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Álgebras de Nichols sobre grupos no abelianos

En esta tesis se estudian álgebras de Nichols sobre grupos no abelianos.
Un álgebra de Nichols viene dada por un par (X, q), donde X es un rack y
q es un 2-cociclo en una teoría de cohomología no abeliana de racks.

En este trabajo de�nimos racks de tipo D y demostramos que los racks
simples y �nitos de tipo D dan álgebras de Nichols de dimensión in�nita
para todo 2-cocyclo q. Muchas de las clases de conjugación de los grupos
esporádicos, o de An, o de Sn son racks de tipo D. Con estos resultados y las
técnicas que desarrollamos a partir de la clasi�cación de álgebras de Nichols
de tipo diagonal de dimensión �nita hecha por Heckenberger demostramos
que no existen álgebras de Nichols de dimensión �nita sobreG, dondeG = An

o G = Sn o G es un grupo simple esporádico distinto de Fi22, B o M. Como
corolario, el método del levante nos da la clasi�cación de álgebras de Hopf
punteadas de dimensión �nita sobre estos grupos.

En un apéndice presentamos brevemente un software que desarrollamos
para poder realizar cálculos relacionados con racks y álgebras de Nichols.
Este software resultó ser una poderosa herramienta para crear, entender y
aplicar las técnicas que dan condiciones que garantizan que un par (X, q) (o
una clase de conjugación de un grupo �nito dado) dé solamente álgebras de
Nichols de dimensión �nita.

Palabras clave: Álgebras de Hopf punteadas, álgebras de Nichols, racks.



Nichols algebras over non-abelian groups

In this thesis Nichols algebras over non-abelian groups are studied. A
Nichols algebra is given by a pair (X, q), whereX is a rack and q is a 2-cocycle
in a non-abelian rack cohomology theory for racks.

We de�ne the notion of racks of type D and we prove that �nite simple
racks of type D give in�nite-dimensional Nichols algebras for every 2-cocyle q.
Most of the conjugacy classes of the sporadic simple groups, or An, or Sn are
racks of type D. These results combined with techniques that we developed
from Heckenberger's classi�cation of Nichols algebras of diagonal type lead
us to to prove that there are no �nite-dimensinal Nichols algebras over G,
where G = An or G is a sporadic simple group di�erent from Fi22, B and
M. As a corollary, the lifting method allows us to complete the classi�cation
of pointed Hopf algebras over these groups.

In an appendix we present a computer package that we developed for
computations related with racks and Nichols algebras. This package turns
out to be a powerful tool, very useful for creating, understanding and ap-
plying the techniques that give conditions that guarantee that a pair (X, q)
(or a conjugacy class in a given �nite group) gives only in�nite-dimensional
Nichols algebras.

Keywords: Pointed Hopf algebras, Nichols algebras, racks.
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Introduction

This thesis contributes to the classi�cation of �nite-dimensional pointed Hopf
algebras over C (or over any algebraically closed �eld K of characteristic 0).
There are di�erent possible approaches to this problem. One of them is
to �x a �nite group G and to address the classi�cation of �nite-dimensional
pointed Hopf algebras H such that G(H) ' G. Due to the intrinsic di�culty
of this problem, it is natural to consider separately di�erent classes of �nite
groups. With the Weyl-Heckenberger groupoid [Hec06, Hec09], a consid-
erable progress in the case when G is abelian was possible (see [AS10]). In
this work we concentrate on the non-abelian case.

If G denotes a �nite group, to classify all complex pointed Hopf alge-
bras H with group of group-likes G(H) ' G and dimH < ∞, we need to
determine the irreducible Yetter-Drinfeld modules over CG such that the
dimension of the corresponding Nichols algebra is �nite. In other words, re-
calling that irreducible Yetter-Drinfeld modules are parameterized by pairs
(O, ρ) (where O is a conjugacy class of G, σ ∈ O �xed, and ρ is an ir-
reducible representation of the centralizer CG(σ)), and writing B(O, ρ) for
the associated Nichols algebra, we need to know for which pairs (O, ρ) is
dim B(O, ρ) <∞.

Our main goal, towards the classi�cation of �nite-dimensional pointed
Hopf algebras, is to answer the following question.

Question 1. For any �nite group G and for any V ∈ G
GYD, determine if

dim B(V ) <∞.

Since the category G
GYD is semisimple, the question splits into two cases:

(1) V irreducible,

(2) V completely reducible (a direct sum of at least 2 irreducibles).

The case (1) was addressed in several recent papers for some groups
and some conjugacy classes [AG03, AF07b, AF07a, Fan07b, AFZ09,
FGV07, FGV09, AZ07]. The case (2) was considered in [AHS08, HS08].
Of course, the Nichols algebras of the simple submodules of a completely
reducible V such that B(V ) is �nite-dimensional should be �nite-dimensional

vii



viii Introduction

too. But the interaction between the two cases goes also in the other way.
To explain this, we need to recall that our �rst question can be rephrased
in terms of racks. Indeed, the Nichols algebra of a Yetter-Drinfeld module
depends only on its braiding, which in the case of a group algebra is de�ned
in terms of the conjugation. Question 1 is equivalent to the following one.

Question 2. For any �nite rack X, for any n ∈ N, and for any non-principal
2-cocycle q determine if dim B(X,q) <∞.

In fact, the consideration of the rack-theoretical question is more eco-
nomical than the consideration of the group-theoretical one, since di�er-
ent Yetter-Drinfeld modules over di�erent groups may give rise to the same
pair (X,q), X a rack and q a 2-cocycle. This point of view, advocated in
[Gra00, AG03], is analogous to the similar consideration of braided vec-
tor spaces of diagonal type in the classi�cation of �nite-dimensional pointed
Hopf algebras with abelian group.

The consideration of the rack-theoretical question has another advantage.
A basic and useful property of Nichols algebras says: if W is a braided
subspace of a braided vector space V , then B(W ) ↪→ B(V ). For instance,
consider a simple V = M(O, ρ) ∈ G

GYD, say dim ρ = 1 for simplicity. If
X is a proper subrack of O, then M(O, ρ) has a braided subspace of the
form W = (CX, cq), which is clearly not a Yetter-Drinfeld submodule but
can be realized as a Yetter-Drinfeld module over smaller groups, that could
be reducible if X is decomposable. If we know that dim B(X, q) = ∞, say
because we have enough information on one of these smaller groups, then
dim B(O, ρ) =∞ too.

Both questions have the common drawback that there is no structure
theorem neither for �nite groups nor for �nite racks. Therefore, and in order
to collect evidence about what groups or what racks might a�ord �nite-
dimensional Nichols algebras, it is necessary to attack di�erent classes of
groups (or racks). Prominent candidates are the �nite simple groups and
the �nite simple racks. Finite simple racks have been classi�ed in [AG03,
Joy82] (see Chapter 1, Theorem 1.22). In particular, non-trivial conjugacy
classes of �nite simple groups, and conjugacy classes of symmetric groups
that do not split (seen as orbits for the action of the alternating subgroup)
are simple racks. Therefore, it is natural to begin by families of simple
groups.

To prove the theorems on Nichols algebras over conjugacy classes of a
simple group G, we �rst establish that dim B(X, q) =∞ for many conjugacy
classesX in G and any 2-cocycle q. This relies on a result on Nichols algebras
of reducible Yetter-Drinfeld modules [HS08, Theorem 8.6]. Indeed, let us
say (informally) that a rack collapses if dim B(X, q) = ∞ for any cocycle
q (see the precise statement of this notion in De�nition 1.28). To translate
one of the hypothesis of [HS08, Theorem 8.6] to rack-theoretical terms, we
introduce the notion of rack of type D. We deduce from [HS08, Theorem
8.6] our Theorem 2.33, that says that any rack of type D collapses. It is
easy to see that if π : Z → X is an epimorphism of racks and X is of type
D, then so is Z. But any indecomposable rack Z has a simple quotient X;
this justi�es further why we look at simple racks, starting with non-trivial
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conjugacy classes in simple groups. This is one of the consequences of the
study of Nichols algebras of decomposable Yetter-Drinfeld modules in the
analogous study of indecomposable ones. We stress that the computation of
a second rack-cohomology group is a di�cult task. By [EG03], it coincides
with a �rst group-cohomology group, but this does not make the problem
easier. The point of view taken in this thesis allows to disregard sometimes
these considerations about rack-cohomology groups.

Actually, along this work we give a list of conjugacy classes of simple
groups which are of type D; hence, if X belongs to this list and π : Z → X
is an epimorphism of racks, then the Nichols algebra B(Z, q) has in�nite
dimension for an arbitrary 2-cocycle q.

In this thesis it is proved that several simple groups give only rise to
in�nite-dimensional Nichols algebras. So, this work does not provide any
new examples of �nite-dimensional pointed Hopf algebras. In fact, very few
examples of �nite-dimensional non-trivial pointed Hopf algebras with non-
abelian group are known (only few examples are known, see [Gra]). At the
present moment, it is not clear what is the class of non-abelian �nite groups
that may a�ord �nite-dimensional pointed Hopf algebras. Therefore, it is
important to narrow down as many examples as possible in order to have a
feeling of what this class might be.

De�nition. We shall say that a �nite group G collapses if for any �nite-
dimensional pointed Hopf algebra H, with G(H) ' G, then H ' CG.

In this work many examples of groups that collapse are presented: alter-
nating and symmetric groups, some �nite groups of Lie type, the sporadic
simple groups.

Symmetric groups and alternating groups. In the early 90's, Susan
Montgomery raised the question of �nding a non-trivial �nite-dimensional
complex pointed Hopf algebra H with non-abelian group G (here �non-
trivial" means that H is neither a group algebra, nor is cooked out of a
pointed Hopf algebra with abelian group by some kind of extension). This
question was addressed by Alexander Milinski and Hans-Jürgen Schneider
around 1995, who produced two examples, one with G = S3, another with
G = S4. The main idea of the proof is to check that a quadratic algebra Bm

built from the conjugacy class of transpositions in Sm is �nite-dimensional.
They were able to do it for m = 3, 4 using Gröbner bases. These results
were published later in [MS00]. Independently, Sergei Fomin and Anatol
Kirillov considered closely related quadratic algebras Em, also constructed
from the transpositions in Sm, and they determined the dimensions of E3, E4
and E5 [FK99]. With the introduction of the Lifting Method, see [AS02b],
it became clear that Bm and Em should be Nichols algebras. This was indeed
checked in [MS00] for m = 3, 4 and by Matías Graña m = 5 [Gra].

Recently, there was some progress on pointed Hopf algebras over Sm.
The classi�cation of the �nite-dimensional Nichols algebras over S3 and S4

is concluded in [AHS08]. Also, most of the Nichols algebras over the Sym-
metric group Sm have in�nite dimension, with the exception of a short list
of open possibilities [AZ07, AF07b, AFZ09].
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One of our main results improves drastically the list given in [AFZ09,
Theorem 1].

Theorem. Let n ≥ 5 and let σ ∈ Sn. If the conjugacy class σSn gives
�nite-dimensional Nichols algebras, then σ belongs to one of the following:

(1) The conjugacy class of transpositions in Sn;

(2) The conjugacy class of (1 2)(3 4 5) in S5;

(3) The conjugacy class of (1 2)(3 4)(5 6) in S6.

Notice that the conjugacy class of (1 2)(3 4)(5 6) in S6 is isomorphic, as
a rack, to the conjugacy class of the transpositions in S6, since any non-inner
automorphism of S6 applies (1 2) in (1 2)(3 4)(5 6) (see [JR82]). Thus, the
case of the conjugacy class of (1 2)(3 4)(5 6) in S6 is contained in the study
of the conjugacy class of transpositions, which is the case studied by Fomin
and Kirillov.

Also, we prove the following result about Nichols algebras over the alter-
nating simple groups.

Theorem. Letm ≥ 5. Every Nichols algebra over Am is in�nite-dimensional.
Hence, Am collapses.

This result was known for the particular cases m = 5 and m = 7, see
[AF07a, Fan07a].

Finite Lie groups. We prove that many simple linear groups collapse.
This result, of course, is a consequence of the Lifting Method and the non-
existence of �nite-dimensional Nichols algebras over these simple groups.
The �rst example is the family of groups PSL(2, q) for q = 2m for m > 2.
These groups are studied only with abelian techniques. Other simple Lie
groups studied in this thesis are: the exceptional Lie groups G2(q) for q =
3, 4, 5; the Orthogonal groups O7(3), O+

8 (2), O−10(2); the Symplectic groups
S6(2) and S8(2).

Some of these results were proved in [FGV07, FGV09]. Other results
were proved to simplify the proofs of the theorems concerning Nichols alge-
bras over the sporadic simple groups, because some �nite Lie groups appear
as subgroups or subquotients of the sporadic simple groups.

Sporadic simple groups. With computational techniques we study some
of the simple racks coming from the sporadic simple groups. Roughly speak-
ing, we prove that almost every simple rack (or every conjugacy class) of a
sporadic simple group is of type D. Therefore, with the help of some abelian
techniques based on the Heckenberger's Classi�cation Theorem of Nichols
algebras of diagonal type [Hec06, Hec09], we have the following theorem.

Theorem. Let G be a sporadic simple group, with the exception of the Fis-
cher group Fi22, the Baby Monster group B, or the Monster group M. Then
G has no �nite-dimensional Nichols algebras. Hence, G collapses.

All the results concerning Nichols algebras over the sporadic simple
groups were proved in [AFGV09b, AFGV09c, AFGV09a].
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Organization

The �rst chapter is devoted to recall all the basic facts about racks and its
cohomologies, Nichols algebras and the Lifting Method. This is mainly based
on [AG03, Gra00, AG99, AS02b].

Chapter 2 is devoted to developing the techniques that will be used
to study Nichols algebras. These techniques, mainly based on the Weyl-
Heckenberger groupoid (see [Hec09, Hec06, AHS08, HS08]), allow us
to translate the problem of studying Nichols algebras (or Yetter-Drinfeld
modules or racks and 2-cocycles) to a group-theoretical problem, which seems
to be easier to solve. The techniques developed in this chapter include some
of the results obtained in [AF09].

In the last three chapters we study di�erent families of simple groups. In
Chapter 3 we study Nichols algebras over alternating groups and symmetric
groups. In Chapter 4 we study Nichols algebras over some linear groups.
We study some linear groups such as PSL(2, q), for q even, some symplectic
groups, some orthogonal groups, etc. As said, some of these results are
useful for studying Nichols algebras over the sporadic simple groups, because
these linear groups appear as subgroups or subquotients of them. Chapter
5 is devoted to Nichols algebras over the sporadic simple groups and some
groups of automorphisms of sporadic groups. Most of the results obtained
in chapters 4 and 5 strongly depend on computational methods. So, in order
to understand the proofs of the main theorems of these chapters we include
references to log �les and GAP scripts.

This thesis has three appendices. The �rst appendix is devoted to list
all real and quasi-real conjugacy classes in sporadic simple groups. The
second one is devoted to present a computer package which we �nd useful
for studying racks and Nichols algebras: The GAP package RiG is a joint
work with Matías Graña, and can be used for computations related to racks,
such as the computation of subracks, quotients, (co)homology groups, etc.
This free software is available at [GnV08].

The last appendix is devoted to list all the notations used along this
thesis. In this appendix we also include all group theoretic notations used in
the ATLAS (The red book: [CCN+85], the Web interface: [WWT+] and
the GAP package: [WPN+08]).





Chapter 1

Preliminaries

1.1. Yetter-Drinfeld Modules

In this section we review the basic facts about Yetter-Drinfeld modules over
a given �nite group. See [AG99, RT93] for details. We use the Heyneman-
Sweedler notation (see [Swe69, Mon93]).

De�nition 1.1. Let H be a Hopf algebra (over C) with bijective antipode.
A Yetter Drinfeld module over H is a left H-module M that also is a left
H-comodule with the following compatibility condition:

(hm)(−1) ⊗ (hm)(0) = h(1)m(−1)Sh(−3) ⊗ h(2)m(0),

for all h ∈ H, m ∈M .

Notice that the category of Yetter-Drinfeld modules H
HYD is a monoidal

category with the usual tensor product of vector spaces (over C), where, for
M,N ∈ H

HYD, M ⊗N has the Yetter-Drinfeld structure given by

h(m⊗ n) = h(1)m⊗ h(2)n,

(m⊗ n)(−1) ⊗ (m⊗ n)(0) = m(−1)n(−1) ⊗m(0) ⊗ n(0).

It is also a braided category, where the braiding c : M ⊗ N → N ⊗M is
given by

c(m⊗ n) = m(−1)n⊗m(0).

Let G be a �nite group. We consider the case where H = CG, the group
algebra of G. Notice that a Yetter-Drinfeld module over CG is a G-module
M provided with a G-grading M = ⊕g∈GMg such that h ·Mg = Mghg−1 for
all g, h ∈ G. The category of Yetter-Drinfeld modules over CG is written
G
GYD. The support of M ∈ G

GYD is sup(M) = {g ∈ G |Mg 6= 0}.
For any g ∈ G, denote by gG the conjugacy class of g in G and by CG(g)

the centralizer of g in G. Let ρ ∈ Irr(CG(g)), an irreducible representation
of the centralizer of g in G, and let

M(g, ρ) = IndG
CG(g)V = CG⊗CCG(g) V.

1
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We have

h · (x⊗ v) = hx⊗ v, δ(x⊗ v) = xgx−1 ⊗ (x⊗ v),
for x ∈ G. Then M(g, ρ) is an object of G

GYD. Notice that
dimM(g, ρ) = [G : CG(g)] · deg(ρ).

Proposition 1.2. The objects M(g, ρ) are simple. Moreover, any simple
object of G

GYD is isomorphic to a unique M(g, ρ), where g belongs to the set
of representatives of conjugacy classes of G, and ρ ∈ Irr(CG(g)).

Proof. See [AG99, Proposition 3.1.2]. �

Corollary 1.3. If G is abelian, every object of G
GYD can be decomposed as

a direct sum of Yetter-Drinfeld modules of dimension 1.

Proof. It is easy, since [G : CG(g)] = deg ρ = 1 for every g ∈ G and
ρ ∈ Irr(CG(g)). �

Proposition 1.4. G
GYD is a braided rigid category.

Proof. See [AG99, Proposition 2.1.1]. �

1.2. Nichols algebras

The de�nition of a Nichols algebra of a braided vector space (V, c) appears
in various di�erent ways (see [AG99]).

De�nition 1.5. A braided vector space is a pair (V, c), where V is a
vector space and c ∈ Aut(V ⊗ V ) is a solution of the braid equation:

(c⊗ 1)(1⊗ c)(c⊗ 1) = (1⊗ c)(c⊗ 1)(1⊗ c)

Let n ≥ 2. Recall that the symmetric group Sn can be presented as the
group generated by elementary transpositions τi = (i i + 1) subject to the
relations:

τiτj = τjτi if |i− j| > 1,

τiτjτi = τjτiτj if |i− j| = 1,

τ2
i = 1.

The Braid group Bn is the group generated by σ1, σ2, . . . , σn−1 subject
to the relations:

σiσj = σjσi if |i− j| > 1,

σiσjσi = σjσiσj if |i− j| = 1.

Notice that there is a projection Bn → Sn given by σi 7→ τi. Let x ∈ Sn.
For y ∈ Sn we denote by l(y) the length of a minimal word in the alphabet
τ±1
1 , τ±1

2 , . . . , τ±1
n−1 which represents y.

Lemma 1.6. There exists a unique section s : Sn → Bn to the projection
Bn → Sn such that s(τi) = σi and s(αβ) = s(α)s(β) if l(α · β) = l(α) + l(β).
It is given by

(α = τi1τi2 · · · τij ) 7→ (σi1σi2 · · ·σij )
if l(α) = j.
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Proof. See [CR87, 62.20]. �

Let V ∈ G
GYD. Notice that Bn acts on V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸

n-times

by

σi 7→ 1⊗ · · · 1︸ ︷︷ ︸
i−1

⊗c⊗ 1⊗ · · · 1︸ ︷︷ ︸
n−i−1

For V ∈ G
GYD, we write by Tn(V ) = V ⊗n and by T (V ) the object

T (V ) = C⊕ V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗n ⊕ · · ·
We de�ne the quantum symmetrizer Sn : TV → TV as

Sn =
∑
x∈Sn

s(x).

