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Componentes logaritmicas de espacios
de foliaciones proyectivas

Resumen

En esta tesis se aborda un estudio de formas logaritmicas en el espacio proyectivo y de grados
arbitrarios, desde un punto de vista relativo a la teoria de foliaciones algebraicas. El problema
original que motiva este trabajo es el estudio de componentes irreducibles del espacio de moduli de
foliaciones algebraicas proyectivas con singularidades, y la descripcion de la geometria de dicho
espacio. De modo especifico, se prueba la estabilidad de q-formas logaritmicas proyectivas de
manera general para el caso en que g = 1, y con algunas hipotesis adicionales sobre los grados de
las componentes del divisor que las definen para el caso q = 2.

De modo més detallado, y en primera instancia, se desarrolla una nueva prueba algebraica del re-
sultado de estabilidad de este tipo de formas para el caso de grado uno. Ademds, se demuestra que
las componentes que determinan en el espacio de foliaciones correspondiente son genéricamente
reducidas como esquemas. Este resultado otorga una mejora al teorema de estabilidad ya cono-
cido dado por Omegar Calvo Andrade, cuya prueba involucra métodos de naturaleza puramente
topoldgica. Asimismo, se describen diversos aspectos de la parametrizacion racional que las define,
como la caracterizacién de su base locus y la prueba de su inyectividad genérica. También, serd
abordado el problema de su posible racionalidad como variedades algebraicas.

El segundo aspecto importante de esta tesis radica en obtener una generalizacion de estos resul-
tados a formas de grados superiores, para espacios de foliaciones en codimensiones arbitrarias. Para
ello se desarrolla como primera medida, una correcta caracterizacion de las formas logaritmicas que
definen foliaciones en el espacio proyectivo n-dimensional, con una estrecha relacién con el cono-
cido haz de formas logaritmicas. A continuacién, mediante una adaptacién y generalizacién de los
métodos utilizados para el caso de grado uno, se prueba la estabilidad de 2-formas logaritmicas bajo
ciertas hipdtesis sobre los grados de los polinomios que las definen. Esto permite deducir la exis-
tencia de numerosas nuevas componentes irreducibles (y genéricamente reducidas como esquema)
del espacio de moduli de foliaciones correspondiente.

Palabras clave: Formas logaritmicas - Foliaciones proyectivas.






Logarithmic components of spaces of
projective foliations

Abstract

This thesis is concerned with the study of projective logarithmic forms of arbitrary degrees, in the
setting of the theory of algebraic foliations. The original problem which motivates this work is the
study of the irreducible components of the moduli space of algebraic projective singular foliations,
and the description of their geometry. Specifically, we use algebraic methods to prove the stability
of projective logarithmic q-forms when q = 1, and when q = 2 with some additional assumptions
on the degree of the components of the divisor that defines them.

In the second chapter, we develop a new proof of the stability result for polynomial logarithmic
differential one-forms. Also, we deduce that the corresponding irreducible components of the space
of foliations are generically reduced as schemes. This last fact provides a non-trivial improvement
to the well-known stability result due to Omegar Calvo Andrade. Likewise, various aspects of the
parametrization defining these components are described. For example, we describe its base locus
and prove its generic injectivity. Also, we analyze their possible rationality as algebraic varieties.

Another important aspect of this work is related to obtain a generalization of these results to
logarithmic forms of higher degrees and spaces of foliations of arbitrary codimension. To achieve
this purpose, we develop a correct characterization of those logarithmic forms which define folia-
tions over the n-dimensional projective space. These results are closely related to the well-known
sheaf of logarithmic forms. Finally, improving the methods used in the case of degree one, we prove
the stability of logarithmic 2-forms under certain assumptions on the degree of the polynomials that
define them. This result allows us to deduce the existence of many new irreducible components of
the corresponding moduli space of foliations.

Key words: Logarithmic forms- Projective foliations.
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Introduccion

Tema y objetivos generales:

El tema de investigacion en el que se enmarca la presente tesis es el estudio de la geometria y
las componentes del espacio de moduli de foliaciones dentro de una variedad algebraica proyec-
tiva. Se centra en el estudio de formas diferenciales que determinan una distribucion integrable
con singularidades, y sus posibles deformaciones. Nuestro objetivo especifico es probar la estabil-
idad de q-formas logaritmicas (con q € N) en el espacio proyectivo, y demostrar que constituyen
componentes del espacio de foliaciones en codimension q.

De igual modo, nos resulta de interés el estudio de propiedades de esta familia de g-formas,
como sus tipos de singularidades y la geometria de la componente que determinan. Nos proponemos
caracterizar el base locus de la parametrizacion que las define, y determinar si son componentes
reducidas o no del espacio de moduli correspondiente.

Antecedentes historicos:

Un problema que ha inspirado diversas dreas de la matemética es el que se conoce como el
Problema de Pfaff. Este tiene sus origines en la teoria de ecuaciones diferenciales en derivadas
parciales de primer orden, originada por Lagrange a mediados del siglo XVIII. Hasta ese entonces,
el concepto de integrabilidad referia a encontrar soluciones de la ecuacién general

i) a
F(xl""’x”’%""’ﬁ_xn’z):0’
o) o)

del tipo z = POX1, s Xy s o0
Luego, a principios del siglo XIX, el problema de la integracién de ecuaciones diferenciales no

), a partir de sistemas de ecuaciones diferenciales ordinarias.

lineales fue abordado por Johann Friedrich Pfaff, quien logré darle un enfoque brillante y original.
Su idea se basaba en considerar el problema totalmente general de “integrar”, desde una nueva
perspectiva, una ecuacién diferencial rotal del tipo:

(0.0.1) w=A1(x)dx;) + - -+ Ap(x)dx,.

Como puede verse en [49], uno de los hechos fundamentales que descubri6 Pfaff es que la resolucién
de toda ecuacién diferencial en derivadas parciales de primer orden en m variables, puede reducirse
a la integrabilidad de una ecuacién diferencial total en 2m variables. De este modo, resolviendo
el problema mas general de integracién 0.0.1 se lograba deducir, como caso particular, algunos
resultados obtenidos por Lagrange en el caso més clésico.
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El concepto adecuado de intregrabilidad refiere a obtener un cierto numero de ecuaciones:
$i(x1,...,xp) =C; Vi=1,...,k,

definidas por funciones {¢i}f=] independientes, tales que en los puntos que las satisfacen se cumplan
en cierto sentido las condiciones determinadas por w = 0. Este concepto de integrabilidad se
conecta, en teorias mas actuales, con el de subvariedad integral (ver por ejemplo [2]).

Cabe destacar también, que dicho problema de integracién de Pfaff ha motivado trabajos de
matematicos como Jacobi, Kronecker, Clebsch, etc. Para mas datos del desarrollo histérico del
Problema de Pfaff, se sugiere consultar [33]. En particular, a continuacion resaltamos principal-
mente las contribuciones realizadas por F.G. Frobenius.

En su famoso trabajo [23], Frobenius realiza un aporte sustancial al problema de integrabilidad
de Pfaff, basado principalmente en el trabajo realizado por sus predecesores en los temas ante-
riormente mencionados. De modo concreto, formulé un criterio para la integracién completa de
cualquier sistema de ecuaciones de Pfaff, desde un enfoque algebraico y muy elegante. Este criterio
(ver por ejemplo [33, Teorema 9.2]) representa los inicios de lo que hoy se conoce como Teorema
de integrabilidad de Frobenius (ver apéndice de [0]), y ha sentado las bases de diversos enfoques
actuales como la Teoria de Foliaciones, la Teoria de Sistemas Diferenciales Exteriores, o mas en
general, la aplicacién de métodos algebraicos y geométricos a la resolucion de ecuaciones difer-
enciales. En lenguaje moderno, la condicién que establecié para que una ecuacion de Pfaff w sea
completamente integrable es:

wANdw =0,

involucrando a la derivada exterior (clasicamente denominada derivada covariante) de la forma.
Esta condicidn, que en realidad es local, asegura que por casi por todos los puntos pasa una Unica
variedad integral de w.

El problema de Pfaff también ha inspirado un famoso trabajo de Elie Cartan, continuando con
los desarrollos de sus directores S. Lie y G. Darboux. Este articulo mencionado resulté sentar las
bases de sus desarrollos en el cdlculo de formas diferenciales exteriores, en la estructura de grupos
continuos y, mas en general, en sus desarrollos en topologia algebraica. Para mas referencias sobre
estos aspectos, consultar el capitulo 11 de [33] y el 3 de [2].

Los métodos algebraicos y geométricos abordados por todos los matematicos anteriormente
mencionados, han motivado el desarrollo de diversas teorias a lo largo del siglo XX, que continian
actualmente. Entre ellas destacamos la Teoria de Foliaciones. Intuitivamente, una foliacién puede
pensarse como una descomposicion de una variedad en subvariedades de igual dimensién (llamadas
hojas), que localmente se agrupan como si fueran las hojas de un libro. De acuerdo con el men-
cionado Teorema de Frobenius, una ecuacién de Pfaff completamente integrable determina una
foliacion cuyas hojas son de codimensién uno.

Como se menciona en la introduccion de [6], la Teoria de Foliaciones, como se la conoce actual-
mente, tiene sus origenes en los trabajos de C. Ehresmann y C. Reeb en los afios 1940’, y ha tomado
distintos enfoques a lo largo del siglo XX. A modo de ejemplo, en su tesis doctoral dirigida por
Ehresmann, Reeb resolvié afirmativamente un problema propuesto por H. Hopf sobre la existencia
de campos de vectores X en la esfera S tales que: X - rot(X) = 0. Segtin el Teorema de Frobenius,
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esta pregunta era equivalente a preguntarse por la existencia de una foliacién de dimensién dos so-
bre la esfera tres dimensional. Este tipo de problemas ha motivado un gran desarrollo del area de la
topologia diferencial en relacidn con la Teoria de Foliaciones.

Otro de los grandes matematicos que deseamos destacar en este desarrollo histérico es Solomon
Lefschetz (1884-1972), debido a su importante aporte en aspectos topoldgicos y geométricos de
ecuaciones diferenciales. Luego de sus famosos trabajos en topologia general y geometria alge-
braica, y a partir de 1944, dedico su trabajo al estudio de ecuaciones diferenciales. En este contexto,
en 1958 liderd un grupo de investigacion dentro del Research Institute for Advanced Studies (RIAS)
en Baltimore. Este se convirtié en uno de los grupos mds destacados en la investigacién en las ecua-
ciones diferenciales no lineales. Finalmente, dejé RIAS en 1964 para formar el Lefschetz Center for
Dynamical Systems en la Universidad de Brown, Rhode Island. Especificamente, consideramos de
gran relevancia sus aportes en la teoria geométrica de ecuaciones diferenciales (ver [39]), en lo que
hoy se conoce como la teoria de sistemas dindmicos y en su introduccién de conceptos de naturaleza
topoldgica en estos dltimos, como por ejemplo el de estabilidad (ver a modo de ejemplo [40]).

A partir de la década de *1970, motivado por problemas de dindmica compleja (relacionados
con trabajos de matemdticos como J. Milnor y S. Smale) y por estudios de ecuaciones diferenciales
en los nimeros complejos, ha sido de interés el estudio de foliaciones holomorfas en distintas var-
iedades. Destacamos los desarrollos y escuelas originadas por matematicos como C. Camacho, A.
Lins-Neto, P. Sad, R. Moussu, D.Cerveau, J.F Mattei, X. Gomez-Mont, entre otros.

En este contexto, uno de los elementos centrales de estudio ha sido el de formas diferenciales
proyectivas que definen foliaciones (formas completamente integrables, segin lo descripto anteri-
ormente). Asimismo, resulta de interés sus tipos de singularidades, la geometria y dindmica de
sus hojas, y la posible estabilidad del tipo de foliaciones que definen. Muchos de los problemas
abordados por estos autores tienen su raiz comtn en el problema de clasificaciéon de foliaciones
holomorfas. Referimos a [8], [9] y a [45] para una perspectiva mds detallada de los origenes de este
problema, y de la Teoria de Foliaciones en el caso holomorfo.

En relacién con el problema de clasificacion sefialado y el estudio de familias de foliaciones
estables, muchos de los matematicos mencionados anteriormente han conseguido resultados en var-
iedades complejas, mediantes métodos de naturaleza topoldgica y elementos cldsicos de geometria
compleja. Entre estos trabajos destacamos los realizados por A. Lins-Neto y X. Gomez-Mont [25],
J.P. Jouanolou [35], D.Cervau y C.F Mattei [8], C. Camacho y A. Lins-Neto [5], D.Cerveau y A.
Lins-Neto [9]-[10], O. Calvo Andrade [3], entre otros.

Desde otra perspectiva, diversas herramientas de geometria algebraica han sido utilizadas para
el estudio foliaciones y formas integrables sobre variedades. Resaltamos, en primer instancia, el
trabajo realizado por Jouanolou en [35] sobre formas de Pfaff algebraicas, cuyo enfoque ha sido
util para el presente trabajo. En relacién con este dltimo sefialamos un trabajo de E. Ghys [24] que
también consideramos relevante.

Con este mismo enfoque mencionado, destacamos los desarrollos e ideas de F. Cukierman - J.V.
Pereira [14] y posteriormente F. Cukierman - J. V. Pereira - I. Vainsencher [15], sobre el estudio de
componentes irreducibles de espacios de moduli de foliaciones proyectivas. En el primero de ellos,
los autores introducen un método infinitesimal basado en perturbaciones de primer orden para el
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estudio de estabilidad de formas diferenciales integrables en espacios algebraicos. Su idea radica
en caracterizar el espacio tangente a una forma dada en un familia especifica y probar que cubre
todas las direcciones posibles del espacio de foliaciones que la contiene. De ese modo, pueden
deducir que la familia de formas involucradas constituye una componente irreducible dentro de
dicho espacio. Esta idea novedosa también ha sido utilizada en el segundo trabajo mencionado (ver
Proposicién 3.1 y Teorema 3.1 de [15]), y es la herramienta fundamental que serd utilizada en la
presente tesis.

Ademds, esta herramienta de naturaleza algebraica resulta un aporte sustancial en el drea de
interés y sienta las bases para trabajos futuros. Incluso, este enfoque permite estudiar propiedades de
la geometria de las componentes determinadas teniendo también en cuenta su estructura de esquema.
A modo de ejemplo, destacamos que, ademas de los resultados obtenidos en esta tesis, serd utilizada
en un contexto esquematico general dentro de un trabajo que se encuentra en preparaciéon por F.
Cukierman y C. Massri [13].

Antecedentes mas detallados del tema de investigacion:

Teniendo en cuenta lo explicado anteriormente, el problema que motiva la presente tesis es
encontrar una generalizacion comiin a dos tipos de componentes irreducibles ya conocidas (tipos
de familias estables de formas diferenciales proyectivas integrables), una dentro del espacio de
foliaciones proyectivas de codimension uno y la otra sobre el de foliaciones dadas en una codi-
mension arbitraria q € N. Estas formas diferenciales involucradas son conocidas como las I-
formas logaritmicas (ver el trabajo de O. Calvo-Andrade [3] para el estudio de su estabilidad), y
las g-formas racionales (ver Cukierman-Pereira-Vainsencher [15]). Dicho de otro modo, el prob-
lema radica en definir formulas adecuadas para las “q-formas logaritmicas” en el contexto de la
Teoria de Foliaciones, que generalicen los casos anteriores (ver formulas 0.0.2 y 0.0.3 mds abajo),
y probar su estabilidad mediante los métodos infinitesimales introducidos en [14].

Para explicar més detalladamente el problema, comencemos con un breve resumen de los con-
ceptos y definiciones relativas a los espacios de foliaciones proyectivas.

Sea w una 1-forma diferencial en el espacio afin complejo de dimensién n+ 1, cuyos coeficientes
son polinomios homogéneos de grado d — 1, i.e. formas del tipo:

n
w = Z AidZ,'.
i=0

Suponemos, ademads, que w desciende al espacio proyectivo, es decir, que se anula en su contraccién
con el campo radial de Euler:
ig(w) =0,

donde R = Y* : Z,-a%. Denotamos por 771(d,P") al conjunto de tales 1-formas (mddulo constante

multiplicativa), que ademds satisfacen la condicién de integrabilidad:

wAdw=0.
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Por el Teorema de Frobenius, una tal w define una foliacién (singular) de codimensiéon uno. Por
cada punto no singular (puntos donde la forma no se anula) pasa una tnica variedad integral de esa
codimension. Un problema central del drea consiste en determinar las componentes irreducibles de
la variedad algebraica ¥ (d, P"), denominada como el espacio de moduli de foliaciones proyectivas
singulares de grado d y codimensién uno. Ademads, resulta relevante estudiar la geometria de sus
componentes: dimensién, grado, singularidades, relaciones de incidencia, etc.

Con mayor generalidad, es de interés considerar los problemas andlogos para foliaciones sin-
gulares de cualquier codimensién. Denotamos por #,(d,P") al espacio de moduli de foliaciones
singulares de codimensién g y grado d en el espacio proyectivo de dimensién n. Estas consis-
tenten de los sub-haces coherentes saturados del fibrado tangente de rango q y grado d, cerrados
por corchete de Lie. Pero, ademads, también pueden ser caracterizadas por g-formas diferenciales
proyectivas con ciertas propiedades que aseguren su integrabiliad.

En primera instancia referimos a la introduccion de [9], a [17] y a [15] para una definicién mds
precisa de estos espacios de foliaciones, y para un resumen de las algunas componentes conocidas.
A continuacién describimos en mayor detalle algunos antecedentes de la teoria de foliaciones en
variedades algebraicas.

En referencia al problema de la caracterizacién de las componentes irreducibles de 71(d, P"),
resumimos los primeros resultados conocidos. Este problema fue resuelto por J. P. Jouanolou [35]
en los casos d = 2 (una componente irreducible) y d = 3 (dos componentes irreducibles). El caso
d = 4 fué resuelto en [9] donde se demuestra que el niimero de componentes es seis (racionales,
logaritmicas, pull-back y excepcional). En este mismo articulo, Cerveau y Lins Neto plantean
también la pregunta natural sobre la estructura del cociente de estas componentes irreducibles bajo
la accién del grupo general lineal proyectivo.

Por otro lado, y para hacer mencién a los antecedentes de formas logaritmicas desde el punto de
vista de su conexién con espacios de foliaciones, puede verse en primera instancia como en [8] los
autores deducen que en el espacio de moduli de foliaciones en el caso afin las Gnicas componentes
posibles son logaritmicas. Incluso, en este dltimo trabajo, dejan como pregunta qué sucede en el
caso de sistemas intersecciéon completa definidos por g > 1 ecuaciones de Pfaff.

En relacién a formas logaritmicas que definen foliaciones en variedades proyectivas, Omegar
Calvo demuestra en [3] que en una variedad proyectiva con ciertas propiedades estas formas consti-
tuyen componentes irreducibles del espacio de moduli correspondiente. Para esto, el autor da una
caracterizacion de dichas formas, algunas propiedades de su holonomia y singularidades, y medi-
ante métodos de naturaleza topoldgica muestra su estabilidad por perturbaciones. Como ya hemos
destacado, este trabajo es muy relevante dado que forma parte del tipo de componentes o formas
que deseamos generalizar.

De modo més especifico, fijamos enteros positivos n, m y una m-tupla de gradosd = (dy, ..., dy).
Luego, una 1-forma diferencial proyectiva w es logaritmica (de tipo d) si puede expresarse como:

0.0.2) w= (]_[ F,-) § /liT_’,
i=1 i=1 !

para ciertos polinomios F1, ..., F,, de grados respectivos determinados pord, y donde A = (41,...,4,)

es un elemento de C™ que satisface: ;7" | 4;d; = 0. Con esta notacién y la introducida anteriormente,
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sid = )1, d; entonces [w] € F1(d, P%). Incluso, si definimos por £(d, n) al espacio de tales 1-
formas logaritmicas, en [3] fue demostrado que este espacio determina una componente irreducible
(para cada d) de F1(d, PL).

En relacién a otras propiedades geométricas de foliaciones logaritmicas, podemos citar [16], en
donde los autores prueban una caracterizacién completa de sus espacios de singularidades.

Por dltimo, y en conexion con el estudio de la geometria del espacio ¥,(d,P"), mencionamos
el trabajo de A. De Medeiros [17] como referencia de las nociones iniciales involucradas. Este
articulo contiene un desarrollo del concepto de g-formas diferenciales integrables y localmente
descomponibles fuera del singular, que son el objeto que describe adecuadamente a las foliaciones
de codimensiones superiores.

Sobre el estudio de componentes del espacio de foliaciones en codimensiones arbitrarias, en
[15] puede verse como los autores prueban la existencia de nuevas componentes (en este caso de
¥4(d,P")) asociadas a las llamadas g-formas racionales, para cada g € N. Ademds, estas general-
izan a las componentes racionales ya estudiadas en codimension uno (ver [25]). Para su correcta
definicion, se debe fijar una tira de g + 1 grados d = (dy, ..., d,). En este caso, se dice que w es una
g-forma diferencial proyectiva racional de tipo d si puede describirse como:

= “ . dF dF; dF,
0.03)  w=ig@Fon---A...dF) =|] | F: Z(—l)’diF—()()/\---/\ A A=
i=0 i=0 ! 4

para ciertos polinomios homogéneos F, ... F, de grados respectivos dados por d. Como ya men-
cionamos, este trabajo también utiliza el método infinitesimal introducido previamente en [14].

Recordamos que las componentes determinadas por estas g-formas racionales son una referen-
cia importante para esta tesis, debido a que las g-formas logaritmicas que deseamos definir deben
corresponderse a un caso més general.

Contribuciones del presente trabajo:

De modo concreto, en la presenta tesis se desarrolla una prueba alternativa y de naturaleza
algebraica del resultado de estabilidad de 1-formas logaritmicas demostrado por Calvo Andrade en
[3]. Nuestros resultados se basan en la técnicas introducidas en los trabajos [14] y [15]. Ademas,
esta prueba permite deducir que las componentes que determinan estas formas en el espacio de
moduli correspondiente son genéricamente reducidas, lo cual no era conocido hasta el momento.

De modo més general, se desarrollan las principales definiciones de formas logaritmicas de
mayor grado que determinan foliaciones de codimensién arbitraria. Ademads, se prueba un teorema
original de estabilidad de 2-formas logaritmicas para cierto tipo de grados, utilizando una adaptacién
de los métodos usados para el caso de grado uno.

Consideramos que estos resultados obtenidos sientan las bases de la demostracidon del caso
general para formas logaritmicas de grados arbitrarios, e incluso para su extension a variedades mas
generales (como el caso térico por ejemplo). Esto ultimo determinaria una generalizacién comun a
los resultados de estabilidad de 1-formas logaritmicas [3] y q-formas racionales [15], que ademas,
destacaria caracteristicas geométricas y algebraicas sobre las nuevas componentes encontradas.



Resumen de los capitulos:

En el capitulo 1, se elabora un desarrollo de las principales definiciones asociadas a estos espacios
de moduli, como su construccidn en variedades generales y algunas propiedades bésicas del espacio
algebraico que definen. También, se elabora un resumen de los principales resultados conocidos.
Se trata de un breve capitulo introductorio que sirve de marco de referencia teérico del resto del
trabajo. Ademds, se realiza un andlisis de la correcta definicién de formas que definen foliaciones
en codimensiones superiores (asociadas al grado de la forma), comparandola con el concepto de
sistemas de Pfaff integrables.

En el siguiente capitulo (2), se aborda un estudio completo de 1-formas logaritmicas, con un
enfoque particular en su estudio como formas integrables que definen foliaciones. El principal
resultado del capitulo es una prueba algebraica de la estabilidad de 1-formas logaritmicas, que per-
mite deducir que las componentes irreducibles que definen en el espacio de moduli correspondiente
son, ademads, genéricamente reducidas (sin elementos nilpotentes). Este resultado forma parte de
un trabajo en colaboracién ([11]) junto con los Dres. Fernando Cukierman y Cesar Massri, que se
encuentra en su etapa final de redaccion. En dicho trabajo, también se muestra una caracterizacion
del base locus de la parametrizacion que define a estas formas, su inyectividad genérica y el estudio
algunas caracteristicas geométricas, como su posible racionalidad como variedades algebraicas.

En referencia al capitulo propiamente dicho, se desarrollard una versién extendida del trabajo
anterior, con algunas explicaciones y tratamientos diferentes a los descriptos en el articulo. Ademads,
se analizardn algunas otra propiedades relativas a este tipo de formas y componentes, como su lugar
singular, posibles nucleos , factores integrantes, hojas algebraicas, etc.

Por ultimo, en este primer caso de formas logaritmicas de grado uno, aparece una condicién
importante sobre los grados del divisor que las define, que hace variar la dificultad de nuestras de-
mostraciones. Dicho de otro modo, la prueba que realizamos es sustancialmente mds sencilla en el
caso en que los grados de los polinomios que definen a estas formas son balanceados (ver defini-
ciones 2.5.29 en el capitulo 2 y 4.4.11 en el 4). Esta distincion entre balanceado y no balanceado,
serd muy importante en los sucesivos andlisis de estabilidad para formas logaritmicas de grados
superiores. Cabe destacar también que los métodos e ideas desarrolladas en este capitulo serviran
como marco de referencia para lo desarrollado en el capitulo 4.

A lo largo del capitulo 3, se desarrolla el estudio de una generalizacién de un resultado de
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Jouanolou descripto en [35], sobre la posible anulaciéon de la férmula que describe a las formas
logaritmicas. En este trabajo mencionado, en especial en su segundo capitulo, el autor estudia los
conceptos de integrales primeras racionales y de factores integrantes para formas de Pfaff proyecti-
vas, en virtud de realizar un desarrollo del posible nimero de soluciones algebraicas. Asimismo este
resultado que deseamos generalizar resulta un lema importante en el contexto de estos desarrollos
mencionados. De manera adicional, todos estos aspectos, que resultaron ttiles en el caso de formas
de grado uno en el segundo capitulo, resultan también relevantes para su posterior adaptacion y
andlisis sobre formas de mayores grados.

Por otro lado, dado que este resultado de Jouanolou indicado fue clave para la determinacién
del base locus de la parametrizacion de 1-formas logaritmicas, se elabor6 una generalizacién para
formas de mayor grado y para variedades mas generales. Esto ultimo corresponde a un trabajo
([12]) conjunto con Fernando Cukierman, que se encuentra en etapa de redaccion .

Se espera que este ultimo resultado elaborado sea importante para la descripcion del base locus
de la parametrizacién correspondiente a formas logaritmicas de mayor grado, asi como también
para el estudio de hojas algebraicas interseccién completa.

En particular, destacamos que, como consecuencia de lo desarrollado en este capitulo, se obtiene
una caracterizacién adecuada de las secciones globales del haz de formas logaritmicas de grados
arbitrarios en variedades proyectivas con ciertas caracteristicas. En el siguiente capitulo, esto serd
de vital importancia para la descripcién de aquellas formas logaritmicas que definen foliaciones.

Para finalizar, en el capitulo 4, se realiza el correspondiente andlisis de estabilidad para for-
mas logaritmicas de grado dos. Asimismo, de manera méas general, se desarrolla una descripcién
adecuada de cudles son las formas logaritmicas (de grados arbitrarios) que definen foliaciones en
codimensiones superiores, en conexion con las descripciones elaboradas en los capitulos 1 y 3.

La técnica global utilizada para deducir la estabilidad es exactamente la misma que para el caso
de 1-formas: describir adecuadamente una parametrizacién que las define y probar la suryectividad
genérica de su diferencial. Es decir, el método se basa en un cédlculo explicito de su espacio tangente
dentro del espacio de moduli correspondiente.

Cabe destacar también, que esta generalizacién a formas de mayor grado, es sustancialmente
mds sencilla en el caso de grado dos, dado que una de las ecuaciones que define el espacio de
moduli correspondiente es mds simple que en casos superiores. Incluso, la prueba realizada asume
la hipétesis de balanceabilidad (generalizada a este caso), que hace mds sencillas muchas de las
demostraciones, en particular las relativas a la prueba de suryectividad del diferencial.



Chapter 1

The moduli spaces of foliations

1.1 Introduccion y resumen en espaiol

En este capitulo introductorio se desarrollardn las principales definiciones y construcciones rela-
tivas a foliaciones algebraicas singulares en variedades complejas o algebraicas, y sus repectivos
espacios de moduli en codimensiones arbitrarias. Ademds, se analizardn ejemplos y se revisardn

las principales componentes irreducibles conocidas.

De modo especifico, dada una variedad compleja (o algebraica) M, una foliacion de codi-
mensién uno esta dada por una familia de 1-formas holomorfas (o algebraicas) {w,} definidas en un
cubrimiento abierto {U,} de M, y que satisfacen la condicion de integrabilidad de Frobenius:

Wo Ndwy = 0.
Ademds, se pide que cumplan con una condicion de compatibilidad:
We = fa/ﬁwﬁ

en cada interseccion doble U, N Ug # 0, para una funcién nunca nula faﬂ. Esta familia de funciones
holomorfas (o regulares) cumple con una adecuada condicién de cociclo, y puede ser pensada como
un elemento f = [ faﬁ] € H'(M,0"). De este modo, puede ser asociada a un fibrado de linea
holomorfo (o algebraico) que denotaremos por L.

Por el clasico Teorema de Frobenius, cada w, define una foliacién de codimension uno en el
abierto Uy, y cada funcién f,, nos da informacion respecto de como se pegan las respectivas hojas
en cada interseccion doble, para luego definir la foliacién globalmente.

