of covers in C,,_1.

First, let us describe an embedding I; : Cy — C; that has this property for all covers in Cy. Let
I' be the indexing set of all such covers {A; — 1/i € I'}. Consider, for each finite F' C T', the set
of covers {A; — 1/i € F'} together with the canonical projections 7rg : [[;c Ai = [[;cp Ai for
F C G. Define the category I whose objects are all finite products of objects Pr = [[,cp As,
F C T, and whose arrows are given by the corresponding canonical (induced) morphisms 7 p¢g
between such products. Note that even if the products are not canonical, the morphisms are
nevertheless canonical (even those morphisms between isomorphic products). Then [ is clearly
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filtered, since between any two objects there is at most one morphism, and for a pair of objects
Pr, P we can consider the object Pryg along with the corresponding pullback functors.

Consider now in Cy the category A; of arrows over I, with the corresponding fibration 7 :
A;r — I (see definition 3.4.15 and the following comments). If we denote by S the set of
cartesian morphisms, we have the following;:

Lemma 5.3.3. The category C1 = A;[S™'] is a regular (resp. Boolean) category that has finite
disjoint coproducts, and there is a conservative reqular (resp. Boolean) functor Iy : Co — Cy that
preserve coproducts. Furthermore, if A ~— A is a proper subobject in Cy and A — 1 is a cover,
the corresponding cover I1(A) — 1¢, in C1 has a section not factoring through I (A’).

Proof. Since the same argument in the proof of lemma 5.3.2 proves that S is locally regular
(resp. locally Boolean), then, by lemma 3.4.14, C; is a regular (resp. Boolean) category and the
functor I; : Cy — C; is regular (resp. Boolean); moreover, since finite coproducts are the unions
of the corresponding injections, I; must preserve them as well. Let us prove it is conservative. If
a morphism f: A — B has an inverse f~! in Cy, it must necessarily be of the form represented
by the right square:

1

B BxC A
| | |
1 C 1

But there are isomorphisms [A — 1] = [my: AXx C — C] and [B — 1] = [my : B x C — (], and
thus f~! corresponds to the morphism represented by the right square:

BxC BxC g AxC
Mi im l
C C C

Idc

for some g : B x C' — A x C. Regarding this as a morphism over C' in C/C, we see that it is an
inverse of the morphism f x Idc : Ax C — B x C over C. This latter morphism can be written
as Tpe(f), where F = () and G = C, and hence we conclude that the arrow mpg maps f into
an invertible morphism in C/C. Therefore, the same argument used in the proof of lemma 5.3.2
shows that ”local” conservativity holds and f has already an inverse in Cp.

Finally, given a proper subobject A’ — A in Cy, then the dual of the morphism represented by
the commutative square on the left:

1 Aty
| po
1 A 1

provides a section for I1(A) — 1¢, not factoring through I1(A’). Indeed, there are isomorphisms
[A— 1] [m: AxA— Aland [1 — 1] 2 [Idy : A — A], and the section above corresponds to
the morphism represented by the following right square:
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Idg A

A A Ax A
IdAi l]d,q lﬂ'Q
A Idy A Ida A

Hence, if the section factored through I1(A’), the diagonal A would factor through A’ x A, which
is impossible. This completes the proof. O

Remark 5.3.4. In the presence of the axiom of choice, the construction above can be performed
with the aid of theorem 3.4.10 and lemma 3.4.12. Indeed, it suffices to define a pseudofunctor
F . I°? — Cat such that the category Cq is its bicolimit, constructed as the category of fractions
of the fibration associated to F. This issue is therefore reduced to the problem of finding a
pseudofunctor I whose associated fibration is precisely the fibration corresponding to the category
of arrows over I. This can be done as follows: define F' on an object Pr as the slice category
C/Pr; for each identity arrow Idp, define I as the corresponding identity Idc,p,, and for each
arrow Tr of I select a fized pullback functor ny.. and set it as the value of F' on such an arrow.
Then, if for arrows f,g of I we define cf 4 as the corresponding induced natural isomorphism
between pullbacks, F becomes a pseudofunctor, as can be easily checked. Finally, the fibration
corresponding to the category of arrows over I can be interpreted as the fibration associated to
F, since each commutative square can be completely defined by specifying the arrow at its base
and the morphism from the upper left corner to the selected pullback along that arrow (see [4],
Ezx. VI 8).