Then, the Nichols algebra of V is

B(V ) =
⊕
n≥0

Bn(V ),

where B0(V ) = C, B1(V ) = V and Bn(V ) = Tn(V )/ ker(Sn) ' Sn(TnV ).

1.3. Racks and Cocycles

In this section we de�ne and review basic properties of racks, quandles and
crossed sets. For details see for example [AG03].

1.3.1. Racks.

De�nition 1.7. A rack is a pair (X, .) where X is a non-empty �nite set
and . : X ×X → X is a function, such that

x 7→ i . x is bijective for all i ∈ X,(1.1)

i . (j . k) = (i . j) . (i . k) for all i, j, k ∈ X.(1.2)

A quandle is a rack (X, .) such that

(1.3) i . i = i for all i ∈ X.

A crossed set is a quandle (X, .) such that

(1.4) i . j = j ⇔ j . i = i for all i, j ∈ X.

Example 1.8. If X = {1, 2, . . . , n} and i . j = j (mod n), then (X, .) is
called a trivial (or abelian) rack.

Example 1.9. If A is an abelian group and T ∈ Aut(A), then A becomes a
rack with a . b = (1− T )a+ Tb. This rack will be denoted (A, T ) and called
an a�ne rack.

De�nition 1.10. Let X be a rack. A non-empty subset Y ⊂ X is a subrack
if Y . Y ⊆ Y .

Example 1.11. A �nite group G is a rack with x . y = xyx−1. If a subset
X ⊆ G is stable under conjugation by G, then it is a subrack of G. In
particular, the support of any M ∈ G

GYD is a subrack of G.
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In appendix C we present other examples of racks.

Notice that a rack (X, .) can be presented as a matrixM = (mij), where
mij = i . j.

De�nition 1.12. f : (X, .)→ (Y, .) is a morphism of racks if

f(i . j) = f(i) . f(j) for all i, j ∈ X.

Morphisms of quandles (resp. crossed sets) are morphisms of racks be-
tween quandles (resp. crossed sets).

De�nition 1.13. Let (X, .) be a rack and let SX be the group of bijective
funtions X → X. Notice that there exists a map ϕ : X → SX de�ned as
i 7→ i ._ : X → X.

(1) The group of automorphisms of X is

Aut(X) = {f ∈ SX | f(x . y) = f(x) . f(y)}.
(2) The inner group of X is the subgroup of SX generated by ϕ(X). We

write Inn(X) for the inner group of X.

Remark 1.14. Notice that Inn(X) is a normal subgroup of Aut(X). Also
notice that in general these groups are not equal (see Appendix C).

De�nition 1.15. Let (X, .) a rack. We say that X is faithful if the function
ϕ : X → SX is injective.

De�nition 1.16. Let (X, .) be a rack. We say that X is decomposable
if it admits a decomposition, which is a disjoint union X = Y tZ such that
Y and Z are both subracks of X. Also, X is indecomposable if it is not
decomposable.

De�nition 1.17. Let (X, .) be a rack. The orbit of x ∈ X is the orbit of
x under the natural action of the inner group. Then,

Ox = {y1 . (y2 . · · · . (ys . x) · · · ) | y1, y2, . . . , ys ∈ X}.

Lemma 1.18. Let (X, .) be a rack, Y 6= X a non-empty subset and Z =
X − Y . Then the following are equivalent:

(1) X = Y t Z is a decomposition of X;

(2) Y . Z ⊆ Z and Z . Y ⊆ Y ;
(3) X . Y ⊆ Y .

Proof. See [AG03, Lemma 1.14]. �

Lemma 1.19. Let (X, .) be a rack. Then the following are equivalent:

(1) X is indecomposable;

(2) X = Ox for some x ∈ X;

(3) X = Ox for all x ∈ X.

Proof. See [AG03, Lemma 1.15]. �

De�nition 1.20. A non-trivial rack X is simple if any surjective morphism
of racks π : X → Y satis�es #Y = 1 or #Y = #X.
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Remark 1.21. Notice that a simple rack is indecomposable, since every
decomposable rack has a surjective morphism onto the trivial rack with two
elements.

Theorem 1.22. Any simple rack is isomorphic to one and only one of the
following:

(1) |X| = p a prime, X ' Fp a permutation rack, that is x . y = y + 1.
(2) |X| = pt, p a prime, t ∈ N, X ' (Fp

t, T ) is an a�ne crossed set where
T is the companion matrix of a monic irreducible polynomial of degree
t, di�erent from X and X − 1.

(3) |X| is divisible by at least two di�erent primes, and X is twisted homoge-
neous. That is, there exist a non-abelian simple group L, a positive inte-
ger t and x ∈ Aut(Lt), where x acts by x·(l1, . . . , lt) = (θ(lt), l1, . . . , lt−1)
for some θ ∈ Aut(L), such that X = Ox(n) is an orbit of the action ⇀x

of N = Lt on itself (n 6= m−1 if t = 1 and x is inner, x(p) = mpm−1).
Furthermore, L and t are unique, and x only depends on its conjugacy
class in Out(Lt). Here, the action⇀x is given by p ⇀x n = p n (x·p−1).

Proof. See [AG03, Theorems 3.9 and 3.12]. �

1.3.2. Cocycles.

De�nition 1.23. Let (X, .) be a rack. Let n ∈ N. A map q : X × X →
GL(n,C) is a principal 2-cocycle of degree n if

qx,y.zqy,z = qx.y,x.zqx,z,

for all x, y, z ∈ X.

Here is an equivalent formulation: let V = CX ⊗ Cn and consider the
linear isomorphism cq : V ⊗ V → V ⊗ V ,

cq(exv ⊗ eyw) = ex.yqx,y(w)⊗ exv,
x, y ∈ X, v ,w ∈ Cn. Then q is a 2-cocycle if and only if cq is a solution of
the braid equation. If this is the case, then the Nichols algebra of (V, cq) is
denoted B(X, q).

De�nition 1.24. Let (Xi)i∈I be a decomposition of a rack X and let n =
(ni)i∈I be a family of natural numbers. Then a non-principal 2-cocycle
of degree n, associated to the decomposition (Xi)i∈I , is a family q = (qi)i∈I

of maps qi : X ×Xi → GL(ni,C) such that

(1.5) qi(x, y . z)qi(y, z) = qi(x . y, x . z)qi(x, z),

for all x, y ∈ X, z ∈ Xi, i ∈ I.

Again, this notion is related to braided vector spaces. Given a family q,
let V = ⊕i∈ICXi ⊗ Cni and consider the linear isomorphism cq : V ⊗ V →
V ⊗ V ,

cq(exv ⊗ eyw) = ex.yqi(x, y)(w)⊗ exv,
x ∈ Xj , y ∈ Xi, v ∈ Cnj , w ∈ Cni . Then q is a 2-cocycle if and only if cq is
a solution of the braid equation. If this is the case, then the Nichols algebra
of (V, cq) is denoted B(X,q).
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Let X be a rack, q a non-principal 2-cocycle and V as above. De�ne a
map g : X → GL(V ) by

(1.6) gx(eyw) = ex.yqi(x, y)(w), x ∈ X, y ∈ Xi, i ∈ I.
Note that g : X → GL(V ) is a morphism of racks.

The next result shows why Nichols algebras associated to racks and 2-
cocycles are important for the classi�cation of pointed Hopf algebras.

Theorem 1.25.

(1) Let X be a rack, (Xi)i∈I a decomposition of X, n ∈ NI and q a 2-cocycle
as above. If G ⊂ GL(V ) is the subgroup generated by (gx)x∈X , then
V ∈ G

GYD. If the image of qi generates a �nite subgroup of GL(ni,C)
for all i ∈ I, then G is �nite.

(2) Conversely, if G is a �nite group and V ∈ G
GYD, then there exists a rack

X, a decomposition X = ti∈IXi, n ∈ NI and non-principal 2-cocycle
q such that V is given as above and the braiding c ∈ Aut(V ⊗V ) in the
category G

GYD coincides with cq.

Proof. See [AG03, Theorem 4.14]. �

IfX is indecomposable, then there is only one possible decomposition and
only principal 2-cocycles arise. Conversely, the proof of [AG03, Theorem
4.14] shows that if V ∈ G

GYD as in part (2) is irreducible, then the cocycle q
is actually principal.

For an easy way of reference, we shall say that a 2-cocycle q is �nite if
the image of qi generates a �nite subgroup of GL(ni,C) for all i ∈ I.

De�nition 1.26. Let X be a �nite rack and q a 2-cocycle. We say that
(X,q) is faithful if the morphism of racks g : X → GL(V ) de�ned in (1.6)
is injective; if X is clear from the context, we shall also say that q is faithful.

Remark 1.27. If a rack X is faithful, then (X,q) is faithful for any q.

We present next an important de�nition concerning in�nite-dimensional
Nichols algebras over racks. It has deep consequences in the study of Nichols
algebras over non-abelian simple groups (see [AFGV08]).

De�nition 1.28. We shall say that a �nite rack X collapses if for any �nite
faithful cocycle q (associated to any decomposition of X and of any degree
n), dim B(X,q) =∞.

Here is a useful reformulation.

Lemma 1.29. Let X be a �nite rack. Assume that for any �nite group
G and any M ∈ G

GYD such that X is isomorphic to a subrack of sup(M),
dim B(M) =∞. Then X collapses. The converse is true if X is faithful.

Proof. Let q be a �nite faithful cocycle. By Theorem 1.25 (1), the braided
vector space (V, cq) arises from a Yetter-Drinfeld module over a �nite group
Γ; since q is faithful, X can be identi�ed with sup(V ).

Now assume that X is faithful and collapses. Let G, M as in the hy-
pothesis of Lemma 1.29. The rack Y constructed in Theorem 1.25 (ii) is
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Y = ti∈ICi, where M = ⊕i∈IMi is a decomposition in irreducible submod-
ules and Ci = supMi. In general, sup(M) 6= Y , but there is an injective
morphism of racks sup(M) ↪→ Y , which induces an injective morphism of
racks X ↪→ Y . Since X is faithful, the restriction of the cocycle q on Y to
X is faithful. �

1.3.3. Some constructions of racks. We now present a general construc-
tion that might be of independent interest. Let X be a rack, with operation
x . y = ϕx(y), and let j an integer. Let X [j] be a disjoint copy of X, with a
�xed bijection X → X [j], x 7→ x[j], x ∈ X. We de�ne a multiplication . in
X [j] by

(1.7) x[j] . y[j] = (ϕj
x(y))[j], x, y ∈ X.

Notice that X [j][k] ' X [jk], for j, k ∈ Z, both non-zero.

Lemma 1.30.

(1) X [j] is a rack, called the j-th power of X.

(2) The disjoint union X [1,j] of X and X [j] with multiplication such that X

and X [j] are subracks, and

(1.8) x . y[j] = (x . y)[j], x[j] . y = ϕj
x(y), x, y ∈ X,

is a rack.

X [1,j] is a particular case of an amalgamated sum of racks. The rackX [−1]

will be called the inverse rack ofX and will be denotedX ′; the corresponding
bijection is denoted x 7→ x′. Note X ′′ ' X. The rack X [1,1] will be denoted
X(2) in accordance with [AF09].

Proof. We �rst show (1) for j = −1. The self-distributivity of De�nition 1.7
holds if and only if ϕxϕy = ϕx.yϕx for all x, y ∈ X, i� ϕ−1

ϕ−1
x (u)

ϕ−1
x = ϕ−1

x ϕ−1
u

for all x, u ∈ X (setting u = x . y); this is in turn equivalent to the self-
distributivity for X ′. We next show (a) for j ∈ N. We check recursively
that ϕxϕ

j
y = ϕj

x.yϕx, ϕ
j
xϕy = ϕ

ϕj
x(y)

ϕj
x. Hence ϕj

xϕ
j
y = ϕj

ϕj
x(y)

ϕj
x, and we

have self-distributivity for X [j]. Combining these two cases, we see that
self-distributivity holds for X [j], for any 0 6= j ∈ Z. The proof of (2) is
straightforward. �

Example 1.31. Let 0 6= j ∈ Z. Assume that X is a subrack of G such that
the map ηj : X → G, x 7→ xj, is inyective. Then the image Xj of ηj is

also a subrack, isomorphic to the rack X [j]. If X ∩Xj = ∅, then the disjoint
union X ∪Xj is a subrack of G isomorphic to X [1,j].





Chapter 2

Techniques

Let G be a �nite group, let gG be the conjugacy class of g ∈ G in G, let
CG(g) be the centralizer of g in G and let (ρ, V ) an irreducible representation
of CG(g): ρ ∈ Irr(CG(g)). Note that, since ρ is irreducible and g ∈ Z(CG(g)),
the center of CG(g), then ρ(g) is a scalar (by Schur lemma). Then

(2.1) ρ(g) = 1 =⇒ dim B(C, ρ) =∞.

De�nition 2.1. Let G be a �nite group and g ∈ G. We say that the conju-
gacy class gG is of type B if dim B(gG, ρ) = ∞ for every ρ ∈ Irr(CG(g)).
A �nite group G is of type B if every Nichols algebra over G is in�nite-
dimensional.

Notice that if (V, c) is a braided vector space and W ⊆ V is a subspace
such that c(W ⊗ W ) = W ⊗ W (such W is called a braided subspace of
V ), then B(W ) ↪→ B(V ) (see for example [AS02b, Corollary 2.3]). In
particular, if B(W ) is in�nite dimensional, so is B(V ).

2.1. The Subgroup Technique

As we said before, if W is a braided subspace of a braided vector space V ,
then B(W ) ↪→ B(V ). Let G be a group, M ∈ G

GYD. Here are two ways of
getting braided subspaces of M :

(1) If Y is a subrack of sup(M), thenMY = ⊕y∈YMy is a braided subspace
of M .

(2) Let σ ∈ G, H a subgroup of G such that σ ∈ H. If ρ is a representation
of CG(σ), then M(σH , ρ|CH(σ)) is a braided subspace of M(σG, ρ).

These ways are actually closely related, by the following observation.

Lemma 2.2. If Y is a subrack of sup(M) and K is the subgroup of G
generated by Y , then MY is an object in K

KYD.

Proof. First notice that, by construction, MY is K-graded. Furthermore,
if k ∈ K and y ∈ Y , then k ·My = Mk−1yk ⊆ MY , since Y is closely under
conjugation by K. �

9
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Here are two lemmas that will allow us to study Nichols algebras over
abelian groups. These lemmas were proved in [FGV09, AFGV08].

Lemma 2.3. Let G be a �nite group and H ⊆ G be a subgroup. If h ∈ H
and hH is of type B then hG is of type B.

Proof. SinceM = IndG
CG(g)ρ = ⊕s∈hGVs, where Vs = {v ∈ V | δ(v) = s⊗v},

we have that MH = ⊕s∈hHVs ⊆M is a Yetter-Drinfeld module over H. �

Lemma 2.4. Let G be a �nite group, H be a subgroup of G, h ∈ H. Let
h1, h2 ∈ hG ∩ H and assume that h1 and h2 are not conjugate in H. If
dim B(M(hH

1 , λ1)⊕M(hH
2 , λ2)) =∞ for all λi ∈ Irr(CH(hi)), for 1 ≤ i ≤ 2,

then hG is of type B.

Proof. As before, M = ⊕s∈hGVs. Let V = ⊕s∈hH
1 ∪hH

2
Vs ⊆ M . Then, by

Lemma 2.2, V ∈ H
HYD and the result follows. �

2.2. Abelian Techniques

Following the method given in [Gra00], we try to investigate the question if
the Nichols algebra of V is �nite-dimensional or not by looking for braided
subspaces W of V of diagonal type. Using the existing theory of the Weyl-
Heckenberger groupoid (see [Hec06, Hec09]), it is easy to decide if the
Nichols algebra ofW is in�nite-dimensional. In this case the Nichols algebra
of V is also in�nite-dimensional.

We begin this section with a useful observation that leads us to look for
braided subspaces of diagonal type of in�nite-type.

Let G be a �nite group and g ∈ G. Let gG = {gi | i ∈ I} be the conjugacy
class of g, with gi = xigx

−1
i , and let ρ = (ρ, V ) ∈ Irr(CG(g)) of degree 1.

Fix w ∈ V and de�ne vi = xi ⊗ w ∈ V (g, ρ), where χ = ρ ∈ Irr(CG(g)) is a
character. Let T ⊆ I be a subset such that gigj = gjgi for all i, j ∈ T . Let
VT ⊆ V (g, χ) be the subspace generated by {vi | i ∈ T}. Then the braiding
restricted to VT is of diagonal type, given by

(2.2) c(vi ⊗ vj) = qijvj ⊗ vi, where qij = χ(x−1
j gixj) ∈ C.

Indeed, we have

c(vi ⊗ vj) = givj ⊗ vi = (xjx
−1
j gixj ⊗ w)⊗ vi

= (xj ⊗ x−1
j gixjw)⊗ vi = (xj ⊗ χ(x−1

j gixj)w)⊗ vi,

since x−1
j gixj ∈ CG(g).

We write q = qT = (qij). If T ⊆ I and T ′ ⊆ C, T ′ = {gi | i ∈ T}, then
we make abuse of notation by calling qT ′ = qT and VT ′ = VT .

The following Theorem was proved in [Hec06] showing that some hy-
potheses in [AS00, Theorem 1] were unnecessary.

Theorem 2.5. Let (V, c) a braided vector space of Cartan type. Then
dim B(V ) <∞ if and only if the Cartan matrix is of �nite type.

Proof. See [Hec06, Theorem 4]. �
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2.2.1. The classi�cation of diagonal braidings. We recall three useful
propositions from the Heckernberger's classi�cation of Nichols algebras of
diagonal type (see [Hec09, Hec06]).

Proposition 2.6. Let W be a two-dimensional braided vector space of di-

agonal type. Assume that the Dynkin diagram of W is given by d dα β α

and suppose that dim B(W ) < ∞. Then the Dynkin diagram is among the
following ones:

Dynkin diagram �xed parameter

f fα α
α ∈ C×

f fα α−1 α
α 6= 1

f f−1 α −1
α 6= ±1

f f−α−2
−α3−α−2

α ∈ R12

f f−α−2
α −α−2

α ∈ R12

Proof. By inspection on [Hec09, Table 1]. �

Proposition 2.7. Let W be a three-dimensional connected braided vector
space of diagonal type. Assume that the Dynkin diagram of W is given by

d d�
�
d
A

A

α

α

α

β β

γ

and suppose that dim B(W ) < ∞. Then the Dynkin diagram is among the
following ones:

(1) α = −1, β = q, γ = q−2 for q /∈ {1} ∪ R2 ∪R3;

(2) α = −1, β = γ ∈ R3;

(3) α = −1, β ∈ R3, γ = 1.

Proof. By inspection on [Hec09, Table 2]. �

Proposition 2.8. Let W be a �nite-dimensional space of diagonal type and
assume that the Dynkin diagram of W contains:

(1) a cycle of length ≥ 4; or

(2) a vertex with valency ≥ 4.

Then dim B(W ) =∞.

Proof. Follows from [Hec09]. Notice that the �rst item is [Hec09, Lemma
20]. �
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2.2.2. Real and quasi-real conjugacy classes. In this subsection we
present a useful application of braided vector spaces of Cartan type.

De�nition 2.9. Let G be a �nite group and g ∈ G. Classically, g ∈ G and
gG are called real if g−1 ∈ gG. If g is not real, but it is conjugate to gs 6= g
for some s ∈ N, then we say that g ∈ G and gG are quasi-real of type s.