Por lo tanto, y en conclusion, una foliacién se corresponde con secciones del haz de 1-formas
torcidas por el fibrado de linea, Q}W ® L, que ademas cumplan con la condicién de integrabilidad:

wAdw=0eH(M,Q (L L).

Ademds, se define el lugar singular de la foliacién (S ,,) como los puntos p donde la forma definida
esnula,ie. S, ={p € M : w(p) = 0}. Por lo tanto, las hojas de la foliacion quedardn definidas en
M — S, y son tipicamente no algebraicas.
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Dada dos familias {w,} v {u,} de formas integrables definidas sobre el mismo cubrimiento, se
corresponden con la misma foliacién cuando existen funciones locales g, nunca nulas tales que:
Wao = gale- Esto en particular implica que el fibrado de linea correspondiente es el mismo para
ambas. Asi, una vez fijado el fibrado, queda definida una relacién de equivalencia ~ en el espa-
cio H'(M, Q}W(L)), que representa adecuadamente a las foliaciones singulares definidas sobre M
(asociadas a £).

Recordemos que si la variedad M es compacta, H(M, Q' (L)) es un espacio vectorial complejo
de dimensién finita. En este caso, ademads, dos formas w y u definen la misma foliacién si y solo si
existe una constante A € C* tal que: w = Au.

En este contexto, se define el espacio de moduli de foliaciones singulares sobre una variedad
compleja (o algebraica) compacta M asociadas a un fibrado de linea £ como:

Fi(L, M) = {[w] € PH(M,Q},(L) : w Adw =0 and codim(S ) > 2).

En general, si ademds asumimos dimc(M) > 3, ¥1(L, M) es una subvariedad algebraica de
PHO(M, Q}VI(L)), tipicamente con singularidades (ver [3]). Un problema principal del drea con-
siste en la determinacién y posterior estudio de las componentes irreducibles de este espacio. A
continuacién describimos las principales componentes conocidas y algunos casos completamente
clasificados en grados bajos, en el caso particular del espacio proyectivo que es de nuestro interés.

Si M = P, los fibrados de linea quedan caracterizados por Og«(d), para cada d € Z. En este
caso, el espacio de moduli correspondiente, ahora denotado por 77(d, P"), describe las foliaciones
proyectivas singulares de grado d. Ademads, geométricamente, el niimero d — 2 describe el nimero
de tangencias entre una copia genérica de P! con las hojas de la foliacién definida.

En referencia al problema de la caracterizacién de las componentes irreducibles de estos espa-
cios de moduli, resumimos los primeros resultados conocidos en grados bajos. Este problema fue
resuelto por J. P. Jouanolou [35] en los casos d = 2 (una componente irreducible) y d = 3 (dos
componentes irreducibles). El caso d = 4 fue resuelto en [9], donde se demuestra que el nimero de
componentes es seis (racionales, logaritmicas, pull-back y excepcional). Por otro lado, en grados
mas altos, el problema de la clasificacion de estas componentes sigue abierto, aunque hay diversos
estudios de componentes conocidas.

Durante este capitulo, también se desarrollard una caracterizacién de los espacios de moduli de
foliaciones singulares de codimensiones arbitrarias. En primera instancia referimos a [17] para la
definicién del objeto correcto que parametriza este tipo de foliaciones. Es decir, en un principio es
natural pensar que estas foliaciones deberian estar descriptas por sistemas integrables de q 1-formas.
Sin embargo, con un ejemplo sencillo en codimension una menos que la del espacio, puede verse
que este concepto seria muy restrictivo para el tipo de singularidades admisibles.

El concepto adecuado que serd introducido es el de g-formas integrables y localmente descom-
ponibles fuera de su lugar singular. De modo especifico, y nuevamente asumiendo que M = P7,
vamos a considerar g-formas torcidas w € HO(P", Qg,,, (d)) (para d > q) que cumplan con la ecuacién
de descomponibilidad local

q-1
(1.1.1) ivw)Aw=0 paratodo Ve /\C™,
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y con la ecuacién de intregrabilidad generalizada

q-1
(1.1.2) ivw)Adw=0 paratodo Ve A\ Cm.

De este modo, es natural definir al espacio de foliaciones projectivas singulares de codimension q
como:

Fo(d,P") = {lw] € PHO(P”,Q%,,(CZ)) s w satisface 1.1.1, 1.1.2 y codim(S ) = 2}.

Asimismo, se elaborard un breve resumen de algunas componentes conocidas de estos espacios,
y una revisién de algunos trabajos que son de nuestro interés. En particular destacamos a las g-
formas racionales, que resultardn un caso particular de las g-formas logaritmicas que deseamos
describir. Se sugiere ver los corolarios finales del capitulo, para una revisién de estos articulos
mencionados.
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1.2 Summary

In this introductory chapter, we develop the first definitions and constructions related to singular
algebraic foliations on complex or algebraic varieties and their respective moduli spaces. Also,
we present some examples and known irreducible components of these spaces. We pay particular
attention to describe the correct objects and equations which define this spaces, especially in the
case of foliations of higher codimension.

1.3 Codimension one case

We begin with some general comments about foliations of codimension one in a complex manifold
M of dimension n. Alternatively, we can also think the same definitions for a differentiable or an
algebraic manifold.

Let Qzlw be the fiber bundle of 1-forms, and Q}, be the exterior algebra of forms over M. In
a geometric setting, a regular foliation ¥ of codimension one can be thought as a decomposition
of the variety M into disjoint subvarieties of such codimension (called leaves). Locally, for a fixed
system of coordinates, these leaves look like parallel hyperplanes.

From another point of view, we can think that the leaves are determined by fixing locally at
every point p € M a non-vanishing 1-form w € (lew) p- The idea is that the tangent vectors of the
leaf passing through p should satisfy the equations imposed by this 1-form. This last fact introduces
the following general definition:

Definition 1.3.1. For a given subsheaf 7 c Q! . we will say that J has rank g if it is locally
generated by g 1-forms independent at every point. In others words, for p € M there exist an open
set U containing p, such that J|y C Qzlvz|U is generated by ¢ 1-forms wy, ..., w, with

wi(P) AN Nwy(p) #0 VYpel.

In addition, we write 7 = (J) for the ideal generated by 7 in the exterior differential algebra €),.

The previous definition is related to the concept of foliations of codimension g, where the ex-
pected leaves have such codimension. Note that for g = 1, it coincides with the description previ-
ously introduced.

Moreover, the requirement for a local 1-form w to have solutions in codimension one (leaves of
the corresponding local foliation) is the Frobenius’s integrability condition:

wANdw=0.

In other words, the necessary and sufficient condition for complete integrability of a Pfaff equation
is given by the Frobenius theorem (see for example section 3 in the appendix of [6]). In this case,
we say that the form w is integrable. Also, a subsheaf J of rank one is said to be integrable if
is locally generated by an integrable non-vanishing 1-form. This concept is equivalent to require J
being closed under the exterior derivative of the algebra Q3 . Similarly, for an ideal 7 associated to
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a higher rank subsheaf, the needed condition to define foliations of higher codimension (complete
integrability) is dZ C I. These ideals are in general referred as exterior differential systems. For
more details of these definitions see [2].

Definition 1.3.2. A regular foliation ¥ of codimension 1 in M is determined by an ideal 7 of ),
generated by an integrable subsheaf J C Q}VI of rank 1.

Remark 1.3.3. In the differentiable case, the topological obstruction for a variety to have regular
foliations is associated with the possible vanishing of its Euler characteristic. In other words, for a
differentiable manifold M such that y(M) = 0, there no exist any regular foliation of codimension
one (see [50]).

In the holomorphic context, the problem is related to the vanishing of certain Chern’s classes of
the normal bundle of the foliation (see for instance [1]). Also, as a consequence, it is obtained that
the complex projective space P, has no regular foliations.

Now, we introduce a more general definition of foliation and allow these objects to have sin-
gularities. Regarding the previous introduction, the difference will be that now the local 1-forms
defining the foliation are allowed to have a particular type of zeros. More generally, the local system
of g-forms (see definition 1.3.1) is not request to have constant rank.

Let X be a complex manifold, where we are particular interested in complex algebraic smooth
varieties. Also, fix an open covering U = {U,}qer of X, which depending on our interest can be
considered holomorphic or algebraic. Then, a codimension one singular foliation ¥ on X can be
described as follows.

With the same idea as above, we consider a family of local 1-forms {w,}, where each w, €
Q}((Ua) is required to not be identically zero and to satisfy the Frobenius condition:

W N dwy = 0.
Moreover, we add the following compatibility requirement:
(1.3.1) Wq = faﬁ wg in Uaﬁ =U,N Uﬂ,

for some non-vanishing function f,3 € O}}(Ua,g). These last equations ensure that the local leaves
defined by each of the local forms glue together in the corresponding intersection. In addition, the
null points of the forms w, and wg in U,g are exactly the same.

Definition 1.3.4. With the previous notation, we define the singular set of the foliation ¥ by:
Sg={peX:wlp) =0, ifpe U}
On the other hand, note that the non-vanishing functions { f,3} satisfy the cocycle conditions

Jop = fay g 10 Uapy,
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and so they determine an object of the cohomology group H'(X, O%). If L denotes the line bundle
represented by the previous cocycle, the formula 1.3.1 shows that the family {w,} determine a well
defined twisted 1-form, i.e. a section

we H(X,Qk ®L).

In order to understand when two of these families define the same foliation, consider another
family of integrable 1-forms {w),} with cocycle conditions induced by { f;ﬁ} e H'(X, Oy). We say
that {w,, fop} and {w! 4, f" .} are equivalent if there exist a family of functions {g,} fulfilling:

ap’Jap
Wy = gaw,, Va,
where each g, is an element of O} (U, ), In addition, the previous equality implies that:
f(;ﬁ = gafaﬁg,gl-

So, in this case, the cocycles {f,g} and { f(;ﬁ} define the same line bundle L. Furthermore, if we
assume that foz3 = f éﬁ, the non-vanishing functions {g,} define an element g € HO(X, O}).

From now on, fix a line bundle L of X, or more precisely, its corresponding class in the Picard
group Pic(X). In conclusion, a singular foliation ¥ is determined by a global twisted form

w € H(X, Q5(L)),
which satisfies the integrability condition
wAdw=0¢eH (X QL L)).

Moreover, two twisted forms define the same foliation (are equivalent) if they are related to the
action of a non-vanishing global function g € H°(X, 0y).

Definition 1.3.5. For L € Pic(X), we define the space of codimension one singular foliations on X
associated to L by the set:

Fi(L, X) = {[w] € H(X,Q4(L))/~ : w A dw = 0}.

Sometimes the condition codimS ,, > 2 is also added. This is equivalent to require the form to
be irreducible in the following sense.

Definition 1.3.6. An element w € H(X, Q;((L)) is said to be irreducible if there no exist «’ €
HO(X, Q) (L)) and f € H(X,Ox(L")) (where L = L’ ® L") such that: w = f w’.

Now let us state two simple known results associated with these spaces.

Remark 1.3.7. If X is compact, the space HO(X, Q;((L)) is a finite dimensional vector space. More-
over, two forms w; and w; are equivalent if there exist a constant A € C* such that:

w); = Adws.

So, in conclusion, we get: F(L, X) C PHO(X, Q}((L)).
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Proposition 1.3.8. If n = dimc(X) > 3 the integrability equation is non-trivial, and ¥ (L, X) deter-
mines an algebraic subvariety of PHO(X, Q;((L)) (in general with singularities).

Proof. See [26] pp.133. O

For our particular purposes, we are interested in the projective case: X = P". In this case,
Pic(X) = Z, and every line bundle is isomorphic to one associated to a twisted invertible sheaf of
the type Op«(d) for some d € Z (see [31, Corollary 6.17]). So, for every integer d € N>, we get the
following moduli space:

F1(d,P") = {[w] € PH(P", Qp.(d)) : w Adw =0 and codim(S ) > 2}.

Notice that for the other possible integers there are no global sections in the sheaf Q. ().

Now, to understand better the previous moduli space, we will describe in more detail the in-
volved equations in homogeneous coordinates. For this purpose, we need to characterize the space
HO(P", Qllpn (d)). This is possible because of the so called Euler sequence (see [31, Theorem 8.13]):

0— QL — 04 (=1) = O — 0.

After considering the tensor product of the sequence by Op:(d), we can reinterpret the obtained
result in homogeneous coordinates and assign to every element w € H'(P", Qﬂ)n (d)), a homogeneous
affine form in C"*! of the type:

n
w= ) ARdz,
i=0

for some homogeneous polynomials {A;} of degree d — 1 which satisfy the equation: 3" ; A;z; = 0.
Also, this equation can be expressed in terms of the vanishing of the contraction of the form by the
radial Euler field R = 3z 22, i.e. ir(w) = 0.

In other words, the previous description can be interpreted by the following. Consider a codi-
mension one singular foliation on P, denoted by ¥, and let = be the natural projection from
C™1! — 0. Then, the pullback foliation ¥* = 7*(¥) can be described by an integrable affine 1-form
w = Y Aidz;, where its coefficients are homogeneous polynomials of the same degree. Moreover,
they must satisfy the equation ), A;z; = 0.

In addition, let us give a geometric interpretation of the previous requirements for the affine
form. First, according to the Harstog’s extension theorem, the form w can be extended to cm*1. Also,
it is clear that not every form in C"*! determines a foliation which corresponds to the pullback of a
foliation on P". The exact condition required is that the form (or the foliation) needs to be invariant
by the homotheties of C"**!, and this will imply the homogeneity of the involved polynomials and
also the Euler descend condition.

Summarily, the moduli space 71(d, P") is an algebraic subvariety of

PHO(P", Qen(d)) ~ {[w] = ZA,-(z) dzi - A; € Clzo,...,2ula-1 Yi and ZAi(z) Zi = O}
i=0 i=0
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n+1

determined by the ( 3 ) quadratic equations induced by the integrability condition: w A dw = 0. In
addition, we have the condition codimS ,, > 2, which can be reinterpreted as the requirement for the
polynomials Ay, ..., A, to do not have a common factor.

Remark 1.3.9. Note that for n = 2, the integrability equation is trivially satisfied because it corre-
sponds to the vanishing of a twisted 3-form in P2. So F;(d,P?) is always a Zariski open subset of a
linear variety.

A significant problem related to these moduli spaces is to characterize their irreducible compo-
nents. We present a summary of the cases in which the total number of them is known.

Remark 1.3.10. With the previous notation, the number of irreducible components of 71(d, P") is
known in the following cases.

e For d = 2 there is only one component. It was proved by Jouanolou in [35].

e For d = 3 there are two. One is of the type “rational ” and the other is “logarithmic”. See also
[35] or the introduction of [9].

o For d = 4 there are six total components, and it is the last case completely understood. Two
of them are of the type “rational ”, two “logarithmic”, one is the pullback of all the foliations
of degree 4 on P? (see remark 1.3.9) and last one is exceptional. This work due to D. Cerveau
and A.L. Neto can be found at [9].

Furthermore, there are some known components in other cases. We highlight the logarithmic
ones, which will be treated in detail in the next chapter. For more information, we refer [3], where
the author proves that the spaces of logarithmic forms determine irreducible components of the
moduli space of foliations on a complex projective manifold X with dim¢c X > 3, and such that:
H'(X,C) = 0.

1.4 General cases

In this section, we introduce a short digression about the moduli spaces of foliations of higher
codimension. We suggest the article [17] for a global perspective of this task. This work contains
most of the definition we will propose next.

First, we need to determine which is the right object to describe singular foliations of codimen-
sion ¢ € N> on a complex or algebraic variety (see the introduction of [17]). There are two natural
possibilities: systems of q integrable 1-forms or q-forms with some desirable properties.

According to the following remark, the systems of 1-forms do not seem to be the right object
because of their possible singularities.

Remark 1.4.1. Let X be an n-dimensional variety with n > 2, and select n— 1 integrable 1-forms on
X. The points where these forms are linearly dependent (singular set of such system) is generically
a codimension two subvariety. So the foliations which correspond to the orbits of vector fields could
never appear in association with these type of systems.
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Now, motivated by the above reason, we introduce the concept of integrable g-forms which are
locally decomposable off its singular set. This concept will generalize the definitions given in the
first section for the case of 1-forms. Also, we write again M for any complex smooth manifold.

Definition 1.4.2. We say w € QK,[ is locally decomposable off its singular set if for every x €
M —{p € M : w(p) = 0} there exist an open neighborhood, and q local 1-forms {w;}/ , such that:

i=

w=wi A Awy.

Definition 1.4.3. A form w which is locally decomposable off its singular set, is also said to be
integrable if every form w; which locally decomposes w is integrable, i.e. with the notation of the
above definition we get: w; A dw; = 0.

The following statements are useful equivalences for the previously introduced concepts. For
more details see the original work [17] or the introduction of [15].

Proposition 1.4.4. For w € QZ,, the following conditions are equivalent:
1. wis locally decomposable off its singular set.
2. w(x) has rank g or O at every point x € M.
3. iy,(w) A w = 0; for every local frame {V1, ... V,} and every subset / of size |I| = g — 1.

Proposition 1.4.5. For w € Qz/l locally decomposable off the singular set, the following conditions
are equivalent:

1. wis also integrable.
2. iy,(w) A dw = 0; for every local frame {V|, ... V,} and every subset / of size |I| = g — 1.
3. ker(dw(x)) C ker(w(x)) ; forevery x e M —{x € M : w(x) = 0}.

Now, the desired definition for singular foliations on a complex algebraic smooth variety X can
be stated with a similar setting to that introduced at the end of the previous section.

For a fixed line bundle L on X, a singular codimension g foliation on X with transitions functions
determined by the cocycle of L, can be described by a twisted g-form w € HO(X, Qi(L)) which
satisfies the following conditions:

1. iy,(w) A w = 0 ; for every local frame {V1, ... V,} and every subset I of size |I| = g — 1.
2. iy,(w) A dw = 0; for every local frame {V|, ... V,} and every subset / of size |I| = g — 1.
3. codim(S, ={x€ X :wlkx) =0} >2.

In addition we need to set the same equivalence relation as in the case of foliations of codimension
one. So, we will work with projective classes of forms in PH(X, Q;I((L)) which satisfy the previous
equations.
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Finally, in our case of interest: X = P”, we can give a more detailed description of the corre-
sponding moduli space of foliations.

Fix an integer d € N4, and consider the projective classes of twisted differential q-forms w €
HO(P", Q%,, (d)) which satisfies 1, 2 and 3 from above. Also, they can be described by homogeneous
g-forms on C"*! of the type:

w= Z Ar(»)dzi, A+ A dZi,,,

1c{0,...,n}
=q
for some homogeneous polynomials {A;} of degree d —g, which also satisfy (Zf}) equations to ensure
that: ig(w) = 0 (where R denotes the Euler field).
In conclusion, we need to consider homogeneous affine gq-forms as above which also satisfies
both the Pliicker decomposability condition

q-1
(1.4.1) iv@)Aw=0 forevery Ve /\C™!
and the integrability condition

gq-1
(1.4.2) iv(w) Adw=0 forevery Ve A\ C".

Note that the constant vectors V can be replaced by local rational vector fields. After all, it is natural
to set the space of codimension g singular foliations of degree d on P" as

Fq(d,P") = {[w] € PH(P", Q]g,,(d)) : w satisfies 1.4.1, 1.4.2 and codim(S ) > 2}.

To end this introductory chapter, we will refer some known facts about irreducible components
of these spaces. In particular, we want to emphasize three articles which are considered relevant in
the setting of the present work. However, it is remarkable that for d > 1 and g > 2 no irreducible
components of ¥, (d,P") are known so far.

Remark 1.4.6 (Foliations with split tangent sheaf).

In [14], the authors deduced that the set of singular holomorphic foliations on projective spaces
with split tangent sheaf and a right singular set are open in the space of holomorphic foliations.

Also, they exhibit some previously unknown irreducible components of the spaces of singu-
lar holomorphic foliations, which are induced by the action of Lie sub-algebras of Aut(P") =
sl(n + 1,C). As applications, the work also presents a generalization of a result by Camacho-Lins
Neto about linear pull-back foliations, and give certain criteria for the rigidity of L-foliations of
codimension g > 2.

Remark 1.4.7 (Rational foliations of codimension q).

As it was announced, there are not many known irreducible components of the space ¥,(d,P")
with ¢ > 2. One of them is presented at [15], where the authors show that the singular holomor-
phic foliations of higher codimension induced by dominant quasi-homogeneous rational maps fill
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out irreducible components of the desired space. Moreover, these foliations can be described by
homogeneous forms of the type:

w =ig(dFo A -+ AdF,) € H'(P", Q1,(d)),

for some homogeneous polynomials F; of respective degrees d; (with Z?zo d; = d). Such form
satisfies the equations of ¥ (d, P"). and define a foliation tangent to the fibers of the map:

P" —— P4

x=(xp X)) = (F(x) 1o F;"(x)).

Also, we consider important to keep in mind these components, because our primary goal is
to obtain a common generalization between them and the usual logarithmic 1-forms (see [3]). In
general, the logarithmic g-forms which define a codimension q foliation will depend on the selection
of m polynomials F1,..., F,. And in the case when m = ¢ + 1 our definitions must coincide with
the formulas given in this remark,

Remark 1.4.8 (Complete intersection and codimension two holomorphic foliations (local case)).
The final remark is related to a recent article [10] of D. Cervau and A.L. Neto. In such work,
the author study codimension two foliations and distributions, and deduce a local stability result
for foliations which are complete intersection. In addition, they present an overview of problems
related to the singular locus and a classification of homogeneous foliations of small degree.

It is relevant to take into account this article because the concept of a complete intersection
foliation is close related to our definition of logarithmic q-forms (see chapter 4).
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Chapter 2

Logarithmic 1-forms: stability and
geometry of the components

2.1 Introduccion y resumen en espaiiol

En este capitulo estudiaremos las principales propiedades de I1-formas logaritmicas en espacios
proyectivos, primordialmente en relacion a sus posibles conexiones con los espacios de moduli de
foliaciones algebraicas proyectivas. El resultado principal es una prueba algebraica de la esta-
bilidad de 1-formas logaritmicas, deduciendo ademds que las correspondientes componentes son
reducidas (sin elementos nilpotentes), y mostrando algunas caracteristicas de su geometria.

A modo de resumen de los antecedentes del tema, puede verse en primera instancia como en [8]
los autores deducen que en el espacio de moduli de foliaciones del espacio afin n-dimensional, las
Unicas componentes posibles son logaritmicas. De forma resumida, en dicho volumen demuestran
que si una 1-forma de Pfaff integrable w es no degenerada, es decir, que su contraccién con el campo
radial de Euler R = }; Zia% es no nula, entonces admite un factor integrante polinomial F, que, por
definicion, va a satisfacer que:

&y =o.
F

Como puede verse también en [8], esto esencialmente va a implicar que w esta en la clausura de
alguna componente logaritmica del espacio. Un resultado similar a este tltimo descripto va a ser
mencionado en este capitulo para formas en el espacio proyectivo (ver proposicién 2.4.27). En este
caso es posible establecer una relacién entre formas logaritmicas proyectivas y las formas de Pfaff
algebraicas proyectivas que admiten al menos un factor integrante.

Con respecto a formas logaritmicas que definen foliaciones en variedades proyectivas, Omegar
Calvo demuestra en [3] que en una variedad proyectiva con ciertas propiedades, estas constituyen
componentes irreducibles del espacio de moduli correspondiente. Para esto, el autor da una car-
acterizacion de dichas formas, algunas propiedades de su holonomia y singularidades, y mediante
métodos de naturaleza topoldgica muestra su estabilidad por perturbaciones.

En conexién a este tltimo antecedente, el resultado principal de este capitulo (Teorema 4.4.1)
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es una demostracion algebraica de la estabilidad de 1-formas logaritmicas proyectivas. La técnica
bésica utilizada consiste en determinar explicitamente las deformaciones de primer orden de una
1-forma logaritmica genérica. Esta nueva demostracion implica ademds que estas componentes
logaritmicas son reducidas (sin nilpotentes), lo cual constituye una adicion substancial al resultado
puramente topolégico de [3].

Ademads de la prueba algebraica de estabilidad, el objetivo general del capitulo es una de-
scripcién adecuada de la geometria de estas componentes irreducibles. A modo de resumen, nos
proponemos estudiar las caracteristicas del morfismo racional que las define, como por ejemplo su
base locus y su posible inyectividad genérica. Esto permitira transferir ciertas propiedades del es-
pacio de pardmetros a nuestras componentes, como por ejemplo su racionalidad (o uniracionalidad)
como variedades.

A lo largo del capitulo, y en la primera instancia, se repasaran las definiciones basicas de for-
mas logaritmicas en el contexto de variedades algebraicas complejas suaves. Ademads, se mostrardn
algunas propiedades elementales como su correcta caracterizacion sobre espacios proyectivos, su
relacién con el conocido haz de formas logaritmicas definido por Deligne (ver [18]), y algunas
propiedades de interés en el contexto de la Teoria de Foliaciones: singularidades, factores inte-
grantes y hojas algebraicas.

De modo mas especifico, la parametrizacion que define a las formas logaritmicas proyectivas,
quedara determinada por la siguiente férmula:

p:Pid) = BCY x | | BH®", Op(d))) ——— F1(d,P")
i=1
A=z ) FE) = 0= (| [ F) ) 4=
i=1 j=1 J

donde d = (di,...,d,) es una m-tupla de grados fija, tal que 3", d; = d. Donde, ademds, las
constantes (4;) pertenecen a PCy, que denota la proyectivizacion del espacio lineal de constantes
en C" que cumplen con la ecuacién lineal: 3", d;d; = 0.

EL morfismo p previamente introducido, es racional, y se corresponde con la proyectivizacién
de la aplicacién multilineal

¢:Cy x [ [ HO®", Opn(di)) — H®", Qpn(d)).

i=1

En relacién con estos morfismos, cabe destacar que nos resulta de interés el estudio del lugar de
ceros de ¢, i.e. K(d) = ¢~'(0), y su correspondiente proyectivizacién que determina el base locus
de la parametrizacién natural p. Esto dltimo es de relevancia para el andlisis y descripcién de
caracteristicas geométricas de las componentes que quedaran determinadas.

El resultado principal que describe los elementos de K(d) se encuentra en la proposicion 2.4.1.
Para probar esto dltimo serd de vital importancia la utilizacion de un lema descripto por Jouanolou
en [35], utilizado para su estudio de hojas algebraicas de ecuaciones de Pfaff proyectivas. Basicamente,
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este resultado establece que si:
Y ‘dfj
U
=
k

para ciertas constantes y; € Cy polinomios irreducibles distintos { fj}/.: 1

M~

=0,

entonces necesariamente
cada y; = 0 para todo indice j.

En esta misma seccion, probaremos que esta parametrizacién natural p es genéricamente in-
yectiva, lo cual serd un elemento clave para deducir propiedades geométricas de las componentes
logaritmicas.

A continuacién se probard el resultado principal de estabilidad de formas logaritmicas anun-
ciado (Teorema 2.5.10). Para esto, serd importante describir explicitamente el diferencial de esta
parametrizacion y dar algunas caracterizaciones de los elementos que estdn en su imagen.

Vamos a denotar por L;(d,n) a la clausura Zariski de la imagen de la parametrizacion p.
Explicitamente se probard que este variedad determina una componente irreducible y genéricamente
reducida (sin nilpotentes) del espacio de moduli de f oliaciones algebraicas proyectivas de codi-
mensioén uno.

La demostracién de este resultado principal serd una consecuencia de la proposicién 2.5.11, en
la cual se prueba que la derivada de la parametrizacién p es genéricamente suryectiva. En funcién
de esto, probaremos que si una forma « € HO(P", QIIP,, (d))/(w) es una perturbacién de primer orden

w = Zmlﬁi(l_l F))dF;,
i=1

=1 j#i

de una forma logaritmica

que probaremos que es equivalente a que satisfaga la ecuacion
wANda+ando=0

entonces, dicha forma a se corrresponde con un elemento que estd en la imagen del diferencial de
la parametrizacién p. Para este fin, serd necesario estudiar la ecuacién de perturbacién anterior bajo
la restriccién a los distintos estratos de una filtracién del lugar singular de w. En funciéon de este

andlisis, y si w estd definida por polinomios {F;}?" |, se necesitardn obtener generadores adecuados
de los ideales que definen a los estratos asociados al divisor (£ - - - - - F,, = 0), definidos como:
X=X =(Fy = =F,=0 1<ks<m.
L=k

Es importante observar tambien que X se corresponde con la componente de codimensién dos
del lugar singular de w. A lo largo del trabajo, generadores y resoluciones de estos ideales seran
requeridos de maneras mds generales, por lo tanto este tipo de cuentas se encuentran explicadas y
desarrolladas en un apéndice externo al capitulo.

Es importante destacar que las técnicas e ideas desarrolladas a lo largo de este capitulo sirven
también de marco de referencia para su posterior generalizacion a formas logaritmicas de mayores
grados.
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2.2 Summary

Throughout this chapter, we study the main properties of logarithmic I-forms on projective spaces,
concerning their connection with the moduli spaces of projective algebraic singular foliations. The
main result is an algebraic version of the stability result for 1-logarithmic forms, which also al-
lows us to deduce that the corresponding components are generically reduced (without nilpotent
elements). Also, some aspects of the geometry of these components will be described.