Note that the procedure described above allows to have a section for each cover I;(4;) — 1¢,,
where A; — 1 is in the set of covers of C. The next step to take is to extend this property
to every cover A — 1l¢, in C;. But the process to follow now is clear: repeating the whole
construction above for C; instead of C we get an embedding I> : C; — Co preserving all the
structure, such that in the new category Cs every cover I3(A) — 1¢, has a section for each A
in the set of covers A — 1¢, of C;. Iterating this construction, we can obtain a sequence of
conservative regular (resp. Boolean) embeddings preserving coproducts, I, : C,—1 — C,. This
amounts to having a functor F' : w — Cat, or, formally dualizing, a functor F' : w°? — Cat, and
if T is the set of cartesian morphisms in the fibration I'p associated to F', we can consider the
category C, = I'p[T!]. It is now easy to verify that C, is the category we need, as shown in
the following:

Theorem 5.3.5. There is a regular (resp. Boolean) conservative functor Iy : Co — C,,, where
Cy is a regular (resp. Boolean) category with finite disjoint coproducts such that every cover over
the terminal object 1, has a section. Moreover, for every proper subobject f : S — A such that
A — 1, is a cover, there exists a section s : 1, — A not factoring through S.

Proof. The fact that C,, is a regular (resp. Boolean) category and the induced functors C,, — C,
are regular (resp. Boolean) follows from lemma 3.4.12, and it is not difficult to see that these in-
duced functors are conservative and preserve finite coproducts. Finally, given a proper subobject
A’ — Ain Cy, where A — 1 is a cover, there exists some n € N such that f has a representative
that lies in some C,,, and in C, 11 we can find a representative of a section 1¢, — A not factoring
through A’. O

5.4 Ultra-representability and Set-valued models

Our work so far has been developed in a parallel way for regular and Boolean categories. In
order to get the desired jointly conservative family of functors that will prove the Completeness
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theorem, we have to apply theorem 5.3.5 to the category Cy = Cr. This latter category will have
different properties according to which type of theory is under consideration. In particular, for
first order classical logic we shall now make explicit use of the fact that C; has complements. It is
at this point where our work leaves the main course, since it is possible to develop completeness
theorems for different types of logic by considering different theories T'. Also, the consideration
of first order theories will need the Axiom of Choice (or a weaker choice principle) as we shall
see, while for weaker types of logics this is not needed.

We have obtained a conservative Boolean functor Cr — C,,, where C,, has finite coproducts and
satisfies the property that 1(= 1,,) is cover-projective. Actually, we can get a better result:

Lemma 5.4.1. FEvery subobject of 1 in C,, is cover-projective.

Proof. Let S ~— 1 be a subobject and S’ its complement in Sub(1). If 7 : A — S is a cover, then
we also have a cover w[[Idg : A][S" — ST[S" = 1. Since 1 is projective, this cover splits,
and because coproducts are disjoint, its section must map S into A, which yields a section for
. 0

Consider now the (small) category C, and define in ZF the set of all its hom-sets. Consider all
possible finite limits and coproducts as well as colimits indexed over diagrams in Sub(1) (note
that because limits and colimits in Set can be constructively described, there is a canonical
choice for each one of them). Call the resulting set P and consider the full subcategory of Set,
S, whose objects are elements of P. Clearly, every finite limit, coproduct and colimit (of the type
specified) of representable functors, has image in §. Thus, from now on these functors will be
always understood to be constructed in this way, to avoid any mention to the large category Set
(which is replaced by &) or multiple choices between colimits. Note that it is essential for this to
be carried out that finite limits in C, be determined effectively and not just up to isomorphism.
This in turn can be possible due to the special care taken when defining C,, through the use of
lemma 3.4.14 instead of lemma 3.4.12, avoiding therefore choices of the corresponding pullback
functors. Furthermore, the reader may verify that all constructions made upon Cp to obtain C,
were done in a constructive way (particularly the choice of a canonical filtered bicolimit in Cat),
from which we can be sure to be able to formalize the whole argument entirely within ZF+BPI.