Lemma 2.10. Let G be a �nite group, g ∈ G and ρ ∈ Irr(CG(g)). Assume
that dim B(gG, ρ) <∞. If g is real then ρ(g) = −1.

Proof. See [AZ07, Corollary 2.2]. �

The next Lemma is a variation of Lemma 2.10. This result was proved
in [FGV07]. A similar result was proved in [AF07a, Lemmas 1.8 and 1.9].

Lemma 2.11. Let G be a �nite group, g ∈ G and ρ ∈ Irr(CG(g)). Assume
that dim B(gG, ρ) < ∞. If g is quasi-real of type n then ρ(g) = −1 or

ρ(g) ∈ R3. Moreover, if gn2 6= g then ρ(g) = −1.

Proof. Let α = ρ(g) and let m be the order of α. We consider �rst the
case gn2

= g. After using Proposition 2.6 we obtain that αn+ 1
n = 1 or

αn+ 1
n

+1 = 1. If m | n2 + 1 then, since m divides n2 − 1, α = −1 (α = 1
would imply dim B(gG, ρ) =∞). If m | n2 + n+ 1 then m | n+ 2 and then
α ∈ R3. Now we consider the case gn2 6= g, i.e. g, gn and gn2

are di�erent
and they belong to CG(g) ∩ gG. Then, if T = {g, gn, gn2} we have

qT =

 α α
1
n α

1
n2

αn α α
1
n

αn2
αn α

 .

By Propositions 2.7 and 2.6, the only possibilities for qT to produce a �nite
dimensional Nichols algebra are:

• α = −1, or

• α
1
n

+n = 1 and α
1

n2 +n2

= 1 (but then α = −1), or

• α
1
n

+n = 1 and α
1

n2 +n2+1 = 1 (but then α = 1), or

• α
1

n2 +n2

= 1 and α
1
n

+n+1 = 1 (but then α = 1).

This completes the proof. �

2.2.3. Counting eigenvalues. In this subsection we present a lemma for
treating conjugacy classes of involutions. This was proved in [AFGV09c].

Lemma 2.12. Let G be a �nite group, g ∈ G an involution, and (ρ, V ) ∈
Irr(CG(g)) of degree n. Assume that there exists an involution x such that
h = xgx−1 and gh = hg. Also assume that there exists a basis

v1, . . . , vr, vr+1, . . . , vn

of V such that ρ(g)vi = −vi for all i and

ρ(h)vi =

{
vi 1 ≤ i ≤ r,
−vi r + 1 ≤ r ≤ n.
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If 4 ≤ r ≤ n− 1 or 1 ≤ r ≤ n− 4, then dim B(gG, ρ) =∞.

Proof. Let x1 = 1 and x2 = x. De�ne W as the subspace generated by
xivj = xi ⊗ vj , where i = 1, 2 and 1 ≤ j ≤ n. Then, W is a braided vector
space with braiding c(xivj ⊗ xivj) = −xivj ⊗ xivj , and, for i 6= j,

c(x1vi ⊗ x2vj) = x2ρ(h)vj ⊗ x1vi,

c(x2vj ⊗ x1vi) = x1ρ(h)vi ⊗ x2vj .

Therefore, for i, j such that 1 ≤ i ≤ r, r + 1 ≤ j ≤ n, we have

c(xkvi ⊗ xlvj) = (−1)kxlvj ⊗ xkv1.

And then the result follows from Lemma 2.8, because the Dynkin diagram
has at least one vertex with valency > 3. �

Given a group G and a representation ρ of G, we remark that there
exists an interesting formula that allows us to compute the multiplicity of
any eigenvalue of ρ(g) for any g ∈ G. With this formula at hand it is not
di�cult to apply Lemma 2.12.

Remark 2.13. Let g ∈ G of order m and (ρ, V ) a representation of G of
degree n, with character χ. Let ξ be a primitive root of 1 of order m. Let ai,
i = 0, . . . ,m− 1, be the multiplicity of the eigenvalue ξi (ai = 0 means that
ξi is not an eigenvalue). Then,

a0

a1

a2
...

am−1

 = V (ξ)−1


χ(1)
χ(g)
χ(g2)
...

χ(gm−1)

 ,

where

V (ξ) =


1 1 1 1 1
1 ξ ξ2 . . . ξm−1

1 ξ2 ξ4 · · · ξ2(m−1)

...
...

...
...

1 ξm−1 ξ2(m−1) · · · ξ(m−1)(m−1)


is the well-known Vandermonde matrix. This is so because the eigenvalues
of the matrix ρ(gj) are just the jth powers of the eigenvalues of ρ(g) with
appropriate multiplicities. Thus χ(gj) =

∑
ai(ξi)j, which is exactly what the

matrix equation says.

2.2.4. The A4 techniques. We begin by recalling a simple but very useful
result concerning abelian subracks with three elements.

Lemma 2.14. Let G be a �nite group. Assume that g0, g1, g2 ∈ G are
conjugate and commute with each other, that x1x2 and x2x1 belong to CG(g0)
(where xi are such that gi = xig0x

−1
i for i = 1, 2), and that g1g2 = gm

0 for

an odd integer m. Then the conjugacy class gG
0 is of type B.
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Proof. Let (V, ρ) be an irreducible representation of CG(g0). Since gigj =
gjgi, there exists 0 6= w ∈ V and λi ∈ C such that ρ(gi)(w) = λiw for
i = 0, 1, 2. For any 0 ≤ i, j ≤ 2, we call γij = x−1

j gixj (here x0 = 1). It is
easy to see that γij ∈ CG(g0) and that

γ = (γij) =

 g0 g2 g1
g1 g0 gs

1g
−1
0

g2 gs
2g
−1
0 g0

 .

Then, W = spanC{x0 ⊗ w, x1 ⊗ w, x2 ⊗ w} is a braided vector subspace of
M(gG

0 , ρ) of abelian type with Dynkin diagram given by

d d�
�
d
A

A

λ0

λ0

λ0

α α

β

where α = λs
0 and β = λs2−2

0 . For B(gG, ρ) to be �nite dimensional, we
should have λ0 = −1 (see [Hec09, Table 2]) and s should be an even number,
which contradicts the hypothesis. �

Here are the �rst two applications of Lemma 2.14.

Lemma 2.15. The conjugacy class of (1 2)(3 4) in the Alternating group A4

is of type B.

Proof. Use Lemma 2.14 with g0 = (1 2)(3 4), g1 = (1 3)(2 4), g2 = (1 4)(2 3),
x1 = (2 4 3) and x2 = x−1

1 (we have g1g2 = g0 in this way). �

Lemma 2.16. Let G be a �nite group and let g, h ∈ G with g an involution,
h and gh of order 3. Then, the conjugacy class gG is of type B.

Proof. The Alternating group A4 can be presented by generators g and
h and relations g2 = h3 = (gh)3 = 1. Thus, the subgroup H = 〈g, h〉
of G is isomorphic to A4. Indeed, the hypothesis implies that the elements
g, h, h2, gh, (gh)2 of G are all distinct. Then, the result follows from Lemmas
2.3 and 2.15. �

There exists a good way of checking if A4 is a subgroup of a given group
G. To this purpose, �rst recall a very useful result from the character theory
of groups.

Proposition 2.17. Let G be a �nite group and take three elements g1, g2, g3
in G Then, if ξ(gG

i , g
G
j , g

G
k ) is the number of times a given element of gG

k

can be expressed as an ordered product of an element of gG
i and an element

of gG
j , we have

ξ(gG
i , g

G
j , g

G
k ) =

|gG
i ||gG

j |
|G|

∑
χ

χ(gi)χ(gj)χ(gk)
χ(1)

,

where χ runs over Irr(G).

Proof. See [JL01, Theorem 30.4]. �

Therefore, we have the following application.
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Lemma 2.18. Let G be a �nite group, let C be a conjugacy class of involu-
tions and A,B be conjugacy classes of elements of order 3. If ξ(C,A,B) > 0
then C is of type B.

Proof. By Proposition 2.17, there exists c ∈ C, a ∈ A, b ∈ B such that
ca = b. Then, Lemma 2.16 applies. �

Another application of Lemma 2.14 is for the group A4 × Cr, for r an
odd integer.

Lemma 2.19. Assume G = A4×Cr with r an odd integer. If Cr = 〈τ〉 and
σ = (1 2)(3 4)× τ , then σG is of type B.

Proof. Use Lemma 2.14 with g1 = (1 2)(3 4) × τ , g2 = (1 3)(2 4) × τ , g3 =
(1 4)(2 3)× τ , x1 = 1, x2 = (1 3 2)× 1, x3 = x−1

2 and h = r + 2. �

2.3. Non-abelian Techniques

2.3.1. Conjugacy classes of type D. We begin with a powerful result of
Heckenberger and Schneider, the proof of which uses the main Theorem of
[AHS08].

Theorem 2.20. Let G be a �nite group, gi ∈ G and ρi ∈ Irr(CG(gi)) for
1 ≤ i ≤ 2. Assume that M(gG

1 , ρ1) and M(gG
2 , ρ2) are irreducible objects in

G
GYD such that dim B(M(gG

1 , ρ1) ⊕M(gG
2 , ρ2)) < ∞. Then, (rs)2 = (sr)2

for all r ∈ gG
1 , s ∈ gG

2 .

Proof. See [HS08, Theorem 8.6]. �

De�nition 2.21. Let G be a �nite group and g ∈ G. The conjugacy class
gG is of type D if there exist r, s ∈ gG such that (rs)2 6= (sr)2 and r and
s are not conjugate in the subgroup H = 〈r, s〉 of G. A �nite group G is of
type D if every non-trivial conjugacy class is of type D.

Proposition 2.22. Let G be a �nite group and g ∈ G. If the conjugacy
class gG is of type D, then it is of type B.

Proof. Follows from Theorem 2.20 and Lemma 2.4. �

Lemma 2.23. Let f : G → H be a group epimorphism and let g ∈ G,
h ∈ H such that f(g) = h. If the conjugacy class hH is of type D, then the
conjugacy class gG is of type D.

Proof. Let h ∈ H. Since the conjugacy class hH is of type D, there exist
r′ and s′ in hH such that (r′s′)2 6= (s′r′)2 and r′ and s′ do not belong to
the same conjugacy class in a subgroup S of H. Since f is an epimorphism,
there exist r and s in G such that f(r) = r′, f(s) = s′. Then r and s belong
to the conjugacy class of g, (rs)2 6= (sr)2, and r and s are not conjugate in
f−1(S). Now, the result follows from Proposition 2.22. �

Lemma 2.24. Let
0→ K

i→ G
p→ H → 0
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be an short exact sequence of groups. Let g ∈ G of order m. If every
conjugacy class in H with representative of order k, for every k such that
k | m and m

k | #K is of type D, then the class gG is also of type D.

Proof. If g ∈ G has order m and h = p(g) has order k, then k | m. Also,
since gk ∈ ker(p) = i(K) and i is a monomorphism, we have that m

k = m
(m,k) |

#K. Now, the result follows from Lemma 2.23. �

Lemma 2.25. Let G = H × K be a direct product of �nite groups. Let
h ∈ H and k ∈ K. If hH is of type D then the conjugacy class of h× k is of
type D.

Proof. Follows from Lemma 2.23. �

Corollary 2.26. Let G be any �nite group. Assume that the simple factors
of G in the Jordan-Hölder decomposition of G are of type D. Then G is of
type D.

2.3.2. The dihedral group and conjugacy class of involutions. Let
n be an even number. Recall that the dihedral group of 2n elements is given
by

D2n = 〈r, s | rn = s2 = 1, srs = r−1〉.
The involutions of D2n belong to these three conjugacy classes {rn/2}, {r2is |
0 ≤ i ≤ n

2 − 1} and {r2i+1s | 0 ≤ i ≤ n
2 − 1}.

Lemma 2.27. Let n > 4 be an even number. Let σ1 = s and σ2 = rs
be elements of the dihedral group of order 2n. Then σ1 and σ2 belong to
di�erent conjugacy classes and (σ1σ2)2 6= (σ2σ1)2. �

Lemma 2.28. Let A be a conjugacy class of involutions in a �nite group G
and let B be a conjugacy class with representative of order 2m, with m > 1.
If S(A,A,B) > 0 then the conjugacy class A is of type D.

Proof. If x and y are two involutions such that xy has order n then 〈x, y〉 '
D2n. In fact, r = xy and s = x. The elements σ1 = s = x and σ2 = rs = y−1

of Lemma 2.27, both belong to A, and they are not conjugate in D2n. Then
the result follows. �

Example 2.29. The conjugacy classes of involutions of the Conway group
Co1 are of type D. In fact, S(2A, 2A, 6E) = 6, S(2B, 2B, 6A) = 2592 and
S(2C, 2C, 6A) = 25920.

2.4. Computational techniques

2.4.1. Bases for permutation groups. Let G be a group acting on a set
X. A subset B of X is called a base for G if the identity is the only element
of G which �xes every element in B. In other words,

{g ∈ G | g · b = b, for all b ∈ B} = 1.

Lemma 2.30. Let G be a group acting on a set X. Let B be a subset of X.
The following are equivalent:

(1) B is a base for G.
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(2) For all g, h ∈ G we have: g · b = h · b for all b ∈ B implies g = h.

Proof. If B is a base, then g ·b = h·b⇒ (h−1g)·b = b⇒ h−1g = 1⇒ h = g.
The converse is trivial. �

Let G be a permutation group. With GAP function BaseOfGroup we
compute a base for G. We use OnTuples to encode a permutation and
RepresentativeAction to decode the information. The following is an ex-
ample over A4.

gap> gr := AltrenatingGroup(4);;

gap> bg := BaseOfGroup(gr);

[ 1, 2 ]

gap> g := (2,4,3);;

gap> OnTuples(bg, g);

[ 1, 4 ]

gap> RepresentativeAction(gr, bg, last, OnTuples);

(2,4,3)

2.4.2. Algorithms for type D. We now explain our algorithms to imple-
ment the techniques of the previous sections. The �rst algorithm is to check
if a given conjugacy class in a �nite group G is of type D.

Given a �nite group G, and r ∈ G, we compute the conjugacy class rG

and use Algorithm 2.1 to decide if rG is of type D.

Algorithm 2.1: Is the conjugacy class rG of type D?

for s ∈ rG do
if (rs)2 6= (sr)2 then

Compute the group H = 〈r, s〉
if rH ∩ sH = ∅ then

return true /* the class is of type D */

end
end

end
return false /* the class is not of type D */

Notice that in Algorithm 2.1 we need to run over all the conjugacy class
rG to look for the element s such that the hypotheses of Proposition 2.22 are
satis�ed. This is not always an easy task. To avoid this problem, we have the
random variation of Algorithm 2.1. The key is to pick randomly an element
x (for example, the x is chosen randomly inside the group G or in a smaller
subset of G) and then check if r and s = xrx−1 satisfy the hypotheses of
Proposition 2.22. This naive variation of the Algorithm 2.1 turns out to be
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very powerful and allows us to study big sporadic groups such as the Janko
group J4 or the Fischer group Fi′24.

Algorithm 2.2: Random variation of Algorithm 2.1

forall i : 1 ≤ i ≤ N do /* the number of iterations */

x ∈ G; /* randomly chosen */

s← xrx−1

if (rs)2 6= (sr)2 then
Compute the group H = 〈r, s〉
if rH ∩ sH = ∅ then

return true /* the class is of type D */

end
end

end
return false /* the class is not of type D */

In the practice, for large groups, it is more economical to implement the
algorithms 2.1 and 2.2 in a recursive way. Let G be a �nite group represented
faithfully (for example, as a group of permutations or inside a matrix group
over a �nite �eld). We compute gG

1 , . . . , g
G
n , the set of conjugacy classes

of G. To decide if these conjugacy classes are of type D, we restrict the
computations to be done inside a nice subgroup of G.

Assume that the list of all maximal subgroups of G up to conjugation,
is known. Say M1,M2, . . . ,Mk, with increasing order. Also assume that
it is possible to restrict our �good� representation of G to every maximal
subgroupMi.

LetM be a maximal subgroup of G. Let h ∈M, and hM the conjugacy
class of h in M. Since M is a subgroup of G, the element h belongs to a
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conjugacy class of G, say hG. So, if the class hM is of type D then the class
hG is of type D too.

Algorithm 2.3: Type D: Using maximal subgroups

gG
1 , . . . , g

G
n is the set of conjugacy classes of G

S ← {1, 2, . . . , n}
foreach maximal subgroupM do

Compute hM1 , . . . , hMm , the set of conjugacy classes ofM
foreach i : 1 ≤ i ≤ m do

Identify hMi inside a conjugacy class in G: hi ∈ gG
σ(i)

if σ(i) ∈ S then
if hMi is of type D then

Remove σ(i) from S
if S = ∅ then

return true /* the group is of type D */

end
end

end
end

end
foreach s ∈ S do

if gG
s is of type D then
Remove s from S
if S = ∅ then

return true /* the group is of type D */

end
end

end
return S /* conjugacy classes not of type D */

Notice that to implement Algorithm 2.3 we need to have not only a good
representation for the group G. We need to have a good representation of the
group G and we need to know how to restrict it to all maximal subgroups.
This information appears in the ATLAS for many of the sporadic simple
groups. So, using the GAP interface to the ATLAS (see [WPN+08]), we
could implement Algorithm 2.3 and use it to study Nichols algebras over the
sporadic simple groups.

Also notice that the treatment of a maximal subgroupM can be simpli-
�ed if it �ts into a short exact sequence of groups 0 → K →M→ H → 0,
where we know the conjugacy classes in H of type D. To apply Lemma 2.23
to a conjugacy class in G, we just need to know that some speci�c conjugacy
classes in H are of type D.
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2.5. Rack-theoretical non-abelian techniques

2.5.1. Racks of type D. We now aim to state a rack-theoretical version
of Proposition 2.22. Let G be a group, r, s ∈ G. Then

(rs)2 = (sr)2 ⇐⇒ r . (s . (r . s)) = s.

We next introduce a notion that is central in our considerations.

De�nition 2.31. Let (X, .) be a rack. We say that X is of type D if there
exists a decomposable subrack Y = R t S of X such that

(2.3) r . (s . (r . s)) 6= s, for some r ∈ R, s ∈ S.
Remark 2.32. Let G be a �nite group and gG a conjugacy class of G. If
the conjugacy class gG is of type D as in De�nition 2.21 then gG is of type
D as a rack (with the conjugation).

The following theorem is one of the main results of this work. It was
proved in [AFGV08].

Theorem 2.33. If X is a �nite rack of type D, then X collapses.

Proof. Let Y ⊆ X, Y = R t S a decomposition as in De�nition 2.31. Let
G be a �nite group, M ∈G

G YD such that X is isomorphic to a subrack of
supM . We identify X with this subrack, and then we can takeMR andMS ,
which are non-trivial objects in G

GYD, K the subgroup of G generated by
Y . We may assume that MR and MS are irreducible; otherwise, we replace
them by irreducible submodules. Now, dim B(MR ⊕MS) =∞ by Theorem
2.20, and then dim B(M) =∞. �

Remark 2.34. Theorem 2.33 generalizes [AF09, Corollary 4.12]. Indeed,

if O is the octahedral rack and O(2) is a disjoint union of two copies of O
(see Example C.3) then O(2) is of type D.

Remark 2.35. Why is it interesting to consider simple racks of type D?
First of all, notice that the following assertions are easy to prove:

(1) If Y ⊆ X is a subrack of type D, then X is of type D.

(2) If Z is a �nite rack and admits a rack epimorphism π : Z → X, where
X is of type D, then Z is of type D. For, π−1(Y ) = π−1(R) t π−1(S)
is a decomposable subrack of Z satisfying equation (2.3).