2.3 Basic definitions: logarithmic 1-forms

We start recalling the usual definition of logarithmic 1-forms on the general setting of complex man-
ifolds. The following explanations are in a closed relation to the well-known sheaf of logarithmic
forms (see for instance [18]).

Let X be a complex manifold, where we are particular interested in smooth projective algebraic
varieties. Let Ly,..., L, be a finite number of line bundles on X, and fix a global section F; €
H°(X,O(L)), for each index i € {1, ..., m}.

Consider L = L; ® - - - ® L, the associated product line bundle, and write {s;k} e H\(U,O") for
the Cech-cocycles defining each L; over an open covering U = {U j}jes of X. With this setting, it
is possible to give a definition of logarithmic regular forms (see for instance [3]). In adittion, the
following condition will be required.

Definition 2.3.1. An m-tuple A = (4y,,...,4,) € C" is said to satisfy the L-condition if:
m dsi.k
DA—==0 Yk
=1 Sk

In general, it will be convenient to use the following further notation:

F= ]_[ F; € H'(X,O(L))
i=1

1

m
Fi=[|Fie X 0We,....0L®,....0Ly,)

i=1
@i#))

Proposition 2.3.2. If 1 = (4y,,...,4,;) € C" satisfies the L-condition, then the expression

w= FZA,-Ti’ = Z/liFidFi
i=1 i=1
is a well-defined twisted global form, i.e. w € HO(X, Q}((L)). Also it is integrable: w A dw = 0.

Proof. Assume that each global section F; € HY(X,O(L))) is defined by a bunch of local regular
functions { fl.j = Fily;}jes such that: fl:’ = Si’k fik (on every non-empty intersection U, = U; N Uy).
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The following equality for the restrictions of the form w to the possible intersections holds:

m m Jj
@lo)lo =|[ | Jgf]zﬁi@ _

i=1 i

m

m m m k
= (1—[ s;k) (l_l flk] Z ﬂi% = l—[ S;k] (w|Uk)|Uj
1 i=1 i=1 i

i= i=1

So these local forms determines a well defined object w € HO(X, Q}K(L)). Moreover, according to
the usual logarithmic derivative formula, we obtain:

dv dF w ) < dF;

— - —=A==d(%)= ) Ad(—)=0.

= A =d(R) ;,(Fl) 0
Finally, note that the integrability equation can be deduced from dw = dTF A w.

Now, we present the following definition:

Definition 2.3.3. A twisted global form w € HO(X, Q}((L)) is said to be logarithmic of type L; ®
.-+ ® L, if there exist sections F; € H%(X,O(L;)) (for i = 1...m), and an m-tuple of constants
A=y,...,4y) € C" satistying the L-condition, fulfilling:

m
w = Z ﬂiﬁidFi.
i=1

The space of such logarithmic 1-forms is going to be denoted by /{(L1 ® - -+ ® L, X).

Remark 2.3.4. The L-condition is equivalent to require:
m
Z /LC(Lz) = 0’
i=1
where c(L;) denotes the Chern’s class associated to the line bundle L; (see also [3]). This type of

descriptions and conditions will be picked up in the following chapter.

Corollary 2.3.5. Every logarithmic form w of type L; ®- - -®L,, determines a foliation on X with the
cocycle conditions determined by L (see definition 1.3.5 of the previous chapter). In other words,
the following inclusion holds:

(LW(L1 ®---® Ly, X))/~ € F1(L, X).
In addition, for X compact, we get:

P (L1 ® - ® Ly, X)) = {[w] € P(H(X, QJI((L))) rweli(Li®---® Ly, X)) € F1(L, X).
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Let us complete the picture for this type of forms on projective spaces. We aim to relate these
last definitions to the so-called sheaf of logarithmic differential forms.

From now on, we set X = P". In this case, the Picard group of equivalent classes of line bundles
correspond to Z, via the isomorphism determined by the powers of the hyperplane bundle H. The
following constructions are supported on the characterization of the line bundles over P" associated
to the invertible sheaves Opr(d), where d runs over all the integers.

For every positive integer d, the space of foliations 7 (H¢, P") corresponds to projective classes
of twisted forms w € HO(P", Qllpn (d))) which also satisfy the so-called integrability equation:

wAdw=0.

Moreover, the space HO(P", Q%P,, (d)) can be described in homogeneous coordinates by polynomial
affine forms w € H(C*',Q/, ) of the type:

n
w = ZA,'(ZO, o Zedz,
i=0

for some homogeneous polynomials (A4;)!, of degree d — 1. We will say that this forms are homo-
geneous of total degree d. Also, it is required to select polynomials which satisfy the condition:

n
ZAi(Zo, o z20)zi = 0.
i=0

This last equation, known as the Euler equation, can be reinterpret by:

ir(w) =0,
where R denotes the radial Euler field 37, zia%_. This condition ensures that the pullback of the

twisted porjective form to every line in C"*! (passing through 0) vanishes.

In conclusion, the desired moduli space can be characterized by:
F1(d,P") = {w € PH'(P", QL.(d)) : w A dw = 0, codim(S ) > 2}.

Geometrically, the number d — 2 refers to the number of tangencies of the foliation’s leaves with a
generic line in P".

On the other hand, the logarithmic projective forms of type HY = H' ® - - - ® H%", now referred
as of typed = (dy, ..., dy) € N, correspond to the forms described by:

m m dF m
wz[l—[F,‘) /l,‘TlIZ/li nFj dF,‘,
i=1 i=1 - J#i

for some homogeneous polynomials (F;), of respective degrees (d;)!, and A4 = (4;), € C". The

vector A should also satisfy the condition (H condition):

m
Z id; = 0.
i=1

According to these definitions, let us establish some useful notations.
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Remark 2.3.6. From now on, the space H(P", Op:(e)) of homogeneous polynomials of degree e
will be denoted by S .. Also, for simplicity we will use the following further notation:

m
F=||Fiesa . Bi=]]FieSaa
i=1 J#EL
More generally, for each multi-index I C {1,...,m}, we set:
Fr=[]FieSisaa

J&l
With this notation, the logarithmic projective 1-forms of type d can be described by:

m
(2.3.1) w= Y NFidF;

i=1
for a vector A satisfying A-d = 0, and F; € S, for each index i € {1,...,m}. The space of such
projective 1-forms in P” will be denoted by /;(d, n).

Proposition 2.3.7. For every logarithmic form w € [;(d,n) described by the formula 2.3.1, the
following properties hold:

e w is homogeneous of total degree d and ig(w) = 0, i.e. w € HOP", Qllpn(d)).
e wAdw=0.

In conclusion, the projectivization of the corresponding logarithmic algebraic space satisfies the
following inclusion:
Pli(d,n) € F1(d,P").

Proof. This result is a particular case of proposition 2.3.2. It is clear that the formula 2.3.1 deter-
mines a polynomial affine form, which is also homogeneous of total degree d. Moreover, we can
also check that w belongs to HO(P", Qllpn (d)) by performing the Euler equation:
m m
ir(@) = 0 = Y AiFir(dF) = F() | Aidy) = 0.
i=1 i=1
O

We end this section describing the connection between the logarithmic forms of type d with the
well-known sheaf of logarithmic forms over P”. The following definitions are briefly explained only
for our prompt purposes. For more details, see the next chapter 3, or the references [18] and [48].

Consider an effective divisor D = }', D; over P", which is assumed to be simple normal
crossing, i.e. a divisor with non singular irreducible components Dy, ..., D,, intersecting each
other transversely (see for instance p.449 of [28] or [31]). We write

i:U=P"-D—P"

and consider the sheaf Q%,, (D) = limg Q%,, (kD) of meromorphic g-forms with poles only over D.
Also, it can be seen that this last sheaf coincides with i*(Q?]).
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Definition 2.3.8. We say that a local section w of QZ,(xD) has logarithmic poles if w and dw have
at most simple poles along 9. The space of these forms constitutes a subsheaf

Qf,(log(D)) c QL (+D),
also known as the sheaf of logarithmic g-forms along D over P".

Now, we define the residue associated with a logarithmic one form, which is sometimes called
as the Poincaré residue.

Fix an index j € {1,...,m} and take any local section w of Q. (log(D)). If we consider a regular
function f; which locally defines D, then the form w can be decomposed by:

df;
w= ngjJ + U,

where u is not divided by de’ The local function gjlp, is well defined as a section of Op, and it
does not depend on the selection of f;.

Definition 2.3.9. We define the residue of the form w over D; according to the following function:

QL (l0g(D)) — (i,).(Onp))
w - gilp;.

Now, we use the notation of proposition 2.3.7 and remark 2.3.6, and we assume that the homo-
geneous polynomials {F;}!"  are irreducible and distinct, and also that the divisor

m
Dp=(F=0)=|_JF;=0),
=1
has simple normal crossings. Using this conditions, the following exact sequence of sheaves holds:

1 1 Pres m .
(2.3.2) 0 - Qf, > QL (logD) —> ((i.(Op,) - 0.
=1

See [22] at p.13 for the corresponding proof and [48] at p.93 for a more general version.

Proposition 2.3.10. With the notations above, every element n € HO(P",Q]%M(log(DF))) can be
described in homogeneous coordinates by:

m
dF;
n= Zl /L'Ti,
i=

for some vector 4 € Cj' = {1 € C" : 1-d = 0}. Moreover, the correspondence 1 — 7 is bijective.

Proof. Consider the long exact sequence in cohomology associated to the sequence 2.3.2:
m
0—-0— HO(P”,Q]}M(logD)) N HO(P", EB(ij)*(ODj)) ~ M i H! (Pn,§211prz) ~C—>...
j=1
Note that if a global logarithmic form w has the vector {4;}", as its corresponding residues, then
w - Z;.":l A ,@ has all its residues equal to zero. So this form vanishes because it corresponds to a
X J
global section of the sheaf of regular differential 1-forms over P". Finally, the condition A -d = 0 is

deduced by making explicit the kernel of the connection morphism 9. O
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2.4 The natural parametrization

In agreement with the definitions of the previous section, we can determine a multilinear map which
parameterizes the set /;(d, n):

¢:Cax||Sa — H®", QL)
i=1

m
(/li);ip (Fi)?il — w = /l,‘ﬁidF,'.

i=1

So, by definition /;(d, n) corresponds to the image of ¢.

The map p determined by the projectivization of ¢ has image on the moduli space 71(d, P"), and
is considered as our natural parametrization. Also, from now on, we denote by #;(d) the natural
projectivization of the domain of ¢. Explicitly, we get:

p:Pi(d)=PCH x| |PS4 ——— Fi(d, P,
i=1

which is only a rational map, since it is not well defined over the point where ¢ vanishes.
This rational parametrization allows us to define the announced logarithmic varieties which
determine irreducibles components of 7 (d, P").

Definition 2.4.1. We denote by:
Li(d,n) =imp € F1(d, P"),

the Zariski closure of the image of the rational parametrization p (on any appropriate open set
where p it is well defined). Moreover, this space coincides with the expected definition of the
projectivization: P/;(d, n).

For future developments, we need to set certain generic conditions over the space of parameters.

Definition 2.4.2. We say that a parameter (4, (F})",) € P1(d) is generic if the following conditions
are verified:

L 4i+(r-DA;#0 Vi# je{l...m}, YreNy.
2. Each F; is an irreducible polynomial.

3. For each multi-index I = {iy,..., i} C {1,...,m} and every point x € P" such that F; (x) =
-+ = F;(x) = 0, the following holds

dF;, A -+ ANdyFj, #0.

We denote by U (d) the space of generic parameters, i.e. the elements of #;(d) which satisfy
the previous conditions.
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Remark 2.4.3. The above conditions ensure that codim(S ;) > 2 (see for instance [16]). So, tech-

nically, we need to restrict p to the set of generic parameters to guarantee that this parametrization
has the image in 7 (d, P").

Observe that the conditions 2 and 3 from above are equivalent to say that the divisor Df = (F =
i, Fi = 0) is simple normal crossing. Also, we assume that for every selection of k polynomials

F;, ..., Fy, its common zeros define a smooth complete intersection projective subvariety.
In addition, these assumptions determine a Zariski open subset of $;(d). To show this fact, for
each k < n and every multi-index I = {iy, ..., i} C {1,...,m}, we consider the space:
k
NC¢(I,n) = {((Fij)ﬁzl,x) € HPSd,-j XxP': Fj(x)=---=F(x) =0, dF;, A--- NdF;, =0}.
j=1

Proposition 2.4.4. The space NC(/, n) is a projective irreducible subvariety of H’;zl PS di; X P"* of

dimension:
k

dim(NC(1,m) = dim([ [PS4,) -1,
=1

and so the projection map 71 : NC°(I,n) — Hlj‘.zl PS di; could not be dominant.

Proof. First, we can assume that I = {1,...,k}. Next consider NC°(/, n) as an incident variety via
the projection morphisms:
NC¢(I,n)
HIJV wc
I_Ii'czl PS4, P

Now observe that all the fibers of &, are isomorphic and has codimension equals to:
codim(my' (X)) =k+(m—-k+1)=n+1,

considered as subvarieties of the space of polynomials Hf.‘zl PSg.

To justify this last claim and without loss of generality, we can assume that the point x corre-
sponds to (1 : O : --- : 0). So the k selected polynomials can be regarded as general polynomials
over C" passing through 0. Also, the k X n Jacobian matrix of (F1,..., Fy) at 0 can not have maxi-
mal rank. To count the number of conditions imposed, observe that there are k conditions over the
independent terms of the polynomials for having a root at 0, and (n — k + 1) conditions over the
coefficient of the linear terms to ensure that the matrix J(F, ..., Fx)(0) € C*" has rank less or
equal than k — 1. Recall that the space of matrices in C*" which has rank less or equal than some
r < k has codimension (n — r)(k — r). In conclusion, since the conditions are independent because
they are considered over distinct coeflicients of the set of polynomials, we have proved that each
fiber 7 I(x) has the announced codimension.

The morphism m, : NC°(I,n) — P" is clearly dominant and has all isomorphic fibers, and so
the space NC(I, n) is an irreducible projective variety with pure dimension equals to:

dim(NC*(I, n)) = dim(r; ' (x)) + dim®P*) = D— (n+ 1) +n=D — 1,
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where D denotes the dimension of Hf.‘zl PSg. For this reason, the morphism 7y : NC°(I,n) —
Hf.;l PS4, could not be dominant. O

For every m-tuple of irreducible polynomials (£;);”, which does not satisfy the condition 3 from
2.4.2, there exists an integer k < min(n,m) and a choice of indexes iy, ..., i such that the fiber of
(Fi,...,F;) by m is not empty. In consequence we obtain:

Corollary 2.4.5. The space U (d) of generic parameters is a non-empty open Zariski subset of
P1(d).

Proof. 1t is clear that the conditions imposed in 1) determine a non-empty subset of the projective
space P(Cy).

On the other hand, it is well known that the assumption of each F; being irreducible corresponds
to an open Zariski subset of []Z, PS,,. Also, note that the last condition (3) corresponds to the
complement of

| mNC@myx [ |Bsy,

L=k el

1<k<min{m,n}

in the corresponding product space of homogeneous polynomials. Finally, each component 71 (NC¢(I, n))
is an hypersurface of Hf: 1 PS4, , and so its complement is an open algebraic subset which is trivially
non-empty. O

We will say that a logarithmic one form [w] € L;(d, n) is generic if it can be written by w =
p(4, (Fy)), for certain generic parameter p = (4, (F;)). Also, using the proposition 2.3.10, we can
state the following result:

Proposition 2.4.6. The rational map p is well defined on U/ (d). In other words the open set U (d)
does not intersect the base locus of p.

Proof. Consider parameters (4, F) € CJ x [T/, S, in the kernel of the multilinear map ¢, i.e.

m
Z NLEdF; = 0.
i=1

If we assume that ([1], [F]) € U (d), then the divisor D turns out to be simple normal cross-
ing (conditions 3 and 4 from 2.4.2). Finally, we divide the above equality by F, and apply the
proposition 2.3.10 to deduce 4 = 0. Although this vector is not allowed in our projective space of
parameters £ (d), and so U (d) does not intersect the base locus of p. O

In the next subsection, we will state a more precise result to understand the points which belong
to the base locus of our natural parametrization.

Finally, we introduce another generic condition which is usually considered for this type of
forms. It is connected with the possible number of algebraic leaves that a logarithmic form might
have. Although, this new complex open condition is not algebraic.
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Definition 2.4.7. We take a complex open subset of U;(d), denoted by V(d), by adding the fol-
lowing generic assumption to the previous conditions:

4. Not all the quotients A;/A; are rational, i.e. A ¢ PQ™.

Next, we describe some useful known facts connected to this new condition. Bur first, we need
to remember the definition of an algebraic solution.

Definition 2.4.8. Anelement f € S, is said to be an algebraic solution of a projective Pfaff equation

w € HOP", Q%Pn(d)) if f divides the homogeneous 2-form w A df € HO(C"“,QéHH). Moreover,

when w is integrable we refer to f as an algebraic leaf of the foliation induced.
In addition, we recall the concept of rational first integral.

Definition 2.4.9. A rational global function H = F/G (for some homogeneous polynomials of the
same degree F,G € S ) is said to be a rational first integral of w € HOP", Qllpn (d)) if it satisfies:

dH A w = 0.

The following known results are concerned with the problem of when a homogeneous projective
form (or more particularly a logarithmic form) has an infinite number of algebraic solutions.

Proposition 2.4.10. If we fix a form w € HO(P", Qllpn (d)) (not necessarily integrable), then it has an
infinite number of algebraic solutions if and only if it admits a rational first integral.

Proof. See [35, Theorem 3.3]. O

Proposition 2.4.11. Let w = ¢(4, (F;)) be a generic logarithmic form of type d, then w has a finite
number of algebraic solutions if and only if A ¢ P(Q™).

Proof. See [35, Proposition 3.7.8]. O

2.4.1 Base locus

Our purpose is to make a description of the points where the rational parametrization p is not well
defined. Let K(d) be the kernel of the multilinear morphism ¢, which is clearly an affine algebraic
variety. We attend to describe its elements and moreover its irreducible components.

If we denote by x the natural projection from the domain of ¢ to its projectivization £;(d), then
the base locus of p is described by:

B(d) = {7(A, (F)) € P1(d) : (4, (F)) €e K(d), A # 0 and F; #0 Vi}.

This space is well defined because the vanishing condition for the multi-linear map ¢ does not
depend of the representative of the projective class.

Note that the elements of the type (0, (F;)) and (A, (Fy,...,Fi-1,0, Fit1,..., Fy)) belong to the
space K(d), but they are not admitted in B(d). So, we want to determine the non trivial elements
(4, (F))) fulfilling:

m
Z NLEdF; = 0.
i=1
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The characterization of the non-trivial components of K'(d) will be supported by the following
algebraic result which can be found in Jouanolou’s book [35].

Lemma 2.4.12 (Jouanolou lemma). Let F'y, ..., F, be irreducible distinct polynomials in C[zy, . . . , Z,],
and A € C™. If we suppose given the relation

y ﬁid_};ji =0,
i=1 !
then necessarily 4; = Oforalli=1...m.
Proof. See [35, Lemma 3.3.1]. O
Observe that for homogeneous polynomials Fy, ..., F,, the condition of being irreducible and

distinct is less restrictive than the requirement of D being simple normal crossing. This means that

the last result weakens the hypothesis given at 2.3.10 for the injectivity of the assignment A — %.
Now, pick a general element (4, (F;)) € K(d) and suppose that F; # O foralli = 1,...,m.
Select irreducible polynomials G1, ..., G, decomposing simultaneously the homogeneous polyno-

mials (F;)7,, i.e.

m/
Fi:nGjei-f Vi:1,...,m.
j=1

We write [e] = (e;;) € Ng’x”" to denote the matrix of the previously introduced powers. Moreover, it
is also clear that these new irreducible polynomials can be chosen homogeneous, andso G; € § a for
j=1...m" and new degrees d},...,d,,. Using matrix notation, the relation between the involved
degrees can be expressed by [e].d’ = d. Next, if we divide the equality

m d(Ge.[j) i 2 dG;
o = [ -

From the previous lemma 2.4.12 we deduce: [e]".1 = 0.
On the other hand, for every partition

d = [e]l.d

and every vector 1 € C™ in the complex kernel of the entire matrix [e]’, using the expression
introduced in the first term of the formula 2.4.1, we can construct a family of elements in K(d).
Note that we have not required A - d = 0 because it is a consequence of:

A-d=21-([e]d)=(el'")-d =0-d = 0.
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All these remarks allow us to construct a morphism

’

m
Y e - ker([e]’) x n Sa — K(d) c Cy x
=1

m

Sd;
=1

1

whose second factor corresponds to a Segre-Veronese map:

m’ m
Vd,d’,[e]) . l—[ Sd; e l_l Sdi-
j=1 i=1

We write K(d)a e} for the image of ¥ q e)) and A(d) for the set of all partitions of d by a matrix
[e] € Ng’xm/ and a new vector of degrees d’. Also, the previous argument allows us to deduce the
following result.

Proposition 2.4.13. With the previous notation, K(d) can be described by the union:

K@) = U W(d)(d/’[e]) U {(/l, F)e K ) : l_l F; = ()} .
(d’,[eDeA(d) i=1

We recall that an element of K(d) is said to be trivial if it corresponds to some (4, (F;)) € K(d)
where the constant parameter A vanishes or some of the polynomials {F;} is equal to zero. We write

T(d) = {4, F) e K(@d): A=0or | [ Fi =0}
i=1

Remark 2.4.14. Note that: K(d)q,1a) = {0} X [T72, S4, € T(d).

Now, observe that each variety K(d)a [e]) is clearly irreducible. So we need to determine when
there are inclusions among these spaces to characterize the irreducible components of K(d). For
this purpose, we perform some remarks.

Remark 2.4.15. Consider an element (d’, [e]) € A(d) such that the matrix [e] has a column of zeros.
Also, denote by (d’, [€]) € A(d) the element which corresponds to removing the entire null column
of [e] and the corresponding degree of d’. The following equality holds:

K d)a ey = K@) g q))-

Remark 2.4.16. For every (d" = (d,...,d,),[e]) € A(d), the action of the group S,, which
permutes at the same time the degrees and the respective columns of [e] gives rise to another element
in A(d). Although, the associated irreducible varieties in K(d) are trivially the same.

We will assume that the vector of degrees d’ is sorted ascending, and if two or more degrees are
the same, we will also pick some fixed order in the corresponding columns of [e].

We define:
A@d) ={d,[e])) e Ad): d, <---<d,, ker([e]') #0 and [e] does not have null columns}.

m
With a slight abuse of notation, we take into consideration the description made at the remark 2.4.16

to select in A(d) only one of the possible permutations for every element with repeated degrees. In
other words we also use A(d) to consider the quotient by the action of the symmetric group S,,.
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Proposition 2.4.17. Consider an element (4, (F;)) € K(d) such that []?, F; # 0. Unless a possi-
ble permutation (see the remark 2.4.16 above), there exist a unique partition (d’, [¢]) € A(d) with
(4, (F;)) € K(d)@ [e}) and such that the polynomials G, ..., G,y decomposing the original polyno-
mials are all irreducible and distinct. We express this induced partition by a function:

¥ K(d) = Awd)
(A4, F) — (d’,[e]) (with the hypothesis explained above).

With this notation, we get: (1, F) € K(d), 1, F)-

Proof. For every (4, F) € K(d) we can select irreducible polynomials {G J};‘n:,1 decomposing simul-
taneously the polynomials {F;}" . This selection gives rise to an element (d’, [e]) € A(d) such that
the selected parameters belong to K(d)q re}). Notice that the matrix [e] has not null columns be-
cause each selected irreducible polynomial G; appears with a positive power in at least one of the
decompositions of the original polynomials.

From the other hand, suppose that (4, F) is an element in (K(d)(a’ e}y N K(d)@a~,[n))) for two

partitions in A(d) and such that:
m’ m”’
— €ij _ hif
E_HQ_HH,
]: =

for two families {G;} and {H;} of irreducible and distinct polynomials. If for every j € {1,...,m’}
there exist an index k = 7(j) such that G; = H(j) and e;; = hj(j), then the two partitions (d’, [e]) and
(d’, [h]) define the same element in A(d) (see remark 2.4.16). Otherwise, ¢; j=0foralli=1,...,m,
which is an absurd because the matrix [¢] has not null columns. O

Corollary 2.4.18. Suppose given (4, F) € K(d) such that the entire matrix associated to y(4, F) has
trivial kernel, we necessarily get 4; = 0 Vi.

This last result extends Jouanolou’s lemma 2.4.12, which correspond to the case of [e] = Id and
Fi=G;foralli=1...m.
Finally, we introduce the concept of sub-partition.

Definition 2.4.19. We say that an element (d" = (d},....d,,),[e]) € A(d) is a sub-partition of
d’=y,....d,,)h]) € A(d) if there exist an entire matrix [a] € Ng’” *m" such that:

° [a] . dl — d//
e [e] = [h] - [a]
and also ker([e]") = ker([h]"). We use the notation (d’, [e]) < (d”, [h]) to express this relation.

Remark 2.4.20. If (d’, [e]) < (d”, [h]), then we have the inclusion:

K(d)@ ey € K(d)@ -
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Proposition 2.4.21. The irreducible components of the space K (d) are the subvarieties K(d)@’ fe])
associated to all the elements (d’, [e]) € A(d) which are maximal with respect to the order <, and
the trivial components given by:

CyXSa x--x8Sg_, x{0}xSq,, x---%x8g,.

m

Proof. For every degree d we write U, for the open subset of S,; which consist of irreducible
polynomials. Next we consider the space

m

U fe)) = {(ﬂ, F)eK(@): | | Fi#0and y(1.F) =@, [e])},
i=1

which corresponds to the image of the map (g fe)) restricted to ker([e]") X H;’;’ | Ud’{. Also note that

U(d)a [e}) 1s an open dense subset of the irreducible variety K'(d)q,fe). In addition, if (d’, [e]) and

(d”, [h)) are two different elements in A(d), then as a consequence of proposition 2.4.17 we get:

U(d)(a fepy N U(d)@~ [ny) = 0.

Now, suppose that K(d)a' (e}y € K(d)@~ [n))- The assumption in particular implies that ker([e]") C
ker([h]"). Also, we can pick an element (4, F) € U(d)a re}y N K(d)@~,my)- This allows us to select
irreducible homogeneous polynomials Gy, . .., G, of respective degrees d1, . .., d,,,, and polynomi-
als Hy, ..., Hy» of degrees di, ...,d), such that:

ml m//
Fe=[]67=]]H* vi=1..m.
=1 k=1

If we consider the irreducible factors associated to the polynomials {Hy}, then we can deduce that
they belong to the set {G j}J"?:/ |- In addition, we figure out the existence of an entire matrix [a] €
Ng’” xm satisfying [a] - d’ = d” and:

m m m N m’ Zm,, i

eii ikQL i _ ikQkj .
HG;: ||qﬂuﬂ|qwlf Vi=1,...m.
j=1 k=1 j=1 j=1

Finally, the above equality implies that e = [h] - [a]. This last deduction also shows that ker([h]") c
ker([e]’), and so the equality holds. In conclusion, we have proved that K(d)a' ;e}y € K(d)@~ ny) if
and only if (d’, [e]) < (d”, [h]). To end the proof observe that the components of the type K(d) - re])
only intersect the trivial components C3' XS4, X+ -+ XS4, X{0} X Sq;,, X -+ X § 4, at the null point
(A1=0,F=0). O

2.4.2 Generic injectivity

Across this section, we deal with the possible generic injectivity of the parametrization p. This
result is correct assuming that the vector d has not repeated degrees. However, in the general case,
the rational parametrization is only a generically finite map.

First, let us characterize some equivalent definitions for an algebraic map to be generically
injective.
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Proposition 2.4.22. Let f : X — Y be a dominant morphism between two algebraic varieties
defined over an algebraically closed field k. Also X is assumed to be irreducible. Then, the following
conditions are equivalent:

1) There exist a non-empty open subset U C X such that f]|y is injective.
ii) There exist a non-empty open subset V C Y such that f|-1(y, is injective.

Proof. At first ii) = i) is trivial. For the other implication, take Z = X — U which is a proper closed
subset of X. Moreover, since f is dominant and injective when restricted to U, according to the
dimension fiber theorem (see for instance section 8 of chapter I in [44]), we get:

dim(Z) < dim(X) = dim(Y).

The reason is that each fiber f~!(f(x)) has dimension zero for every x € U. Finally, the Zariski
closure of f(Z) is a proper closed subset which allows us to take V = Y — f(Z). O

To give an appropriated setting for the ideas involved in the proof of the generic injectivity, let
us recall the definition of integrating factor.

Definition 2.4.23. An element G € S, is said to be an algebraic integrating factor of degree e of

w e HO(P", Q]%M (d)) if the following equation holds:

Gdw =wANdG

The equation described in the last definition can be also thought as d() = 0, which in fact only
makes sense when e = d.

Remark 2.4.24. A simple calculation shows that for a given w € HO(P", Q]%m(d)), the space 77 ,(e)
of integrating factors of a fixed degree e is a linear subspace of S ..

Proposition 2.4.25. If w € HO(P", Q]lp,l(d)) admits an integrating factor of any degree, then it is
integrable, i.e. w A dw = 0.

Proof. It immediately follows from: w A dw = —%G ANwAw=0. O

Proposition 2.4.26. For every logarithmic form w € /1(d, n), the polynomial F € IF,(d), i.e. is an
integrating of degree d.