So far the construction of C,, makes the representable functors [s, —] for subobjects s — 1 have
all properties of a Boolean functor except preservation of unions. To get this latter property we
introduce the following:

Definition 5.4.2. A functor h : C, — S is said to be ultra-representable if there is C' € C,, such
that it can be expressed as a (filtered) colimit h = the—&; [A, —] for some ultrafilter ® in Sub(C).

Note that we can use BPI to ensure the existence of such ultrafilters, and then these functors
are well defined. We have now:

Theorem 5.4.3. If ® is an ultrafilter in Sub(S) for a subobject S — 1, the ultra-representable
functor hg : C, — S is Boolean.

Proof. According to lemma 3.3.2, filtered colimits of representable functors (which are left exact)
preserve finite limits in Set. Hence, h will necessarily preserve finite limits. As for images, note
that since the injections into the colimit form a jointly regular epimorphic family and this
property is preserved by h, it is mapped onto a jointly epic family in Set (where covers are
surjections), and hence h will preserve covers provided each representable functor [A, —] does,
which is clearly the case because each subobject A is cover-projective by lemma 5.4.1. Therefore,
we just have to prove that h preserves unions, i.e., given B, C subobjects of D, we need to prove
that h(BV C) = h(B) V h(C). Clearly, h(B) V h(C) < h(B V C), since h preserves finite limits,
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and therefore monomorphisms. To prove the converse inequality, note that, according to the
usual construction of filtered colimits in Set (see [10]), we have h(X) =[] 1c[A, X]/ ~, where
~ is the equivalence relation which identifies f : U — X with ¢ : V — X if and only if there
exists some W € ® such that the following square commutes:

U ! X
g
w |4

Take (some representative of) an arrow f : U — BV C, for some U € ®. Since unions are stable
under pullback, we have U = f~}(B) V f~1(C). Now, since ® is an ultrafilter, either f~1(B) or
f71(O) is in ®; suppose without loss of generality f~!(B) € ®. Then the following pullback:

S

B

BvC

f7H(B) U

shows that f and sf’ are in the same class in h(B V C). We may therefore assign to each
f € h(BV C) either an arrow f' € h(B) or an arrow f” € h(C), from which we conclude that
h(BV C) < h(B)V h(C). Hence, we must have h(BV C) = h(B) V h(C) in S. O

The final step in Joyal’s proof is given by the following:

Theorem 5.4.4. The family of ultra-representable functors hg : C, — S, where ® ranges over
all ultrafilters in Sub(1), is jointly conservative.

Proof. Suppose we have a proper subobject ¢t : A — X. We shall prove that there exists
some ultra-representable functor h such that h(A) — h(X) is a proper subobject in S. Since
X]]1 — 1 is a cover, by theorem 5.3.5 there exists a section u : 1 — X [[1 not factoring
through the proper subobject AJ[1— X [[1. Pulling back along the first injection, we obtain
a subobject S — 1 and an arrow s : S — X not factoring through A. Form the further pullback
P along s:
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Clearly, P — S will be then a proper subobject. Consider the ideal Z in Sub(1) of all subobjects
of P. Since S ¢ Z, we deduce from BPI that there must be some ultrafilter ® in Sub(1) containing
S and disjoint from 7. Then define 7 = limz— [U, —]; it is now easy to check that the class of
s in h(X) is an element not belonging to h(A). Indeed, if s were in the same class that ¢f for
some f : W — A, then there would exist some @) € & making commutative the diagram above.
This would, hence, induce a monomorphism @) — P, contradicting the fact that Q & 7. O

Theorem 5.4.4 finishes the study of completeness for first order theories, according to the result
stated in theorem 5.1.1.