Now, if X is a �nite rack and some indecomposable component is of type D,
then X is of type D (see [AG03, Proposition 1.17]). And if X is indecom-
posable, then it admits a projection of racks π : X → Y with Y simple.

The following Lemma contains some useful observations to detect racks
(or conjugacy classes) of type D.

Lemma 2.36.

(1) If X is a rack of type D and Z is a quandle, then X × Z is of type D.

(2) Let K be a subgroup of a �nite group G and pick k ∈ CG(K). We
consider the map µk : K → G, g 7→ gk. Then the conjugacy class of
any h ∈ K can be identi�ed with a subrack of the conjugacy class of hk
in G. Therefore, if hK is of type D, then (hk)G is of type D.
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Proof. The �rst item is straightforward, since if r, s ∈ X and z ∈ Z, then
(r, z) . (s, z) = (r . s, z) because Z is a quandle. The second item follows
because the map µk is a morphism of racks. �

2.6. The a�ne technique

In this section we present a rack-theoretical technique that generalizes all
the dihedral techniques presented in [AF09].

Let (A, T ) be a �nite a�ne rack, see Example 1.9. We realize it as a
conjugacy class in the following way. Let d be the order of T . Consider the
semidirect product G = Ao 〈T 〉, de�ned by

(v, T h)(w, T j) = (v + T h(w), T h+j).

The conjugation in G gives

(2.4) (v, T h) . (w, T j) = (T h(w) + (id− T j)(v), T j).

Then Qj
A,T = {(w, T j) : w ∈ A}, j ∈ Cd, is a subrack of G isomorphic to

the a�ne rack (A, T j). Let Q[1,j]
A,T be the disjoint union Q1

A,T ∪Q
j
A,T , j ∈ Cd;

this is a rack with multiplication (2.4). It is called an a�ne double rack. If
j 6= 1, it can be identi�ed with a subrack of G.

Remark 2.37. If (j)T =
∑j−1

i=0 T
i is an isomorphism, then Q[j]

A,T ' (Q1
A,T )j.

Indeed, the map (Q1
A,T )j → Qj

A,T , (v, T ) 7→ (v, T )j = ((j)T v, T
j), is a rack

isomorphism. Hence, Q[1,j]
A,T is isomorphic to (Q1

A,T )[1,j], cf. Lemma 1.30.

Let AT = ker(id− T ) be the subgroup of points �xed by T .

Lemma 2.38. Assume that AT = 0. Then QA,T is indecomposable and it
does not contain any abelian subrack with more than one element.

Proof. For, assume that QA,T = RtS is a decomposition, with (0, T ) ∈ R.
But then (v, T ) . (0, T ) = ((id− T )(v), T ) ∈ R for all v ∈ A. Since id− T is
bijective, QA,T = R. The second claim follows at once from (2.4). �

Lemma 2.39. Let j ∈ Cd. If (id + T j+1)(id− T ) 6= 0, then Q[1,j]
A,T is of type

D.

Proof. Let R = Q1
A,T , S = Qj

A,T , r = (0, T ) ∈ R. Then Q
[1,j]
A,T = R t S.

Pick v /∈ ker(id + T j+1)(id− T ) and s = (v, T j) ∈ S. Then

r . (s . (r . s)) = ((T − T j+1 + T j+2)(v), T j) 6= s,

since (id− T + T j+1 − T j+2)(v) 6= 0. �

We prove an application to a�ne double racks.

First, we recall a result from [HS08].

If G is a �nite group and g, h ∈ G, then the conjugacy classes gG and
hG commute if st = ts for all s ∈ gG and t ∈ hG. Let

F(G) = {O conjugacy class of G : dim B(O, ρ) <∞ for some ρ}.
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Theorem 2.40. Let G be a �nite group such that any two conjugacy classes
in F(G) do not commute. Let U ∈ G

GYD such that dim B(U) <∞. Then U
is irreducible in G

GYD.

Proof. See [HS08, Theorem 8.2]. �

Lemma 2.41. Let G = Ao 〈T 〉. Assume that T has order d and that T is
irreducible (that is to say that A has no non-trivial T -invariant subgroup).
If U ∈ G

GYD satis�es dim B(U) <∞, then U is irreducible.

Proof. By Theorem 2.40, we have to show that any two conjugacy classes
in F(G) do not commute. We claim that

(1) the conjugacy classes of G are either Qj
A,T with j 6= 0, or else the orbits

of T in A.

(2) F(G) ⊂ {Qj
A,T : j 6= 0}; hence any two conjugacy classes in F(G) do

not commute.

The �rst part is elementary, but we sketch the argument. It is evident
that the conjugacy class of (v, id) is the orbit of v = (v, id) under T . If
0 < j < d then 1− T j is bijective, since its kernel is a T -invariant subspace,
but we are assuming that T is irreducible.

We prove the second claim. Let 0 6= v ∈ A; the centralizer of v is A.
Set σk = T k(v) and gk = (0, T k); thus gk . σ0 = σk and σlgk = gkσl−k,
0 ≤ `, k ≤ d − 1. Let χ ∈ Irr(A); then the braiding in M(Ov, χ) is given
by c(gk ⊗ gl) = χ(σk−l)gl ⊗ gk. In other words, this is of diagonal type
with matrix qkl = χ(T k−l(v)). Let ∆ be the generalized Dynkin diagram
associated to (qkl). Now we can identify A = Fq, with q = pt, in such a way
that T (v) = ξv, where ξ ∈ F×q has order d. Hence qklqlk = χ

(
(ξl−k +ξk−l)v

)
.

Observe that ξl + ξ−l = 0 implies ξ4l = 1. Notice that

(2.5) 1 + ξ + ξ2 + · · ·+ ξd−1 = 0.

We can assume χ(v) 6= 1. We consider di�erent cases.

Suppose that d is odd. If 3 - d. If there exists l, with 1 ≤ l ≤ d − 1,
such that q0 lql 0 6= 1, then dim B(Ov, χ) =∞; indeed, ∆ contains a cycle of
length greater than 3, and the result follows from 2.8. Otherwise, χ(v) = 1
by (2.5), which is a contradiction.

Assume that 3 | d. If there exists l, with 1 ≤ l ≤ d − 1 and l 6= d
3 , such

that q0lql0 6= 1, then dim B(Ov, χ) =∞.

Assume that q0lql0 = 1 for all l, with 1 ≤ l ≤ d − 1 and l 6= d
3 . If

q0 d
3
q d

3
0 = 1, then χ(v) = 1 by (2.5), a contradiction. On the other hand, if

q0 d
3
q d

3
0 6= 1, then ∆ contains many triangles none of them listed in [Hec09,

Table 2].

Now assume that d is even. If there exists l, with 1 ≤ l ≤ d − 1 and
l 6= d

2 ,
d
3 , q0lql0 6= 1, then dim B(Ov, χ) = ∞; indeed, ∆ contains a cycle

of length greater than 3, and the result follows from [Hec09]. Otherwise,
we have q0 d

2
q d

2
0 = χ(v)−2; hence, 0 is connected to d

2 and the sub-diagram

spanned by 0 and d
2 is of Cartan type A(1)

1 .
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Therefore, dim B(Ov, χ) =∞; hence Ov /∈ F(G). �

If X is a rack that contains a subrack isomorphic to Q[1,j]
A,T , for some a�ne

rack satisfying the hypothesis of Lemma 2.39 then X is of type D (therefore
it collapses). We now present a way to check this hypothesis.

Proposition 2.42. Let G be a �nite group, O ⊂ G a conjugacy class which
is quasi-real of type j ∈ N. Let (A, T ) be an a�ne rack with T of order d,
and let ψ : A→ O be a monomorphism of racks. If id−T j is an isomorphism
and id + T j+1 6= 0, then O is of type D.

Proof. Since id − T j = (id − T )(j)T , both Remark 2.37 and Lemma 2.38
apply. If Y = ψ(A), then Y ∩ Y j = ∅. If not, pick y ∈ Y ∩ Y j , y = xj

for some x ∈ Y . Then x = xj , because Y does not contain any abelian
subrack with more than one element. But this contradicts the de�nition
of a quasi-real conjugacy class. Hence O contains a subrack isomorphic to
Q1

A,T ∪Q
j
A,T , which is isomorphic to Q[1,j]

A,T . Now the statement follows from
Lemma 2.42. �

Example 2.43. Let G be a �nite group, O ⊂ G a conjugacy class which is
quasi-real of type j ∈ N. Let (A, T ) be an a�ne simple rack with |T | = d,
and let ψ : A→ O be a monomorphism of racks. If j 6= d

2 − 1 when p is odd,
or if j 6= d− 1 when p = 2, then O is of type D.

Remark 2.44. If A = Fp, p a prime, and T has order 2, then Q1
A,T is

called a dihedral rack and denoted Dp in accordance with [AF09, De�nition

2.2]; thus Q[1,1]
A,T is denoted D(2)

p . Therefore, the splitting technique includes

(without having to resort to look for cocycles) the case of quasi-real orbits
containing a dihedral subrack [AF09, Corollary 2.9].

When j = d
2 − 1, we still may conclude that the Nichols algebra has

in�nite dimension, provided that the appropriate hypotheses hold.

Proposition 2.45. Let G be a �nite group, (A, T ) an a�ne simple rack
with |T | = d, and ψ : A o 〈T 〉 → G a monomorphism of groups. Assume

that the conjugacy class O of σ = ψ(0, T ) is quasi-real of type j = d
2 − 1. If

ρ ∈ IrrCG(σ), then dim B(O, ρ) =∞.

Proof. This follows from Lemmas 2.4 and 2.41, which can be applied be-
cause of Remark 2.37. �





Chapter 3

The alternating and

symmetric groups

In this chapter we will be concerned with pointed Hopf algebras over the
alternating and symmetric groups. The aim of this chapter is to prove the
following theorem.

Theorem 3.1. Let n ≥ 5. The only �nite-dimensional pointed Hopf algebra
with coradical An is the group algebra CAn.

This result is a consequence of the Lifting Method of Andruskiewitsch
and Schneider [AS02b] and the non-existence of �nite-dimensional Nichols
algebras over the group An.

In a similar fashion, it is shown that the Nichols algebras over the sym-
metric groups Sm are all in�nite-dimensional, except maybe those related to
the transpositions considered in [FK99], and the class of type (2, 3) in S5.

We also show that any simple rack X arising from a symmetric group,
with the exception of a small list, collapses, in the sense that the Nichols
algebra of (X,q) is in�nite dimensional, for q an arbitrary 2-cocycle.

3.1. Preliminaries

3.1.1. Notations on symmetric groups. Let σ ∈ Sn. Recall that σ is of
type

(1m1 , 2m2 , . . . , nmn)

if the decomposition of σ as product of disjoint cycles contains mj cycles of
length j, for every j, 1 ≤ j ≤ n. The odd part of σ is the product of all
disjoint cycles of odd length j > 1 in the decomposition of σ. Similarly, the
even part of σ is the product of all disjoint cycles of even length. We write
σo (resp. σe) for the odd (resp. even) part of σ.

3.1.2. Conjugacy classes. We shall need later to know the conjugacy
classes of the alternating and symmetric groups. Recall that for any σ ∈ Sn,

25
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the conjugacy class σSn consists of all permutations in Sn which have the
same cycle-shape as σ.

Given an even permutation σ ∈ An, the conjugacy class

σAn = {xσx−1 | x ∈ An}
is contained in σSn but it might not be equal to σSn .

The next proposition determines precisely when σAn and σSn are equal,
and what happens when equality fails.

Proposition 3.2. Let σ ∈ An with n > 1.

(1) If σ commutes with some odd permutation in Sn, then σ
Sn = σAn.

(2) If σ does not commute with any odd permutation in Sn then σSn splits
into two conjugacy classes in An of equal size, with representatives σ
and (1 2)σ(1 2).

Proof. See [JL01, Proposition 12.17]. �

The next proposition is simple but very useful.

Proposition 3.3. For each element σ ∈ Sn there is an involution τ ∈ Sn

such that τστ = σ−1. In particular, every element of Sn is real.

Proof. Since every permutation is a product of disjoint cycles, it su�ces to
prove the result for every j-cycle π. Let

τ =

{
(1 j − 1)(2 j − 2) · · · (k − 1 k + 1) if j = 2k,
(1 j − 1)(2 j − 2) · · · (k k + 1) if j = 2k + 1.

Then, it is straightforward to check that π−1 = τπτ−1. �

Remark 3.4. This proposition is a particular case of [Car72, Theorem C],
since the Weyl group of type An−1 for n ≥ 2 is isomorphic to the symmetric
group Sn.

3.2. Conjugacy classes of type D

Lemma 3.5. The conjugacy classes of type (2, 4), (42), (22, 32), (24, 3),
(1, 24), (13, 22), (26), (1, 33) and (33) in the alternating group are of type D.

Proof. We list in Table 3.1 the permutations σ1 and x such that σ1 and
σ2 = xσ1x

−1 satisfy Proposition 2.22 with the group H = 〈σ1, σ2〉. In
all these cases, it is straightforward to check that these elements ful�ll the
conditions in Proposition 2.22. It can be done for instance with the help of
GAP. �

Of course, classes in An of type D yield classes of type D in Sn. We list
in Table 3.2 some classes of type D in symmetric groups which either are not
in An or split into two classes not of type D in An.

Lemma 3.6. The conjugacy classes of type (3, 4), (1, 4), (2, 32) (23, 3),
(1, 2, 3), (25), (6) and (1, 23) in the symmetric group are of type D.

Proof. See the proof of Lemma 3.5 and Table 3.2. �
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Table 3.1. Some classes of type D in An

Type σ1 x
(2, 4) (1 2)(3 4 5 6) (1 2 3)
(42) (1 2 3 4)(5 6 7 8) (4 5)(6 8)

(22, 32) (1 2)(3 4)(5 6 7)(8 9 10) (4 5)(9 10)
(24, 3) (1 2)(3 4)(5 6)(7 8)(9 10 11) (4 5)(8 9 10 11)
(1, 24) (2 3)(4 5)(6 7)(8 9) (1 2 3 4 6 7 8 5 9)

(13, 22) (4 5)(6 7) (1 2 3 4)(5 7)
(26) (1 2)(3 5)(4 6)(7 9)(8 11)(10 12) (4 5)(8 9)(10 12 11)

(1, 32) (2 3 4)(5 6 7) (1 2 3 5 4 6 7)
(33) (1 2 3)(4 5 6)(7 8 9) (3 4)(8 9)

Table 3.2. Some classes of type D in Sn

Type σ1 x
(3, 4) (1 2 3)(4 5 6 7) (2 3)(6 7)
(1, 4) (2 3 4 5) (1 2 4 3 5)

(2, 32) (1 2)(3 4 5)(6 7 8) (2 3)(7 8)
(23, 3) (1 2)(3 4)(5 6)(7 8 9) (2 3)(6 7)

(1, 2, 3) (2 3)(4 5 6) (1 2)(5 6)
(25) (1 2)(3 4)(5 6)(7 8)(9 10) (2 3)(6 7)(8 9)

(1, 23) (2 3)(4 5)(6 7) (1 2 4 5 7)(3 6)
(6) (1 2 3 4 5 6) (3 5)(4 6)

Lemma 3.7. The class of type (n) in Sn is of type D if n > 6.

Proof. Let n ≥ 7. Let σ = (1 2 3 4 · · ·n) and take τ = (1 3)σ(1 3) =
(3 2 1 4 · · ·n). Then τστσ(1) = 1. And on the other hand,

στστ(1) =

{
7 if n > 7
4 if n = 5

Therefore, (στ)2 6= (τσ)2. Let H = 〈σ, τ〉 be the subgroup of Sn generated
by σ and τ .

If n is odd, then H ⊆ An. Since the centralizer of σ in Sn is included
in An, and since τ = (1 3)σ(1 3) with (1 3) /∈ An, then τ and σ belong
to di�erent conjugacy classes in An. Therefore, they belong to di�erent
conjugacy classes in H. Then, the result follows from Proposition 2.22.

If n is even, H = 〈σ, τ〉 = 〈σ, τσ−1〉 = 〈(1 2 · · ·n), (1 3)(2 4)〉. It is easy
to see that the elements in H can be written as some products (µ1 × µ2)σi,
where µ1 ∈ S{1,3,5,··· ,n−1}, µ2 ∈ S{2,4,6,··· ,n} and the signs sgn(µ1) = sgn(µ2).
Now, if x ∈ Sn is such that xσx−1 = τ , then x = (1 3)σi for some i, which
does not belong to H. Hence, σ and τ belong to di�erent conjugacy classes
in H. Then, the result follows from Proposition 2.22. �

Lemma 3.8.

(1) The class of type (n) in An is of type D if n is odd and is not square-free.
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(2) The class of type (n,m) in An+m is of type D if both n and m are odd,
n ≥ 3 and m ≥ 5.

Proof. For the �rst item, let n = m2k, with m ≥ 3. Take then σ =
(1 2 · · ·n). For 1 ≤ i ≤ mk, let

ri = (i (mk + i) (2mk + i) · · · ((m− 1)mk + i)),

and consider τ = r1σr
−1
1 . Then σ and τ are conjugate in An, but they are

not conjugate in H = 〈σ, τ〉. To see this, notice that σr−1
1 σ−1 = r−1

2 , and
then, as in the proof of Lemma 3.7,

H = 〈σ, τσ−1〉 = 〈σ, r1r−1
2 〉

Then H ⊆ G := 〈σ, r1, · · · , rmk〉. Actually, since σmk = r1r2 · · · rmk, G is an
extension

1→ 〈r1, · · · , rmk〉 ' (Cm)mk → G→ Cmk → 1.

Any element in G can be written uniquely as a product ri1
1 · · · r

imk
mk σ

j , where
0 ≤ j < mk. We can consider then the homomorphism α : G → Cm, given
by α(ri1

1 · · · r
imk
mk σ

j) = τ i1+i2+···+imk , where τ is a generator of Cm. This
homomorphism is well de�ned, since α(σmk) = α(r1r2 · · · rmk) = τmk = 1.
On the other hand, the centralizer of σ in An is the subgroup generated by
σ. Thus, for σ and τ to be conjugate in H, there should exist an integer
j such that r1σj ∈ H. But it is clear that H is in the kernel of α, while
α(r1σj) = τ .

To prove the second item we take

σ1 = (1 2 · · ·n)(n+ 1 n+ 2 · · ·n+m)

and σ2 = xσx−1, where x = (1 2)(n + 1 n + 3). Then the subgroup H =
〈σ1, σ2〉 ⊆ An ×Am. Let π : An ×Am → Sm be the projection to the second
component, and notice that π(σ1), π(σ2) are the elements σ, τ in the proof
of Lemma 3.7. Then, (σ1σ2)2 6= (σ2σ1)2 and they are not conjugate in H,
since both statements hold in π(H). �

Juxtaposition and classes left. Before proving our main result, we intro-
duce a technique.

Lemma 3.9 (Reduction by juxtaposition). Let m = p + q, µ ∈ Sp, τ ∈ Sq

and σ = µ ⊥ τ ∈ Sm the juxtaposition. If µSp is of type D, then σSm also is.
In the same vein, if µ ∈ Ap and its conjugacy class in Ap is of type D, and
τ ∈ Aq, then the conjugacy class of σ = µ ⊥ τ ∈ Am is of type D.

This is so because the inclusion Sp × Sq ↪→ Sm induces an inclusion of
racks µSp × τSq ↪→ σSm .

Observe also that if σ ∈ An and σAn is of type D, then so is σSn . On
the other hand, if σ ∈ An is of type (1j1 , · · · , njn) and either ji > 0 for some
i even or either ji > 1 for some i odd, then σSn = σAn . As an example, if
n ≥ 5 is odd, then the class of type (12, n) in An+2 is of type D. This follows
by juxtaposition, since it coincides with the class of type (12, n) in Sn+2, and
the class of type (n) in Sn is of type D.
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As a consequence of the preceding paragraphs, we list the classes which
are not of type D. In these cases, we consider all pairs σ1, σ2 in them, with
the help of GAP, to check that they are not of type D. We list also two
families of classes in Am for which we do not know the answer.