Proof. Observe every logarithmic factor % is closed under the exterior derivative operator and so:

d(%):éaid(%)zo

1

The following result is a sort of converse implication of the previous proposition.
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Proposition 2.4.27. Take w € HO(P”,Qllpn (d)) and suppose it admits an integrating factor F of
degree d. Also, assume that the divisor define by the zero locus of F is simple reduced normal
crossing. Then, w is a logarithmic form, i.e. w € [;(d, n) for some d € N™.

Proof. Let D be the simple reduced normal crossing divisor defined by F' = []}, F;, where each
F is irreducible. Next consider the rational form n = % € HO(P", Qzlpn(*@))’ and observe that
has simple poles on 9 and moreover dn = 0. So, this form defines a global section of the sheaf

Q]lpn(log(i))). Due to the characterization given for HO(P", Q]é,l(log@)) at 2.3.10 we deduce

and so w € [;(d, n) as claimed. O

Now, we construct an incident variety which controls the number of possible integrating fac-
tors of a certain degree. This space will be the key to deduce the possible generic injectivity for
logarithmic 1-forms. Consider

x1(d,n) = {(F,w) € PS s x PH'(P", QL (d)) : Fdw = w A dF},

which consist on pairs ([F], [w]) where F € IF,,(d). When there is no confusion, the notation [] for
the respective projective classes will be avoid.

In addition, note that the remark 2.4.25 in particular implies that the image of th second projec-
tion 73|y, (4,7 18 contained in the moduli space ¥1(d, n).

Proposition 2.4.28. There exist a non-empty open subset H; C xi(d,n), such that the restricted
projection map 73 |g, is injective.

Proof. The basic idea is to use the upper semi-continuity of the fiber dimension on the morphism
7oly,@ny (see [29, Theorem 13.1.3] for a general version of this result). In agreement with this
theorem, the set

Hy = {x = (F,0) € 1(d,n) : dim\(r," (w)) = 0}

is an open subset of yi(d,n). The notation dim, refers to the Krull dimension of the local ring
associated to x. Also note that the algebraic spaces involved, y(d, n) and 71(d, n), are not required
to be irreducible. First, we prove that H; is non-empty. According to the usual notation, select a
logarithmic form of type d

m
w= Y AFdF;elid,n),
i=1
where A ¢ PQ". Then, necessarily F' = [] F; will be the unique integrating factor. This last remark
immediately follows from 2.4.10 and 2.4.11, and the observation that if w admits two integrating
factors F' and G of degree d, then necessarily F/G is a rational first integral of w.

Now, observe that if a form w has two different integrating factors then every linear com-
bination of them is also an integrating factor (see remark 2.4.24). This ensures that the fiber
T, w) = T, Y(12(x)) has a unique element, for every x = (F,w) € Hj, which in particular im-
plies the injectivity result announced.

O
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The following proposition states the generic injectivity of the parametrization p in the case
where d has non repeated degrees.

Proposition 2.4.29. Let d be a vector of degrees such that d; # d; Vi, j. Then, the rational p which
parametrizes the logarithmic variety £;(d, n) is generically injective.

Proof. First consider the morphism

m
p PCy x I_IPS“’I' - x1(d,n)
i=1

(A, (F)) = (F, Y LiFdF),
i=1

which is a rational map, well defined on the open set U (d). Also note that the natural parametriza-
tion p factors by p:

PC X [T7, S 4, > x1(d, n)

x lm

F1(d,P")

With the notation of proposition 2.4.28 consider the open subset H; of x(d,n), on which n, is
injective. We will see that p restricted to the open algebraic set

Hy(d) = 5~ (H)) N U (d)

is injective. It is important to remark that in the proof of 2.4.28 we have also proved that for every
vector of degrees d the previously defined open set H;(d) is non-empty.

In addition, denote by U C []}, PS4, the open subset where the polynomial of each factor is
irreducible. It is also clear that the first coordinate of the map p:

p1:U—-PSy
m
F o F=]]F
i=1

is injective. The reason is that the polynomials F1, ..., F,, are considered to be irreducibles, and all
the degrees involved are distinct.

Then, using the injectivity of p; and the lemma 2.4.12, it is easy to check the morphism p is
injective when restricted to H;(d). In conclusion, due to the injectivity of p on H;(d) and of m,
restricted to Hj, the same holds for p = m; o p.

O

Remark 2.4.30. With the notation of the previous result, and a similar proof;, it is possible to state
the same result for the multilinear map ¢.

Now, we state a more general result, without any condition imposed on d. We consider conve-
nient to keep in mind the notation introduced at the previous proof.
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Proposition 2.4.31. The natural parametrization p : U (d) — F;(d, n) is always a generically finite
map, i.e. all its fiber has dimension zero when we consider the restriction to an appropriated open
subset of U (d).

Proof. Let w = ¢(4, F) in the image of a generic parameter, and let us prove its corresponding
fiber is finite. For this purpose, we can use again the result 2.4.28 and the same notation as in the
previous proof. We select the non empty algebraic open set H; C y(d, n) on which m, is injective,
and consider (1, F) € U (d) N p~' (H)).

On the other hand, each fiber of s : U C [];L, PS4 — PS4 at F =[]}, F; is finite. Note that
the elements of such fibers correspond to all the possible permutations of the irreducible factors F;
associated to repeated degrees. According to this last fact and the lemma 2.4.12, it is clear that the
fiber of p = (s, p) at (F, w) is finite. We can end the proof by noting that ¢ = 5 o . O

Corollary 2.4.32. The domain of the parametrization p could be redefined by taking the quotient
of P1(d) by the action of a product of symmetric groups, which are associated to all the possible
permutations between homogeneous polynomials of the same degree. Formally, if we realign d by:
d;

’

:...:dl,l <di2:...:di2 <...<dl., =...=dr
1 1

1 i
1 ky ko kr

then p is generically injective defined over the space:
e
m J
PCy x |‘_1| PS di-{ .

The notation used above is the usual for the symmetric product of a projective space.

Finally, we perform an alternative injectivity result, with a slightly different proof from the
given above. The important advantage respect to the previous proposition is that we can exhibit the
open set where the restriction of the parametrization is injective. However, this open space is not
algebraic. Also, we need to recall the definition of the complex open set V(d) given at 2.4.7. This
set is an open complex subset of U (d) determined by the extra condition: A ¢ PQ™.

Proposition 2.4.33. The natural parametrization p restricted to V(d) is injective in the case where
d has non-repeated degrees. Furthermore plq,(q) is always a finite map.

Proof. Suppose that there exist two elements (4, (F;)) and (8, (G)) selected on V1 (d) with:
m m
(2.4.2) w= ) 4FidFi=)" B,GdG,;.

Now, observe that the associated polynomials F, G € S are both integrating factors of the projective
form w. If it were true F # G, then w would admit a rational first integral F/G. But this is not
possible according to the results 2.4.10 and 2.4.11, and the assumption of A ¢ PQ™. So, we deduce
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which in particular implies that the irreducible polynomials F; and G; must be equal for every index
i (if d has not repeated degrees). In the other case, if d allows repeated degrees, the entire m-tuples
of polynomials (F;) and (G;) must coincide after a possible permutation between the elements. Also
write 7 for such permutation, or the identity if d has non-repeated elements.

To conclude the proof observe that if we divide the whole equation 2.4.2 by F, and use the
lemma 2.4.12, we also obtain: A; = B; fori=1,...,m. O

2.5 Infinitesimal stability of logarithmic one forms

Our primary purpose is to show that the space of logarithmic forms £;(d, n) is an irreducible com-
ponent of the space ¥(d,n), also generically reduced according to its scheme structure. Since
the proofs of these main results are supported on tangent space calculations, we need to develop a
correct characterization of the Zariski tangent space of ¥(d, n) at logarithmic form w, and also to
describe the derivative of p.

2.5.1 Zariski tangent spaces and the derivative of the parametrization

First, we will remember the definition of the Zariski tangent space in the general context of abstract
algebraic varieties or schemes. See [21, [.2.2] for an overview of this task.

Definition 2.5.1. Fix a point x at a given algebraic variety (or scheme) X over a field k. Denote by
M, the maximal ideal of the local ring Ox . Then, the Zariski tangent space of X at x, 7, X, is set
as the vector space over the residue field k(x) that is dual to M,/ M)ZC

Example 2.5.2. If X C A" is defined by a system of polynomial equations F;(x) = O for j € J, then
the Zariski tangent space at x° = (x(l), ...,x%) € X is defined by the linear system of equations:

"\ OF
>0 - ) =0.
= Oxi

Remark 2.5.3. If we consider a complex vector space V and write X = PV for its associated
projective space (where mryy denote the induced projection), then it is common to identify the Zariski
tangent space of X at a given point p = my(x) with:

TpX =V /(x).
In addition, consider a projective subvariety Y of X defined by homogeneous equations
Gi(x) =---=Grx) =0.

With a slight abuse of notation, the Zariski tangent space 7,Y at p = my(x), can be identify with all
the elements x” € V/{x) such that:

Gi(x+ex)=--=G(x+ex)=0 mode.
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In agreement with the above remarks, let us describe the Zariski tangent spaces of all the spaces
involved in the natural parametrization p.

Proposition 2.5.4. Select 4 € P(Cy) and polynomials F = (F;) € [T, PS4, and then let w €
F1(d,P") be the image of (4, F) by p. The tangent elements A’ € 7, AP(CY), F ! € TFPS 4, (for each
possible index i) and a € 7,9 1(d, P"), can be respectively characterized by:

1) A € (C™—{0})/(xy such that: d - 2" = 0.

2) F{ e (Sq —{0D/ry-

3) @ € HOP", QL (d))/ () such that: @ A dw + w A da = 0.

P)l
Proof. 1t will be an immediate consequence of the description made for the Zariski tangent space
to a projective variety, in addition to observe that:

A+el)-d=0 mod &2 = X -d=0,
and
(w+ea) Nd(w + ea) =0 mod & = anrdw+wAda=0.

O

The equation established at 3) will be referred as the perturbation equation needed for a ho-
mogeneous form « to be a Zariski tangent vector of 71 (d, P") at w.

Through the rest of the chapter, we keep the notation established in this last remark. In other
words, « refers to a first order perturbation of a logarithmic form w, and (', (F?)) to tangent vec-
tors of the space of parameters P(d) at (4, F) (in concordance with the representation given at the
proposition 2.5.4).

Otherwise recall from 4.3.7 the definition of the natural parametrization p:

p:Pi(d)=PCH X[ |PSy ——— Fi(d,P")
i=1

(). E = (IF:]) — [w] = [Za FidF,

From now on, the notation [] will be avoided. Next, we describe the derivative of this rational
parametrization at a given point. Moreover, we will keep the notation of the remark 2.3.6.

Proposition 2.5.5. For (1, F) € P1(d) and w = p(4, F) € L1(d,n) C F1(d,P"), the derivative
m
dp,r) : THP(CY) x nTpiPSdi — T,F1(d,P"),
i=1
can be calculated by multi-linearity as:

dpop (A, (F))) = ZA’FdF +Z/1FUF dF; +Z/1FdF’

i= i#j
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Proof. Itis a consequence of the descriptions from the proposition 2.5.4 and a simple multi-linearity
argument over the parametrization ¢, whose projectivization corresponds to p. O

Remark 2.5.6. According to the trivial inclusion im(dp,r)) C 7,%1(d,n), every element in the
image of the differential @ = dp(,r) (4, (F?)) is an homogeneous projective 1-form of total degree
d which satisfies the perturbation equation:

aANdw+wANda=0.
Formally, we can summarize this observation by:

im(dp ) € TwF1(d, P") = {a € H'P",Q4.(d)/w) : @ Adw + w A da = 0}

As it was announced, one significant result is the proof of the reverse inclusion from the one
given in the above remark, which also corresponds to show the surjectivity of the differential of the
natural parametrization. First, we need to fix again some notation we will further use.

As usual we write Dp for the divisor defined by the zero locus of F = H;’i | Fi, where each Fj is
an irreducible homogeneous polynomial. From now on, we assume that m > 3, and use X; to denote
the components defined by:

X;={xeP": Fi(x) =0}

More generally, for every I C {1,...,m} we set:
X ={xeP": Fi(x)=0Viell.

In addition, for every k € N, we refer to the following variety:

X%, = U X;

Ic{l,....m}
[1|=k

as the codimension k stratum associated with Dp.

Through this chapter we shall especially use X! - X%)F and X%F. Also, these spaces will be
important in the subsequent chapters for studying logarithmic forms of higher degree.

Now, let us relate this spaces with the tangent vectors of ¥ (d, P") at a logarithmic form w. The
following result can be found at [16].

Proposition 2.5.7. For every projective logarithmic form w € £(d, n), its singular locus S, = {x €
P" : w(x) = 0} can be described as a union:

Sw=Xp, UR,
where R is a finite set.

With the notation of proposition 2.5.5, we can state the following remark:
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Remark 2.5.8. Every element in the image of dp(, r) can be described as a sum:

m m
& = dpopy(X. (F)) = [Z A F,-dF,-] + [Z AFFidF; + " AFidF] | = a) + o,
i=1 i*) i=1

where both @ = dp( ) (4", 0) and @2 = dp(aF)(0, (F))) satisfy separately the perturbation equation,
but vanish on different strata associated to the divisor Dy, i.e.

[ ] al]lX% :0
F

[ ] azlxj;D = 0
F

Moreover, the whole image & always vanishes on X%.

Finally, we want to emphasize another characterization of the tangent vectors at w. Specifically,
we describe the perturbation equation in a meromorphic setting.

Proposition 2.5.9. Consider w € £;(d,n) and @ € H'(P", QL,(d)). With the usual notation, if we
write n = % € HO(P", Q1 (log(Dr))) and B = & € H(P", QL (xDr)), then the following conditions
are equivalent:

. wAhda+aANdw=0
ii. dBAn=0
iii. dBAR) =0

Proof. To see ii & iii, we need to use that the logarithmic meromorphic form 7 is closed under the
exterior derivative:

The rest of the implications are deduced by a straight forward calculation, working on the open
dense subset (F # 0). O

2.5.2 Main results

As it was announced, we will show that the logarithmic varieties £(d, n) determine irreducible
component of the moduli space 71(d,P"). Also, some aspects related to the geometry of these
components will be treated.

The main result of this chapter can be summarized in the following theorem:

Theorem 2.5.10. Let n,m,d € Ny3 and fixd = (dy,...,d,) any partition of d. Then, £;(d,n) is a
generically reduced and irreducible component of the space ¥ (d, P*). It is birrational equivalent to
P1(d) in the case that d; # d; (for all selection of i, j), or to a finite quotient of #;(d) when d has
repeated degrees. Moreover, ¥(d, P") is reduced at the points of p(U(d)) and also smooth at the
points of p(V1(d)).



2.5 Infinitesimal stability of logarithmic one forms

55

As it was explained before, the novelty in the above theorem, which is beside the method of its
proof, is what concerns the scheme structure over a generic point. In addition, it set the background
to extend these results for higher degree logarithmic forms. See theorem 4.4.1 which states a version
of this theorem for foliations of codimension two.

The key in the proof of the above result is the surjectivity of the derivative of the natural
parametrization p. Summarily, the theorem 2.5.10 will be implied by the next proposition com-
bined with some arguments of scheme theory.

Proposition 2.5.11. Let n,m,d € Ny3 and fixd = (dy,...,d,,) a partition of d defined as before.
For every element (4, F) € U (d) c Pi(d), take w = p(4, F) as its associated generic logarithmic
1-form of type d. Then, the derivative

m
dpary : TAPCH x | | TSy, — TuFi(d, P
i=1

is surjective. In other words, the reverse of the inclusion described at the remark 2.5.6 is valid.

Remark 2.5.12. The hypothesis m,d € N3 is not necessary. It is sufficient to assume that the
numbers are in Ny,. However, we will keep that assumption towards to not change the notation in
the principal proofs, in which sometimes we need to consider three different indexes in {1, ..., m}.
In the other case, the arguments are simpler than the presented in this work. So in conclusion, we
use the hypothesis m > 3 to ensure that the variety X%F is non-empty.

Furthermore, note that the case m = 2 corresponds to the well known rational components (see
for instance [15]).

In the sake of clarity, since the hard part of the arguments lies in the last proposition’s proof,
we will perform the proof of the above theorem assuming that the result ?? is correct. Afterward, a
more extensive development of this last proposition will be approached in the following sections.

Remark 2.5.13. The idea behind the following proof is essentially the same as the one used in [15,
Theorem 2.1] (see p. 8) and also in [ 14, Theorem 1] (see pp. 14 and 15).

Proof of theorem 2.5.10.

First, recall that £ (d, n) is defined as the Zariski closure of the image of the rational parametriza-
tion p, which is well defined on the Zariski open set U (d). So L;(d, n) = p(U;(d)) is a projective
irreducible variety. According to the results 2.4.29 and 2.5.11 (generic injectivity of p and the
surjectivity of its differential), these varieties are birationaly equivalent to the space of parameters
P1(d) if d has non repeated degrees, or to a symmetrization of ;(d) in the other case.

Let us consider F(d, P"),.q as the reduced scheme structure associated to ¥;(d,P"). Since the
space of parameters $;(d) is a reduced variety, the natural parametrization factors according to the
diagram:

Ui (d) —— F1(d, P")

Sl

7:1 (da Pn)red
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In other words, the logarithmic variety £;(d, n) is generically reduced, and the image of p can be
thought inside of ¥ (d,P"),.4. This last property can be also found at EGA I (see [30, 5.1.5]). The

algebraic idea behind this last fact is that any ring map A L B, where B has not nilpotent elements,
must factor through the quotient of A by its nilradical ideal, i.e by the space A,.; = A/nil(A).
Observe that for a given point (4, F) € U (d), the proposition 2.5.11 implies that the derivative:

dpr) @ TapnUI(d) — T,F1(d, P")

is surjective, and also factors through 7,Li(d,n) C T,51(d,P")req C T 1(d,P"). Then, we can
deduce:
ToLi(d,n) = To(F1(d, P")rea = T F1(d, P").

Moreover, using the usual argument of generic smoothness, we can assume:
dim(T,F1(d, P")rea) = dim(F1(d, P")req) = dim(F1(d, P")),

and
dim(7,Li(d, n)) = dim(L;(d, n)).
In conclusion, it follows that dim(£;(d, n)) = dim(¥;(d, P")), and so £L;(d, n) is an irreducible
component of the moduli space 71(d, P"), also reduced at the points of p(U(d)). O

The argument used in the previous proof holds in a general setting according to the following
lemma. This result will take part of a work in progress due to Cukierman F. and Massri C. ([13]).

Lemma 2.5.14. Let X be a reduced and irreducible scheme. Let f : X — Y be a morphism, let
x € X be a smooth point and let y = f(x) € Y.
Ifdf(x) : TX(x) — TY(y) is surjective, then f(X) is a reduced and irreducible component of Y.

With the notation of corollary 2.4.32, a more precise statement about the geometry of £(d, n)
is the following:

Corollary 2.5.15. If d has non-repeated degrees, £(d, n) is birrational equivalent to ;(d). In the
other case, it is birrational equivalent to:

m
pCy x [ [BSY”.
i=1

;
Moreover, the following aspects about the rationality of these components are remarkable.

Corollary 2.5.16. The irreducible logarithmic components £;(d, n) are rational varieties in the case
of non-repeated degrees and unirational in general.

Finally, it is possible to deduce the dimension of the irreducible logarithmic varieties.

Corollary 2.5.17. With the notation of the above theorem, the dimension of the logarithmic irre-
ducible components can be calculated by:

dim(£i(d.m) = Y| (d’; ”) _2.

i=1
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2.5.3 Surjectivity of the differential of the parametrization

In this section, we state a complete proof of the surjectivity result for the differential of the natural
parametrization p (see proposition 2.5.11). This result will complete the proof of the main theorem
2.5.10, related with the stability of projective logarithmic 1-forms.

First, we need to state some technical lemmas, which are similar to that used in the correspond-
ing proof of the same surjectivity result for logarithmic 2-forms at chapter 4. Moreover, we consider
necessary to properly describe them at this moment, looking for all the proofs of the main results to
be self-contained in this chapter.

The setup and notation required for these lemmas are the same as that considered immediately
up to this moment. We deal with a logarithmic form of type d = (dy, ..., d,,), defined by

w=p,F) e Lid,n) (for (1, F) € Ui(d)).

According to the conditions assumed on U (d) (see 2.4.2), the divisor D = (F = 0) is simple
normal crossings, so the associated strata

xXh= ) Xi=F,=-=F,=0)
I:|I|=k

defines a codimension k projective subvariety, and each stratum X; is also a smooth complete inter-
section. In general, we will use a slight abuse of notation and write X% and X; to also denote the
corresponding varieties defined by the same polynomials on the affine cone C"*!.

In addition, we set the notation H(C"*!, Qém
the graded C[zy, . . ., z,]-module HO(C™*!, Q}CH]) , which is trivially characterized by elements like:

)(d) for the homogeneous piece of degree d of

n
@ =" A2z,
i=0
for some selected homogeneous polynomials Ag,...,A, of degree d — 1. These forms are also

referred as homogeneous affine forms of total degree d.
Finally, when there is no confusion, we avoid denoting the set where the numerical index be-
longs. In general, most of the indexes will be considered in the set {1,...,m}.

Lemma 2.5.18 (Vanishing lemma). Let a € HO(C”*l,Q(éM)(e) be a homogeneous affine form
satisfying:
a|X§) = O’

m

and also recall that we are assuming d = )’

iz 1 d;. Then, there exist a family {« j}T:l of homogeneous

affine 1-forms of respective total degrees (e —d + d j)’;?:l such that:

m
(ZZZF]'CL’J'
J=1

If a degree e — d + d; is strictly negative, the corresponding form «; is considered as zero.
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Corollary 2.5.19. The conclusion of the previous lemma also holds for every homogeneous projec-
tive 1-form @ € HO(P", QIlp,,, (e)) vanishing when restricted to Xé.

Proof. Both the lemma and the corollary immediately follow as a particular case of the propositions
A.0.22 and A.0.21 treated at the final appendix. O

With the same idea as in the previous lemma, we state below another vanishing lemma, which
describes forms vanishing on some determined components of X%F. Also, recall that we are assum-
ing that the divisor D has at least three components, and so X%F is non-empty.

Lemma 2.5.20 (Second vanishing lemma). For every fixed index i € {1,...,m}, if we select §; €
H(C™!, QL. )(e) (the same conclusion will hold for 8; € H(B", 2y, (e))) satisfying:

Bilx; =0 Vj#i,

there exist homogeneous affine forms f3; of degree (e + d; — d) and ; of degree (e — d;) such that:
Bi = FiBi+ Fivi.

Again, if some degree is strictly negative, the corresponding form is going to be considered as zero.

Proof. The argument is exactly the same as the used in the proof of A.0.22. If we define the
following subvariety:
X5 =) X
J#i
the hypothesis assumed precisely implies that: ;| X2 = 0. So, observe that X%(i) = X% N(F; =0),
in particular implies that its associated ideal corresponds to:

Tz = (FLy + (Fi) = (Fy) + (Fy)

(see A.0.20 for more details). Finally, the result follows from applying a correct short exact sequence
as in A.0.22, and a simple degree calculation. O

Now, using the normal crossing condition for Dg, and the condition 3) described at 2.4.2, we
can state a result which allows us to divide forms by dFy,...,dF, over the different components
of the strata {Xg}k. This result is a variant of the Saito’s version of the DeRham’s division lemma
turned up for our purposes (see for instance [46]). Moreover, it is similar to that stated at [15,
Lemma 2.2].

Before entering the statement, we introduce a short digression about the restriction of forms.

Remark 2.5.21 (The restriction of the sheaf of forms). Let X be a smooth complex algebraic variety

and Y - X a closed subvariety, whose corresponding sheaf of ideals will be denoted by 7.
The following are usual exact sequences of sheaves for the restriction to Y:

(2.5.1) 0 — Iy -O0x — Ox/1, = (iy)«(Oy) = 0
(2.5.2) 0— (Iy)ly =(Ox)ly = Oy = 0,
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and if Q;’( is considered to be locally free, then we also have:
(2.5.3) 0-Qfely-0% - 0feOx/1,) >0
(2.5.4) 0 — Q5 ® Iy)ly = (QPly = (QPIy) ® Oy — 0.

Observe that the even numbered sequences are of Ox|y-modules. Also, the middle term of 2.5.3
is the sheaf-theoretical restriction of ng to Y (its stalks are the same, but it is only supported on
Y). Also, the right term of that sequence can be considered as the analytic restriction, sometimes
denoted by Q;I(IHY (for more details see [27] at pp.20). In the context of algebraic geometry, this last
restriction corresponds by definition to the inverse image of the sheaf, i.e.

i"(Q}) = Qfly ® Oy.

Also, note that this sheaf is of Oy-modules. For more details, it can be consulted Hartshorne’s book
at chapter 2 ([35]). It is important to notice that the sections of this sheaf are not the same as the
pullback of the elements of ng to Y. About this last, and in order to compare this two constructions,
we can remember another useful known exact sequence:

Iy/T2 — (Q)ly — Q) — 0,

which is also named as the “second exact sequence” for the Kahler differentials (see also [31]).
From now on, and when there is no confusion, we will use the common restriction symbol |y to
denote the “inverse image” or “analytic” restriction.
Finally, using this announced notation, it is possible to identify

L (QPIy) = Qy ® (Ox/1,).
And with this setting the first sequence of 2.5.3 can be written back as:
(2.5.5) 050l ely >0l L i@l -0,
where the morphism of the right corresponds to the usual restriction of a form to the points of Y.

Now, coming back to our purposes, we can state the announced division lemma, which is a
useful variant of Saito’s lemma.

Lemma 2.5.22 (Division lemma). Assume thatn > 2 and g < n—1. Consider a € HO(C1, Q! 1)),
amulti-index I = {iy,...,i,} C{l,...,m}and an integer 1 < j < g. If the form « satisfies:

(@ AdFiy A+ AdF;)ly, =0,

then there exist j homogeneous polynomials G, ..., G;; of respective degrees e —d;,, ..., e —d;; (or
zero if the expected degree is negative) such that:

J
aly, = (Y Gy dF)lx,.
k=1

The same conclusion will hold for every projective form 8 € HO(P", QIIPH (e)) satisfying the condition
equivalent to that assumed on a.
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This result corresponds to a particular case of the division lemma stated in chapter 4 at 4.4.3.
Although to obtain a self-contained development of the topics in this section, we describe now the
proof of this case.

Proof. For simplicity, denote by X = C"*! and let ¥ be the subvariety defined as the zero locus of
the selected polynomials i.e. ¥ = (Fy; = --- = F; = 0). It can be noticed that ¥ corresponds to the
affine cone of the projective variety usually denoted by Xj.

First, note that Q;( is a free sheaf generated on global sections by dz, ..., dz,, i.e.

Q}( =0x-dzo0®---®O0x - dz,
Furthermore, the restriction Q}(IY is an Oy-module freely generated on global sections according to:
Q)l(|y =0y -dzply®---® Oy - dz,ly.

Now recall that the divisor defined by Dp is simple normal crossing, and so according to condition
3) of 2.4.2, we know:
diFiy Ao NdyFi; #0 YxeY —{0}

This fact in particular implies that 0 is the unique singularity of dF,[y A- - - AdF; |y. In other words,
if we consider the global decomposition:

dFily A--- NdF;ly = Z ay..;dzly A+ Ndzgly,

0<li<<lj<n

then the ideal A generated by the coeflicients {all._,lj} has a hight depth, and in particular, it is
greater or equal than one. So, we can to apply the Saito’s main theorem in [46] to the free module
determined by the global sections of Q;Ay. This last remark allows us to divide 1-forms which
vanishes against the wedge product by dFj [y A --- A dF;|ly. We can conclude the existence of
global polynomials G;,, ..., G;; in the coordinate ring of Y such that:

J
aly = Z Gi dF;ly.
=1

To end the argument, we just need to observe that each of the polynomials {G;, } can be selected
homogeneous of corresponding degrees {e — d;.}. The reason is that the coordinated ring of ¥
is graded, and the elements a|y and all the forms dF [jly are homogeneous. Finally, since all the
morphisms like:

|xj
HO(P", Opn(j)) — H'(X;,Ox,()),

are always surjective, we can infer the existence of homogeneous global polynomials G, ...,G;;
such that: G;, |y = G;;. Moreover these will be the desired polynomials.

It is also remarkable that the surjectivity of the previous restriction map is a consequence of the
vanishing of the cohomology groups H lepr, 1 x,(j)) (see for instance p. 6 of [37]). The important
property behind this is that the varieties {X;} are supposed to be smooth complete intersections.

O
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The following result is the last technical lemma we need. It will be important in order to deduce

the existence of some polynomials F”,..., F/ performing the expected formula for every Zariski

m

tangent vector of F(d,P") at w (see remark 2.5.8).

Lemma 2.5.23 (Fundamental lemma). Fix n € N3, a vector of degrees d = (dy,...,d,,) as usual
(withd = 37", d;) and anindex j € {1,...,m}. Also, consider a family of homogeneous polynomials
{Bij}izjin n + 1 variables, all of them of degree d;, and which satisfy the relations:

Bijlx = Bujlxi-
Then, for each j € {1,..., m} there exist a homogeneous polynomial F' ; € § 4, such that:
Bijlx; = F}lx,«,« Yi# j.
Moreover, on the restriction to X, the following equality holds:
Bijlx; = (F; + FiBjp)lx, Vi#j,

where B; ;j 1s another homogeneous polynomial of degree d; — d; (or the zero polynomial if this
expected degree is negative).