6 A characterization of models

6.1 Boolean models and the Lowenheim-Skolem theorem

The proof of the Completeness theorem as presented in section 5 only requires to verify validity
in those models defined by means of ultra-representable functors associated to ultrafilters in
Sub(1). Assuming the Axiom of Choice, and if the signature of the language of a given theory
has cardinality &, it is not difficult to see that the objects and morphisms of the category Cr both
have cardinality x. Furthermore, an analysis of the construction of lemmas 5.3.3 and 5.3.5 shows
that the same holds for the category C,, which implies that the mentioned ultra-representable
functors h : C, — S provide models of cardinality at most «. Thus, we have actually proved the
following:

Theorem 6.1.1. If a formula of a first order theory is valid in all models of cardinality not
greater than that of the signature, then the formula is provable within the theory.

Note that according to the well known generalized version of the Lowenheim-Skolem theorem,
a theory with an infinite model has models of all infinite cardinalities. This implies that the
theorem above provides a stronger notion of completeness, since it follows that in order to deduce
the provability of a formula it is enough to verify its satisfiability in a (small) set of models rather
than in the (large) class of all models. In fact, assuming the Axiom of Choice, we can actually
provide a detailed description of all Boolean models of a given theory, of which those used in
the proof of the Completeness theorem form a relatively small subclass.

We start with the following:

Lemma 6.1.2. Let C be a regular (resp. Boolean) category and let A be an object with full
support (i.e. such that f: A— 1 is a cover); let F': C — D be a regular (resp. Boolean) functor
and let s be a section of F(A) — F(1) in the regular (resp. Boolean) category D. Then, for
each fized pullback functor f*, there is a reqular (resp. Boolean) functor F : C/A — D satisfying
F(A) = s and Ff* = F, such that for every functor G : C/A — D and natural isomorphism
W : Gf* = F, there exists a unique natural isomorphism ¢ : G = F such that pldp- =:

c I c/A c I c/A
— | @’d)
F F ¢ = F G
—
G
D D
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Proof. The square of the left diagram is a pullback in C, which implies that the square on the
right is a pullback in C/A:

[¢] h N o
DA N ) DA K s g
\
fxIda f fxIda
A Ax A [Ida: A— A [r2: Ax A — A

This leads to define F on [f : X — A] as the pullback of F(f) : F(X) — F(A) along
s:1— F(A), in order to preserve the pullback above. More precisely, since f*A is the ar-
row m : X x A — A, to get Ff* = F we just need to select, amongst all pullbacks of
my : F(X) x F(A) — F(A) along s : 1 — F(A), precisely the arrow F(X) — 1, while the
choice of the rest of the pullbacks is arbitrary. As for arrows, we define F in the obvious way
using the induced arrows between pullback diagrams. It can now be shown that the functor so
defined enjoys all the required properties. Moreover, if there is another extension of F, GG, with
the stated properties, then there are canonical isomorphisms ¢¢ : G(C) — F(C), induced by
the universal property of the pullback. Given a morphism f : C — D, the arrows F(f)¢c and
épG(f) would be two induced morphisms between the pullbacks G(C) and F(D); therefore,
they must coincide, and then the isomorphisms ¢¢ define a natural isomorphism ¢ : G = F, as

stated. Finally, it is clear that ¢pIds« = ). O
As an application of the preceding lemma we have the following:

Lemma 6.1.3. For any Boolean functor F : Cp — Set there exists a Boolean functor F : C,, —
Set such that FI = F, where I is the composition IyJ : Ct — C,, and Iy, J are the embeddings
defined in lemmas 5.3.5 and 5.2.1 respectively:

Cr —I>Cw
F F
S

Proof. Because of lemma 5.2.1, we can choose a functor Fy : Cy = P(C) — S such that FyJ = F.
We shall use the axiom of choice to define succesive functors F; : C; — S that form a pseudoco-
cone (see definition 3.3.6). Then, the universal property of the bicolimit C,, will give the desired
functor F, according to remark 5.3.4 and theorem 3.4.10. In fact, this is the idea that will be
used to get F from Fy (we only show here this case since the others are similar).
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Consider then the set of all finite products of covers {tp, : Pp = [[;cp Ai = 1 / F C T, finite}
in Cy (as in the considerations preceding lemma 5.3.3), which are mapped by Fp into corre-
sponding surjections Fy(tp,) : Fo(Pp) — Fo(l) = 1. Choose a section sp, for each one of the
surjections. Let 7% be the pullback corresponding to mrg through the pseudofunctor consid-
ered in remark 5.3.4. By lemma 6.1.2, Fy provides Boolean functors Hp : Cy/P — S such that
Hptp = F, where each t}, is the pullback selected by the pseudofunctor.