Corollary 3.10.

• Classes not of type D in Sm: (4); (3, 3); (2, 2, 3); (2, 3); (1n, 3);
(24); (23); (12, 22); (1, 22); (22); (1n, 2).
• Classes not of type D in Am: (3, 3); (2, 2, 3); (1n, 3); (24); (12, 22);

(1, 22), (22).
• Classes not necessarily of type D in Am: (1, n); (n) (for n ≥ 5
square free).

We were not able to �nd out in general whether or not the classes of type
(n), (1, n) in Am, with n ≥ 5 and square free, are of type D. For instance,
the class of type (1, 5) is not of type D, while the class of type (1, 7) is.

3.3. Main results

3.3.1. The alternating group. Before proving our main result about Nichols
algebras over the alternating groups we need to study the conjugacy classes
not covered by Corollary 3.10.

Lemma 3.11. Let σ ∈ Am be of type (1n1 , 2n2 , σo). Then the conjugacy
class σAm is of type B.

Proof. If n2 = 0, then the result follows from Lemmas 3.3 and 2.10. Now
consider n2 = 2k an even number. Assume �rst that σo = 1. For every l,
1 ≤ l ≤ k, we de�ne

Cl = (4l − 3 4l − 2)(4l − 1 4l),

Dl = (4l − 3 4l − 1)(4l − 2 4l),

αl = (4l − 2 4l − 1)(4l − 3 4l − 2) = (4l − 1 4l − 2 4l − 3).

It is easy to see that the group generated by Cl, Dl and αl is isomorphic to
A4. Moreover, the group generated by

C = C1 · · ·Ck, D = D1 · · ·Dk and α = α1 · · ·αk

is also isomorphic to A4 and C is an involution, conjugate to σ in Am. Then,
the conjugacy class σAm is of type B. Now, if σo 6= 1, as before, we have that
σ belongs to a subgroup isomorphic to A4 × 〈σo〉. Then, the result follows
from Lemma 2.19. �

Lemma 3.12. The conjugacy classes of type (22, 3), (24), (22), (1, 22) and
(12, 22) in the alternating group are of type B.

Proof. For the conjugacy class of type (22) in A4, use Lemma 2.15. Then,
by Lemma 2.3, the conjugacy classes of type (1, 22) and (12, 22) are also of
type B. For the conjugacy class of type (22, 3) of A7, notice that the group
generated by (1 2)(3 4)(5 6 7), (1 3)(2 4)(5 6 7) and (2 4 3) is isomorphic to
A4 ×C3. Then, by Lemmas 2.19 and 2.3, the conjugacy class of type (22, 3)
is of type B. �
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Lemma 3.13. Let p > 3 be a prime number. Then, the conjugacy classes
of type (p) and (1, p) in the alternating group are of type B.

Proof. Let σ be an element of type (p). If σ is real, then the result follows
from Lemma 2.10. Otherwise, if σ2 ∈ σAp then σ4 ∈ σAp and the result
follows from Lemma 2.11, since σ4 6= σ2 and σ has order p > 3. If σ2 /∈
σAp then, by Proposition 3.3, there exists an involution x ∈ Sp such that
σ−1 = xσx, with x odd. And then, there exists an odd involution y such
that σ2 = yσy−1. Let z = xy ∈ Ap. Then, σ−2 = zσz−1 ∈ C and σ4 ∈ σAp .
Therefore, the result follows from Lemma 2.11 since σ4 = σ−2. The proof
for the conjugacy class of type (1, p) in Ap+1 is similar. �

Lemma 3.14. The conjugacy classes of type (1n, 3) (n > 2) and (32) in the
alternating group are of type B.

Proof. First we prove that the conjugacy class of type (1n, 3) is of type
B. Let n > 2 and σ be of type (1n, 3). Then, there are at least two �xed
points of σ, say n− 1 and n. By Proposition 3.3, there exists an involution
τ in Sn−2 such that τστ = σ−1. If τ ∈ An−2 ⊆ An, the result follows from
Lemma 2.10. Otherwise take the involution τ ′ = τ(n− 1n) ∈ An and notice
that τ ′στ ′ = σ−1. Then, the result follows from Lemma 2.10.

For the conjugacy class of type (32), let σ = (1 2 3)(4 5 6) and notice that
σ−1 = xσx, where x = (2 3)(5 6). Therefore, the result follows from Lemma
2.10. �

We have proved the following result.

Theorem 3.15. Let n ≥ 5. Every conjugacy class in the alternating group
An is of type B.

This result was known for the particular cases n = 5 (see [AF07a] or
[FGV07, because PSL(2, 4) ' A5]) and n = 7 ([Fan07a]). Since A3 is
abelian, �nite-dimensional Nichols algebras over it are classi�ed and there are
25 of them (see [AS00, Theorem 1.3] and [AS02a, Theorem 1.8]). Nichols
algebras over A4 are in�nite-dimensional except for four pairs corresponding
to the classes of (1 2 3) and (1 3 2) and the non-trivial characters of C3.
Actually, these four algebras are connected to each other by an outer auto-
morphism of A4 or by the Galois group Q(ω)/Q for ω ∈ R3 (the cyclotomic
extension by third roots of unity). Therefore, there is only one pair to study.

3.3.2. Proof of Theorem 3.1. Theorem 3.1 now follows from the Lifting
Method [AS02b] and the Theorem 3.15. �

3.3.3. The symmetric groups. As before, to prove our main result about
Nichols algebras over symmetric groups we need to study the conjugacy
classes not covered by Corollary 3.10.

Lemma 3.16. The conjugacy classes of type (1n, 3) (n > 2), (32), (22, 3),
(24), (22), (1, 22) and (12, 22) in the symmetric group are of type B.

Proof. Since Am is a subgroup of Sm, the result follows from Lemmas 2.3,
3.12, 3.14 and 3.13. �
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The classi�cation of �nite-dimensional Nichols algebras and �nite dimen-
sional pointed Hopf algebras over S3 was completed in [AHS08]. Finite-
dimensional Nichols algebras over S4 were classi�ed in [AHS08] and �nite-
dimensional pointed Hopf algebras over S4 were classi�ed in [GG09].

Nichols algebras over the symmetric groups Sn for n ≥ 5 were studied in
[AZ07, AF07b, AFZ09]. The following result about Nichols algebras over
symmetric groups was proved in [AFGV08].

Theorem 3.17. Let n ≥ 5 and let σ ∈ Sn. If the conjugacy class σSn is not
of type B, then σ belong to one of the following conjugacy classes:

(1) The conjugacy class of transpositions in Sn;

(2) The conjugacy class of (1 2)(3 4 5) in S5;

(3) The conjugacy class of (1 2)(3 4)(5 6) in S6.

Proof. Let σ ∈ Am. If σAm is of type D, then σSm is of type D. Therefore,
the result follows from Corollary 3.10 and Lemma 3.16. �

By Proposition 3.3, the conjugacy class of type (2, 3) is real. Also, it is
easy to see that the centralizer of σ = (1 2)(3 4 5) in S5 is isomorphic to
C6. Therefore, by Lemma 2.10, there is only representacion ρ ∈ Irr(C6) to
study: the unique such that ρ(σ) = −1. The rack and the 2-cocycle can be
calculated with GAP and RiG.

The conjugacy class of elements of type (23) in S6 is isomorphic, as a
rack, to the conjugacy class of the transpositions in S6, since any map in the
class of the outer automorphism of S6 applies (1 2) in (1 2)(3 4)(5 6) (see
[JR82]). Thus, the case of the conjugacy class of type (23) is contained in
the study of the conjugacy class of transpositions.

Let σ = (1 2) ∈ Sn, let C be the conjugacy class of σ in Sn and let
ρ ∈ Irr(CSn(σ)) It is easy to see that CSn(σ) ' C2 × Sn−2. Therefore, if
dim B(C, ρ) <∞ then ρ = sgn⊗sgn or ρ = 1⊗sgn, because σ is an involution
(here 1 is the trivial representation of C2 and sgn is the sign representation).





Chapter 4

Some groups of Lie type

The aim of this chapter is to prove that some �nite groups of Lie type
have no �nite-dimensional Nichols algebra. Then, by the lifting method
of Andruskiewitsch and Schneider, there will be no �nite-dimensional non-
trivial pointed Hopf algebra over any of these groups. The groups studied in
this chapter are:

• PSL(2, q) for q even;

• The linear groups PSL(5, 2);

• The Chevalley groups G2(q) for q = 3, 4, 5;

• The symplectic groups S6(2) and S8(2);

• The orthogonal groups O7(3), O+
8 (2) and O−10(2);

• The automorphism group of the Tits group.

In Section 4.1 we prove that the simple groups PSL(2, 2m), for m > 1,
are of type B. It is interesting to remark that this result is obtained only
with abelian techniques. The other �nite groups of Lie type were studied
mainly by computational methods.

4.1. The groups PSL(2, q) for q even

In this section, q = 2m for m > 0, E = Fq2 will be the quadratic extension
of Fq and x will be the Galois conjugate of x ∈ E. Recall that the order of
PSL(2, q) is (q − 1)q(q + 1). The conjugacy classes of PSL(2, q) are given in
Table 4.1 (see [ZN74]). There are q+1 conjugacy classes divided in 4 types:

We �rst consider the case q = 2. We have PSL(2, 2) ' S3 and Nichols
algebras generated by irreducible Yetter-Drinfeld modules over S3 were stud-
ied in [MS00, AHS08]. They are in�nite dimensional except for B(τ, sgn),
which is 12-dimensional (here τ is the conjugacy class of transpositions and
sgn is the non-trivial character of its centralizer). The classi�cation of �nite-
dimensional pointed Hopf algebras over S3 was conclued in [AHS08].

We now consider the case q > 2.

33
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Table 4.1. Conjugacy classes of PSL(2, q) for q even

Representative Size Number

I = c1 =
(

1
1

)
1 1

c2 =
(

1 1
1

)
q2 − 1 1

c3(x) =
(
x

x−1

)
(x 6= 1) q(q + 1) (q−2)

2

c4(x) =
(

1
1 x+ x

)
(x ∈ E \ Fq) (q − 1)q q

2

Proposition 4.1. Let q = 2n for n ≥ 2. The conjugacy classes of ci in
PSL(2, q) for i = 1, 2, 3, 4 are of type B.

We consider each class separately. The class of c1 gives the trivial braid-

ing. For the class of c2, we take, for a ∈ F×q , xa =
(
a

a−1

)
. Then

ga = xac2x
−1
a =

(
1 a2

1

)
. The centralizer of c2 is the abelian group

Fq embedded in PSL(2, q) as

(
1 Fq

1

)
. If χ : Fq → C is a character

of the centralizer, we get qab = χ(x−1
b gaxb) = χ(gab−1), whence qabqba =

χ

(
1 a2b−2 + a−2b2

1

)
(we write quv for qgugv). Since q = 2n, χ takes

values ±1. If qaa = 1, then dim B(C2, χ) =∞, so we may assume qaa = −1.

If there exists a ∈ Fq \ {0, 1} such that χ

(
1 a2 + a−2

1

)
= −1, then

we get

q1,aqa,1 = qa,a2qa2,a = · · · = qam,1q1,am = −1,

where am+1 = 1. This implies that the space VT contains a cycle of length
m ≥ 3 with edges labelled by −1, whence the conjugacy class of ci is of type

B. Assume then that χ

(
1 a2 + a−2

1

)
= 1 for all a 6= 0, 1. But then,

for all x in the subgroup generated by the elements of the form a2 + a−2

(a 6= 0, 1), we get χ
(

1 x
1

)
= 1. Take now any a ∈ Fq \ {0, 1}, and let r

be the order of a2 + a−2. Since r is odd, 1 = (a2 + a−2)r is in the subgroup
generated by elements a2i + a−2i for 0 < i ≤ r, but this contradicts the fact

that qaa = χ

(
1 1

1

)
= −1.

For the conjugacy class of c3, it is easy to see that c3(x) and c3(x−1) =
c3(x)−1 are conjugate, whence they both have the same odd order. Then by
Lemma 2.10, the class of c3 is of type B.

Finally, for the conjugacy class of c4, we have that the centralizer of c4(x)
is a subgroup of the cyclic group E×, hence it is cyclic. Again, it is easy
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to see that both c4(x) and c4(x)−1 =
(
x+ x 1

1

)
are conjugate and they

have odd order. Then, by Lemma 2.10, the conjugacy class of c4 is of type
B.

4.2. The linear group PSL(5, 2)

This group has order 9 999 360. It has 27 conjugacy classes. To study Nichols
algebras over this group we use the representation inside S31 given in ATLAS.

Lemma 4.2. The conjugacy classes of PSL(5, 2) with representatives of order
6= 31, and the conjugacy class 2A, of size 465, are all of type D.

Proof. We use Algorithm 2.1, see the log�le L5(2).log for details. �

Theorem 4.3. The group PSL(5, 2) is of type B.

Proof. The conjugacy classes with representatives of order 31 are quasi-real
and Lemma 2.11 applies. For the conjugacy class 2A use Lemma 2.18, since
ξ(2A, 3A, 3A) = 42. Then the result follows from Lemma 4.2. �

4.3. Some orthogonal groups

In this section we use our computational techniques to obtain some results
regarding Nichols algebras of the orthogonal groups that appear as a sub-
groups or subquotients of the sporadic simple groups.

4.3.1. The group O7(3). This group has order 4 585 351 680. It has 58
conjugacy classes. For computations we use a representation inside S351

given in ATLAS.

Lemma 4.4. Every conjugacy class, except the conjugacy class of involutions
named 2A, is of type D.

Proof. We use Algorithm 2.2, see the �le O7(3).log for details. �

Theorem 4.5. The orthogonal group O7(3) is of type B.

Proof. By Lemma 4.4 it remains to study the conjugacy class 2A. For this
conjugacy class use Lemma 2.12 and Remark 2.13, see the �le O7(3)/2A for
details. �

4.3.2. The group O+
8 (2). This group has order 174 182 400. It has 53

conjugacy classes.

Lemma 4.6. Every conjugacy class with representative 6= 2, 3 is of type D.

Proof. We use Algorithm 2.2, see the �le O8+(2)/O8+2(2).log for details.
�

Lemma 4.7. The conjugacy classes of involutions in O+
8 (2) are of type B.

Proof. For these �ve conjugacy classes we use Lemma 2.18. See Table 4.2
for details. �
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Table 4.2. Involutions in O+
8 (2)

Class Size
2A 1575 ξ(2A, 3E, 3E) = 81
2B 3780 ξ(2B, 3E, 3E) = 108
2C 3780 ξ(2C, 3E, 3E) = 108
2D 3780 ξ(2D, 3E, 3E) = 108
2E 56700 ξ(2E, 3E, 3E) = 486

Theorem 4.8. The group O+
8 (2) is of type B.

Proof. By Lemmas 4.6 and 4.7, it remains to study the conjugacy classes
3A, 3B, 3C, 3D, 3E. But these classes are real, so Lemma 2.10 applies. �

4.3.3. The group O−10(2). This group has order 25 015 379 558 400. It has
115 conjugacy classes. For the computations we use the representation inside
S495 given in ATLAS.

Lemma 4.9. Every conjugacy class, except the conjugacy classes named 2A,
3A, 11A, 11B, 33A, 33B, 33C, 33D is of type D. Notice that the conjugacy
class 2A (resp. 3A) has 19635 (resp. 47872) elements.

Proof. We use Algorithm 2.2, see the �le O10-(2)/O10-(2).log for details.
�

Theorem 4.10. The group O−10(2) is of type B.

Proof. By Lemma 4.9 it remains to study the conjugacy classes 2A, 3A,
11A, 11B, 33A, 33B, 33C, 33D. The conjugacy class 2A is of type B, since
ξ(2A, 3F, 3F ) = 243 and Lemma 2.18 applies. For the class 3A use Lemma
2.10, since it is a real conjugacy class. And for the classes 11A, 11B, 33A,
33B, 33C, 33D use Lemma 2.11, since the conjugacy classes 11A, 11B (resp.
33A, 33B, 33C, 33D) are quasi-real of type j = 3 (resp. j = 4). �

4.4. Some groups of type G2

In this section we prove that the groups G2(q) for q = 3, 4, 5 are of type B.
Moreover, we will prove that almost all conjugacy classes are of type D.

4.4.1. The exceptional group G2(4). In this section we prove that the
group G2(4) is of type B. This group has order 251 596 800. It has 32 con-
jugacy classes. In particular, the conjugacy classes with representatives of
order 2 or 3 are the following:

Name Centralizer size
2A 61440
2B 3840
3A 60480
3B 180

Lemma 4.11. The conjugacy classes of G2(4) with representatives of order
6= 2, 3 are of type D.
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Proof. We use Algorithm 2.3, see the �le G2(4)/G2(4).log for details. �

Theorem 4.12. The group G2(4) is of type B. �

Proof. By Lemma 4.11, it remains to study the conjugacy classes with rep-
resentatives of order 2 or 3. For the two conjugacy classes of involutions use
Lemma 2.18, because ξ(2A, 3B, 3B) = 171 and ξ(2B, 3A, 3A) = 126. For the
conjugacy classes with representatives of order 3 use Lemma 2.10, because
these conjugacy classes are real. �

4.4.2. The exceptional groups G2(3) and G2(5). For the orders and
number of conjugacy classes of the groups G2(3) and G2(5) see Table 4.3.
We have the following result.

Theorem 4.13. The groups G2(3) and G2(5) are of type D. Hence, they are
of type B.

Proof. We use Algorithm 2.3, see Table 4.3 for the log �les. �

Table 4.3. Some Chevalley groups of type D

Group Order Conjugacy classes Log �le
G2(3) 4 245 696 23 G2(3)/G2(3).log

G2(5) 5 859 000 000 44 G2(5)/G2(5).log

4.5. Some symplectic groups

4.5.1. The symplectic group S6(2). This group has order 1 451 520. It
has 30 conjugacy classes. For the computations we use the representation of
S6(2) inside S28 given in ATLAS.

Lemma 4.14. Every conjugacy class of S6(2), with the possible exception of
2A, 2B, 3A is of type D.

Proof. We use Algorithm 2.2, see the �le S6(2)/S6(2).log for details. �

Notice that the conjugacy class 2A (resp. 2B, 3A) has size 63 (resp. 315,
672).

Theorem 4.15. The group S6(2) is of type B.

Proof. By Lemma 4.14 it remains to study the classes 2A, 2B, 3A. For the
conjugacy class 2A use Lemma 2.12 and Remark 2.13, see the �le S6(2)/2A.
For the conjugacy class 2B use Lemma 2.18, since ξ(2B, 3C, 3C) = 27. For
the conjugacy class 3A use Lemma 2.10, since this conjugacy class is real. �
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4.5.2. The symplectic group S8(2). This group has order 47 377 612 800.
It has 81 conjugacy classes. For the computations we use the representation
of S8(2) inside S120 given in ATLAS.

Lemma 4.16. Every conjugacy class, except 2A, 2B, 3A is of type D.

Proof. We use Algorithm 2.2, see the �le S8(2)/S8(2).log for details. �

Notice that the conjugacy class 2A (resp. 2B, 3A) has size 5355 (resp.
255, 10880).

Lemma 4.17. The conjugacy classes 2A, 2B, 3A are of type B.

Proof. For the real conjugacy class 3A use Lemma 2.10. For the conjugacy
classes 2A use Lemma 2.12 and Remark 2.13, see the �les S8(2)/2A for
details. For the conjugacy class 2B use Lemma 2.18, since ξ(2B, 3C, 3C) =
135. �

4.6. The Tits group

4.6.1. The Tits group. This group, also known as the exceptional group
2F4(2)′ has order 17 971 200. It has 22 conjugacy classes and 8 conjugacy
classes of maximal subgroups.