Proof. Fix an index j, and consider the projective subvariety X; defined by the zero locus of F;.
Also, denote by D the divisor on X; defined by:

D) = (Fjlx_, =0)= U(Fi =0)NX;.
i#j

Also, the ideal sheaf associated to this divisor can be described by: Ip,, = (F jlx;»- In addition, the
lemma’s hypotheses imply that the restricted polynomials B;jlx; give rise to a well defined object:

B(j) = {Bijlx;} € H'(Dyj), Op,, (d))).
If we consider the usual exact sequence of D) as a subvariety of X (in this case twisted by OXj (d)):
0= I'p,(dj) = Ox,(dj) = i.(Op,,(d))) = 0,
and note that 7'p; =~ Ox;(d; — d), then we can describe the induced long exact sequence by
0 - H(X;,0x,(2d; - d)) - H(X;,0x,(d))) > H(D(;,0p,,d))) > H'(X;,0x,2d; - d)) > ...

An important assertion is that the first arrow corresponds to the assignment (G — G F ).
In order to finish the proof, we need to show that H I(x s OXj(2d i —d)) = 0. This last fact can be
deduced from the long exact sequence on cohomology associated to the tensor product of

(256) 00— Ixj = Opn(—dj) g O]pn g (in)*(OXj) g 0,
by Opn(2d; — d), which let us deduce the short exact sequence:

H'(P",0p+(2d; — d)) > H'(X;,0x,(2d; — d)) > H*(P",Op(d; — ).
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So the desired vanishing property follows from the usual knowledge about sheaf cohomology of
Opn(d) (see for example the Bott’s formulas in [42]) and the hypothesis of n > 3. In conclusion, we
have deduced that the morphism:

D)

H°(X;,0x,(d))) — H(Dy;),0p,,(d)))

is surjective. With exactly the same idea, consider again the sequence 2.5.6, but now twisted by
Opn(d)), from which it is possible to deduce that the restriction map:

Ix;
H°(P", Opn(dj)) — H'(X;,0x,(d}))

is also surjective. In conclusion, we deduce the existence of a global homogeneous polynomial
F ; e HO(P", O (d 1)) whose double restriction satisfies:

(Filx)lo,, = B(j)-
In particular, we obtain: F ;.I x; = Bi il X;;» 88 claimed. And also the following holds

Bijlx; = F'lx, + (FiBij)lx,

for some new introduced homogeneous polynomials {B;};x ;.

It is remarkable that we need to use a surjectivity result for some restriction’s maps, which
depends on the vanishing of certain cohomology groups. In general, every projectively normal
variety X has the desired property: H TP, Ix( 7)) = 0for j € Z (see [37] or [19]). Moreover, it is
always true that every smooth complete intersection is projectively normal (see for example exercise
8.4 of chapter Il in [31]). O

Remark 2.5.24. Alternatively, the conclusion of the above lemma could be the following equality
for the new selected polynomial F ; :

Bij = F; + Fl'B,'j + Cij,
for some complex constant c;. Furthermore, if we are working in the space S4,/(r), the equality
holds without the factor c; F;.
Beginning of the proof

Now, we are ready to complete the proof of the main results introduced before, proposition 2.5.11
and theorem 2.5.10.

According to the constructions described in the present chapter, what we need to prove is that
for every fixed projective class of a logarithmic form of type d:

w = p(A, (F)L)) € p(U (@) € Li(d,n),
and every projective homogeneous form o € HO(P", Q];,, (d)) satisfying the perturbation equation:
aANdw+wAda =0,

there exist:
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o U'=(,...,4,) € C"/yy such that 37", Ald; =0

o Fi €Sl

fulfilling:
m m
@ =dpap(V,F) = Y NFdFi+ )" LFyFidF;+ ) LFdF].
=1 i# ] i=1
i i#j i
dp(.p)(4',0) dp,p)(0.F")

For such purpose, and considering the remark 2.5.8, our first objective is to show that every «
satisfying the perturbation equation must vanish on the stratum X% .
F

Proposition 2.5.25. If @ € 7,%(d,P") is Zariski tangent vector at w = p(4, F) € p(U;(d)), then
necessarily: alx% = 0. Moreover, there exist a family of homogeneous polynomials {A;;};x; of
respective degrees: deg(A;;) = d;, fulfilling the formula:

a = ZAijFidei + @,
i#j
where @ € HO(C™!, Q(lcm) is an homogeneous affine form of total degree d such that: & X2 = 0.

Proof. Consider the perturbation equation for a:
aANdw+wAda =0,

and also observe that the exterior derivative of w can be described by:

dw = Z ﬂiﬁ,’dej A dF;.
i#j
In addition, recall that the stratum Xé is contained on the singular set of w, and so for every pair of
indexes i, j (fixed from now), on the restriction to X;;, the perturbation equation reduces to:

(@ A (A = W)FijdF; AdF)x, = 0.

Now considering the conditions imposed on U (d), which allow us to cancel the term (1; — 4 j)ﬁ s
and using the division lemma 2.5.22, we deduce the existence of homogeneous polynomials satis-
fying:

alx,; = (GijdF; + G ;dF))lx;;.
Moreover, on every intersection X;; = X;; N X the different descriptions of aly;; from above must
coincide:

(2.5.7) ax,;, = (GijdFi + GjidF j)lx,

ijk

= (GudF; + GrdFp)lx,;, = (G jdF j + GrjdFi)lx; -

Next, remember that the divisor Df is normal crossing, and so at every point of x € X;j the
restricted 1-forms dF’ i|X»,-k7 dF jIX[._,.k and dF, k|X,-,-k are independent as elements of (an|X,-,-k)x- Also,

i

note that @(x) belongs to the intersection:

<dxFie dij>C N <dij, dka>(C n <dxFi, dka>C =0.
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According to the above observations, we are able to deduce that every involved polynomial at 2.5.7
should vanish on the restriction to X; . In particular, we obtain:

Gij|Xijk =0 Vk#i,j

Another way to deduce this last conclusion is considering the wedge product by dFjlx,, A dFilx;,
on the equations of 2.5.7, and applying directly the condition 3) from 2.4.2.

Furthermore, using the assumptions imposed on Fy, ..., Fy,, the variety (4 j Xk N X;; can be
defined on X;; as the zero locus of the principal ideal (Fjlx,;>. So it is possible to deduce the

existence of a homogeneous polynomials A;; fulfilling:
Giplx,; = (Fiinj)lx,»j-

This last fact can be thought as a variant for functions of the second vanishing lemma 2.5.20. In
addition, we need to use again the surjectivity of some restriction maps like

Ix;;
H°(P", Op(e)) — H(X;j,Ox,,(e)).

Finally, we can vary the fixed pair of indexes to construct a family {A;;},»; which satisfies the corre-
sponding above decomposition. To finish the proof, observe that @ and the form ;. ; E; jA;idF; has
the same restriction to each piece X;;, and so their difference corresponds to an affine homogeneous
form of total degree d that vanishes on X%F. O

Next, we can deduce that every tangent vector is a sum of something in the image of dp and
another tangent vector vanishing on a lower codimensional stratum.

Proposition 2.5.26. With the notation and hypotheses of proposition 2.5.25, there exist an m-
tuple of homogeneous polynomials (F))?, € []iZ, S4 and a projective homogeneous form & €
HO(P", Q},(d)) such that:

a =dpr)0,(F)L) + ¢,

where also € € 7,%1(d,P") and 8|X%p =0.
Proof. According to the above proposition 2.5.25, we get the following decomposition:
(2.5.8) a= ) AjFydF;+a,
i#]
where each homogeneous polynomial A;; has degree d;, and also the affine homogeneous form &

vanishes on X%F. Next, we can use the restriction lemma 2.5.18 to deduce the existence of an
m-tuple of homogeneous affine forms (@), (of respective degrees (dj);.,) decomposing & as:

m
i = Z FLay.
k=1

The main idea is to replace these expressions for @ and @ into the perturbation equation, in order to
deduce certain conditions which in some sense, will imply that A;; = A;F }, for some new introduced
homogeneous polynomials.
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First, we need to consider the following expressions for the exterior derivative of w and a. Also,
recall that we avoid denoting the set where the numerical index belong.

(2.5.9) do =) FdF; A dF;
i#]

(2.510)  da= ) FipAydFi AdF;+ ) FidAi AdFi+ ) FudFy A dy+ ) Frddy.
i#j#k i#j k#l k

For simplicity, we are not going to place both formulas into the perturbation equation at the same
time, so let us separately consider the two terms of this equation, namely by:

aAdw+owAda =0.
~—
Term 1 Term 2

We start working out the first term:

aANdw = ZAklﬁkl/liﬁidek A dFj ANdF; + Zﬁk/liﬁij&k A dFj AdF;
Py by
Note that in the first sum we can also assume that k£ # i, j, which allows to replace each factor Iana ;
by FiE; k- Now, fix an index ko and take the restriction of the first term to the subvariety Xj,:

aANdw = Fko { Z AiAkkoﬁijdei A dFj A dFy + Z /liﬁij&ko A dFj A dF; (over Xko)-

i#j#k i#]

Obviously, this is not the optimal formula because, a priori, the terms where the index kg is not
selected must vanish. However, for our prompt purposes, it will be convenient enough.

On the other hand, observe that w| Xiy = (A, F koA F k)l X, So, according to the formula expressed
for da at 2.5.10, a possible (not optimal) formula for the restriction of Term 2 to X, is the following:

wANda = Fko [Z /lkoﬁijdA,'j ANdF; NdFy, + Z AkoﬁijkAidei A dFy, /\dFko]+

i%) ik
+ ﬁko (Z /lkoﬁkldFko ANdF; N @ + /lkOFA'kOdFkO A dd’ko] (over Xko)~
k#l

At this moment, we need to sum the two restricted terms obtained, and cancel the correspond-
ing factor F' kolx;, Which is present everywhere and is not the zero function of the integral ring
HO(X;,, Ox,, ). Next, fix two more indexes io, jo, and restrict the new equation to Xj, j,x, where most
of the sum’s terms vanish. After all, we obtain:

(=i Ajoko + AjsAioke) Eigjoke@Fiy A dF j, A dFy, =0 (over Xiy joko)s

which due to the normal crossing condition assumed on D, let us deduce: (=4;,A jok, + 4o Aigky) = 0.
So if we consider the family of homogeneous polynomials {B;;};+; defined by:

Bij=3 Vi # j,
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we know they satisfy the relations B;; = By; on X;jx (for every possible selection of indexes). Now,

according to the fundamental lemma 2.5.23, there exist homogeneous polynomials F’, ..., F}, of
respective degrees dy, . . ., d,, such that:

25.11 Bl = (A0 = (" Vit

( -J. ) ( ij)lX,‘_,‘ - (Ti)|X,~j - ( j)lX[j 1 # J-

Finally, we must combine the formula 2.5.8 for @ and 2.5.11 from above, to deduced that a and the
form

Z /L‘F}F,‘dei + Z /lkﬁde;{ = dp(/l,E)(Oa (Fl/)’zil)

i#j k

has the same restriction to each piece of X% = Uiz, Xij. We finally take
g:=a—dpar(0,(F)L),

which vanishes when restricted to X%.Moreover, since a and dp1,F)(0, (F7)!L,) are tangent vectors
at w, then & also belongs to 7,71 (d, P"). O

In conclusion, we have reduced the surjectivity problem to the Zariski tangent vectors & of
F1(d,P") at w satisfying elX% =0.

In addition, taking the remark 2.5.8 into consideration, the form & is expected to be related to a
perturbation of the coefficients A. In other words, we would predict € equals to dp(/l,ﬂ)((/l,{)?i 1-0) for
some tangent vector A° € 7,PCy. This last fact is going to be true only under certain assumptions
on d (balanced case). Furthermore, for d non-balanced, we need to add another term associated
with a new selection of perturbed polynomials (F7)?,.

Before the beginning of the distinction between the general and the balanced case, we perform
another common proposition for tangent vectors vanishing on the restriction to X%.

The next result is a slight more general statement than the needed in the short term, but it will
also be used for the non-balanced case.

Proposition 2.5.27. Fix a natural number r € N, and consider € € 7,%(d, P"), a tangent vector at
w = p, F) € p(U (d)) of the form:
m
e= Y (Fs;,
i=1

for some homogeneous affine 1-forms &1, ..., &, of the correct degree (if it is attainable, or zero in
any other case). Then, the following equalities are necessarily satisfied:

(eiNdFiNdF))lx,; =0 Yi# ]

Proof. The idea is the same as in the previous proposition, we need to restrict the perturbation
equation in a correct order to the codimension two components X;;.
First, observe that the exterior derivative of & satisfies:

de = Z F(Fk)r_lﬁkl dF; A g + Z(ﬁk)rdak.
k#l k
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So if we fix an index iy and use that & Xy = (F i) €iy» then the restriction of the perturbation equation
to Xj, has the following possible expression:

(F,'O)r Z /l,-ﬁijs,-o A dFj ANdF; + Z /l,-orﬁkldF,-O ANdF; A g + /lioFiQdFio A dei() =0 over X,'O.

i#] =]

Now, we are able to cancel the term (F i,) » because it is not the zero element of the correspond-
ing integral coordinate ring of the variety X;,. After doing this, fix another index jy and take the
restriction of the equation to X; j,, in order to deduce:

Ay + (r = D) Eyyjo&iy A dFiy ANdFj, = 0.

Finally, according to the conditions imposed over the open set U;(d), we can take out the term
(Aj, +(r = 1)/11-0)1‘7“ iojo» and arrive to the expected result.
o

Remark 2.5.28. The case r = 1 of the previous proposition is going to be used soon as a first
approach to understand the Zariski tangent vectors at w which vanish on X%). Furthermore, the
cases r > 1 are going to be important in the non-balanced case.
In relation with this last comment, notice that, for every r € N fixed, the expected degrees of
(&)}, should be:
deg(ex) =d —r(d—di) = dp — (r - I)Zdj.
J#k

The balanced concept will be related to the sign of the above degrees.

The balanced case

In order to end the proof of proposition 2.5.11, across this section we set up the final part assuming
certain extra conditions on the associated degrees d.

Definition 2.5.29. We say that an m-tuple of degrees d = (dy,...,d,;) € N™ is balanced if for each
fixed index k € {1,...,m} the following holds:

d < > d;.
j#k

Remark 2.5.30. Alternatively, let D = Z;.":l D; = (F; = 0) be a divisor over P” of degree d, whose
irreducible components {9);} are defined by irreducible homogeneous polynomials Fy, ..., Fy, of
respective degrees d = (dy,...,d,), with 3", d; = d. We will also say that the divisor D is
balanced if its associated vector of degrees d is balanced.

Now, we are able to prove (assuming the condition of d being balanced) that every tangent vector
at w = p(4, F) € p(U,(d)) which vanishes on X%F is related to a perturbation of the coefficients A.
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Proposition 2.5.31. With the notation of proposition 2.5.25, if & € 7,%1(d,P") vanishes on X%F
and the vector d is balanced, then there exist constants (17,...,4,,) € Cg’ /(1 such that:

m
&= dpar(0, (D)) = > A FidF; € Li(d,n).
i=1

Proof. According to the vanishing lemma 2.5.18, the form & can be described by: & = 37" Frey,
for some homogeneous affine forms &1, ..., &, of respective degrees di, . ..,d,. So we can use the
previous proposition 2.5.27 (for r = 1), to deduce :

(&; NdF; N dFj)|X,‘j =0 Vi#]

Now, due to the division lemma 2.5.22, there exist homogeneous polynomials of the correct degree
(or the zero polynomials in any other case) fulfilling:

(E)lx, = (ALdF; + ALdF )y, Yi# j.

Next, fix three indexes i, j, k, and consider the respecting above decompositions for &; on X;; and
Xix, which must coincide on their intersection X; .. Precisely, we get

(A} dF; + ALdF ), = (AydF; + AdFy)lx

ijk*
Since Dp is assumed to be simple normal crossing, the particular condition 3) at 2.4.2 implies:
(2.5.12) Afj = A,:k and A;i = Afd =0 (all over X;jr).

In particular, we have proved that each of the homogeneous polynomials like Az.l. vanishes when
restricted to X;j for k # i, j. Since the polynomials selected are all irreducible, distinct and with
normal crossing, then necessarily exist a new family of homogeneous polynomials {B;i}# j such
that:

(ADlx,; = (FijBlx,; Yi# j.

Upcoming we need to take into account the degree of all the involved polynomials. So first note
that the polynomials of the family {Ai:j}# ; are all of degree zero because &; and dF; has always the
same degree. From 2.5.12, we deduce that these constants only depends on its upper index, and we
write

A=A eC fori=1,...,m

On the other hand, the degrees of the polynomials {Bz.l.}# ;j should fulfill:

deg(B',) = degs; —dj— (d—d; - dj) = di = ) di,

k#i

so they are all strictly negative according to the balanced assumption on d. Hence we have:

(i — ﬂ;dF,')lxij =0 Vi#]
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Finally, we need to use the second vanishing lemma 2.5.20, in this case to deduce:
& — /ll,-dFl‘ = ﬁ,‘é,’ + Fi'}’ia

for some new introduced homogeneous 1-forms. Again using the balanced condition, observe that
the degree of each of the forms {&;} must be negative and so they do not take part of the last formula.
Furthermore, the forms v, ..., vy, will be taken as zero because they corresponds to homogeneous
affine 1-forms of total degree 0. In conclusion, we deduce that:

m
E= Z /l;ﬁ',dFl
i=1

as claimed. Notice that the condition of A’ lying on the space Cy is deduced from imposing the
descend condition to g, i.e. ig(g) = 0. |

Corollary 2.5.32. If ¢ € 7,,%1(d, n) vanishes on X2 - then € € [1(d, n), i.e. it is another logarithmic
form of type d.

Remark 2.5.33. In the case where d is balanced, combining 2.5.26 and 2.5.31 we arrive to a com-
plete proof of the surjectivity result stated at proposition 2.5.11. So, as a conclusion, according to
the theorem 2.5.10, we have proved that £;(d, n) (with d balanced) corresponds to an irreducible
component of the moduli space 71(d, P").

The non-balanced case

With the notation of the previous sections, from now on we need to deal with the problem of char-
acterizing the Zariski tangent vectors & vanishing on the restriction to X2 - but with the additional
condition that the divisor Dr is not balanced. As it was announced, in this case it is not going to be
true that € must be another logarithmic form of type d.

We start describing a simple fact associated to non-balanced vectors of degrees, in order to
restrict the possible number of unbalanced degrees.

Proposition 2.5.34. If d = (dy,...,dy,) is a non-balanced m-tuple of degrees, then there exist an
unique index ig € {1,...,m} such that:
diy 2 ) d;
J#io

Proof. By definition it is clear the existence of at least one element d;, satisfying the condition of
the remark. Moreover, the uniqueness is an immediate consequence of noting that: d;, > d/2. O

According to the propositions 2.5.26 and 2.5.34, we can assume that our tangent vector satisfy:
&l X2 = 0. Also, for simplicity we can assume that dy > 3’ ;51 d;.

Proposition 2.5.35. Select d with the above conditions, and take & € 7,%(d,P") as a tangent
vector at w = p(4, F) € p(U;(d)), which also vanishes on X%)F.
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Then, there exist constants A" = (47,...,4,,) € C", a set of homogeneous polynomials {B} >
(all of the same degree d; — }. .1 d;) and an homogeneous affine 1-form y; (with the same total
degree as the polynomials), such that the following description holds:

m
E= Z/lllﬁldF, + ZﬁlplijdFj + (Fl)zyl.
i=1 j>1
Proof. The beginning of this proof is exactly the same as in proposition 2.5.31. Since & is an

homogeneous projective form vanishing on XZF, it necessarily decomposes as £ = X', Frer.
According to the lemma 2.5.27 (for r = 1) each of these new introduced forms satisfy:

(gi NdF; N dFj)|X,‘j =0 Vi#]

i

Next by the division lemma 2.5.22, select homogeneous polynomials {Aij}i;t ;j and {A;l.}# ; of the
correct degree (or zero in any other case) fulfilling:

(edlx; = (A dFi + ALdF )y, Yi# j.
Now, we need to compare the previous decompositions for &; (with i fixed) on X;; and X, restricted
to their intersection X; . Also, we must take into account the corresponding homogeneous degrees
of all the polynomials and the forms involved, in order to deduce:

A=Al =2€C and (A)lx; = A, =0 Vi#j#k

So every polynomial Ai.l. vanishes on X;; for all k # i, j. In consequence, there exist another
homogeneous polynomial Bj.l. such that:

(A'DIx; = (FijB)lx,;-
Notice that the expected degree of these new homogeneous polynomials should be:

deg(B') = d; - Z d,.

r#i

Since d is not balanced and the only unbalanced degree is assumed to be d;, we set e = d] —
2 j>1dj > 0. Summarily, the following conditions hold for these new introduced polynomials:
Bj €S, Yj#1 and B,;=0 Vil Yj#i

Finally, for each i > 1, the forms &; and A’ dF; coincide on the codimension two subvariety X%F(i) =
U j#i Xij- The same holds for the forms &, and

/lll dF| + Z ﬁijB;’l dFj,
j>1
on X%F(l). From the second vanishing lemma 2.5.20, we are able to introduce new homogeneous
affine forms fulfilling respectively:
g1 =A1dF| + ZﬁijB}] dFj+ F\ & + Fiyi,
j>1
g=AdFi+F&+Fiy;  Vi> 1.
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To conclude the proof, observe that all the forms vy, ..., vy, must be equal to zero, because they
correspond to homogeneous 1-forms of total degree 0. Furthermore, the forms {&;};~; do not take
part of the formula due to the special assumption on d. To respect the notation of the statement we
write: Bj := B}l, and this ends the proof. O

The next proposition shows that 1 € C¥, , and so that necessarily >, /llfﬁ idF; descends to the

d 2
projective space.

Proposition 2.5.36. With the same notation as in proposition 2.5.35, the following conditions hold:
o XL 4idi=0

° Zj>1 ijj+iR(71) =0

Proof. 1t is an immediate consequence of:

0 = ir(e) = F [Fl (Z A;d,) +F [Z diBj+ iRm)J],

i=1 1

and noting that the polynomials F1i, ..., F, are irreducible and distinct. O

Corollary 2.5.37. Again with the same notation and hypothesis as in proposition 2.5.35, the exact
conclusion is that A’ = (1}) € 7,Cy and:
£ = dpr)((1)),0) + Z FiFyBidF; + (F1)*y1 = dpup)((A),0) + &,
j>1
where also & belongs to 7,F1(d, P").

From now on, we need to deal with tangent vectors of the form:
&= ZﬁlﬁlijdFj + (ﬁ])z’yl,
j>1
and deduce they belong to the image of the differential of the parametrization p. Since the final part

of the proof will depend on a recursive argument, the following proposition is going to express a
characterization for Zariski tangent vectors a little more general than the described above.

Proposition 2.5.38. Let us assume that
e{ =d —I’Zdj >0,
Jj>1
for some r € N. Also, let &) € 7,F1(d,P") be a Zariski tangent vector of the form:
£ = Z(ﬁl)rﬁlijdFj + (FD)™y,,
j>1
for some homogeneous polynomials B, ..., B, and vy, an homogeneous affine form, all of degree

€. Then, there necessarily exist an homogeneous polynomial F Y) of degree ¢/, and another homo-
geneous projective form &(,1), such that:

& = dp(/l,E)(o’ ((F])r)F(V), 0,...,0) + (ﬁl)r+18(r+1).
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Proof. As in the proof of proposition 2.5.26, we need to deduce some correct equations for {B} ;>
in order to apply the fundamental lemma 2.5.23.

We start describing the most extensive term of the perturbation equation w Ade(y +&) Adw = 0.
Notice that in the first term of

dS(r) = Zl r(ﬁl)r_lﬁlkﬁlijdFk A dFj + kzl(ﬁl)rﬁljkBdek A dFj +
J> +J>
k>1

+ DB FrdBi AdFy + ) (r+ DED FudFy Ay, + (F)*dy,
i1 k>1

we can also assume that the indexes k and j are distinct, and this allows us to the replace FuFy j
by F\F, jk- Moreover, since wlx, = 4; F1dF,, we can perform a description of the first term of the
perturbation equation restricted to the subvariety X;:

(@ Adeg)ly, =(F) ™ (D0 + DFy A1 BjdFy AdFy A dF;) +

+(ﬁ1)r+l [Z/ﬁﬁ]del /\dBj/\dFj + Z(}”+ l)FA'ldel ANdFy /\’yr]
Jj>1 k>1

On the other hand, using the following expression
(du))|x1 = Z/liﬁlidFl ANdF; + Z/l]pldek ANdFq,
i>1 k>1

we can also perform a correct formula for the second term of the perturbation equation on X;:

(8(,) /\d(JL))|X1 Z(FI)HI Z Fliij/lidFj ANdF| ANdF; + Z FljkBj/lldFj ANdF, NdF, |+

i#j>1 j#ke>1

+(F1)r+l(Z/liﬁliyr/\dF1 ANdF; + Z/llﬁlk'}’r/\dFk/\dFl
i>1 k>1

Now, we need to add the two terms obtained to perform the entire restricted perturbation equation.
Also, note that it is possible to cancel the factor (F)'*1, which is present in all the terms. After
doing this, if we fix two more indexes j, k and restrict the equation obtained to X, we get

((r/ll +/lj)Bk — (r4y +/lk)Bj) F]jdel /\dFj ANdF, =0 OVGI‘XUk

This in particular implies that:

Bj _ By,
rd; + 4; B rdy + Ay

over X1 (Vj#k).

So we are able to apply the fundamental lemma 2.5.23 to these family of homogeneous polynomials
(all of degree /) and deduce the existence of another homogeneous polynomial F Y) € S such that:

B
F )y, = J V> 1.
( 1 )|X11 (I’/ll +/1] J
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In conclusion, for every index j > 1, there exist two more homogeneous polynomials of the correct
degree G and H; fulfilling:

Bj = (rA1 + A)F\" + F1G; + F;H,.

Note that the corresponding degree of G should be di —r 3~ di — di < 0, and so it must be taken
as zero. Finally, we obtain the following formula for our tangent vector &

(2.5.13) e = ) (B Py + ANFPAF+ ) (B HidFj + (Fy) ™y,

j>1 j>1
In addition, observe that if we take an element in the image of the differential by setting A’ = 0 and
F' =({(F)'F “0,... ,0), its corresponding formula is the following:

dpap(©, (1Y F,0,...,00) = > LE (B FdF; + WFrd ((F)F) =
j>1
= Y (EYE A + A)FDdF; + Ay (F)yHd (F
= Y (B Fyjrdy + APFVdF; + 4 (F)™d (FY).
j>1

Furthermore, it is clear that if we add and subtract a suitable term on the formula 2.5.13, we attain:

g = dp,r)(0, ((Fl)rFm UN0)) B 00 ar-

(r)

as claimed. It can be notice that since &) and dp,r)(0, (F 1) Fy ., 0)) are projective forms,

the same condition holds for &¢41). O

Now we are able to state the end of the whole proof of the surjectivity result for d non-balanced.

Proposition 2.5.39. Assume that d is not balanced and let r be the maximal integer such that
di>r) d;
j>1
Then, for every tangent vector € € 7,5 (d,P") such that sIX% = 0, there exist I’ € TaCy and
homogeneous polynomials F ﬁl) . 4 Y), fulfilling:

& = dpap) A, 0)+deu £, (FDFP,0,...,0).
k=1

Proof. The proof is based on an iterative argument. According to the proposition 2.5.35 and corol-
lary 2.5.37, we already know that & can be described by:

g =dpurpd,0) + ZﬁlﬁlijdFj + (F1)*y1,
j>1
for some homogeneous polynomials {B;} - of the correct degree, and y; an homogeneous affine

form. According to the previous proposition 2.5.38 (for r = 1), it can be figured out the existence
of another homogeneous polynomial F ﬁl) of degree d — ). j.1 d; satisfying:

€ =dpur)(A',0) +dpar 0, (Fl)F(l) < 0) + (F)’e).
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Note that g(2) is another homogeneous form also of degree d; -, s1djs and (F )28(2) € ToF1(d, P").
More generally, in proposition 2.5.27 we have proved that every Zariski tangent vector at w of
the form (F 1)k8(k) necessarily satisfies:

(8(k) ANdF, /\dFj)|x,~_,~ =0 Vj>1.

Once more we need to use the division lemma 2.5.22 and take into consideration only the admissible
positive degrees, to deduce:
k) = C;k)dFj over Xj;.

For every index j > 1, Ci.k) is an homogeneous polynomial which also vanishes on X j for k # 1, j.
The reason is that at every point of the intersection X;; N Xy = X, the forms dF; and dFy
are independent (according to the condition 3) at 2.4.2), which can also be reinterpreted as the
assumption of Dr being simple normal crossing. This conditions imply the existence of another
homogeneous polynomial Bg.k) such that:

k > k
(Cxy; = F1B -

Also, note that the restriction of g, to the codimension two subvariety X%(l) = Uj>1 X1 coincides

i pk)
DB BYdF;

J>1

with the restriction of the form:

Next we can apply the second vanishing lemma 2.5.20 and a degree argument to deduce a global
correct formula for the entire form (F)feq:

(25.14) (FYew = Y (B FBYAF; + (B e,
j>1
where &¢1) is another new homogeneous affine form.

Finally, to end the proof, we need to iterate this last process. Start from k = 2, use the previous
proposition 2.5.38 on the formula 2.5.14, and repeat the same argument until the degree of the
corresponding form &.1), which corresponds to dy — k 3. ;-1 d;, becomes negative.