We shall now prove that the functors Hp form a pseudococone diagram in Cat. To do this we
need to define natural isomorphisms ¢rq : Hp, 75 = Hp,, where F' C G, for each morphism
T Now, note that we have a natural isomorphism given by Id Hp, Ctppmrc - H pGW}Gt}BF =
Hp, tpo = Fp, and since Hp,, satisfies the universal property stated in lemma 6.1.2 with respect
to the triangular diagram below with vertices C,C/Pr,S, there is a unique natural isomorphism
ora : HPGT‘-;G = HPF such that ¢FGIdt}F = IdHPGCtPFﬂTFG'

S

If for FF C G C T we define similarly ¢g7r and ¢pr, we just need to verify that with these natural
isomorphisms the diagram becomes a pseudococone, which reduces in turn to verify condition
b) of definition 3.3.6. But this is again a consequence of the universal property of lemma 6.1.2,

since the natural isomorphism ¢pg o pgrl dw} old Hp, 7TF J— : Hp,m5p = Hp, satisfies:

(6rc o parldms,, o Idm, ¢l rramar 1y, = Orcldy, o ¢arldyy, Idp, o ldp, e el de

Pp

= IdHP IdWETCtP 7ra © IdHP Ctpy,mar © IdHP 7TFG TrGTIdt*

— —1 _
= IdHPT (IdWE;TCtPFﬂFG © Ctpy,mar © Cﬂpg,TrGTIdt}F) = IdHPT Ctpp.,mrT

according to property 3) of definition 3 3 5. Then, because of the uniqueness of ¢pp, we must
have ¢pr = ¢rG © darldyy,, © IdHP 7rpc rero @S we wanted to prove. Therefore, the diagram
is a pseudococone and the requlred functor Py : C1 — Set is induced.

Finally, because the functors Hp, in the pseudococone diagram are Boolean, the construction
of the filtered colimit in Cat shows, after a straightforward verification, that F} preserves finite
limits, covers, unions and disjoint coproducts; in particular, it is Boolean, which finishes the
proof. O

47



We finally get to the important characterization of Boolean models of a first order theory. This
achievement is a reformulation, due mainly to Joyal, of existing results on limit ultrapowers (see
[13]):

Theorem 6.1.4. Every model of a first order theory T is given by (the image of) a functor
Mol : Cp — Set, where I : Cr — C,, is the immersion defined in lemma 6.1.8 and M : C,, — Set
1s a filtered colimit of ultra-representable functors. Moreover, if the ultra-representable functors
correspond to ultrafilters in Sub(S) for subobjects S — 1, every such composition M o I defines
a model of T'.

Proof. According to theorem 5.4.3, if ® is an ultrafilter in Sub(S), for a subobject S — 1,
every ultra-representable functor he : C,, — Set is Boolean, and hence, by corollary 3.3.4, every
filtered colimit of these functors is as well Boolean. This proves that the composition F o [ is
always Boolean and thus defines a model of the theory.