Lemma 4.18. Every conjugacy class of T , with the possible exception of the
class 2A, of size 1755, is of type D.

Proof. We use Algorithm 2.3, see the �le T/T.log for details. �

Theorem 4.19. The Tits group T is of type B.

Proof. By Lemma 4.18 it remains to study the conjugacy class 2A. But
ξ(2A, 3A, 3A) = 27, so Lemma 2.18 applies. �

4.6.2. The automorphism group of the Tits group. Here we study
Nichols algebras over the group Aut(2F4(2)′) ' Aut(2F4(2)) ' 2F4(2), the
automorphism group of the Tits group (see [GL75]). This group has order
35 942 400. It has 29 conjugacy classes.

Lemma 4.20. Every conjugacy class of 2F4(2), with the exception of the
class 2A, of size 1755, is of type D.

Proof. We use Algorithm 2.1. See the �le 2F4(2)/2F4(2).log for details.
�

Theorem 4.21. The group 2F4(2) is of type B.

Proof. By Lemma 4.20 it remains to study the conjugacy class 2A. For this
conjugacy class use Lemma 2.18, because S(2A, 3A, 3A) = 27. �
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4.7. Some direct products

In this section we study some direct products that appear as subgroups or
subquotients of some sporadic simple groups.

Lemma 4.22. Every non-trivial conjugacy class with representative of order
6= 2, 3 of A9 × S3 is of type D.

Proof. Follows from Algorithm 2.1, see the �le A9xS3.log for details. �

Lemma 4.23. The conjugacy classes with representatives of order 9 and 18
of O7(3)× S3 are of type D.

Proof. Follows from Lemmas 2.25 and 4.4. �

Lemma 4.24. Every non-trivial conjugacy class of S5 ×PSL(3, 2) with rep-
resentative of order 6= 2, 3, 4, 6, 7 is of type D.

Proof. Follows from Algorithm 2.1. See the �le S5xL3(2).log for the com-
putations. �

Lemma 4.25. Every conjugacy class in A6 × PSU(3, 3) with representative
of order 28, 35 is of type D.

Proof. We use the Algorithm 2.1, see the �le A6xU3(3)/A6xU3(3).log for
details. �





Chapter 5

The sporadic groups

The aim of this chapter is to prove that any �nite-dimensional complex
pointed Hopf algebra with group of group-likes isomorphic to a sporadic
simple group is the group algebra, with the possible exception of the Fischer
group Fi22, the Baby Monster B and the Monster M. This result will be a
consequence of the non-existence of �nite-dimensional Nichols algebras over
the sporadic simple groups studied (and, of course, the Lifting Method of
Andruskiewitsch and Schneider).

5.1. Preliminaries

5.1.1. The classi�cation Theorem of �nite simple groups. First we
recall the classi�cation of �nite simple groups (see [Asc00] and the references
therein for details).

Classi�cation Theorem. Every �nite simple group is isomorphic to one
of the following groups:

(1) A cyclic group of prime order;

(2) An Alternating group of degree at least 5;
(3) A group of Lie type;

(4) One of 26 sporadic groups.

Of course, in order to understand the Classi�cation Theorem, you need
to know what a �group of Lie type� and �sporadic group� mean. A group
of Lie type is somehow a �nite analog of a Lie group. In addition, there
exists twenty-six sporadic �nite simple groups that are not members of any
reasonably de�ned in�nite family of simple groups. The sporadic simple
groups are:

• Mathieu groups: M11, M12, M22, M23, M24;

• Janko groups: J1, J2, J3, J4;

• Conway groups: Co1, Co2, Co3;

• Fischer groups: Fi22, Fi23, Fi24;
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42 5. The sporadic groups

• Higman-Sims group: HS;

• McLaughlin group: McL;

• Held group: He;

• Rudvalis group: Ru;

• Suzuki sporadic group: Suz;

• O'Nan group: ON ;

• Harada-Norton group: HN ;

• Lyons group: Ly;

• Thompson group: Th;

• Baby Monster group: B;

• Fischer-Griess Monster group: M ;

Sometimes the Tits group T is regarded as a sporadic group (because it is
not strictly a group of Lie type), in which case there are 27 sporadic groups.
Nichols algebras over the Tits group T were studied in Chaper 4, Section
4.6.

5.1.2. The ATLAS of �nite groups. The ATLAS of Finite Groups, often
simply known as the ATLAS, is a group theory book by John Conway, Robert
Curtis, Simon Norton, Richard Parker and Robert Wilson (with computa-
tional assistance from J. G. Thackray), published in 1985 (see [CCN+85]).
It lists basic information about �nite simple groups such as presentations,
conjugacy classes of maximal subgroups, character tables and power maps
on the conjugacy classes.

The ATLAS is being continued in the form of an electronic database:
see [WWT+]. It currently contains information (including 5215 representa-
tions) on about 716 groups. In order to access to the information contained
in the ATLAS, we use the AtlasRep package (see [WPN+08]) for GAP.

5.1.3. Conjugacy classes. With GAP and ATLAS we list real and quasi-
real conjugacy classes of the sporadic simple groups studied in this chapter.
See Apendix A for details.

5.2. The Mathieu groups

In this section we study Nichols algebras over the Mathieu simple groups
M11, M12, M22, M23, M24. This study was initiated in [Fan07b], where it
was proved that the groups M22 and M24 are of type B. In Table 5.1 we
list the order, the number of conjugacy classes and the number of conjugacy
classes of maximal subgroups of each Mathieu simple group.

Lemma 5.1. Let G be any of the Mathieu group M11, M12, M22, M23,
M24. Every conjugacy class of G, with the possible exception of the conjugacy
classes listed in Table 5.2, is of type D.

Proof. This was proved by Algorithm 2.3, see the log�les listed in Table 5.2
for details. �



5.2. The Mathieu groups 43

Table 5.1. Mathieu simple groups

Group Order Conjugacy Classes Maximal subgroups
M11 7920 10 5
M12 95040 15 11
M22 443520 12 8
M23 10200960 17 7
M24 244823040 26 9

Theorem 5.2. The Mathieu simple groups M11, M12, M22, M23, M24 are
of type B.

Proof. By Lemma 5.1, it remains to consider the conjugacy classes 8A, 8B,
11A, 11B ofM11, the classes 11A, 11B ofM12 andM22, and the classes 23A,
23B of M23 and M24. For all the conjugacy classes 11A, 11B, 23A, 23B, use
Lemma 2.11, because all of these classes are quasi-real (the conjugacy classes
with representatives of order 11 are quasi-real with j = 3 and the classes with
representatives of order 23 are quasi-real with j = 2). It remains to prove
that the conjugacy classes 8A, 8B of M11 are of type B. But this follows
from Lemma 2.45, since if G = F2

3 o 〈T 〉 ' (C3 × C3) o C8, there exist
a monomorphism of groups ψ (resp. ψ′) from G to M11 such that ψ(T )
(resp. ψ′(T )) belongs to the conjugacy class 8A (resp. 8B) of M11. And the
conjugacy classes 8A, 8B of M11 are quasi-real of type j = 3, so the result
follows. �

Table 5.2. Proof of Lemma 5.1

Group Not necessarily of type D Log�le
M11 8A, 8B, 11A, 11B M11/M11.log

M12 11A, 11B M12/M12.log

M22 11A, 11B M22/M22.log

M23 23A, 23B M23/M23.log

M24 23A, 23B M24/M24.log

As a by-product we prove the following theorem about the Nichols al-
gebras over the automorphism group of the Mathieu groups M12 and M22.
These groups appear as a maximal subgroups of other sporadic simple groups.

The automorphism group of M12 has 21 conjugacy classes and 9 conju-
gacy classes of maximal subgroups. With the representation inside S24 it is
easy to reach the following result.

Theorem 5.3. The automorphism group Aut(M12) ' M12 : 2 is of type D.
Hence, it is of type B.

Proof. Use Algorithm 2.3, see the �le M12/M12.2.log for details. �

The automorphism group of M22 has 21 conjugacy classes and 7 conju-
gacy classes of maximal subgroups. With the representation inside S22 it is
easy to reach the following result, useful for studying Nichols algebras over
the Janko group J4.
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Lemma 5.4. Every conjugacy class of the group Aut(M22) ' M22 : 2, with
the possible exception of the conjugacy class 2B, with centralizer of order
2688, is of type D.

Proof. Use Algorithm 2.3, see the �le M22/M22.2.log for details. �

5.3. The Higman-Sims group HS

The Higman-Sims simple group has order 44 352 000. It has 24 conjugacy
classes and 12 conjugacy classes of maximal subgroups.

Lemma 5.5. The conjugacy classes of HS, with the possible exception of
the classes 11A, 11B, are of type D.

Proof. We use Algorithm 2.3, see the �le HS/HS.log for details. �

Theorem 5.6. The Higman-Sims group HS is of type B.

Proof. By Lemma 5.5 it remains to consider the conjugacy classes 11A,
11B. But these conjugacy classes are quasi-real of type j = 3, so the result
follows from Lemma 2.11. �

The following Lemma is useful for studying Nichols algebras over the
Conway group Co1 (see Section 5.11.3). We study Nichols algebras over
the group 2.HS.2. This groups has order 177 408 000 and has 57 conjugacy
classes. We have no information about the representations of its maximal
subgroups.

Lemma 5.7. Every conjugacy class of 2.HS.2, with the exception of the
conjugacy class 2A, of size 1, is of type D.

Proof. We use Algorithm 2.2. For details, see the �le HS/2.HS.2.log. �

5.4. The Held group He

The Held group He has order 4 030 387 200. It has 33 conjugacy classes and
11 conjugacy classes of maximal subgroups. The automorphism group of the
Held group Aut(He) ' He : 2 has 45 conjugacy classes and 12 conjugacy
classes of maximal subgroups.

Theorem 5.8. The groups He and Aut(He) are of type D.

Proof. We use Algorithm 2.3, see the �les He/He.log and He/He.2.log for
details. �

5.5. The Suzuki group Suz

5.5.1. The group Suz. The Suzuki group Suz has order 448 345 497 600.
It has 43 conjugacy classes and 17 conjugacy classes of maximal subgroups.

Lemma 5.9. Every conjugacy class of Suz, with the possible exception of
the class 3A, of size 4576, is of type D.

Proof. We use Algorithm 2.1, see the �le Suz/Suz.log for details. �
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Theorem 5.10. The Suzuki group Suz is of type B.

Proof. By Lemma 5.9 it remains to study the conjugacy class 3A. But this
class is real, so the result follows from Lemma 2.10. �

5.5.2. The automorphism group Aut(Suz). The automorphism group
Aut(Suz) ' Suz : 2 has 68 conjugacy classes and 16 conjugacy classes of
maximal subgroups. For the computations we use a representation inside
S1782.

Lemma 5.11. Every conjugacy class, with the possible exception of 3A, of
size 45760, is of type D.

Proof. We use Algorithm 2.3, see the �le Suz/Suz.2.log for details. �

Theorem 5.12. The automorphism group Aut(Suz) is of type B.

Proof. By Lemma 5.11 it remains to study the conjugacy class 3A. But this
class is real, so Lemma 2.10 applies. �

The following Lemma is useful for studying Nichols algebras over the
Conway group Co1 (see Section 5.11.3). We study some conjugacy classes of
the covering group named 3.Suz.2. This groups has 106 conjugacy classes.
We have no information about the representations of its maximal subgroups.

Lemma 5.13. The conjugacy classes of the group 3.Suz.2 with representa-
tives of order 7, 8, 10, 13, 15, 21, 30, 33, 39, 42 are of type D.

Proof. We use Algorithm 2.2, see the �le Suz/3.Suz.2.log for details. �

5.6. The O'Nan group ON

This group has order 460 815 505 920. It has 30 conjugacy classes and 13
conjugacy classes of maximal subgroups.

Lemma 5.14. All the conjugacy classes of ON , with the possible exception
of the classes 31A, 31B are of type D.

Proof. We use Algorithm 2.3, see the �le ON/ON.log for details. �

Theorem 5.15. The O'Nan group ON is of type B.

Proof. The result follows from Lemmas 5.14 and 2.11, because the conju-
gacy classes 31A, 31B are quasi-real with j = 2. �

5.7. The MacLaughlin group McL

This groups has order 898 128 000. It has 24 conjugacy classes and 12 con-
jugacy classes of maximal subgroups.

Lemma 5.16. Every conjugacy class of McL, with the possible exception of
11A, 11B is of type D.

Proof. We use Algorithm 2.3, see the �le McL/McL.log for details. �
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Theorem 5.17. The MacLaughlin group McL is of type B.

Proof. The result follows from Lemmas 5.16 and 2.10, because the conju-
gacy classes 11A, 11B are real. �

5.8. The Rudvalis group Ru

This group has order 145 926 144 000. It has 36 conjugacy classes and 15
conjugacy classes of maximal subgroups.

Lemma 5.18. Every conjugacy class of Ru, with the possible exception of
the classes 29A, 29B is of type D.

Proof. We use Algorithm 2.3, see the �le Ru/Ru.log for details. �

Theorem 5.19. The Rudvalis group Ru is of type B.

Proof. The result follows from Lemmas 5.18 and 2.10, because the conju-
gacy classes 29A, 29B are real. �

5.9. The Fischer group Fi22

This group has order 64 561 751 654 400. It has 65 conjugacy classes and 14
conjugacy classes of maximal subgroups.

Lemma 5.20. Every conjugacy class of the Fischer group, with the possible
exception of 2A, 22A, 22B is of type D.

Proof. We use Algorithm 2.3, see the �le Fi22/Fi22.log for details. �

Lemma 5.21. The conjugacy class 2A, of size 3510, of the Fischer group
Fi22 is of type B.

Proof. Follows from Theorem 4.5, since O7(3) is a maximal subgroup of
Fi22. For the fusion of conjugacy classes O7(3)→ Fi22 see the �le Fi22/2A.

�

Remark 5.22. We cannot prove that the Fischer group F22 is of type B. In
fact, we cannot prove that the classes 22A, 22B are of type B.

5.10. The Janko groups

5.10.1. The groups J1, J2, J3. In this subsection we study Nichols alge-
bras over the �rst three Janko groups: J1, J2, J3. In Table 5.3 we list the
order, the number of conjugacy classes and the number of conjugacy classes
of maximal subgroups of each of these Janko groups.

Table 5.3. The �rst three Janko groups

Group Order Conjugacy Classes Maximal subgroups
J1 175560 15 7
J2 604800 21 9
J3 50232960 21 9
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Lemma 5.23. Let G be any of the Janko group J1, J2, J3. Every conjugacy
class of G, with the possible exception of the conjugacy classes listed in Table
5.4, is of type D.

Proof. This was proved by the Algorithm 2.3, see the log�les listed in Table
5.4 for details. �

Table 5.4. Proof of Lemma 5.23

Group Not necessarily of type D Log�le
J1 15A, 15B, 19A, 19B, 19C J1/J1.log

J2 2A, 3A J2/J2.log

J3 5A, 5B, 19A, 19B J3/J3.log

Theorem 5.24. The Janko groups J1, J2, J3 are of type B.

Proof. By Lemma 5.23, it remains to consider the conjugacy classes 15A,
15B, 19A, 19B, 19C of J1, the classes 2A, 3A of J2 and the classes 5A, 5B,
19A, 19B of J3. For the Janko group J1, use Lemma 2.10, because all the
conjugacy classes of J1 are real. For the conjugacy class 2A of J2 notice
that ξ(2A, 3B, 3B) = 18 and apply Lemma 2.18. Also, by Lemma 2.10, the
conjugacy class 3A of J2 is also of type B. For the conjugacy classes 5A,
5B of J3 apply Lemma 2.10, since these classes are real. For the conjugacy
classes 19A, 19B of J3 use Lemma 2.11, since these classes are quasi-real
with j = 4. �

5.10.2. The Janko group J4. The Janko group J4 has order

86 775 571 046 077 562 880.

It has 62 conjugacy classes. This group is too big to use a script as in the
previous cases. Indeed, the previous scripts fail because the best representa-
tion of the group is inside GL(112, 2) and this is not good for computations.
However, some of the maximal subgroups have good enough representations
and we work with them on a case by case basis. The list of (representatives
of conjugacy classes of) maximal subgroups is:

211 : M24 M22.2 U3(3)
21+11.3.M22 : 2 29 : 28 = F812 43 : 14 = F602

210 : L5(2) 111+2
+ : (5× 2S4) 37 : 12 = F444

23+12.(S5 × L3(2)) L2(32).5
U3(11).2 L2(32).2

See the �le J4/fusions for the fusion of conjugacy classes. We split the
proof into several Lemmas.

Lemma 5.25. The conjugacy classes 3A, 5A, 6A, 6B, 6C, 7A, 7B, 10A, 10B,
12A, 12B, 12C, 14A, 14B, 14C, 14D, 15A, 16A, 20A, 20B, 21A, 21B, 24A,
24B, 28A, 28B, 30A of J4 are of type D.
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Proof. We use the maximal subgroupM1 ' 211 : M24. Consider the short
exact sequence 0 → 211 → 211 : M24 → M24 → 0. By Lemma 5.1, every
conjugacy class of M24 with representative of order 6= 23 is of type D. By
Lemma 2.24, every conjugacy class in 211 : M24 with representative of order
6= 1, 2, 4, 8, 16, 23 is of type D. Hence the conjugacy classes 3A, 5A, 6A,
6B, 6C, 7A, 7B, 10A, 10B, 12A, 12B, 12C, 14A, 14B, 14C, 14D, 15A, 20A,
20B, 21A, 21B, 22B, 24A, 24B, 30A of J4 are of type D. Also, this maximal
subgroup has a primitive permutation representation on 211 points. We
use the GAP's function PrimitiveGroup and Algorithm 2.2 to see that the
conjugacy class 16A of J4 is of type D (see the �le J4/step1.log). �

Lemma 5.26. The conjugacy classes 35A, 35B, 42A, 42B of J4 are of type
D.

Proof. We use the maximal subgroupM4 ' 23+12.(S5 × L3(2)). Consider
the short exact sequence 0 → 23+12 → 23+12.(S5 × L3(2)) → L3(2) → 0.
Every conjugacy class of S5×L3(2) with representative of order 6= 2, 3, 4, 6, 7
is of type D (see Lemma 4.24). Then, by Lemma 2.23, the result follows. �

Lemma 5.27. The conjugacy classes 4B, 8C of J4 are of type D.

Proof. The result follows from Lemma 5.4, because Aut(M22) ' M22 : 2 is
a maximal subgroup of J4. �

Lemma 5.28. The conjugacy classes

(1) 8A, 8B, 11A, 11B;

(2) 4A, 22A, 22B, 40A, 40B, 44A, 66A, 66B;

(3) 31A, 31B, 31C, 33A, 33B;

(4) 2A, 2B, 23A

of J4 are of type D.

Proof. For all of these conjugacy classes we use Algorithms 2.1, 2.2 in some
maximal subgroup of J4. See Table 5.5 for details. �

Table 5.5. Proof of Lemma 5.28

Maximal subgroup Log�le
1 U3(11).2 J4/step3.log

2 111+2
+ : (5× 2S4) J4/step5.log

3 L2(32).5 J4/step6.log

4 L2(23).2 J4/step7.log

Lemma 5.29. The conjugacy class 4C of J4 is of type D.

Proof. We use the maximal subgroupM13 ' 37 : 12. By the fusion of con-
jugacy classes, the classes 4a and 4b ofM13 go to the conjugacy class 4C of
J4. Then we �nd r in 4a, s in 4b such that (rs)2 6= (sr)2 (see J4/step8.log)
and the result follows from Proposition 2.22. Notice that the conjugacy
classes written in lowercase letters are not named as in ATLAS. �
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Theorem 5.30. The Janko group J4 is of type B.