O

Corollary 2.5.40. In conclusion if d is not balanced and dy > r ;| d; (with r maximal), then
every Zariski tangent vector a € 7,7 (d, P") can be described by:

a = dpup (X, 0) + > dpap©, (P FP,0,...,0) +dpu (0, (0, F5,..., F;).
k=1

This concludes the proof of the surjectivity result 2.5.11 for these types of m-tuples of degrees.

Corollary 2.5.41. Based on the corollaries 2.5.33 and 2.5.40, we can perform a complete proof of
2.5.11 and deduce the generic surjectivity of the differential of the natural parametrization p. In
addition, this ends with the proof on the main theorem 2.5.10.



Chapter 3

Logarithmic q-forms and the extended
Jouanolou’s lemma

3.1 Introduccion y resumen en espaiiol

A lo largo de este capitulo se desarrollan distintas versiones de un lema importante sobre I-formas
logaritmicas establecido por Jouanolou en [35], para el estudio de soluciones algebraicas de ecua-
ciones de Pfaff proyectivas. Este resultado serd generalizado a formas logaritmicas de grados
arbitrarios, primero en un contexto afin y proyectivo cldsico, y luego a variedades mds generales.
Ademds, se presentardn los cdlculos relativos a la explicitacion de las secciones globales del cono-
cido haz de formas logaritmicas, que serd de vital importancia en el siguiente capitulo.

De manera prelimar, se introducird un resumen de las principales definiciones relativas al cono-
cido haz de formas logaritmicas sobre un divisor O dado en una variedad algebraica suave X, de-
notado por Q5 (log D). Este se corresponde con secciones de formas racionales con singularidades
solo en D, tales que ellas y su derivada exterior tienen a lo sumo polos simples en 9. También, serd
descripta su teoria de residuos asociada (ver [18]), y una filtracién del haz de formas logaritmicas
que serd de interés (ver definicién 3.3.3). Estos elementos descriptos serdn de gran ultilidad a lo
largo del capitulo.

En primera instancia, en el contexto del estudio del lema particular a abordar, se comenzara

realizando una andlisis del resultado original de Jouanolou. Este establece que si {fi,..., fi} €s
una familia de polinomios irreducibles distintos en k[x, ..., x,] (con k algebraicamente cerrado), y
A1,..., A, son constantes en k, entonces la forma

m

i
Z/l’ fi

i=1

es identicamente nula si 'y solo A; = 0 para todo indice j = 1...m. Se presentard la demostracion
de este resultado en virtud de observar que la idea principal se basa en utilizar un residuo clésico.
Esto dltimo serd de relevancia para las generalizaciones a realizar.
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De manera similar, también mostraremos cémo el resultado original es extensible a variedades
afines, considerando funciones regulares fj, .. ., f; (irreducibles y distintas) en el anillo coordenado
asociado a la variedad. Incluso, utilizando las definiciones de la seccidén introductoria, se mostrara
otra version de este resultado para 1-formas en el contexto de variedades algebraicas proyectivas
suaves. La prueba se basard en la utilizacién de un residuo también clasico:

res : Q3 (Log(D)) — j5(Op,),

que en general es denominado residuo de Poincaré. Este ultimo resultado se resume a contin-

uacion. Si consideramos un divisor O en un variedad X con las caracteristicas anteriores y h}(’o =0,

cuyas componente irreducibles, que denotamos por Dy, tienen cruzamientos normales, entonces
, . 0 1 ., . ..

una forma logaritmica global n € H”(X, Q, (log(D))) es la seccion nula si y solo si:

Resi(n) = 0.

Si bien esta implicacién es admisible para variedades mas generales, en algin sentido tiene hipdtesis
mas fuertes sobre las funciones que definen a la forma en cuestién. En el caso en que el divisor
esté determinado por los ceros de funciones regulares globales (homogéneas en el caso projectivo),
estariamos asumiendo, ademds de que sean algebraicamente distintos, también un cierto tipo de
cruzamiento m4s restrictivo.

Cabe destacar también que las descripciones anteriores se basardn en la siguiente sucesién ex-
acta larga de cohomologia:

m
0 — H(X, QL) — HO(X, QL(log D)) % P #°@:.00) S H®QY. ...
i=1
Esto nos permite, por un lado deducir la inyectividad de la aplicacién residuo bajo la suposicién
h?(’l = 0, y por otro, realizar en general una descripcién de las seciones globales en HO(X, Q;(log D)).
Esto tltimo se encuentra resumido en la proposiciéon 3.4.11.

Luego de finalizar el andlisis del caso bésico para 1-formas, se estudiard en las siguientes sec-
ciones su generalizacién al caso de formas de grados superiores.

En principio se utilizard la teoria de residuos ya mencionada, nuevamente para el caso de di-
visores con cruzamientos normales y formas de grados arbitrarios. En este caso si tomamos un
divisor efectivo con k componentes irreducibles, notado por: D = U’;zl D, entonces estos residuos
se definen para formas de grado ¢ y dependen de la eleccién de un multi-indice 7 C {1,..., k}:

Resy : Q5 (log(D)) — le(log(i)(l)))[—k].

Esta aplicacion tendrd su imagen en el sub-haz de formas regulares correspondiente si consideramos
una filtracién adecuada del haz de formas de logaritmicas, i.e.

Res; : Wi(Qy(log(D)) — Qf, [kD).

El resultado principal serd nuevamente deducir que una seccién global del haz de formas logaritmicas
sera nula si y solo todos sus residuos se anulan (ver Teorema 3.5.4). Cabe destacar también que serd
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necesario asumir una condicién de anulacién cohomoldgica sobre la variedad, que llameremos a lo
largo del capitulo “free of global forms”. Formalmente, pediremos la anulacién de los siguientes
ndmeros de Hodge: hf(’o =0paral < p < dim(X).

A modo de ejemplo, si utilizamos este resultado anterior para formas logaritmicas de grado g
en el contexto del espacio proyectivo clasico (X = Py), se obtiene que si fi,.. ., fu son polinomios
polinomios homogéneos que se cruzan normalmente y 4 € A?C™ es un multivector de constantes,
entonces la forma logaritmica descripta en coordenadas homogéneas por:

dl' di
/li/\.../\i

(3.1.1) I
I;q Ji Jig

es completamente nula si y solo si cada componente del multivector se anula: A; = 0.

Ademds, de la demostracion del resultado general se desprende como son exactamente todas las
secciones globales del haz de formas logaritmicas de grados superiores. Este hecho, que se encuen-
tra resumido en las proposiciones 3.5.6 y 3.5.9 , resultard importante para caracterizar a las formas
logaritmicas proyectivas de mayor grado que definen foliaciones de codimensiones superiores, lo
cual serd utilizado en el proximo capitulo. Por ejemplo, en el caso del espacio proyectivo, se podré
deducir que todas las secciones globales del haz de formas logaritmicas son del tipo 3.1.1.

Por otro lado, en la dltima seccién, abordaremos el estudio de un resultado similar al lema
original en el contexto del espacio afin n-dimensional, pero para formas de grados superiores y
sin asumir cruzamientos normales. Se utilizard una hipdtesis adecuada sobre la manera en que se
cruzan los polinomios en cuestion, que generalice lo asumido en el caso g = 1.

En este caso la idea se basard, nuevamente, en considerar un pullback adecuado (como en la
demostracién original), y utilizar una teoria de residuos adecuada. para deducir la nulidad de
las constantes correspondientes. Para esto serd introducida la teorfa de simbolos (o residuos) de
Grothendieck, y las principales propiedades que usaremos. El resultado principal serd el siguiente:

Theorem 1. Sea A = k[xy,...,x,] y K = k(x1,...,x,), y fijemos una m-tupla de polinomios
(Fi)iL, € A. Supongamos que para cada multi-indice / C {1,...,m} de tamafio g, los polinomios
Fi,..., Fj, tienen una solucién comun. Ademas, también asumamos que para todo J C {1,...,m}
ahora de tamafio g + 1, los polinomios F,,..., F , se cortan propiamente (no necesariamente de
mandera no vacia). Asimismo, fijemos constantes {a;};,;-=4. Entonces, una g-forma logaritmica
regular del tipo

. dF,; dF;
w= ) aFidFi=F. ) a;—" A A" HK".Q)
I'|ll=q I:|l|=q B lq

se anula sobre todo el espacio si y solo si a; = 0 para cada I posible.

Como puede observarse, la hipétesis fundamental del resultado para g-formas es que cada vez
que seleccionamos g de los polinomios en cuestion se crucen de manera no vacia, y que de ag+1 se
crucen de manera propia, es decir tan solo con la dimensién correcta. Con respecto al lema original,
en el caso g = 1, la hipétesis de k algebraicamente cerrado asegura la primera condicion necesaria,
y el hecho de que sean irreducibles distintos asegura la segunda (los cruzamientos propios).



78

Logarithmic q-forms and the extended Jouanolou’s lemma

3.2 Summary

In this chapter, we develop distinct versions of an important lemma for logarithmic forms due to
Jouanolou (see [35]), used for studying algebraic solutions of projective Pfaff equations. This
result is going to be generalized to logarithmic forms of arbitrary degrees on classical affine and
projective varieties. Moreover, we use these techniques to exhibit the global sections of the well-
known sheaf of logarithmic forms. This last fact is going to be important in the next chapter to define
correct formulas for regular logarithmic forms that represent foliations of higher codimension.

3.3 The sheaf of logarithmic forms: definitions and residues

First, we recall the principal definitions and properties of the sheaf of logarithmic forms of arbitrary
degrees and its classical residues. It is remarkable that this sheaf considered on the variety P” has
been already used at the previous chapter, specially at section 2.3. In the sake of clarity and in order
to present a self-contained development, we make a brief resume of the topic.

Fix a smooth complex algebraic variety X of dimension n and let D = 37" | D; be an effective
divisor defined over X, where each D; is a non singular irreducible component of D.

Recall that the sheaf of logarithmic g-forms can be defined as a subsheaf of the sheaf of mero-
morphic forms with poles on D. Concretely, we write i : UX — D — X, and consider:

QD) = im QL (k - D) = i.(QY).

K
Then, for every open set V C X, we consider:
Q;I((log DY)V)={a e Qi(*@)(V) : @ and da has simple poles along D}.

Moreover, this subsheaf determines a subcomplex:
(3.3.1D) (Qx(log D), d) — (Q}(xD), d).
From now on, unless otherwise stated, 9 is assumed to be simple normal crossing.
Proposition 3.3.1. Some properties of Q}(log D) are:

i. Asasheaf: Qf(log D) = \7Q}(log D).

ii. Q%(logD)is alocally free sheaf of rank (Z)
Proof. See [22] for a complete proof. In addition, we want to emphasize some aspects of this proof.
In particular, we can describe a free system of generators of le((log D) at a given point x € X. Fix

local coordinates fi, ..., f; in p, and assume the divisor is defined by the zero locus of fi,..., f;.
Then ‘%, e, %, dfsi1,...,df, is a free system of generators of Q}((log D). Furthermore, a basis

for the case ¢ > 1 can be performed using 1). O
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One of the most important results related to this subsheaf is that the natural inclusion 3.3.1 is
a quasi-isomorphism. This result is due to Deligne (see for instance [18]), and its corresponding
proof depends on a well defined residue theory. See [ 18] or [48] for more details. The next objective
is to summarize some principal aspects of these residues.

As an introduction, fix p € X and V an open neighborhood with coordinates (fi,..., f,) in
which D has equation f; = --- = f; = 0 (where also each component Dy, corresponds to (fi = 0)).
According to the description stated at the proof of the above proposition, every local section n €
Q?((log D)(V) can be decomposed as:

(3.3.2) n=n A% +p,

with 77" and u not containing d f in its representation. We write iy, : D) — X, and denote by D(k)
the divisor on Dy, traced out by D. In this context, we are able to present the usual definition of the
residue map over the component Dy.

Definition 3.3.2. With the previous notation. For every local section 1 of ng(log D), the element
n’|p, is well defined and does not depend on the representation given. This gives rise to a well define
residue map:

resZ : Q;’((log D) — ngl (log D(k))
n+— 7'lp,.

As a special case we get the residues resy : Q}((log D) — Ogp,, that we have already introduced
at 2.3.9 in chapter 2, which are usually named as the Poincaré’s residues of the form.

For these introduced residues, we have the following exact sequences of sheaves, including the
described at 2.3.2. For more details, see for instance [22].

Proposition 3.3.3. The following sequences are exact.

®res ;
e 0— QL — Ql(log D) —5 B, 0p,— 0

resq
o 0— Q%' (log D - D) — Q%(log D) — QL ' (log D(K)) — 0

Now, we want to describe a correct background to understand a generalization of the above
residue theory and the previous exact sequences. The subsequent constructions are given with more
details at chapter II of [18]. We begin with the description of the well-known Deligne’s filtration of
the sheaf Q (log D). Consider

0 ifm<0
(3.3.3) Wm(Q?((log D)) =QT™ A Qf(logD) if0<m<gq
Ql(log D) ifm>gq

Next, we present the notation for a correct description of the required residues. We write
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e D=0, Nn---NY;, forl={ii...i}

o D) =2 juDiNnD; view as a divisor on Dy

o =D —=X

and set forth:

o D = =1 Dr

o ji=D X

Since D is a simple normal crossing divisor each 9 is a complete intersection subvariety of X of

codimension |/]. Also, each DF corresponds to the normalization of the union of these subvarieties.
Now we are able to define the announced residues for each multi-index I with |I| = k:

Res; : Q3 (log(D)) — Q3 (log(D()))[—k]

The local definition of these map is very similar to the used at 3.3.2. So we will keep the same
notation. Fix I = {iy,..., i} and set (fi, ..., f,) local coordinates at p € Dy, with Z)i/. =(fj =0).
Then, any local section 7 of Q;I((log D) can be described by:

’/ d d”l
n=n AL A Ay,

where 1" has at most simple poles along D; with j ¢ 1, and u is not divisible by % A A [i;i’l". The

assignment

n € QY log(D)) — 7, € Q% (log(DI)
is well defined and not depends on the local coordinates chosen. This construction corresponds to
the definition of the residue Res;.

Remark 3.3.4. If u is a local section of Qﬁ(log(ﬂ)) with weight less or equals to k, and [ is a
multi-index of size k, then Res;(u) is a regular form of the subvariety 9;. So, the previously defined
residue map restricts to:

Resy : Wi(Q%(log D) — le[—k]).
In addition, if u has weight at most & — 1, its residue vanish (1 coincides with u in the above
decomposition). According to these remarks the corresponding residue map is well defined on the
quotient Gr (Qy(log D).

The next result corresponds to the generalization of the exact sequences exhibit at proposition
3.3.3, and is the key to calculate the global sections of the sheaf of logarithmic g-forms. Moreover,
it would be a first approach to generalize the Jouanolou’s lemma for logarithmic forms of higher
degree.

Proposition 3.3.5. Every residue map Res; defined over Gr/‘:V(Q;((log D)) is surjective, and the total
residue map

Res; := (1) Res; : Gr)l (Q3(log D)) — (ji)w(Q (k1)
L|l|=k

is an isomorphism.

Proof. See [48, Lemma 4.6], or [18] for an extended overview. O
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3.4 Jouanolou’s lemma: the case of 1-forms

Let us start reminding the basic lemma used by J.P Jouanolou to prove a characterization of when
a Pfaff equation admits infinite algebraic solutions, and other related facts about algebraic Pfaff
equations (see [35, Lemma 3.3.1]). Also, this lemma was the key result to explore the base locus of
the natural parametrization of the logarithmic 1-forms of type d in chapter 2 (see 2.4.12).

Lemma 3.4.1. Set the notation A = k[x1,...,x,] and K = k(xy,....x,), and let P be a system of
irreducible elements of A. Suppose given elements {/li};.":1 C k and { fi}le C P such that:

N
d.
Z/lin' =0eQ, =Q}, e K
i=1 !

then necessarily 4; = O foralli=1...s.

In order to prepare the background for the subsequent generalizations, we describe the original
proof of the statement.

Proof. Assume handed out a relation:

N
d .
Z/l,-izo (L €k, fie P)
It is sufficient to show that 4; = 0. Consider the hypersurfaces Y; with equations (f; = 0) in the
affine n-dimensional space A", and fix a point a € Y} — [J;, ¥;. This is possible because the
polynomials are irreducible and distinct. Now, take an affine line D passing through a and not
contained in Y;. The basic idea is to consider the pull back of our equation to A!. For this purpose,

fix a parametrization of D:
¢: Al 5 A" with ¢(0) = a.

Then, if we write g; = ¢*(fi) = fi o ¢, it is clear that the following equation holds:

dfi &
—y = 2Lqr.
¢<ﬁ) o

According to the relation given, it follows that:
/llg—1+/lzg—2 +---+/1S§ =0.
81 82 8s

Since a € Y1 — Uz ¥}, it is also clear that the functions g;/g; are all regular at O (for i # 1), and the
logarithmic function g}/g; has a simple pole. Finally, take the usual residue to the above equation
to conclude

res(g}/g1,0)11 =0,

and A; = 0 as claimed. O

With exactly the same idea, it is possible to state the same result for algebraic affine varieties.
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Corollary 3.4.2. Let X be an affine algebraic variety, which is non-singular and rational. We write
A for its associated coordinated ring, and K for its rational function field. Also let P be a system
of irreducible elements of A, and select constants (/li)le C k and distinct elements ( fi)f:1 cP
fulfilling:

d
Z/l Ji _OEQ;/k®AK,

thenA; =0fori=1,...,s

Proof. The argument is the same as the used in the previous proposition. Note that an element
a € Y1 — Jj1 Y exists because the irreducible hypersurfaces are all distinct. Also, the selection of
the affine line D passing through a and not contained in Y; depends on a dimension argument and
the fact that the variety is rational. The end of the proof follows in the same way as before. O

Now it is possible to describe a slightly more general result using the residues introduced in the
preceding section. Moreover, it is substantial for understanding the global sections of the logarith-
mic sheaf for affine varieties and also set the background to possible generalizations.

Proposition 3.4.3. Take a simple normal crossing effective divisor O = " D; over C", where
each component D; is defined by the zero locus of an irreducible polynomial f; € C[xy,...,x,].
For every global logarithmic form € H(C", QL,(log D)), there exist polynomials g1, ..., g, and

a regular form u € HOC™, Q%Cn) such that:

Cn

m

=S
=1
In addition each polynomial g; is unique considered modulo f;, i.e. the class [g;] € C[xy, ..., x,1/ ()
only depends on 7.
Proof. 1t is a consequence of the first short sequence described at 3.3.3. Consider the long exact

sequence on cohomology associated to obtain:

m
0— H'C", QL) — HC", 0L (og D) = B Clxi,.... 1l gy — 0
k=1

Next, for every logarithmic form  whose residues correspond to the classes {[g,]} , it follows that
nand 37", g,if—f has the same residues, and so their difference is a regular 1-form as claimed. O

Let us state some useful consequences of the above proposition.

Corollary 3.4.4. [Jouanolou’s lemma for I-forms - Normal crossing version for the affine space])
Let fi,... fim € Clxy,..., x,] be irreducible polynomials with normal crossings, and suppose given

Zgldﬁ =0,

for some polynomials gy, ..., g»,. Then necessarily: [g;] = 0 € C[xy,...,x,]/(s) forall i.

the relation:
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Remark 3.4.5. With the notation of the previous corollary, suppose given a relation like:

m
dfi
Siat-o
i=1

Due to the preceding result each g; belongs to the ideal (f;),i.e. g; = ¢;- f; (fori = 1,...,m) and we
can deduce:

m

Ofi _ :_
Zqi(‘,—xj—o Vi=1,...,n.
i=1

With matrix notation, we get
(q)-Jf =0,

where J f denotes the Jacobian matrix of the multi-valuated function f = (f,..., fu)-

Remark 3.4.6. The proposition 3.4.3 and its consequences can be stated for an affine variety over
C. The difference is we need to replace the ring of polynomials by the corresponding coordinate
ring of the introduced variety. To keep the same proofs, we assume that this coordinate ring is a
DFU. This condition ensures that any divisor can be defined by the zero loci of a single regular
global function. Also, the assumption is very restrictive and is equivalent to require the variety to
be normal and with trivial class group (see for instance [3 1, Propositions 1.12 and 6.2]).

Finally, we describe the same problem on classical projective varieties. Note that the statement
presented at 2.3.10, which describe the global sections of the sheaf of logarithmic 1-forms on P",
also corresponds to a version of the above Jouanolou’s lemma for such projective space.

Proposition 3.4.7. Let Fy,... F,, € C[xo,...,x,] be irreducible homogeneous polynomials with re-
spective degrees di, . .., d,,. Assume that the divisor on P" defined by D = 377" | (F; = 0) has normal
crossing. Every element n € HO(P", Qﬂlm(log(l)))) can be described in homogeneous coordinates by:

m

dF;

n= Zl: /liTi
=

for some vector 4 € Cj = {1 € C" : 1-d = 0}. Moreover the correspondence A + 17 is bijective.

Corollary 3.4.8 (Jouanolou’s lemma for 1-forms - Normal crossing version for the projective space).
With the notations above, consider the relation:

m
44 = 0 € HP", QL. (log D)) © HOP", QL (+D)),
i=1
for some constants Ay, ..., 4, satisfying 41d; + - - - + Audy, = 0. Then necessarily: 4; = 0 for all i.

Remark 3.4.9. The last result can be thought as a particular case of the Jouanolou’s lemma for the
affine space 3.4.4.
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Remark 3.4.10. The previous results correspond to a description in homogeneous coordinates of
the long exact sequence in cohomology associated to 3.3.3. Also they are based on describe the
irreducible divisors by the zero locus of an homogeneous element of the graded coordinate ring.

From now on, consider X as a smooth complex projective variety (assumed irreducible and
embedded on PV), defined by the zero locus of an homogeneous ideal 7y c C[X,,...,Xy]. Set
S x its associated graded homogeneous coordinate ring and C(X) its field of rational functions. Fix
again a simple normal crossing effective divisor D = 37" | D; on X. Our goal now is to describe the
global sections of Q}((log D) without taking into consideration homogeneous coordinates.

With the same idea as in the first chapter (see for example proposition 2.3.2), fix global sections

F,e HHX,0x(D)) i=1,...,m,

of the associated line bundles, and construct global logarithmic forms.

In this case, the long exact sequence on cohomology associated to 3.3.3 can be described by:

0 — HO(X, Q) — H'(X. Q4(log D) =% (B H(D;.0p) > H'(X.Q))...

i=1

Since H(D;, Op,) = C, the residues are again constants. In addition, the dimension of the global
logarithmic forms will depend on the Hodge numbers: h;(’o and h;(’] .

Proposition 3.4.11. With the same notation as above, the global sections 17 € H’(X, Q)l((log D)) can
be characterized by:

Ai— + w,
i

]’]:

i

O . dF;
=1 '

where w is a global regular 1-form on X. Moreover, note that the residues A = (A;) are constants in
ker(0) (i.e they satisfy the h;l equations imposed by ) and only depend on 7.

Proof. Let us introduce some notation to understand the description made at the result. Because,
a priori, the notation dTFl_" seems to be confusing. The idea is similar to that used at 2.3.2. We state
some expected global sections of Qy(log D), and use the above long exact sequence (or a dimension
count argument) to show that they are all the possible sections.

Set U = {U,} as an open covering of X, where each 9D; N U, is defined by a regular function
[ € O(U,), this is:

Dily, = (f).

Indeed, we have isomorphisms of sheaves (trivializations) of Oy, -modules

st 1 Ox(D)|U,y = ]%OU(, = Oy,

1

gl—)gfl.a,
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and also, s’ , = s o (st ) 1 - ‘:' is the cocycles associated the line bundle Ox(D;) for every selected
S8

ap
index. Moreover, each global section F; € H(X,0(D;)) can be described in local coordinates by
sil(F ilu,) = h{ f. Just for simplicity we will consider 47 = 1. This section can be thought as the
rational function 1 € C(X), in the interpretation of H 09X, 0x(D))) as a subgroup of the rational field
C(X). In other words, consider F; = {si,(F ilu,) = f;"} which trivially satisfy the cocycle conditions

imposed by {s;ﬁ}.
Then, every form of the type:
-, dF;
(3.4.1) p=> Li— € H(X, Qy(log D)) — H'(X. Qy(D).

i=1 !

is well defined as a rational form. The proof of this fact is similar to that used at 2.3.2, and can be
summarized by the following argument:

Wu)lu, = Z A; Ji;

mod(s f.ﬁ m s mo o qff
SR
i=1 Sopti i1 S =1
m dfﬁ
= > A=k =(lyyly,
i=1 fl
So we can think on u as the form determined by the family of local forms {u, = X7, /l,-%}a,

which are forms that coincide in every possible intersection. In this case, we are using again that
the constants A must satisfy the conditions:

i (lﬁ
/lz

i=

previously named by O(D)-conditions. These are the usual conditions satisfied for the residues of

a logarithmic form (See for instance the introduction of [3]). Now, since saﬁ = ‘,-’ , they can be
5p

¢ dfe  aff

i=1

reinterpreted as:

This last argument describe the kernel of the connection morphism ¢. In addition, since each com-
ponent D; is locally defined by {/"}, it is clear than the residues of u are (4;)7" . Finally, suppose
given a global logarithmic form € H°(X, Q!(log D)) whose residues corresponds to 1 = (A7,
then it is clear that the constructed forms u and 7 has the same residues, and so 7 — u is in the kernel
of the total residue map, and hence is a regular global form of X as claimed. O
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Corollary 3.4.12. [Jouanolou’s lemma for 1-forms - Normal crossing version for smooth complex
projective varieties] Assume h;(’o = 0 and consider the relation:
m
D44 = 0 € HY(X, Qy(log D)) € HO(X, Q) (D)),
i=1

for some constants A € ker(d). Then necessarily: A; = 0 for all i.

Corollary 3.4.13. In addition, if 7,° = 0 then H(X, Q(log D)) = ker(6) c C".

Remark 3.4.14. In a more restrictive setting, O; could be regarded as the zero locus of an homoge-
neous irreducible element F; € (S x)4,. Assume again that h;(’o =0.

In this case, towards to describe everything in the homogeneous coordinates determined by the
fixed embedding on PV, every global logarithmic form 7 can be described by:

Ai—,

n= F;

N dF;
i=1

where now, the conditions imposed by ker(d) can be thought as the “descend” equations for the form
71 (a priori considered in the cone over X) to be well defined.

We end this section with some comments on the hypotheses that appeared.

Proposition 3.4.15. Every complete intersection in a projective space and every unirational variety
has the property: 1 = 0.

Proof. The first remark is a consequence of the Lefschetz hyperplane theorem (See for instance
3.1.B at [38]). On the other hand, since ' is a birrational invariant, the condition clearly holds
for rational varieties. The argument for the unirational case depends on the inclusion f*QY — QF
(where U denotes the open set where is defined a generically finite dominant map from P" to our
variety X). When the map is birational, this inclusion is obvious. When the map is only finite, this
is only true in characteristic zero. O

Remark 3.4.16. Clearly, not every irreducible effective divisor can be described by the zero locus
of an homogeneous element in Sy. This will be true if we assume for example that S x is a UFD
(which is the case of P"). The condition is equivalent to assume X to be projectively normal and
with class group cl(X) = Z (see [3 1, Exercise 6.3]).

Remark 3.4.17. For a local version of these results on a complete factorial algebraic variety see
section /1 of [7].

3.5 The case of higher degree logarithmic forms

Through this lecture we attend the problem of extend the results of the previous section to loga-
rithmic forms of an arbitrary degree. The aim is to understand the global section of the sheaf of
logarithmic g-forms defined at section 3.3, and also state a version of the Jouanolou’s lemma for
these type of forms.
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3.5.1 Using Deligne’s filtration and residues

In this section we will use again the Deligne’s residues to describe the global sections of the sheaf
of logarithmic forms over a smooth complex projective algebraic variety X of dimension n.

We will keep the same notation and definitions used at the first section 3.3. We also assume that
the effective divisor O = 3", O; is simple normal crossing. In addition, we need to pick a family
of global sections:

Fie HX,0D) i=1,....m

of the line bundles associated to the smooth irreducible components {D; }.

Alternatively, we might suppose that each 9; is defined by the zero locus of an homogeneous
element of a coordinate ring S x, in order to describe the desired sections in homogeneous coordi-
nates. We avoid from now the problem of when this last fact happens for every effective irreducible
divisor, and left this discussion to the description made at the end of the previous section.

As in the case of 1-forms, the results are simpler if we consider certain vanishing hypothesis on
the ambient variety.

Definition 3.5.1. We say that X is free of global forms if:
W0 = dim(H(X, Q) =0  for 1<p<n-—1.

Remark 3.5.2. Since the Hodge numbers hi’o are birrational invariants the previous property holds
on every rational variety. Moreover according to the description made at the proposition 3.4.15 it is
also true for unirational varieties.

Now, we show that if X is free of global forms then the same holds for every complete intersec-
tion subvariety. In particular this is going to be true for every piece of the strata induced by a normal
crossing divisor.

Proposition 3.5.3. Assume X is free of global forms. With the notation of the section 3.3, for each
multi-index [ of size k (with k < n — 2) the following vanishing property holds:

hz’)? = dim(H*(Dy, qu)l)) =0 for 1<g<n—-k-1,
i.e. each Dy is free of global forms.