Supose now that M’ : Cr — Set is a Boolean functor corresponding to a model M7 of T. By
lemma 6.1.3 there exists a Boolean functor M : C, — Set such that MI = M’. Define the
category X whose objects are pairs (A, &) where A is an object of C, and £ € M(A), and whose
morphisms (A, &) — (B,n) are given by those arrows f : A — B in C, such that n = M (f)(£).
Because C, has finite limits and M preserves them, X will have finite limits. Therefore, its
dual W = X is a (small) filtered category. We shall now define a functor H from W to the
category of ultra-representable functors. For each object (A4,§) € W, let ®(A, &) be the set of all
subobjects C' — A such that £ € M(C'). Because M is Boolean, it is easy to check that ®(A4,¢)
is an ultrafilter in Sub(A). Define then H((A,€)) = haa,), the ultra-representable functor
corresponding to ®(A4,€¢). Given an arrow f : (4,€) — (B,n), the mapping C — f~1(0),
defined for each C' € ®(B, n), determines a natural transformation H(f?) : ha(py) — haoae) in
the following way: for each representative a : C' — X in hg(p,;)(X) we let H(f)x([a]) = [af'],
where f’ : f~1(C) — C is the arrow arising from the pullback of C ~~ B along f. This
application is well defined and makes H a functor.

We shall prove that limm he(ag) = M. To define an isomorphism K : limm heag —

M it suffices to define natural transformations ¥4 ¢) : hea,ey — M which will induce the re-
quired morphism. This can be done by setting (¢(4¢))x([f]) = M(f)(§), where f : C — X
and C € ®(A,¢). It can be easily checked that the definition does not depend on the repre-
sentative of the class [f]; also, note that C € ®(A,¢) implies that £ € M(C), and therefore
M(f)(§) € M(X) and (Y(4,¢))x is well defined.

Let us first prove that K is a monomorphism. For this it is enough to verify that each
Yeae) : ha(ae) — M is monic, for which it suffices in turn to check that each (14 ¢)) x is injective.
So suppose that we have arrows f : C' — X, g: C" — X such that (¢4.¢))x ([f]) = (¥a,e)) x ([9])-
Then, M(f)(§) = M(g)(§). Take the intersection C' A C’ in Sub(A), which gives monics
a:CNANC' — Cand b: CANC — (' Consider the equalizer E of fa and gb. Since M
preserves equalizers and £ € M(C A C’), then € € M(E), that is, E € ®(A,&). Therefore, f and
g belong to the same class, i.e., [f] = [g].

Finally, let us prove that K is an epimorphism, for which it suffices to show that each
K(D) : limm hoae (D) — M(D) is surjective. Given an element x € M (D), con-
sider the ultrafilter ®(D, x), that contains D. Since (¥(py))p : hao(py) (D) — M(D) satisfies
(Y(p))p(Idp]) = M(Idp)(x) = x, we conclude that the family {((a¢))p/(A4,§) € W} is
jointly epic, from which we can deduce that K (D) is necessarily surjective. O

Corollary 6.1.5. Lowenheim-Skolem theorem: FEvery model M of a first order theory T
with countable signature has a submodel for T which is at most countable.
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Proof. Suppose that T is a first order theory with countable signature that has a model M’ :
Cr — S. By theorem 6.1.4, M’ has an extension M : C, — S that is a filtered colimit of
ultra-representable functors. Furthermore, since M is not trivial, we see from the proof of that
theorem that (1,%) is an object in W, and hence the corresponding ultrafilter ®(1, %) in Sub(1)
(defined as {S € Sub(1) / M(S) # 0}) gives an ultra-representable functor hg(; . that belongs
to the colimit diagram for M. But then, because of lemma 4.3.6, it is not difficult to see that
ha(1,4)1 is a submodel for T" which is at most countable, which finishes the proof. O

Remark 6.1.6. The use of the Aziom of Choice throughout this section is not entirely avoidable,
in the sense that some form of choice is needed to deduce theorem 6.1.4. For suppose we could
prove in ZF that M’ has an extension M : C, — S; then, the Lowenheim-Skolem theorem would
be derivable in ZF, while it is known to be unprovable there (see [12] for references). As a
consequence, the existence of the Boolean extension M must as well be unprovable in ZF.

A stronger form of the Lowenheim-Skolem theorem (the downward form) can also be proven
introducing a slight modification into the proof above:

Theorem 6.1.7. For every model M of a first order theory T of cardinality k, every cardinal
u < K at least equal to the cardinality of the signature of T', and every subset S C M of cardinality
A < u, there exists a submodel of M of cardinality u that contains S.