Proof. It remains to study the conjugacy classes 29A, 37A, 37B, 37C, 43A,
43B, 43C. These conjugacy classes are real, so Lemma 2.10 applies. �

5.11. The Conway groups

5.11.1. The group Co3. The Conway group Co3 has order 495 766 656 000.
It has 42 conjugacy classes and 14 conjugacy classes of maximal subgroups.

Lemma 5.31. Every conjugacy class of Co3, with the possible exception of
the classes 23A, 23B is of type D.

Proof. We use the Algorithm 2.3. See the �le Co3/Co3.log for details. �

Theorem 5.32. The Conway group Co3 is of type B.

Proof. By Lemma 5.31 it remains to study the conjugacy classes 23A, 23B.
But these classes are quasi-real with j = 2, hence the result follows from
Lemma 2.11. �

5.11.2. The group Co2. The Conway group Co2 has order

42 305 421 312 000.

It has 60 conjugacy classes and 11 conjugacy classes of maximal subgroups.

Lemma 5.33. Every conjugacy class of Co2, with the possible exception of
the classes 2A, 23A, 23B is of type D.

Proof. We use the Algorithm 2.3. See the �le Co2/Co2.log for details. �

Theorem 5.34. The Conway group Co2 is of type B.

Proof. By Lemma 5.33 it remains to study the conjugacy classes 2A, 23A,
23B. For the conjugacy class 2A, use Lemma 2.12 (see the �le Co2/2A).
For the conjugacy classes 23A, 23B, use Lemma 2.11, since both classes are
quasi-real with j = 2. �

5.11.3. The group Co1. This group has order

4 157 776 806 543 360 000.

It has 101 conjugacy classes, all real except 23A, 23B, 39A, 39B (quasi-real
with j = 2 and g4 6= g). The list of (representatives of conjugacy classes of)
maximal subgroups is:

Co2 24+12.(S3 × 3S6) (A7 × L2(7)) : 2
3.Suz.2 32.U4(3).D8 (D10 × (A5 × A5).2).2
211.M24 36 : 2M12 51+2 : GL(2, 5)
Co3 (A5 × J2) : 2 53 : (4× A5).2
21+8
+ .O+

8 (2) 31+4.2U4(2).2 72 : (3× 2A4)
U6(2) : S3 (A6 × U3(3)) : 2) 52 : 2A5

(A4 ×G2(4)) : 2 33+4 : 2(S4 × S4)
22+12 : (A8 × S3) A9 × S3
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See the �le Co1/fusions for the fusion of conjugacy classes. We split
the proof into several Lemmas.

Lemma 5.35. The conjugacy classes with representatives of order 2, 18, 24,
36, 40, 60 are of type D. Also, the conjugacy class 20A is of type D.

Proof. For the conjugacy classes of involutions use Example 2.29. For the
conjugacy classes 20A, 36A, 40A, 60A use Lemma 4.6 and Lemma 2.24. For
all the other conjugacy classes, we use the Algorithm 2.2 in the maximal
subgroup 21+8

+ .O+
8 (2) to see that these conjugacy classes are of type D (see

the �le Co1/step7.log for details). �

Lemma 5.36. The conjugacy classes 3B, 3C, 4A, 4B, 4C, 4D, 4F, 5B, 5C,
6C, 6D, 6E, 6F, 6G, 6I, 7B, 8B, 8C, 8D, 8E, 9B, 9C, 10D, 10E, 10F, 11A,
14B, 15D, 15E, 16A, 16B, 20B, 20C, 21C, 22A, 28A, 30D, 30E of Co1 are of
type D.

Proof. The result follows from Lemmas 5.33 and 5.31, because Co2 and Co3
are both maximal subgroups of Co1. �

Lemma 5.37. The conjugacy classes 4E, 5A, 6A, 6B, 6H, 9A, 9B, 10A, 10B,
15A, 15C, 30A, 30C of Co1 are of type D.

Proof. We use the maximal subgroup M16 ' A9 × S3. By Lemma 4.22
every conjugacy class of A9×S3 with representative of order 6= 2, 3 is of type
D. Then the result follows. �

Lemma 5.38. The conjugacy classes 7A, 8A, 8F, 10C, 13A, 15B, 21A, 21B,
30B, 33A, 39A, 39B, 42A of Co1 are of type D.

Proof. The result follows from Lemma 5.13, because the group 3.Suz.2 is
a maximal subgroup of Co1. �

Lemma 5.39. The conjugacy classes of Co1 with representatives of order
12 are of type D.

Proof. For the conjugacy classes 12L, 12M we use the maximal subgroup
M16 ' A9 × S3, because in this subgroup every conjugacy class with rep-
resentative of order 12 is of type D (see Lemma 4.22). And for remaining
conjugacy classes we use Algorithm 2.2 in the maximal subgroup 21+8.O+

8 (2)
(see the �le Co1/step7.log for details). �

Lemma 5.40. The conjugacy classes

(1) 14A, 26A;

(2) 28B, 35A

of Co1 are of type D.

Proof. For the conjugacy classes 14A, 26A, use the subgroup A4 × G2(4)
of the maximal subgroup (A4 × G2(4)) : 2 of Co1. By Lemma 4.11, every
conjugacy class of G2(4) with representative of order 7, 13 is of type D. Then,
since every non-trivial element of A4 has order 2 or 3, the result follows from
Lemma 2.25. Notice that this maximal subgroup has two conjugacy classes
with representative of order 14 and these classes go to the class 14A of Co1.
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For the conjugacy classes 28B, 35A use the subgroup A6 × PSU(3, 3) of
the maximal subgroup (A6 × PSU(3, 3)) : 2. Then, the result follows from
Lemma 4.25. Notice that this maximal subgroup has only one conjugacy
class with representative of order 28 and this class goes to the class 28B of
Co1. �

Lemma 5.41. The conjugacy classes 3D of Co1 are of type D.

Proof. We use the maximal subgroupM3 ' 211 : M24. Consider the short
exact sequence 0 → 211 → 211 : M24 → M24 → 0. By Lemma 5.1, every
conjugacy class of M24 with representative of order 6= 23 is of type D. Then,
the result follows from Lemma 2.24. �

Theorem 5.42. The Conway group Co1 is of type B.

Proof. It remains to study the classes 3A, 23A, 23B. For the real conjugacy
class 3A use Lemma 2.10. The conjugacy classes 23A, 23B are quasi-real
with j = 2, so Lemma 2.11 applies. �

5.12. The Lyons group Ly

The Lyons group Ly has order 51 765 179 004 000 000. It has 53 conjugacy
classes. The list of (representatives of conjugacy classes of) maximal sub-
groups is:

G2(5) 2.A11 32+4 : 2.A5.D8

3.McL : 2 51+4 : 4.S6 67 : 22 = F1474

53.L3(5) 35 : (2×M11) 37 : 18

See the �le Ly/fusions for the fusion of conjugacy classes. We split the
proof into several Lemmas.

Lemma 5.43. The conjugacy classes 9A, 14A, 18A, 28A, 40A, 40B, 42A,
42B of Ly are of type D.

Proof. We use the maximal subgroupM4 ' 2.A11. Consider the short exact
sequence 0 → 2 → 2.A11 → A11 → 0. By Corollary 3.10, every conjugacy
class of A11 with representative of order 6= 3, 11 is of type D. Therefore, the
result follows from Lemma 2.24. �

Lemma 5.44. The conjugacy classes 2A, 3A, 3B, 4A, 5A, 5B, 6A, 6B, 6C,
7A, 8A, 8B, 10A, 10B, 12A, 12B, 15A, 15B, 15C, 20A, 21A, 21B, 24A 24B,
24C, 25A, 30A, 30B, 31A, 31B, 31C, 31D, 31E of Ly are of type D.

Proof. The result follows from Thereom 4.13, because G2(5) is a maximal
subgroup. �

Lemma 5.45. The conjugacy classes 11A, 11B, 22A, 22B of Ly are of type
D.

Proof. We use the maximal subgroupM6 ' 35 : (2×M11). We construct a
permutation representation ofM6 and apply Algorithm 2.1 to see that the
conjugacy classes of M6 with representatives of order 11, 22 are of type D
(see the �le Ly/step3.log). Therefore the conjugacy classes 11A, 11B, 22A,
22B of Ly are of type D. �
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Theorem 5.46. The group Ly is of type B.

Proof. It remains to consider the conjugacy classes 33A, 33B, 37A, 37B,
67A, 67B, 67C. The conjugacy classes 37A, 37B, 67A, 67B, 67C are real,
so Lemma 2.10 applies. The conjugacy classes 33A, 33B are quasi-real with
j = 4 and g16 6= g, so Lemma 2.11 applies. Therefore, the result follows. �

5.13. The Fischer group Fi23

This group has order

4 089 470 473 293 004 800.

It has 98 conjugacy classes. The list of (representatives of conjugacy classes
of) maximal subgroups is:

2.F i22 211.M23 26+8 : (A7 × S3)
O+

8 (3).3.2 31+8.21+6.31+2.2S4 S4 × S6(2)
22.U6(2) [310].(L3(3)× 2) S4(4).4
S8(2) A12.2 L2(23)
S3 ×O7(3) (22 × 21+8).(3× U4(2)).2

See the �le Fi23/fusions for the fusion of conjugacy classes. We split
the proof into several Lemmas.

Lemma 5.47. Every conjugacy class of Fi23 with representative of order 3,
5, 6, 7, 8, 10, 11, 13, 14, 16, 20, 21, 26, 42 is of type D.

Proof. We use the maximal subgroup M1 ' 2.F i22. Consider the short
exact sequence 0 → 2 → 2.F i22 → Fi22 → 0. By Lemma 5.20, every
conjugacy class of Fi22 with representative of order 6= 2, 22 is of type D.
Then, by Lemma 2.24, every conjugacy class in 2.F i22 with representative
of order 6= 2, 22 is of type D. Hence, the result follows. �

Lemma 5.48. The conjugacy classes 2B, 2C, 4A, 4B, 4C, 4D, 15A, 15B,
17A of Fi23 are of type D. Also, the conjugacy class 2A is of type B.

Proof. Follows from Lemma 4.16 and the fusion of conjugacy classes, be-
cause S8(2) is a maximal subgroup of Fi23. �

Lemma 5.49. Every conjugacy class of Fi23 with representative of order
12, 39, 60 is of type D. Also, the conjugacy classes 9B, 9C, 9D, 9E, 18A,
18B, 18C, 18E, 18F, 18H, 39A, 39B are of type D.

Proof. Follows from Lemma 4.23 and the fusion of conjugacy classes, be-
cause O7(3)× S3 is a maximal subgroup of Fi23. �

Lemma 5.50. The conjugacy classes

(1) 22A, 22B, 22C;

(2) 27A;

(3) 9A, 18D, 18G, 24A, 24B, 24C, 36A;

(4) 36B.

of Fi23 are of type D.
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Proof. We use Algorithms 2.1 or 2.2 in a suitable maximal subgroup and
then the result follows from the fusion of conjugacy classes. See Table 5.6
for the details about the maximal subgroups used and the log�les. �

Table 5.6. Proof of Lemma 5.50

Maximal subgroup Log�le
1 22.U6(2).2 Fi23/step4.log

2 O+
8 (3) : S3 Fi23/step5.log

3 (22 × 21+8).(3× U4(2)).2 Fi23/step6.log

4 S4 × S6(2) Fi23/step7.log

Lemma 5.51. The conjugacy classes 28A, 30A, 30B, 30C, 35A of Fi23 are
of type D.

Proof. We use the maximal subgroupM9 ' S12. By Corollary 3.10, every
conjugacy class with representative of order 28, 30, 35 is of type D. Hence,
the result follows. �

Theorem 5.52. The Fischer group Fi23 is of type B.

Proof. It remains to study the classes 23A, 23B. And these conjugacy classes
are quasi-real of type j = 2, so the result follows Lemma 2.11. �

5.14. The Thompson group Th

This group has order
90 745 943 887 872 000

It has 48 conjugacy classes. The list of (representatives of conjugacy classes
of) maximal subgroups is:

3D4(2).3 32.33.32.32 : 2S4 PSL(3, 3)
25.PSL(5, 2) 35 : 2S6 A6.23

21+8.A9 51+2 : 4S4 31 : 15 = F465

U3(8).6 52 : 4S5 A5.2
(3×G2(3)) : 2 72 : (3× 2S4)
3.32.3.(3× 32).32 : 2S4 PSL(2, 19).2

See the �le Th/fusions for the fusion of conjugacy classes. We split the
proof into several Lemmas.

Lemma 5.53. The conjugacy classes 5A, 7A, 10A, 14A, 15A, 15B, 18A,
18B, 20A, 28A, 30A, 30B, 36A, 36B, 36C of Th are of type D.

Proof. We use the maximal subgroup M3 ' 21+8.A9. Consider the short
exact sequence 0 → 21+8 → 21+8.A9 → A9 → 0. By Corollary 3.10, every
conjugacy class of A9 not of type (3) is of type D. Then, by Lemma 2.24,
the result follows. �

Lemma 5.54. The conjugacy classes 3A, 3C, 12D, 21A, 24A, 24B of Th
are of type D
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Proof. We use the maximal subgroup M2 ' 25.PSL(5, 2). Consider the
exact sequence 0 → 25 → 25.PSL(5, 2) → PSL(5, 2) → 0. In PSL(5, 2) every
conjugacy class with representative of order 6= 31 is of type D (see Lemma
4.2). Therefore, the result follows from Lemma 2.24. �

Lemma 5.55. The conjugacy classes

(1) 2A, 3B, 19A;

(2) 4B, 6A, 6B, 6C, 8B, 9A, 9B, 9C, 24C, 24D, 27A, 27B, 27C;

(3) 4A, 8A, 12A, 12B, 12C

of Th are of type D.

Proof. For all of these conjugacy classes we use the Algorithm 2.1 in some
maximal subgroup of Th. Notice that instead of using the matrix represen-
tation of the maximal subgroups inside GL(248, 2), with GAP we construct
permutation representations for the maximal subgroups listed in Table 5.7.
See the log�les for details. �

Table 5.7. Proof of Lemma 5.55

Maximal subgroup Log�le
1 PSL(2, 19).2 Th/step3.log

2 32.33.32.32 : 2S4 Th/step6.log

3 3.32.3.(3× 32).32 : 2S4 Th/step5.log

Lemma 5.56. The conjugacy classes 13A, 39A, 39B of Th are of type D.

Proof. We use the maximal subgroupM5 ' (3×G2(3)) : 2. In G2(3) every
conjugacy class with representative of order 13 is of type D (see Theorem
4.13). Therefore, the conjugacy class 13A of Th is of type D. Also, by
Proposition 2.25 the conjugacy classes 39A, 39B of Th are of type D (for
the fusion of conjugacy classes 3 × G2(3) → (3 × G2(3)) : 2 see the �le
Th/step4.g). �

Lemma 5.57. The conjugacy classes 31A, 31B are of type D.

Proof. We use the maximal subgroup M2 ' 25.PSL(5, 2). In this group
there are six conjugacy classes with representatives of order 31. Notice that
three of these classes go to the class named 31A of Th and the other three
go to 31B. Let A and B be two conjugacy classes of M2 that go to the
class 31A (resp. 31B) of Th. Then, it is possible to �nd a ∈ A and b ∈ B
such that (ab)2 6= (ba)2 and the result follows. For details, see the �le
Th/step2.log. �

Theorem 5.58. The Thompson group Th is of type D. �
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5.15. The Harada-Norton group HN

This group has order
273 030 912 000 000.

It has 54 conjugacy classes. The list of (representatives of conjugacy classes
of) maximal subgroups is:

A12 51+4 : 21+4.5.4 M12.2
2.HS.2 26.U4(2) M12.2
U3(8).31 (A6 × A6).D8 34 : 2(A4 × A4).4
21+8.(A5 × A5).2 23.22.26.(3× PSL(3, 2)) 31+4 : 4A5

(D10 × U3(5)).2 52.5.52.4A5

Lemma 5.59. The conjugacy classes 2A, 2B, 5A, 5E, 6A, 6B, 6C, 7A, 9A,
11A, 15A, 20C, 21A, 30A, 35A, 35B of HN are of type D.

Proof. We use the maximal subgroupM1 ' A12. By Corollary 3.10, in this
maximal subgroup every conjugacy class with representative of order 6= 3, 11
is of type D. Therefore, the result follows for every conjugacy class with
representative of order 6= 11. It remains to prove that the conjugacy class
11A of HN is of type D. For that purpose, let r = (1 2 3 4 5 6 7 8 9 10 11)
and s = (1 2 3 4 5 6 7 8 9 11 10) be elements in A12. It is easy to see that
(rs)2 6= (sr)2 and that r and s belong to di�erent conjugacy classes in the
group 〈r, s〉 ' A11. Then, by Proposition 2.22 and the fusion of conjugacy
classes, the conjugacy class 11A of HN is of type D. �

Lemma 5.60. The conjugacy classes

(1) 3A, 3B, 4A, 4B, 4C, 12C;

(2) 5B, 8A, 8B, 10A, 10B, 10C, 10F, 10G, 10H, 12A, 12B, 14A, 20A, 20B,
22A, 40A, 40B

of HN are of type D.

Proof. The �rst item follows from Theorem 5.3, because Aut(M12) 'M12.2
is a maximal subgroup. The second follows from Lemma 5.7, because 2.HS.2
is also a maximal subgroup of HN . �

Lemma 5.61. The conjugacy classes

(1) 5C, 5D, 10D, 10E, 15B, 15C, 20D, 20E, 30B, 30C;

(2) 25A, 25B;

(3) 19A, 19B

of HN are of type D.

Proof. We use the Algorithm 2.2 in some maximal subgroup of HN . We
have used the representation of HN inside GL(760, 2) given in ATLAS for the
�rst two items. For the last item we used a representation of the maximal
subgroup U3(8).31 inside GL(133, 5). See Table 5.8 for details. �

Theorem 5.62. The Harada-Norton group HN is of type D, hence it is of
type B. �



56 5. The sporadic groups

Table 5.8. Proof of Lemma 5.61

Maximal subgroup Log�le
1 31+4 : 4A5 HN/step4.log

2 52+1+2.4.A5 HN/step6.log

3 U3(8).31 HN/step5.log

5.16. The Fischer group Fi′24

This group has order

1 255 205 709 190 661 721 292 800.

It has 108 conjugacy classes. The list of (representatives of conjugacy classes
of) maximal subgroups is (see [LW91]):

Fi23 33.[310].GL(3, 3) A6 × PSL(2, 8) : 3
2.F i22.2 32.34.38.(A5 × 2A4).2 7 : 6× A7

(3×O+
8 (3) : 3) : 2 (A4 ×O+

8 (2).3).2 U3(3).2
O−10(2) He : 2 U3(3).2
37.O7(3) He : 2 PSL(2, 13).2
31+10 : U5(2) : 2 23+12.(PSL(3, 2)× A6) PSL(2, 13).2
211.M24 26+8.(S3 × A8) 29 : 14 = F406

22.U6(2).3.2 (32 : 2×G2(3)).2
21+12.31.U4(3).22 (A5 × A9) : 2

Lemma 5.63. The conjugacy classes 3A, 3B, 3C, 3D, 4A, 4B, 4C, 5A, 6A,
6B, 6C, 6D, 6E, 6F, 6G, 6H, 6I, 6J, 7A, 8A, 8B, 9A, 9B, 9C, 9E, 9F, 10A,
10B, 11A, 12A, 12B, 12C, 12D, 12E, 12F, 12G, 12H, 12K, 12L, 12M, 13A,
14A, 15A, 15C, 16A, 17A, 18A, 18B, 18C, 18D, 18E, 18F, 20A, 21A, 22A,
24A, 24B, 24E, 26A, 27A, 28A, 30A, 30B, 35A, 36C, 36D, 39A, 39B, 42A,
60A of Fi′24 are of type D.