Proof. According to the Lefschetz hyperplane theorem for Hodge groups (see [38]), if Y is a non-
singular ample effective divisor on X, then the restriction map:

Yog : HI(X, Q) — HI(Y,QP)

is an isomorphism for p+¢g < n—2. This implies that our result is true for every smooth hypersurface
of X. Therefore the proposition’s proof ends by applying this last observation one to one for each
subvariety F;, = 0 viewed as a smooth hypersurface of Dy, . )-

m]
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At this time we are able to describe a general statement for logarithmic g-forms. The result can
be thought as a generalization of 3.4.12.

Theorem 3.5.4. Assume that X is free of global forms. Then for a global logarithmic g-form
ne H(X, Q1 y(og D)) with 1 < g < min{n — 1, m}, the following conditions are equivalent:

a) n=0 eHUX, Q;]((log D)), the form equals the zero section.
b) Resi(n) =0 € HO(Z)I,O@,), for all multi-index I with |I| =
In other words, the statement ensures that the total residue map Res, is injective in global sections.

Proof. Using the result stated at 3.3.5, the following exact sequence of sheaves holds:
0 — W,_1(Q(log D)) — Qf(log D) — (jq)*(QOD,) — 0.

Also, observe that the global sections of the right term are described by the structure sheaf of the
subvarieties Dy with multi-index of size g:

H(X, (j- Q%) = €D H®D1,0p)).
[C‘|}i;é"l):
Next consider the corresponding long exact sequence on cohomology to obtain:
35.1)  0— HX, W, 1(QLlogD))) —» HOX, Q%(logD)) ——2 ~ P HD1,0p)) LA
Ill|=q
S H X Wy (@ logD)) — -+
To complete the proof it is sufficient to show H°(X, W,- 1(!2 (log?D))) = 0. For this purpose we will
perform a more general statement:

(3.5.2) H'X, W(QLlogD))=0 Vj=0...q-1,

and proceed by induction on j. The first case is connected with the assumption of X to be free of
global forms, i.e.:
H(X, WO(Qq (log D)) = H'(X, Q1 ) =

Now assume the statement is proved for j — 1. Due to the proposition 3.3.5, if we take into consid-
eration the exact sequence:

0 — W;_1(Q%(og D)) — W;i(QL(log D)) — (jj)« (Qq J) o0,

Then, the desired result is obtained by looking at the associated long exact sequence on cohomology
and by the remark:

HOX, (jp@p ) = (D HDr0p ) =0 Vj=1..q-1.
L=j

Note that the last assertion is an immediate consequence of the proposition 3.5.3. O
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Remark 3.5.5. Note that in the last proof we have only used that: hfgo =0forj=1,...,q. Theidea
behind this fact is the following. According to the Lefschetz hyperplane theorem, if Y is a smooth
complete intersection in X of codimension k, the following equality for their Hodge numbers holds:

WY =hl Vji<n-k

Global sections of the sheaf of logarithmic forms:

According to the previous development, we are able to compute the global section of the sheaf of
logarithmic forms. It will be be an immediate consequence of the cohomology argument made at
the proof of 3.5.4. Specially, it follows from the exact sequence 3.5.1 and the vanishing cohomology
deduced from 3.5.2.

As in the proof of proposition 3.4.11, it will be important to remain fixed the global sections
F; € H'(X, 0x(D))) (for every i € {1,...,m}. Furthermore, if we denote by f* € Ox(U,) the image
of Fi|y, by a trivialization map on an open covering U, it is going to be assumed that each regular
function f;* defines locally the component D;|y,. In addition, remember that the non vanishing

functions sg 5= %: define the cocycles of the line bundles Ox (D).
Proposition 3.5.6. For every global section of the sheaf of logarithmic forms
n € H'(X,Q%(log D)),

there exist constants A = (A;); such that 7 can be described by the form:

assuming that A satisfy certain equations imposed by the kernel of the map ¢ introduced at 3.5.1.
Moreover, there is a one to one correspondence with these type of constants.

Proof. The idea of the proof is the same as that used in proposition 2.3.2. We will described certain
forms with the desired properties and check they correspond to all the possible global sections of
the sheaf of logarithmic g-forms.

With this purpose in mind, recall the long exact sequence deduced from 3.5.1 and 3.5.2:

(3.5.3) 00— HO(X,Q (logD)) —> @ HO(Z)I, Op,) —> H! (X, W, 1(Q (logD))) — ---
I:|l|=q

Since X is a smooth projective complex variety and each 9; is a smooth projective irreducible
divisor, it is clear that HO(Dy, Oyp,) = C for every selected multi-index /.

With a slight abuse of notation, if A € c(?) satisfies the equations imposed by the kernel of §
then the rational form:

o= 3 W

Ic{l,...m} {ij<-<1, lq
1=q
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is well defined on X and its residues equals to 4. Now, we prove that u is well defined, so consider
the local forms determined in U, by the formula

which by definition coincides exactly with u|y,. Then, in every intersection U,g, the following

equality holds:
df® afy
i <-+<ig i iq
i i
~ /ld(s ff]’) d(s fa)_ Z N d(sciﬁJrﬁ N d(s,p ﬂ B
- =3 fo v a0 4 1 iq fe
i]<"'<iq ap’i saﬁf;‘q i1<'--<iq saﬂ 1 saﬁ lq
B
i aff df,
= flop + Z /11? Ao N—g = flop + Wuplu, -
i1 <<y i f

It is important to observe that the q-forms introduced, with the notation {fi,g}, satisfy the cocycle
conditions: fi,g + figy = flay. Also, in each of the terms of fi,g are involved at most g — 1 of the

dfe dfe .. . .
, =2, So, it is clear it determines an element:

forms T
J1 Jm

g} € H' (X, Wyt (Q3(logD))),

which only depends on the vector A. It is not hard to show that the vanishing of this element is
exactly the condition imposed by the kernel of the connection morphism ¢. This assumption extend
the L-condition imposed in the case of forms of degree 1. Formally, we need to use the following
property obtained at the proof of the theorem 3.5.4:

H(X, W,_1(Q%(log D))) = 0

to deduce that the forms {(,ulUﬁ)lya} glue together to define a global Logarithmic g-form.
Finally, the entire result follows from the injectivity of the total residue map (see the above long
exact sequence or the previous proposition 3.5.4). O

Our final purpose is to understand the global sections of Qg((log D) in the case of X = P".
Specially, we want to complete its description in homogeneous coordinates. To that end, we will
compute the cohomology group H'(X, W, 1(Q (log?))) and make a correct interpretation of the
equations imposed by the kernel of §.

Lemma 3.5.7. Assume g < n — 1. With the above notations, the following computations holds:

H' @, W)L, (ogD)) =0 Vj=1,...,q-2.
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In addition, the group H'(P", Wy (Q1,(logD))) has a natural injective morphism to:
@ H\(D). %) ~ )
I:|l|=g—-1

Proof. The case g = 1 is trivial and it was explained at 3.4.7, so we shall assume g > 1. At first we
consider important to take into account the proof of proposition 3.5.4. In that proof we have already
shown that:

(3.5.4) H® Wi QL) =0 Vj=1,....q-1.

Note that, in this particular case, the ambient variety X = P" has the following characterization
for its Hodge numbers:
pq _
fpn” = Opg-

So due to the Lefschetz hyperplane theorem (see [38]) it is also true that:
3.5.5) hg? =0pq YP.gq:p+qg<n-—|

for every codimension j subvariety associated to the the divisor . Now, we use again the short
exact sequences:

00— Wj_l(Q?((log D)) — W,-(ng(log D)) — (jj)*(ngj) — 0 (for every )),

to prove that:
H' P, Wi(QL)=0 Vj<g-1.

We proceed by induction on j. The first case (j = 0) is an immediate consequence of the assumption:

hg;l] = 0. Next use the long exact sequence on cohomology associated to the above sequence, and

apply 3.5.4 to deduce:
0— H'(P", W;_1(QL,)) - H'(®", Wi(QL,)) » H'(D/,QL)).

The first term vanish by the inductive hypothesis and the last due to the result 3.5.5. In particular,
observe we are using the restrictions ¢ < n — 1 and j < g — 1. Finally, we need to consider the long
exact sequence for the case j = ¢ — 1 which turns out to be:

0 — H' (P, W;1(QL) » @D H'(©1,Qp,) — HAF", Wy 2(Qh(log D).,
L|l=q

and ends the proof. O
Corollary 3.5.8. Now assume g < n — k. With a similar proof, we can prove that:

H P, Wi(Qen(logD)) =0 Vj=1,...,q—k—1.
And in addition, H*(P", W,k (Qpn(log D))) can be always consider as a subspace of

@ HI(DI’Q;)I) ~ C(qrfk).

I:|l|=qg—k
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Example 3.5.9. [Logarithmic sections on the complex projective space.] According to the above
results, we have constructed a certain exact sequence which describes in homogeneous coordinates
the global projective logarithmic forms:

Res,
0 — H(P", Qf,(log D)) —= B, H'(D1. Op,) — H' (B", W,_1(Qz+ (log D))

b T

oG o)

Now consider the global rational q-form defined by:

dF;,
n= Z A—= A A
iAme i

for some multi-vector of constants 2 € A9(C™) which satisfies ig(1) = 0. It is clear that it is a well
defined rational form over P” since it satisfies the descend condition:

. ., dFi,

ir(7) = Z(M’F_n A A
where R denotes the Euler radial field. Moreover, ;7 has simple poles over D = (F = Fy-----F,; = 0)
and dn = 0, so it is clear that it corresponds to a global logarithmic q-form (in homogeneous
coordinates). Finally, by dimension count’s argument on the above diagram, we can conclude that
these formulas describe all the possible global logarithmic projective forms for the fixed divisor D.

This last example is going to be very important in the next chapter for the definition of those
logarithmic regular g-forms which induce singular algebraic foliations of higher codimension.

3.5.2 The extended Jouanolou’s lemma: using Grothendieck symbols

As we could see in the previous section, if we assume that the divisor is simple normal crossing,
both the global sections of the sheaf of logarithmic form and the adapted version of the Jouanolou’s
lemma can be well described.

On the other hand, note that the original Jouanolou’s lemma 3.4.1 for affine 1-forms only use
that the polynomials in the formula are irreducible and distinct, which is a weaker condition than
assume that they have normal crossings.

Now, we present a new version of the Jouanolou lemma for the affine space and arbitrary degree
forms, with less restrictive assumptions on the involved polynomials. This result is a generalization
for higher degree forms of the original lemma 3.4.1. The idea behind will be similar to that used
in the original proof: consider a pull-back of the form to a correct subvariety and take a suitable
residue. In this case, we need to use another general residue theory: the Grothendieck symbols.

Since the construction of these symbols is embedded in a formidable global duality theory (see
for instance [32]), we will avoid its formal definition and only introduce its notation and some useful
properties we need for the sequel.
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Definition 3.5.10. Let X — Y be a smooth morphism of schemes of relative dimension n. Also,
let Fy,...,F, € H(X,Oy) such that the closed subscheme Z of X defined by the ideal sheaf 7 =
(F1,...,Fy)is finite. For every global relative n-form, n € HO(X, QF / y)» it 1s possible to define its
residue symbol as a global function of Y:

€ H'(Y,Oy)

n
R
eSX/Y[Fl,...,F,Z]

Proposition 3.5.11. Some properties of the residue symbols are the following:

1) (Restriction) Let X’ 5 X bea complete intersection smooth subvariety, defined by functions
S1,...,8, € HO(X,Ox). Also assume that X is of relative dimension n + p. Take Fy,...,F, €
HY(X,0x), and let F’, ..., F’ be their restrictions to X’. For every w € HO(X, Q';(/Y) the follow-
ing holds:

Fw
’
L F

n

R w
= RéS
XY\Fy, ...\ FnS1.....S,

2) (Trace formula) Consider F, ..., F, and G in H°(X, Ox). Then, we get:

GdFi A ...,NdF,

=T G
Fi....F, rz1v(Glz)

RESX/y[

3) (Duality) If n € 3.7 (F; - HO(X, Q%Y)), then necessarily:

n
R = 0.
eSX/Y[Fl,...,FJ

Conversely, if Resx/y [F n P ] = 0forall f € H(X, Ox), then:
1o s Fn

0 n
<Fi -H (X’ Qx/y))
1

ne

n

4
Remark 3.5.12. For an algebraic approach of these symbols see [34].

In the sake of clarity, we describe the announced result for logarithmic regular g-forms over the
n-dimensional affine space k", with 1 < g < n.

Theorem 3.5.13. Set again the notation A = k[x,...,x,] and K = k(x,...,x,), and also fix an
m-tuple (F;)!, of elements of A. Suppose that for every multi-index I C {I,...,m} of size g, the
polynomials Fj,,..., F iy has a common solution. Also, assume that for every J of size g + 1, the

polynomials F;,, ..., F; , meets properly (not necessarily non-empty). In addition, pick constants

jq+l
{ar}rin=¢- Then, a g-logarithmic regular form of the type

N dF; dF;
w = ZCI]F[dF[:F. ZCI]—.ZI/\"'/\F—.I({GHO(kn,an)
I:|l|=q I:|l|=q i lq

equals to the zero section if and only if a; = O for all [ of size g.
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Proof. Fix Iy = {iy,...,i,} and denote by X}, a component of codimension g of the variety X, =
(Fjy=---= Fi, = 0). We will show that a7, = 0.

Now, fix a point p € Xj, with the additional hypothesis
Fi(p) #0 Vk ¢ I,

which is an admissible condition because every selection of g + 1 polynomials meet properly. Then,
we can choose global linear functions Sy, ..., S ,+1-4 Whose associated hyperplanes pass through p
and meet X,O with the correct dimension, i.e. assume that the ideal J = (Fj,, ... Figs Sty Snri—g)
is finite. In addition, we can also suppose that p is the unique point of the variety defined by 7.
From now on, we will work with the form:
ws =wAAST A ANdSppi—g = Z arF1dFy AdSy A+ AdS pi1-gs
I:|l|=q

which according to the theorem’s hypothesis vanishes completely, i.e. ws = 0. Next, we will use
the Grothendieck’s residue symbols to deduce a;, = 0. For this purpose, denote by

n+l—q

Y= () (S;=0)
j=1

and use the restriction property from 3.5.11 and the linearity of the symbol, to get:

ws i*(w)
(356) 0 = Rescn+ |: ] = R€Sy , , | =
c Fi17~~~7Fl'q7517"'9Sn+1*q fo Fi]""’Fiq
i*(}§](1171) i*(]f}0411710)
(3.5.7) = Z aIResY,0 Fl .. F +ayResy, PR
I:|l|=q,1#Iy 1 iy i ig

where i refers to the inclusion map i : Yy, < ¢! and Flfj = i*(F,-j) forj=1...q.
In addition, observe that if I # I, then there exist iy € Iy — I, and so
P (FidFp) = Fii* (Frog dFp) € H',. ) Ff -9 )
j
According to the duality property at 3.5.11, we deduce

i*(F1dF))

Resy
o \F!, ..., F!
i iq

=0 forevery I # Iy

In conclusion, using the trace formula at 3.5.11, we obtain:

i*(Fy dFy) F dF. A---NdF’ N
0=apResy, | p " p | =anResy, |0 = anTraE ).
2] lq i I lq
where Z denotes the variety defined by the ideal (F lfl R 2 lfq) in Yy,. Finally, observe that the variety

Z coincides with that defined by the ideal J. So Z is supported at p and
Tra(Flz) = Fiy(p) = | | Fatp) # 0.
kel

In consequence a;, = 0 as claimed.



Chapter 4

Stability of higher degree logarithmic
forms

4.1 Introduccion y resumen en espaiiol

En este iiltimo capitulo abordaremos un estudio de q-formas logaritmicas proyectivas con q > 1, en
el contexto de foliaciones algebraicas singulares de codimensiones superiores.

En primera instancia, y en relacion con el concepto ya definido para el caso de I-formas en el
capitulo 2, se describird el concepto de q-forma logaritmica de tipo d. Ademds, se caracterizard
aquellas g-formas logaritmicas que definen foliaciones en codimension q, utilizando las ecuaciones
del espacio de moduli correspondiente F,(d,P") (introducidas en el capitulo 1).

El resultado principal del capitulo serd la prueba de estabilidad de 2-formas logaritmicas,
asumiendo que el vector de grados d = (dy,...,d,) que las define cumple una condicion de
balanceabilidad (concepto de 2-balanceado). Esto permite determinar nuevas componentes ir-
reducibles del espacio F>(d,P"), que ademds son reducidas de acuerdo a su estructura de esquema.

De modo mads detallado, repasamos los principales resultados del capitulo. De acuerdo con el
célculo establecido en el capitulo anterior para las secciones globales del conocido haz de formas
logaritmicas Q7, (ver ejemplo 3.5.9), resulta natural definir a las g-formas logaritmicas regulares de
tipo d por la férmula:

w= Y NFidFy Ao AdF; = F [ ST A A dFF—q] e H'(P", QL (d)),
i iq

T Lll=q
donde se requiere que A = (1;) € A9 C™ satisfaga la ecuacién ig(1) = 0, y los polinomios F1,..., F,,
son elegidos homogéneos y de grados respectivos di, . .., d,.

En primera instancia, es necesario determinar condiciones sobre estas formas logaritmicas reg-
ulares para que satisfagan las ecuaciones de descomponibilidad local e integrabilidad (ver ecua-
ciones 1.4.1 y 1.4.2 en en capitulo 1), y de ese modo determinen foliaciones algebraicas singulares.
En funcion de esto dltimo, y si denotamos nuevamente por Cg' a los vectores v € C™ tales que
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>, vid; = 0, vamos a necesitar considerar en nuestras formulas a constantes pertenecientes al sigu-
iente espacio de Grassmannianas:

q
1€ Gr(g,Ch c P(/\ cgl].

Estas pueden ser caracterizadas, via la inmersién de Pliicker, por la clase proyectiva de elementos
A =4 A--- A4y, donde cada factor 4; € Cy (ver proposicion 4.3.4). De este modo, para cada
vector de grados d fijo, queda determinada una parametrizacién natural de las formas logaritmicas
de tipo d que definen foliaciones:

p : Py(d) := Gr(g,Cll) x 1_[ PS4 ——— Fo(d,P") C PHO(P", Q,(d)).
i=1

En este caso, denotaremos por L,(d, n) a la clausura Zariski de la imagen de este morfismo racional,
y nos referiremos a estas variedades irreducibles como variedades logaritmicas en codimensién gq.
En general, vamos a considerar el caso g = 2, dado que los resultados principales serdn obtenidos
para 2-formas logaritmicas.

Antes de enunciar lo teoremas principales, se realizard un andlisis de varios aspectos de la
parametrizacion racional p. En primera instancia, serdn caracterizadas algunas subvariedades ir-
reducibles del base locus de p (notado por 8B,(d)), para esto ver proposicién 4.3.9. Ademds, se
determinard un abierto adecuado (U>(d)) del espacio de parametros, disjunto con B,(d), donde
queda bien definido este morfismo racional (ver proposicion 4.3.6).

Por otro lado, también seran descriptos algunos aspectos de su posible inyectividad genérica.
Al igual que en el caso de 1-formas, podremos determinar un abierto donde p queda bien definido y
es inyectivo (o finito, dependiendo de si d tiene grados repetidos), utilizando una adecuada variedad
de incidencia que estard nuevemente relacionada con la cantidad de factores integrantes de una 2-
forma. Sin embargo, no podremos probar que la construccion de lugar siempre a un abierto no
vacio. En la seccién 4.3.2 dejamos una conjetura sobre estos resultados, y una posible demostracién
del resultado de inyectividad (o finitud de las fibras), para ello ver la proposicién 4.3.15.

El resultado principal del capitulo es la prueba de estabilidad de 2-formas logaritmicas, asum-
iendo que el vector d es 2-balanceado. Esta dltima condicion se corresponde con:

di+d; < de Vi, jefl,...,m,
k#i,j

y es un extension de la hipdtesis de 1-balanceado, asumida en algunas secciones del capitulo 2. El
teorema principal, que resume el resultado anunciado, es el siguiente:

Theorem 4.1.1. Fijemos n,m > 4, y un vector de grados d = (dy,...,d,) que sea 2-balanceado,
cumpliendo d = }", d;. Luego, la variedad .£»(d, n) es una componente irreducible del espacio de
moduli F5(d, P"), que resultard, ademas, reducida sobre los puntos de p(U>(d)).

Este teorema serd una consecuencia de la suryectividad del diferencial de la parametrizacién
(ver proposicion 4.4.2), junto con algunos argumentos cldsicos de la Teoria de esquemas.
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4.2 Summary

Across this chapter, we study projective logarithmic q-forms (with q > 1) in the setting of singular
algebraic foliations of higher codimension.

First, we describe the concept of logarithmic g-forms of type d. This definition also corresponds
to a generalization of that given in the case of 1-forms (see chapter 2). In addition, we characterize
those logarithmic q-forms which define foliations of codimension q, based on the equations of the
moduli space F,(d,P") (see for example the definitions given in chapter 1). In general, we will pay
particular attention to logarithmic 2-forms, because in that case, we can perform a proof of their
infinitesimal stability. For a more general perspective of foliations of higher codimension see I,
[15]and [17].

The main result of this chapter is the proof of the stability of logarithmic 2-forms, assuming
certain conditions on the vector of degrees d. Concretely, the assumption will be the vector d being
2-balanced. This work allows us to determine new irreducible components of the space F>(d,P")
(see Theorem 4.4.1), which are also generically reduced according to its scheme structure.

4.3 Basic definitions

4.3.1 Logarithmic q-forms and projective foliations of codimension (.

Recall from the end of chapter 1 that the moduli space F,(d,P") of projective foliations of codimen-
sion g € N and degree d € N, can be described by twisted projective forms w € HO(P, Q%,L(d))
which satisfies both the Pliicker’s decomposability condition:

q-1
4.3.1) i(WAw=0 VYve A c!

and the so called integrability condition

g-1
(4.3.2) i) Adwo=0 Vve A crtl,

Also the elements v can be considered as local frames {v; ...v,_1} on the affine cone of the ambient
space P", or as local rational fields. For more details consult [17]. In addition, remember that we
can think on the elements w € H(P", Q%,, (d)) as homogeneous affine forms on Ccr+l:

W= Z Al@dzi, A+ Nz,

[:{i1<...,iq}

whose coeflicients {A;}; are homogeneous polynomials of degree d — g. Moreover, we require some
linear equations over its coefficients in order to ensure that the form w descends to the projective
space. Specifically, the form must satisfy:

4.33) ir(w) =0 HOC™' QL ).
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Observe that for ¢ = 2 the decomposability condition 4.3.1 is slightly simpler than in the general
case, because is equivalent to:
i(wAw)=0 VveCH!,

and so it can be replaced by:
4.34) wAw=0.
In conclusion, the space of codimension ¢ singular foliations on P" of degree d is described by:
Fqd,P") ={w € P(HO(P",QI‘én(d))) : w satisfies 4.3.1 ,4.3.2 and codim(S ) > 2}.

Alternatively, it can be described in homogeneous coordinates by:
Fqld,P") = {w = ZAI(Z)dZI € PHO(C"“,Q@H) :
each A; € § 44 and the form w satisfies: 4.3.3 ,4.3.1 ,4.3.2 and codim(S ,) > 2}.

Where also the equation 4.3.2 can be replaced by 4.3.4 if g = 2.

In a geometric complex setting, the forms satisfying these last equations define singular holo-
morphic foliations on P, whose leaves are of codimension g. In other words, they define a regular
holomorphic foliation outside the singular set S, = {p € P" : w(p) = 0}. Moreover the number of
tangencies of a generic line with the leaves of these foliations is d — g.

On the other hand we want to define correct formulas for regular logarithmic g-forms which
define foliations according to the previous equations. We start setting up the notation required. It
will be the same notation that the used in the first chapter to describe the variety £;(n, d).

Fix a degree d € N, which is going to be related to the geometric degree of the foliation, and
choose a partition of d by an m-tuple of degrees d = (dy,...,d,,) € N" satisfying 3>\, d; = d. Let
D =3",D;=(F; =0)be adivisor defined by homogeneous polynomials:

FieSy =H'®".Op(d)) (i=1,....m).

Remark 4.3.1 (Notation). We shall further use the notation / : |I| = g for multi-indexes I =
(i1,...,ig) € {1,...,m}? of size q. In addition, the expressions iy < --- < i, or {iy,...,i,} will be
receptively used when we want to fix an special unique order or when we do not want to take into
account any special order.

The desired formula is supported on the following characterization obtained at 3.5.9 for the
global sections of Q?,(log D) (assuming D normal crossing), and the relation between this sheaf
and the regular logarithmic 1-forms of type d. With these ideas in mind, a regular logarithmic
g-form of type d will be an element w € H(P", Q%,, (d)) defined by the formula:

(4.3.5) w:F[Z A,f—i'l'l/\---AdFL: = > uFdF =) /ll(l_lF,-]dF,-l/\---/\dFiq,

Lll=q {I:ll=q} Ill|=q i¢l
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where the vector of constants can be considered as an element A € A?C™, which satisfies some
linear equations to ensure the descent condition for the form. Recall from 3.5.9 that this condition
is equivalent to the require:

igd =0,

i.e. the vector A should be a cycle in the Koszul complex associated to the vector (dy,...,dy). In
conclusion, our definition of regular logarithmic g-forms corresponds to the regularization of the
classical meromorphic logarithmic g-forms.

The first important question related to these forms is when they define foliations of codimension
g, i.e. when the forms given by the formula 4.3.5 satisfy the equations which define ¥ (d,P"). Let
us start with the Pliicker’s decomposability condition 4.3.1 for the case of g = 2.

Proposition 4.3.2. Let Fy,..., F),, be homogeneous polynomials such that the divisor D = (F =
Fy----- Fy = 0) is simple normal crossings. Consider the logarithmic 2-form of type d defined
by the formula 4.3.5 for some vector of constants 1 € A?C”. Then, the following equations are
equivalent:

. wAw=0
ii. AA1=0.

Proof. First, if we suppose:

wAw:F[Z(ﬂAﬂ)i/%A‘%]:O,
IFNT

i<j
the result follows from applying proposition 3.5.9 (or 3.5.4) which establishes the injectivity of the
total residues map. The other implication is trivial, but also note that A A A = 0 implies the existence

of 11,4, € C" such that: 4 = A; A 1. In this case, if we consider the meromorphic logarithmic
forms defined by:

m
= ) A =12,
i=1

then it is clear that: » = % = n; A ;2. So the meromorphic logarithmic 2-form 7 is globally
decomposable. O

Remark 4.3.3. With the same idea as in the previous proof, it is also true that if we consider a
g-vector of the form A = A} A--- A A, € A\TC™, the associated logarithmic g-form of type d satisfy
the Pliicker’s decomposability equations. The reason is that under this assumption the associated
meromorphic g-form is globally decomposable. In other words:

n=F=mA A,

and therefore:
h(w)Aw= }%lv(n) An=0.



100 Stability of higher degree logarithmic forms

Taking into consideration the above results, in view of obtaining logarithmic g-forms which
define foliations of codimension ¢, we require:

A=A A--- A1, €Gr(g,C™.

Where this grassmannian space is going to be considered as a projective algebraic subset of P(A\?C™)
via the Pliicker embedding:

q
L1 Gr(g,C") — B(/\ €™
span(i, ..., fUg) V> [ A== A gl

With a slight abuse of notation we will write A or 41 A --- A 4, for the elements of the grass-
mannian space Gr(g, C™), and (4;) for its corresponding antisymmetric coordinates. It is not hard to
show that every logarithmic g-form of type d, with constants A selected on this grassmannian space,
satisfies the equations defining F,(d, P").

Proposition 4.3.4. Select an element 4 = A A --- A 4, € Gr(g,C™) such that ig(1) = 0. Also
consider (F;);, a family of homogeneous polynomials of corresponding degrees (d;)” ;. Then, the

w= Y MFdFi= ) AI[nFj]dF,-l/\.../\dF,-q

{I:|l|1=q} {I:|l|1=q} i#i

form:

is a twisted projective form which satisfies the equations 4.3.1 and 4.3.2. In other words, its pro-
jective class corresponds to a point of the moduli space of singular projective foliations of degree d
and codimension ¢ , i.e. [w] € Fy(d,P").

Proof. It only remains to prove that w satisfies the integrability equation: i,(w) Adw = 0. Note that:
_ dr
dow = F N w,

and also observe that w satisfies: i,(w) A w = 0. And so the integrability equation immediately
follows from these two last equations. O

The following result characterize in an useful way the condition ig(1) = 0.