Proof. Consider the theory T” whose language has p many constants and whose axioms are
those of T" plus a set of axioms expressing that the constants are pairwise different. Then M
can be turned into a model of 7" by interpreting the constants as elements of a subset S’ such
that S € S’ € M. Hence, T’ is consistent. Let F' : C7» — S be the corresponding Boolean
functor for this new model, and F’ : C, — S its corresponding extension. Then, if ®(1,*) is the
ultrafilter in Sub(1) defined as {S € Sub(1) / F'(S) # 0}), it can be seen that he .1 is the
required submodel. O

Remark 6.1.8. Note that the previous proof does not make reference to the usual Skolem func-
tions, which are commonly used in the proofs of this theorem.

6.2 Complete theories and Vaught’s test

Theorem 6.1.4 characterizes Boolean models by giving an explicit description of the functors as-
sociated to them. Ultra-representable functors in Sub(1) are therefore a relatively small subclass
of these, but as seen in section 5, they suffice nevertheless to deduce the Completeness theorem.
Another application of this set of models is related to a result in model theory known as Vaught’s
test, which provides a sufficient condition for a theory to be complete. Recall that a theory T
is said to be complete if, for every sentence ¢ (i.e., every formula with no free variables), either
¢ or —¢ is provable in T. We say that T is k-categorical for some cardinal  if any two models
of T of cardinality x are isomorphic. We have now:

Theorem 6.2.1. Vaught’s test: Let T be a first order theory that has no finite models and is
K-categorical for some cardinal K at least equal to the cardinality of the signature of T'. Then T
s complete.

Proof. Consider the theory T” defined by adding x many constant symbols to the language of
T, whose axioms are those of T' plus a set of axioms expressing that the constants are pairwise
different. Then, the model of T of cardinality s is also a model for T’, which is therefore
consistent; moreover, since T is k-categorical, then so is T’. Consider the models of T” given
by ultra-representable functors in C,,, hel : C» — S for ultrafilters ® in Sub(1). Since these
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models are non-trivial, they contain x many distinct individuals, and since they have cardinality
at most k, it follows that their cardinality is exactly x; moreover, because T" is k-categorical, all
these models are isomorphic. Let [{}, @] be the object in Cp» corresponding to the sentence ¢;
then [{}, ¢] is a subobject of [{}, T] = 1¢,,. Let s = I([{}, ¢]) be the corresponding subobject
in C,. Then, if s = 0, it follows by the conservativity of I that [{},¢] = Oc,, = [{}, L], and
hence —¢ is provable in T”. If, on the other hand, s # 0, then s belongs to some ultrafilter ¥
in Sub(1), and therefore hy(s) = 1. But since all models hgl are isomorphic, it follows from
lemma 4.3.6 that for every ® there is a natural isomorphism hyI — hgl, and hence for every ®
we have hg(s) = 1. This implies that s belongs to the intersection of all ultrafilters in Sub(1),
and consequently, s = 1. Since [ is conservative, it follows then that [{}, #] = [{}, T], and hence
that T” proves ¢. We have thus established that T” is complete.

To see that T" must also be complete, let ¢ be a sentence in the language of T'. Suppose without
loss of generality that 7" proves ¢, and note that a deduction of ¢ in 7" must use only a finite
number of the extra added axioms. Therefore, if 7" is the theory whose axioms are those of
T plus a countable set of axioms expressing that some countable set of constant symbols are
pairwise distinct, then 7" is already complete. Since T has no finite models, all models given
by the functors hel : Cr — S have cardinality greater or equal than Ry, and hence they are also
models of T” for some adequate interpretation of the constants. Because T” proves ¢, it must
be valid in all these models, which implies that heI([{}, #]) = 1 for all ultrafilters ®. But then
an argument similar to the one used before implies that [{}, ¢] = [{}, T]| in Cr, which finishes
the proof. O

The proof above should also convince the reader of the flexibility of categorical methods in prov-
ing metamathematical results, making Joyal’s characterization of Boolean models an important
line of approach to the study of model theory.
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