Proof. We use the maximal subgroup M1 ' Fi23. By Section 5.13, we
know that every conjugacy class of Fi23 with representative of order 6= 2, 23
is of type D (see Section 5.13). Hence, the result follows. �

Lemma 5.64. The conjugacy classes 2A, 2B, 3E, 6K, 7B, 12I, 12J, 14B,
21B, 21C, 21D, 24C, 24D, 42B, 42C of Fi′24 are of type D.

Proof. The result follows from Theorem 5.8 and the fusion of conjugacy
classes, because Fi′24 has two conjugacy classes of maximal subgroups iso-
morphic to Aut(He) ' He.2. �

Lemma 5.65. The conjugacy classes 8C, 15B, 18G, 18H, 20B of Fi′24 are
of type D.

Proof. The result follows from Lemma 4.9, because O−10(2) is a maximal
subgroup. �

Lemma 5.66. The conjugacy classes 24F, 24G, 36A, 36B, 45A, 45B of Fi′24
are of type D.
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Proof. The maximal subgroupM5 ' 37.O7(3). We consider the short exact
sequence 0 → 37 → 37.O7(3) → O7(3) → 0. By Theorem 4.4, every conju-
gacy class of O7(3) with representative of order 6= 2 is of type D. Therefore,
by Lemma 2.24, the result follows. �

Lemma 5.67. The conjugacy class 9D is of type D.

Proof. We use GAP to construct a representation of the maximal subgroup
M19 ' A6 × PSL(2, 8) : 3 and use Algorithm 2.1 to prove that every con-
jugacy class ofM19 with representative of order 9 is of type D (see the �le
+F3+/step5.log for details). �

Theorem 5.68. The Fischer group Fi′24 is of type B.

Proof. It remains to study the conjugacy classes 23A, 23B, 27A, 27B, 27C,
29A, 29B, 33A, 33B, 39C, 39D. For the conjugacy classes 23A, 23B use
Lemma 2.11, because these classes are quasi-real with j = 2 and g4 6= g.
For the remaining conjugacy classes use Lemma 2.10 because all of them are
real. �

5.17. Conclusions

In this chapter we studied Nichols algebras almost every sporadic simple
group. The Baby Monster and the Monster were studied in [AFGV09c,
AFGV09a]. In Table 5.9 we review the sporadic groups stutied mostly with
Algorithm 2.3. In Table 5.10 we list the conjugacy classes not necessarily of
type D.

Table 5.9. The sporadic groups studied with Algorithm 2.3

G Log �le G Log �le
M11 M11/M11.log Ru Ru/Ru.log

M12 M12/M12.log HS HS/HS.log

M22 M22/M22.log He He/He.log

M23 M23/M23.log McL McL/McL.log

M24 M24/M24.log Co3 Co3/Co3.log

J1 J1/J1.log Co2 Co2/Co2.log

J2 J2/J2.log O′N ON/ON.log

J3 J3/J3.log Fi22 Fi22/Fi22.log

Suz Suz/Suz.log T T/T.log
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Table 5.10. Conjugacy classes not known of type D.

G Conjugacy classes not necessarily of type D Reference
M11 8A, 8B, 11A, 11B �5.2
M12 11A, 11B �5.2
M22 11A, 11B �5.2
M23 23A, 23B �5.2
M24 23A, 23B �5.2
J1 15A, 15B, 19A, 19B, 19C �5.10
J2 2A, 3A �5.10
J3 5A, 5B, 19A, 19B �5.10
Suz 3A �5.5
Ru 29A, 29B �5.8
HS 11A, 11B �5.3
He all collapse �5.4
McL 11A, 11B �5.7
Co3 23A, 23B �5.11
Co2 2A, 23A, 23B �5.11
ON 31A, 31B �5.6
Fi22 2A, 22A, 22B �5.9
Co1 3A, 23A, 23B �5.11.3
Fi23 2A, 23A, 23B �5.13
HN all collapse �5.15
Th all collapse �5.14
Ly 33A, 33B, 37A, 37B, 67A, 67B, 67C �5.12
J4 29A, 37A, 37B, 37C, 43A, 43B, 43C �5.10.2
Fi′24 23A, 23B, 27B, 27C, 29A, 29B, 33A, 33B, 39C, 39D �5.16



Appendix A

Conjugacy classes in

sporadic groups

In this apendix we list all real and quasi-real conjugacy classes of the sporadic
simple groups studied in Chapter 5. The information about real conjugacy
classes of a given group G is easy to obtain from the character table of G.

The kth powers of the elements of a given conjugacy class form another
conjugacy class. This information is stored in the ATLAS. With this infor-
mation at hand it is easy to determine the quasi-real conjugacy classes of a
given group.

gap> QuasiRealClasses := function( ct )

> local nc, oc, a, b, p, c, j, rc;

>

> nc := NrConjugacyClasses(ct);

> oc := OrdersClassRepresentatives(ct);

> rc := RealClasses(ct);

>

> a := [];

> b := [];

>

> for c in [1..nc] do

> if not c in rc then

> for j in [2..oc[c]-2] do

> p := PowerMap(ct, j);

> if p[c] = c then

> if j-1 mod oc[c] <> 0 then

> if not c in b then

> Add(a, [c, j]);

> Add(b, c);

> fi;

> fi;

> fi;
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> od;

> fi;

> od;

> return a;

>end;

The Tits group. In this group the conjugacy classes 16A, 16B, 16C, 16D
are quasi-real of type j = 9. The conjugacy classes 8A, 8B are quasi-real of
type j = 5. The remaining conjugacy classes are real.

The Mathieu groups. In any of the Mathieu simple groups, every conju-
gacy class is real or quasi-real. See Table A.1 for the details concerning not
real but quasi-real conjugacy classes.

Table A.1. Mathieu groups: Quasi-real classes

Classes Type
M11 8A, 8B, 11A, 11B j = 3
M12 11A, 11B j = 3
M22 7A, 7B j = 2

11A, 11B j = 3
M23 7A, 7B, 15A, 15B, 23A, 23B j = 2

11A, 11B j = 3
14A, 14B j = 9

M24 7A, 7B, 15A, 15B, 21A, 21B, 23A, 23B j = 2
14A, 14B j = 9

The Conway groups. In the Conway groups Co1, Co2 and Co3 every
conjugacy class is real or quasi-real. Not real but quasi-real conjugacy classes
are listed in Table A.2.

Table A.2. Conway groups: Quasi-real classes

Classes Type
Co1 23A, 23B, 39A, 39B j = 2
Co2 15B, 15C, 23A, 23B j = 2

14B, 14C j = 9
30B, 30C j = 17

Co3 23A, 23B j = 2
11A, 11B, 20A, 20B, 22A, 22B j = 3

The Janko groups. In the Janko groups J1 and J2 every conjugacy class
is real. In the Janko group J3 the conjugacy classes 19A, 19B are quasi-real
of type j = 4 and the remaining conjugacy classes are real. In the group J4

every conjugacy class is real, with the exceptions of these classes, all of them
quasi-real:

(1) 7A, 7B, 21A, 21B, 35A, 35B (of type j = 2);
(2) 14A, 14B, 14C, 14D, 28A, 28B (of type j = 9);
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(3) 42A, 42B (of type j = 11).

The Fischer groups. In the Fischer groups Fi22, Fi23 and Fi′24 every
conjugacy class is real or quasi-real. Not real but quasi-real conjugacy classes
are listed in Table A.3.

Table A.3. Fischer groups: Quasi-real classes

Classes Type
Fi22 11A, 11B, 16A, 16B, 22A, 22B j = 3

18A, 18B j = 7
Fi23 16A, 16B, 22B, 22C j = 3

23A, 23B j = 2
Fi′24 23A, 23B j = 2

18G, 18H j = 7

The Highman-Sims group. In this group the conjugacy classes 11A, 11B,
20A, 20B are quasi-real of type j = 3. The remaining conjugacy classes are
real.

The Lyons group. In this group the conjugacy classes 11A, 11B, 22A, 22B
are quasi-real of type j = 3. The conjugacy classes 33A, 33B are quasi-real
of type j = 4. The remaining conjugacy classes are real.

The Harada-Norton group. In this group every conjugacy class is real,
with the exceptions of these classes, all of them quasi-real:

(1) 19A, 19B (of type j = 4);

(2) 35A, 35B (of type j = 3);

(3) 40A, 40B (of type j = 7).

The Held-group. In this group every conjugacy class is real, with the
exceptions of these classes, all of them quasi-real:

(1) 7A, 7B, 7D, 7E, 21C, 21D (of type j = 2);

(2) 14A, 14B, 14C, 14D, 28A, 28B (of type j = 9).

The MacLaughlin group. In this group every conjugacy class is real, with
the exceptions of these classes, all of them quasi-real:

(1) 7A, 7B, 15A, 15B (of type j = 2);

(2) 11A, 11B (of type j = 3);

(3) 9A, 9B (of type j = 4);

(4) 14A, 14B (of type j = 9);

(5) 30A, 30B (of type j = 17).
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The O'Nan group. In this group every conjugacy class is real, with the
exceptions of these classes, all of them quasi-real:

(1) 31A, 31B (of type j = 2);
(2) 20A, 20B (of type j = 3).

The Rudvalis group Ru. In this group the conjugacy classes 16A, 16B
are quasi-real of type j = 5. The remaining conjugacy classes are real.

The Suzuki group Suz. In this groups the conjugacy classes 6B, 6C, with
centralizers of size 1296 are neither real nor quasi-real. The classes 9A, 9B
are quasi-real of type j = 4, and the classes 18A, 18B are quasi-real of type
j = 7. The remaining conjugacy classes are real.

The Thompson group. In this group every conjugacy class is real, with
the exceptions of these classes, all of them quasi-real:

(1) 15A, 15B, 31A, 31B, 39A, 39B (of type j = 2);
(2) 27B, 27C (of type j = 4);
(3) 24C, 24D (of type j = 5);
(4) 12A, 12B, 24A, 24B, 36B, 36C (of type j = 7);
(5) 30A, 30B (of type j = 17).
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Notations

B.1. Notations for group structures

We use the ATLAS notations (see for example [CCN+85, page xx]). There
are various ways to combine groups or abreviate some groups structures:

• A×B is the direct product of A and B;

• Am denotes the direct product of m groups isomorphic to A;

• pm, for p prime, denotes the elementary abelian group of order pm;

• A.B or AB denotes any group having a normal subgroup isomorphic
to A for which the corresponding quotient is isomorphic to B;

• A : B indicates the case A.B which is a semi-direct product;

• [m], for m ∈ N, denotes an abitrary group of order m;

• m denotes the cyclic group Cm;

• pn+m indicates a case of pn.pm.

• p1+2n or p1+2n
+ or p1+2n

− is used for the particular case of an extraspecial
group.

Product of three or more groups are left-associated. This, A.B.C means
(A.B).C, and implies the existence of a normal subgroup isomorphic to A.

B.2. Notations for conjugacy classes

We also use the ATLAS notations for conjugacy classes. The conjugacy
classes that contain elements of order n are named nA, nB, nC. . . , and
remark that the alphabet used here is potentially in�nite). In some cases we
will note the classes with lowercase letters na, nb, nc. . . , in order to remark
that this ordering for the conjugacy classes might be not equal to the one
given in the ATLAS.
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Appendix C

A computer package for

racks

The GAP package RiG provides a free library of functions for computations
related to racks. It is a joint work with Matías Graña. It can be downloaded
from [GnV08]. This package can be used to:

(1) Compute racks and 2-cocycles associated to a given group;

(2) Compute subracks and quotients;

(3) Compute rack and quandle (co)homology groups;

(4) Compute group theoretic structures related to racks.

(5) Compute some relations of B(X, q).

To load the package:

gap> LoadPackage("rig");

true

We present some examples of racks.

Example C.1 (Trivial rack). Let n ∈ N. The trivial rack of order n is given
by X = {1, . . . , n} and the action i . j = j. The RiG function used to de�ne
this rack is TrivialRack. Here is an example with n = 3.

gap> TrivialRack(3);

[ [ 1, 2, 3 ],

[ 1, 2, 3 ],

[ 1, 2, 3 ] ]

Example C.2 (Dihedral rack). Let n ≥ 2. A dihedral rack (of order n) is
given by X = {1, . . . , n} and i . j = 2i− j (mod n). The RiG function used
to de�ne this rack is DihedralRack. Here is an example with n = 3:

gap> DihedralRack(3);

[ [ 1, 3, 2 ],

[ 3, 2, 1 ],

[ 2, 1, 3 ] ]

65



66 C. A computer package for racks

Example C.3 (Octahedral rack). (X, .) is the octahedral rack if X is the
conjugacy class of transpositions in S4 and . is given by the conjugation.
With the GAP function RackFromConjugacyClass we construct this rack.
Here is the output:

gap> gr := SymmetricGroup(4);;

gap> RackFromAConjugacyClass(gr, (1,2));

[ [ 1, 3, 2, 4, 6, 5 ],

[ 3, 2, 1, 5, 4, 6 ],

[ 2, 1, 3, 6, 5, 4 ],

[ 1, 5, 6, 4, 2, 3 ],

[ 6, 4, 3, 2, 5, 1 ],

[ 5, 2, 4, 3, 1, 6 ] ]

With RiG function IsomorphismRacks it is possible to study isomor-
phisms of racks. Here is a simple example:

Example C.4. Let R (resp. S) be the conjugacy class (as a rack) of (1 2 3)
(resp. (1 3 2)) in A4. These two racks are isomorphic:

gap> gr := AlternatingGroup(4);;

gap> r := RackFromAConjugacyClass(gr, (1,2,3));;

gap> s := RackFromAConjugacyClass(gr, (1,3,2));;

gap> IsomorphismRacks(r,s);

(3,4)

This means that the elements of R are (1 2 3), (1 4 2), (1 3 4), (2 4 3). The
elements of S are (1 3 2), (1 2 4), (1 4 3), (2 3 4). And the isomorphism
between R and S is given by

(1 2 3) 7→ (1 3 2)

(1 4 2) 7→ (1 2 4)

(1 3 4) 7→ (2 3 4)

(2 4 3) 7→ (1 4 3)

Here is an interesting example, mentioned in Chapter 3.

Example C.5. The conjugacy class of elements of type (23) in S6 is iso-
morphic, as a rack, to the conjugacy class of the transpositions in S6, since
any map in the class of the outer automorphism of S6 applies (1 2) in
(1 2)(3 4)(5 6) (see [JR82]).

gap> c := (1,2);;

gap> d := (1,2)(3,4)(5,6);;

gap> r := RackFromAConjugacyClass(SymmetricGroup(6), c);;

gap> s := RackFromAConjugacyClass(SymmetricGroup(6), d);;

gap> IsomorphismRacks(r,s);

(2,5,13,15)(3,9,8,6,14,4,11,7,10)

In the following example we compute the inner group and the automor-
phism group of a decomposable rack.

Example C.6. It is not true in general that Inn(X) = Aut(X).



C. A computer package for racks 67

gap> r := DihedralRack(4);

[ [ 1, 4, 3, 2 ],

[ 3, 2, 1, 4 ],

[ 1, 4, 3, 2 ],

[ 3, 2, 1, 4 ] ]

gap> StructureDescription(InnerGroup(r));

"C2 x C2"

gap> StructureDescription(AutomorphismGroup(r));

"D8"

With RiG functions RackHomology and RackCohomology it is possible to
compute racks (co)homology groups. For the de�nitions of this (co)homology
groups see for example [AG03].

Example C.7. Let X be a dihedral rack of order 3. We have:

(1) H2
R(X,Z) ' H3

R(X,Z) ' Z;
(2) H4

R(X,Z) ' Z⊕ Z/3;
(3) H5

R(X,Z) ' Z⊕ Z/3⊕ Z/3;
(4) H6

R(X,Z) ' Z⊕ Z/3⊕ Z/3⊕ Z/3⊕ Z/3.
Here is the output:

gap> RackCohomology(DihedralRack(3),2);

[ 1, [ ] ]

gap> RackCohomology(DihedralRack(3),3);

[ 1, [ ] ]

gap> RackCohomology(DihedralRack(3),4);

[ 1, [ 3 ] ]

gap> RackCohomology(DihedralRack(3),5);

[ 1, [ 3, 3 ] ]

gap> RackCohomology(DihedralRack(3),6);

[ 1, [ 3, 3, 3, 3 ] ]

Example C.8. Let X be the octahedral rack. Then,

(1) HR
2 (X,Z) ' Z⊕ Z/2;

(2) HR
3 (X,Z) ' Z⊕ Z/2⊕ Z/6.

Here is the output:

gap> RackHomology(r, 2);

[ 1, [ 2 ] ]

gap> RackHomology(r, 3);

[ 1, [ 2, 6 ] ]

This package can also be used to compute Quandle (co)homology groups.
To this purpose we have the function QuandleHomology. For the de�nition
of this (co)homology theory see for example [CJK+03].

Example C.9. Let X be a dihedral rack of order 5. Then, we have these
quandle homology groups:

(1) HQ
2 (X,Z) ' 1;
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(2) HQ
3 (X,Z) ' HQ

4 (X,Z) ' Z/5.

Here is the output:

gap> QuandleHomology(DihedralRack(5), 2);

[ 0, [ ] ]

gap> QuandleHomology(DihedralRack(5), 3);

[ 0, [ 5 ] ]

gap> QuandleHomology(DihedralRack(5), 4);

[ 0, [ 5 ] ]

As we said, RiG can also be used to compute low degree relations of the
Nichols algebra B(X, q). To this purpose we use GBNP, a non-commutative
GAP Gröbner basis package, written by Arjeh M. Cohen (see [CK10] for
details).

Example C.10. Let ω be a cubic root of 1. Let X be the conjugacy class
(as a rack) of (1 2 3) in A4. And let q be the constact 2-cocycle equal to
ω. It is not know if the Nichols algebra B(X, q) is �nite dimensional. With
RiG function Dimension it is possible to compute the �rst dimensions:

gap> for n in [0..7] do

> Print(Dimension(r, q, n), "\n");

> od;

1

4

16

52

172

544

5312

16412

So, the �rst dimensions are:

1, 4, 16, 52, 172, 544, 1712, 5312, 16412, ...

(Notice that for this example a lot of memory was needed.) With RiG we
compute the degree three relations and with GBNP function PrintNPList we
get a nice presentation of these relations. The code

gap> LoadPackage("gbnp");;

gap> PrintNPList(Relations4GAP(r, q, 3));;
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gives us these twelve relations:

a3 = b3 = c3 = d3 = 0,

a2b+ abc+ aca+ bc2 + cac+ c2d+ cda+ da2 = 0,

a2d+ aba+ adb+ bab+ b2c+ bca+ ca2 + db2 = 0,
acb− ωadc− ωbcd+ bda+ cad− ωcba− ωdab+ dbc = 0,

abd− ω2adc+ bac− ω2bcd− ω2cba+ cdb− ω2dab+ dca = 0,

ab2 + b2d+ bcb+ bdc+ cab+ cbc+ c2a+ dc2 = 0,

ac2 + bd2 + cbd+ c2b+ cdc+ dac+ dcd+ d2a = 0,

a2c+ acd+ ada+ ba2 + cd2 + dad+ dba+ d2b = 0,

ad2 + bad+ b2a+ bdb+ cb2 + dbd+ dcb+ d2c = 0.

Also, it is possible to �nd the relations of degree 6 (there are twenty of them).
These relations are omitted owing to length.

Example C.11. Let ω be a cubic root of 1. We consider the Nichols algebra
given by the abelian rack X = {a, b, c} with the 2-cocycle given by

q =

 −1 ω ω
1 −1 ω
1 1 −1


By the work of Heckenberger, we know that this Nichols algebra has dimension
432. With RiG (and the Gröbner package GBNP) we obtain these relations:

a2 = b2 = c2 = 0,

abc+ ω2acb+ ω2bac+ ωbca+ ωcab+ cba = 0,
cbcbcb− bcbcbc = bababa− ababab = cacaca− acacac = 0
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