Lemma 4.3.5. Consider 4 = A1 A--- A A, € Gr(q,C™) C P AY(C™). Then, the following equations
are equivalent:

i) igd =0
i) igd; =0, Vi=1,...,q.
In conclusion the following equality holds:
{1€Gr(g,C") :igd = 0} = Gr(q,Cy),

where Cj' denotes the space of vectors 4 € C™ such that: ig(4) = mAidi = 0.
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Proof. The equivalence is deduced from the formula:

m
iad = > (=17 ia(d) A A Adj A A,
Jj=1

and the fact that the vectors {1; A --- A A j A -+ A A4} are linearly independent. O

Now we are able to define the logarithmic varieties associated to the regular logarithmic g-forms
and their corresponding parametrizations. We denote by /,(d, n) the algebraic set of logarithmic g-
forms of type d:

q
lyd,n) ={we HO(P”,Q%,,(d)) Tw= Z A FdFy, for some A € /\ Cq and F; € Sy},
Illl=q

which also coincides with the image of the multi-linear map:

(4.3.6) 6 CHI x| |4 — H®. QL)
i=1

A= (1 A (F) = > (A A A g FrdFy,
I:|l|=q

In order to work in the setting of the moduli space of codimension g foliations, we need to take
a projectivization of the previous objects. Formally, it is possible to define a natural parametrization
for those projective logarithmic g-forms of type d that determine foliations, as follows:

(4.3.7) p : Py(d) := Gr(q,Cy) x 1—[ P(Sy4) ——— F4d,P") C P(HO(P”,Qén(d)))
i=1
A= QA A FIL) — [0l =| > 4FdF|.
I:|ll=q

Also observe that p is only a rational map, because it is not well defined on parameters which give
rise to forms whose respective logarithmic formula vanishes completely.
We define the logarithmic variety .L,(d, n) as the Zariski closure of the image of p:

£,d,n) = im(p),

which also coincides with P/,(d, n), i.e. with the expected definition of the projectivization of the
algebraic variety /,(d, n).

Therefore, £L,(d, n) is a projective irreducible variety, and when ¢ = 2 (in addition with some
hypothesis over the fixed degrees d) we will see that it is an irreducible component of the space
F>(d,P"). So from now on, we will further assume g = 2.

As in the case of logarithmic 1-forms of type d, we will assume some generic conditions in
the space of parameters. See for instance the conditions established at 2.4.2. In particular the
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assumptions over the homogeneous polynomials F1,..., F,, will be the same as in that case. We
will consider irreducible polynomials with smooth simple normal crossings.

Specifically, we define an appropriate algebraic subset of £,(d) by taking:

(4.3.3) Uy(d) = {(A, (FPZ) ePa(d) 0 A;; #0, Ajj— A + Ajg # 05 Ajj — Aig — A # 0;
and Fy,..., F,, satisfy the conditions 3. and 4. from 2.4.2}.

This set has the desired properties, summarized in the following remark.
Proposition 4.3.6. The set U;(d) is a non-empty algebraic open subset of £»(d).

Proof. The grassmannian variety Gr(2, Cy') can not be covered by any union of linear hypersurfaces,
and so the conditions

/1,:,'#0 and /l,'j—/ljk+/1ik¢0 ; ﬂili—ﬂik—/ljk#O(Vi,j,ke{l,...,m})

determine a non-empty algebraic open subset of Gr(2, Cy).

On the other hand, we have already prove that the conditions 3. and 4. from 2.4.2 determines a
non-empty algebraic subset of the product []?, PS 4. For the corresponding proof of this fact see
the corollary 2.4.5. The principal idea was based on the result 2.4.4, which states that the set:

NC(I,n) = ((Fi)hy. %) €

k
=0

PS g, X P Fyy(x) =+ = Fy(x) =0, dyFy; A+ AdiF, = 0)

j=1

is an algebraic subvariety of the product H’j‘.zl PS di; X P" and has dimension one less than the space

Hlj‘.zl PS di - So the first projection map restricted to NC(/, n) could not be dominant. O

Remark 4.3.7. The space of parameters $»(d) is an algebraic irreducible subvariety of dimension:

dim(Po(d) = (" ;d") +m—6

i=1

Moreover, note that this dimension is greater or equal than 2m — 6, which is non negative because
we always assume that m > g + 2 = 4.

4.3.2 Base locus and the fibers of the parametrization

Our goal now is to study the base locus of the rational parametrization p. In addition, we want to
describe its possible generic injectivity.

Set K,(d) as the algebraic set where the multilinear map ¢ vanishes, i.e. K,(d) = #~1(0). In
other words, we are just considering a vector 4 € (C§)? and homogeneous polynomials (F;)7, €
[T, S 4 such that the following g-form vanishes:

Z (O A= A FidF; =0
Llll=q
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With the previous notation, we describe the base locus of the parametrization p according to:
By(d) = {(w(A; A -+ A Ay, (7(Fy)) € Py(d) : (4, (F) € Ky(d) , Ay A---ANAy#0 ,F; #0 Vi)

The variety 8B,(d) describes exactly the points of the parameter space #,(d) in which the rational
map p is not well defined.

A first approach to describe B,(d) is to observe that it does not intersect the open algebraic set
of generic parameters U, (d).

Proposition 4.3.8. The space B,(d) is a projective variety which satisfies: 8,(d) N U (d) = 0.

Proof. First observe that if (4, (F;)) € B,(d) N U,(d), then the meromorphic form associated to
w = ¢((4;), (F;)) also vanishes. In other words, the following relation holds:

Moreover, note that n € HO(P", Q%,, (log(F = 0))). So according to the definition of U, (d) and the
results stated at 3.5.4 and 3.5.9, we deduce that necessarily A = 0, which is an absurd and concludes
the proof. O

Another remarkable fact about 8,(d) (or K, (d)) is related to the possibility of construct elements
using the description made for the case of 1-forms (see section 2.4.1).
Recall we could construct a morphism:

’

Vagen  ker((el) x [ [ S — K@) c Ty x [ [ Sas
j=1 i=1

whose first factor corresponds to the natural inclusion, and the second to a Segre-Veronese map:

m’ m
Vd,d’,[e]) . ]—[ Sd; e l_[Sdi‘
j=1 i=1

According to the result 2.4.13, the union of the varieties K(d)a’ e}y Which corresponds to the image
of the previous morphism g’ [e]), cover the entire set K;(d). Where also remember that (d’, [e]) €
A(d) runs over the set of all partitions of d by a matrix [e] € Ng’x’"' and a new entire vector d’.

On the other hand, observe that for ((1;), (F;)) € (C})? X [T, S 4 the condition

(), (F)) =w =0

is equivalent to:
w
F:U:m /\/\77(1:()
Where each form 7; is the (meromorphic) logarithmic 1-form associated to the coefficients 4; =
((Ai);) € Cf. So it is clear that the vanishing of any of these forms 7y, ..., 7, implies the vanishing

of the entire form 7. Then we obtain the following result.
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Proposition 4.3.9. The space Cg_l X Ki(d)ar [e) has q natural inclusions in K,(d) and determine
irreducible subvarieties.

Remark 4.3.10. In terms of the base locus p, we can construct the following subvariety:
By(d)@ ey = (A1 A=+ A Ay, (n(F)) € Py(d) : (A, (F))) € @3_1 X Ki(da e -A#0 ,F; #0}

This construction can be described precisely as follows. Choose a partition of d by: [e]-d’ = d.
If we select homogeneous polynomials F l’ e S &~ {0} and a non-trivial vector A; in the kernel
of the integer matrix [e] (if there exists), then we can construct elements in the base locus B,(d).
Obviously, if the matrix [e] has trivial kernel, the associated set constructed is empty. Also select
q — 1 vectors Az, ..., A, € Cg’ such that:

A= A Ady#0,

and define the following polynomials:

m/
F; = I_I(F})e"f €Sy,
j=1
Finally ([1], ([F:]) € Gr(g,Cy) X [T, PS4 determines an element of B,(d).

The natural and still open question if these constructions covers the entire set K (d). In the
particular case of ¢ = 2 the question seems to be easier. We are looking forward two vectors 4; and
A2 in Cy (not parallel), and homogeneous polynomials such that:

m dF; m dF .
mAm= (Z(/ll)i?] A {Z(/lz)jT_]} = 0.
j

i=1 !

j=1
Where we also include the additional hypotheses that 7; # 0 and 7, # 0, because in such other
cases, the characterization holds from the previous development.

Now, we proceed to describe the possible generic injectivity of the rational parametrization p.
This will be approached for ¢ = 2. As in the case of logarithmic 1-forms, it will depend on whether
d has repeated degrees. It would be noticed that the pretended approach is going to be related to
the possible number of integrating factors. In other words, for a given homogeneous 2-form w, we
consider homogeneous polynomials F of the same degree as w, such that:

a(2)=o.
F

Let us define an incidence space which seems to be useful to understand the possible generic

injectivity announced. So we consider:

X2(d,n) = {(F,w) € P(S g) x PH(P", Q2.(d)) : d(2) =0 , wAw=0}

Also, notice that the second projection map defined on this space has image in the moduli space
of foliations of degree d, i.e. ¥2(d,P"). In addition, the image of this map will cover the union of
all the possible logarithmic two forms of this degree, in the sense of the following result:
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Proposition 4.3.11. If (F,w) € X»(d,n) then w also satisfy the integrability condition 4.3.2, and
hence:

m(Xa(d, n) € Fod, P).

Moreover, if (F = 0) defines a simple normal crossing divisor of degree d in P”, then also w €
L>(d, n) where d is the vector of degrees associated to the irreducibles components of F.

Proof. For the first part observe that d(%) = 0 is equivalent to:

dF
dw = — A w.
F

Also w satisfies the decomposability condition i,(w) A w = 0. Then, the integrability condition
follows from the previous two equations fulfilled by w.

For the second remark of the statement, the idea is exactly the same as the used in proposition
2.4.27. Let D be the simple normal crossing divisor associated to (F = 0), and denote by {F;}"
the irreducible (simple) factors of F'. Then, observe that the rational form % has simple poles along
D, and moreover d(%) = 0. So this form determines a well defined section of HO(P", QIZP,, (log D)).

According to the characterization given at 3.5.9, we deduce % is of the type:

— = Aj— A —,
F ZZ]: YF; O Fj

and so w € L;(d, n) as claimed. O

In this context, we are able to construct an open set in which the corresponding restriction of
m, is injective. Unfortunately, it was not possible to show in general that this space is not empty.
The problem behind this, is that we have not a general theory supporting the possible number of
algebraic solutions of generic logarithmic g-forms as in the case of 1-forms (see for example the
alternative argument 2.4.33).

Although, we have good evidence to affirm that the determined open set would be non-empty.
In addition, we think that the extended Jouanolou’s lemma established at 3.5.13 will be the central
key for the needed results.

Let us explain the desired construction. The idea would be the same as that used in the case of
1-forms. We will use the upper semicontinuity of the fiber’s dimension applied on the map 73|y, (4.2
(see [29, Theorem 13.1.3]). Consider the open subset H, C X»(d, n) defined by:

Ho = {x = (F,w) € Xa(d,n) : dim(7;' ()) = 0}
Moreover, take into consideration the following natural map defined by:

(4.3.9) P Pa(d) — Xa(d,n)

m
43.10) (A A, () — | F = | Fisw=p@,(F)) = > (1 A da)ijEydF; A dF;
i=1 i,j

Once more, observe that the map g is only rational. Although, it is well defined on the open set
of generic parameters U (d).
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Proposition 4.3.12. The restriction of the morphism 7, : X»2(n, d) — F2(d, P") to H, is injective.

Proof. Fix an element x = (F,w) € H,, and suppose that there exist at least two elements (F, w)
and (G, w) that belong to the fiber ; !(w). In addition, note that the condition for an homogeneous
polynomial H of degree d to be and integrating factor of w, i.e. d(f) = 0, is equivalent to:

Hdw = dH N w.

Then, it is clear that
(@F + BG,w) € 1) (w)  V(a:p) e P

In conclusion, it would exist at least an irreducible component of 7, !(w) passing through x with
dimension greater or equal to one. This last implies that the local dimension at that point satisfies:
dim, (7, '(w)) = 1. So that fiber can not contain two different elements, and this ends the proof. O

Finally, the expected injectivity result for p could be proven if we can construct at least one
element (4 = A1 A A2, (F)}L,) € Ua(d) such that:

P, (F)L)) € Ha.

See proposition 4.3.15 for more details. In other words, we are looking for a generic logarithmic
2-form of type d = (dy, ... ,dy):
w = Z(/ll A /lz)ijﬁ','de[ A dFj,
bj
such that F = []}Z, F; is the unique homogeneous polynomial of degree d satisfying: d(%) = 0.
Set a logarithmic 2-form w with the previous formula, and denote by w; and w, the logarithmic
1-forms of type d associated respectively to the vectors 4; and A, in Cj. Furthermore, we write 7,

11 and 1, for the meromorphic logarithmic forms considered as the quotients of the previous forms
by the polynomial F. Then, we can state the following equivalences.

Proposition 4.3.13. With the above notation, for G € S 4 the following conditions are equivalent:
1. d(%) =0
2. (GdF - FdG) A w = 0.
3.dE)Aw=0.
4 (F - AmAn=0.
5. d(g)/\a)l Awy =0

Proof. They are all straight forward calculations supported on the equivalence:

dF
d)=0 dw=7/\w,

applied to the polynomials F and G. O
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Remark 4.3.14. Note that if any of the logarithmic 1-forms of type d given by w; and w, admits
another integrating factor G, then g will determine a rational first integral of the corresponding form
wi, i.e.

F
d(a) A w; =0.

Also, according to the previous proposition, the polynomial G will be also another integrating factor
for w. So it is expected that we should assume that A; ¢ PQ™ fori = 1 and i = 2, which ensure that
each w; has a unique integrating factor (See propositions 2.4.10 and 2.4.11).

Our conjecture is that for generic parameters (1 = 1 A A, (F;)) € U,(d) such that A;, 1, ¢
PQ™, the polynomial F will be the unique integrating factor of degree d of the logarithmic
2-form w = %wl A wr.

In conclusion, the key of our approach for the generic injectivity depends on the non-trivial fact
is to determine when a logarithmic 2-form has more than one integrating factor of degree d.

We end this section with a possible injectivity result which depends on our conjecture. It is
based on the following commutative diagram:

Up(d) — ya(d.n) .

Sk

Fa2(d, P")

In addition, if we could prove the existence of the previous announced logarithmic 2-form of type
d, then it will follow that the open set H is not empty, and furthermore the same will hold for the
open set U»(d) N 5~ (H>). In this context, we can state the following result.

Proposition 4.3.15. Assume that U = Ur(d) N ﬁ‘l('Hz) # (. Then, if the vector of degrees d has
non-repeated elements, the natural parametrization p : P»(d) --> Lr(d,n) C F>(d,P") restricted to

U, is injective. Moreover, for d general, the restriction to that open set is a fine map.

Proof. We follow the same idea as in the corresponding proof for 1-forms. For every w = p(4, (F)),
the associated polynomial F' = []iL, F; (up to constants) will be unique. The rest of the proof
depends on an algebraic argument over the irreducible polynomials F, ..., F,. O

4.3.3 The Zariski tangent space of 7,(d, P").

In order to perform the infinitesimal proof of the surjectivity result 4.4.2, we need to establish
an appropriate characterization of the Zariski tangent space of the corresponding moduli space of
foliations. We will keep the same notation of the section 2.5.1 in chapter 2.

Remember that for a classical projective space X = PV, it is common to identify its Zariski
tangent space at a given point x = z(v) with:

T:X =V/yy.
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Also remember that 7,(d, P") is a closed subscheme of the projective space P(HO(P", Qén (d))) de-
fined by the equations 4.3.1 (integrability condition) and 4.3.4 (decomposability condition for 2-
forms). So, with a slight abuse of notations, the Zariski tangent space 7,%2(d,P") can be repre-
sented by homogeneous projective forms o € H°(P", Qén (d))/(w) satistying the following equations:

(w+er) AN(w+ea)=0 mod(ez)
(iyw + €i,w) A (dw + eda) =0  mod(e®) and Vv e C**,
This last description is closely related to the following idea: an element « in the Zariski tangent

space at w € F,(d,P") determines an infinitesimal first order perturbation of w, so the form w + e
should satisfy “at first order” the equations 4.3.1 and 4.3.4.

Remark 4.3.16. Fix an element w € #(d,P"). A simple calculation shows @ € H'(P", Q2,(d))/ ()
belongs to the Zariski tangent space of > (d, P") at w if and only if it fulfills the following conditions:
(4.3.11) aAw=0
(4.3.12) (ihw Ada) + (e Adw) =0 YveC™!

We refer to the first equation as the locally decomposability perturbation equation and to the

second as the integrability perturbation equation. In addition, it is remarkable that the vectors v
involved in the previous equations can be also consider as local rational fields.

In conclusion, the desired Zariski tangent space can be described by:

TowFa(d,P") = {a € H'(P", Q2.(d))/ () : @ satisfies 4.3.11 and 4.3.12}.

4.3.4 The derivative of the natural parametrization.

As it was announced in the previous sections, one of our main purposes is to show that the dif-
ferential of the natural parametrization p, which defines the logarithmic components £, (n, d), is
surjective. With this idea in mind, it is important to describe the derivative of the rational map p.

Remember that S, = H°(P", Op(e)) denotes the space of homogeneous polynomials of degree
e. With the identifications made at the previous section, we can describe the Zariski tangent space
of its corresponding projectivization by:

TrxrP(Se) =Se/Fy.

On the other hand let 4 = 4, A 42 be an element of the grassmannian space Gr(2, Cy) (described
by the image of the Pliicker embedding into P A? Cy)- Then, the Zariski tangent space of Gr(2, Cy)
at A is characterized by the antisymmetric constant vectors A’ € /\Z(ng) /¢y such that:

AAd=0.

Also observe that this is the same equation as 4.3.11, which was associated to the decomposability
condition for a first order perturbation. Even more, the vectors A’ which satisfy the above equation,
are in correspondence with the choice of two vectors 47,4} € Cy/(), 1, fulfilling:

(4.3.13) V=X AL+ AL
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From now on, we will write A’ to denote an element of the tangent space:

2
TAGr2,Cy) = (A" € \(CD/w : X' A2 =0},

Consequently with the characterizations given for the tangent spaces involved in the tangent
of the parameter space #,(d), we can state the following remark, which describes the derivative
wanted.

Remark 4.3.17. For a given point (1 = 4 A da, (F)2) = (4, F) € P(d), recall the formula defining
the natural parametrization p:

w=p(1,F))= Z/lijFAide,‘ A dFj
{i.j}

Also remember that we usually avoid the notation [] in all the corresponding projective classes.
Then, the derivative

dp(A, F) : T,Gr(2,Cy) X 1_[ Sa/Fy — TwF2(d,P?)
i=1

is calculated by multilinearity as

4.3.14) dp(A, F)(A',(F7,...,F))) =
Z/l:]FinFl A dFj + Z /lijF,,'\ij;(dFi A dFj + ZZ/iijFidel{ A dFj
i#] i#j#k i£]
[e5] (¢%)

Also, recall that A’ is used to denote an element of the form 4.3.13. Furthermore, @ and a3
are used to separate the perturbations in the image of the differential which are associated to the
following different partial derivatives:

a1 = dp(d, F)(X, (0, ...,0))
az = dp(A, F)O,(F}, ..., F}))

It is important to remark that the forms @ and a; are both first order perturbations of w. In other
words, each a; satisfies the equations 4.3.11 and 4.3.12. On the other hand, these two forms vanish
on different codimensional strata associated to the divisor Dy = (F = 0). This will be summarized
in the following result:

Remark 4.3.18. As usual, if X’Z‘)F denotes the codimension k subscheme associated to the divisor
PDr described by:
x5, = | Xi=F, =...F, =0),
I:|11=k

; 3 4 3
then, note that @; vanishes on XDF and a, over XZ)F (but not over XZ)F)'
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Corollary 4.3.19. Every element @ which belong to the image of the differential must satisfy:
&|X4DF - 0.

These last conclusions will be important at the time of proving the generic surjectivity of the
natural parametrization. The reason is that, in some sense, they give a way of distinguish separately
perturbations associated to a variation of the constants “A” and variations of the polynomials “F;”.

4.4 Infinitesimal stability of a generic logarithmic 2-form

4.4.1 Main results

Now we establish the proof of the stability of generic logarithmic 2-forms in the space of codimen-
sion two projective foliations. It will be important to remember the definition of the open conditions
stated over the space of parameters, which in particular let us define the set U, (d) (4.3.8).
Moreover, we need to add an extra condition for the vector of degrees d, which is an extended
assumption than the balanced condition introduced for 1-forms. Concretely, we use the hypothesis
of d being 2-balanced according to the definition 4.4.11 given at section 4.4.2.
The desired result can be summarized in the following theorem:

Theorem 4.4.1. Setn,m > 4, and fix a 2-balanced vector of degreesd = (d1, . ..,d,) withd = ) ; d;.
The variety £>(d, n) is an irreducible component of the moduli space ¥, (d, P"). Moreover > (d, P")
is reduced at the points of p(U(d)).

The proof of this theorem will be implied by the surjectivity of the derivative of the natural
parametrization (proposition below), combined with some basic arguments of scheme theory.

Proposition 4.4.2. Suppose n,m > 4 and fix a 2-balanced vector d = (dy,...,d,) such that d =
2idi- Let (41 A A2, (F)!,) = (4, F) € Ux(d) and w = p(4, F). Then, the derivative:

dp(A, F) : TaGr2,C™) x [ | Satiry — TuFald, P?)

i=1
is surjective.

With the same strategy as the one used in the main results of the chapter 2, we will write down
first the argument for the Theorem 4.4.1, assuming that the proposition 4.4.2 is correct.

The idea behind the proof of the above theorem is basically the same as the used on the proof
of the main Theorem 2.5.10, but with the difference that in this case we can deduce less properties
than before, due to the non-possible generic injectivity of the parametrization p. For more details,
we also refer to the remark 2.5.13 and the lemma 2.5.14.

Proof theorem 4.4.1. Remember that the variety £;(d, n) is defined as the Zariski closure of the
image of the rational map: p : P»(d) --> F2(n, d), which is well defined over U(d). So Lr(n,d) =
p(U>(d)) is an irreducible projective variety generically smooth and reduced.
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Now, let us consider > (d, P"),.q as the reduced scheme structure associated to the moduli space
F2(d,P"). In addition, the map p factors through this reduced space according to the diagram:

Uy(d) —E= Fo(d, P")

7(_'Z(d, Pn)red

We again refer to [30, 5.1.5]. Next, select an element (4, F)) € U(d) and w its respective image by p,
then according to proposition 4.4.2 the derivative d pyp : T, pP2(d) — T, F2(n,d) is surjective,
and factors through:

TwLa(n,d) € To(Fo(n, d)rea € TwF2(n, d)

In conclusion, it follows that: 7,Ly(n,d) = T (Fo(n, d))rea = TowF2(n, d), for every element w €

p(U>(d)). The proof ends with the same argument as the stated in the proof of Theorem 2.5.10.
Finally, it follows that £,(d, n) is an irreducible component of 7,(d, P"), which is also generi-

cally reduced. O

4.4.2 Surjectivity of the derivative of the natural parametrization

In order to complete the proof of theorem 4.4.1, we need to set up the demonstration of proposition
4.4.2. Before the beginning of the argument, we need to perform the main necessary lemmas.

The setup required is identical as before: D = 3", D; is a simple normal crossing divisor fixed
on P", and of degree d = ) ;d;. In particular it is described in homogeneous coordinates by the
union of the zero locus of irreducible elements F; € Sy, (fori = 1,...,m), which has a normal
type crossing. Alternatively, for each index i € {1,...,m} we could also consider the elements F; as
regular global functions over the affine cone C"*!.

Similarly, we say that a form is a homogeneous affine k-form of total degree d if it can be
described by:

(4.4.1) p= D Az A Adzg,
I:|\l=k

for some homogeneous polynomials A; of degree d — k. Furthermore, recall that the homogeneous
projective k-forms, a € HOP", Q’]}‘M (d))), can be characterized by the same formula, but also must
satisfy the descend condition: ig(a) = 0.

The fixed hypotheses on the polynomials F1, ..., F,, (see 4.3.8) will be of particular importance
in the sequel. Especially the following one:

(*) for each multi-index I = {iy, ... it} C {1,...,m} and every point x € X; = (F;;(x) = --- =
Fi(x) =0) C P", the following holds

dyFiy N---NdFj, #0.
In addition, remember that the associated strata

x5= ) Xi=F,=-=F,=0)
I:|\l=k
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defines a codimension k projective subvariety, and each stratum X; is also a smooth complete inter-
section.

The next lemma is similar to that described at [15, Lemma 2.2], and also it is a generalization
of the lemma 2.5.22. Again it will be a consequence of Saito’s lemma in [46].

Lemma 4.4.3 (Division lemma). Fix n > 3, and consider integers j and g with 1 < j < g <n-—2.
Also, select a multi-index of size g: I = {iy,...,i,},and choose k = lork =2. Ifu € HO(IP’”, Q’]}‘M (d))
is a twisted projective form such that:

(/J/\dF,'] /\"'/\dFi_/)|X1 =0,

then there exist a j-tuple of forms {yl}le, where each y; € HOC1, Qgil) is a homogeneous affine

form of total degree d — d,, fulfilling:

J
ply, = [Z i A dFi,] -
=1

In addition, the same conclusion holds for affine forms y € HO(C"*!, QX ) which are homogeneous
of total degree d, and satisfy the above assumption.

This result is in fact true for arbitrary integers k < n — q, but it is going to be only performed
on the cases we need. Moreover, we consider important to keep in mind the notation and the idea
behind the proof for future applications, specially for the study of logarithmic g-forms of higher
degrees.

Proof. The proof of the entire result will be essentially the same as the developed for the corre-
sponding proof of the particular case 4.4.3.

For simplicity, we write X = C"*! and use ¥ C X to denote the affine cone over the codimension
g complete intersection subvariety X;, whose associated ideal is 7y = (F ik>Z:1' It is important to
recognize the notation and the usuals exact sequences for the restriction to Y of the sheaves of forms.
So we refer to the digression made at 2.5.21 to set the notation and the properties used. Note that
Q;( is a free sheaf generated on global sections by dz, ..., dz,. So the restricted sheaf Q;(Iy is an
Oy-module freely generated on global sections according to:

Qyly = Oy - dzoly ® - @ Oy - dz,ly.

Moreover, the property () implies that the unique singularity (on Y) of the j-form dF; |y A--- A
dF ij|y is the point zero. Now, consider the ideal A generated by the coefficients {q, _ulj} determined
by the decomposition:

dFily A--- NdFly = Z ar...;(dzi)ly A -+ A (dzg)ly.

OSll<~~~<lan

Notice that the depth of A is hight, in particular it is greater or equal than 3. As a comment, observe
that the depth of A is greater or equal than the dimension of Y, which is exactly n + 1 — g.
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In summary, we are able to apply Saito’s lemma (see for instance [46]) to divide 1-forms and 2-
forms restricted to the subvariety Y. According to this last fact, and the hypothesis assume for |y €
HOY, Qlj(ly) (see condition ??), there exist homogeneous (k — 1)-forms ¥1,...,¥; in H(y, Ql)‘(‘l ly)
such that:

J
ply = )" Vi A (@dFly).

k=1
Also, these new introduced forms ¥;,, ..., ¥, can be selected homogeneous of the corresponding
degrees d — djy, . ..,d — d;;. To end the proof we just need to construct global homogeneous forms

whose restriction to Y coincides with the previous obtained forms.

For k = 1, observe that each function ¥; can be considered as an element of HO(X;, Ox,(d—d;)).
So the existence of an homogeneous polynomial y; € HO(P", Opn(d — d;,)) such that: yly = ¥,
depends on the vanishing of the groups H!(P", ITx.(d — d;,)). Moreover, these cohomology groups
always vanish since the projective subvarieties determined by X; are complete intersections (see for
instance p. 6 of [37]).

For the next case (k = 2) the proof is essentially the same. Each of the 1-forms ¥1,...¥; can be
described by:

n
Vi = ZAfdzAY Vk=1,...,],
1=0

where the elements {A;‘ }x; can be again considered as homogeneous elements belonging to coho-
mology groups like H°(X;, Ox,(d — d;, — 1)). Applying the same reasoning as in the previous case,
it is clear that we can construct the desired homogeneous global affine 1-forms vy, ...,y; with the
announced restriction’s property.

o

At this time, we will describe lemmas which characterize homogeneous affine and projective
k-forms, whose restrictions over the points of varieties of the type X’Z‘) vanish. For a more detailed
development of these type of results we refer to the appendix A. The following lemma is stated for
the specific cases we need in the sequel.

Lemma 4.4.4 (Vanishing lemma). Set @ € H°(P",Q},(d)), and let B € HO(C™!, QF, ) be an
homogeneous affine form of total degree d.

a) Suppose ﬁlx% = 0, then there exist a family of affine k-forms {8;} homogeneous of respective
total degrees (d — d j)T: | such that:
m
B= Z Fi B
j=1

b) Suppose «| X3 = 0, then there exist a family of homogeneous affine k-forms {«;, j}TF , such that:

m
a = ZF,‘J' a’,’j

ij=1
@i<))



114 Stability of higher degree logarithmic forms

Alternatively on b) we will use the notation «; j to not make reference to the order between the
two distinct indexes selected. Also in both cases, when the total degree of a new form introduced is
strictly negative it will be evidently considered as zero.

Proof. It corresponds to a particular case of the propositions A.0.22 and A.0.21 (see appendix A).
The key of this proof (see the proposition A.0.20) is to show the elements of the type:

F;, Jcfl,...om}: |l =k-1,
are generators of the homogeneous ideal associated to each codimension k subvariety X’Z‘). O

Lemma 4.4.5 (Fundamental lemma). Fix a family of homogeneous polynomials {B;ji}; je(1..m)
symmetric on the first two indexes (i.e. B;jjx = Bjy) with deg(B;j) = di. If these polynomials
satisfy the relations:

Biji(x) = Bin(x) = Bju(x)  Vx € Xjju=F;=F;j=F,=F; =0),
then for each index k € {1, ..., m} there exist a polynomial F ,’( (of degree dy) such that
Bij(x) = Fi(x)+ FyBij  Vx € Xy =(Fj=Fy=0),

where each B; jk 1s another homogeneous polynomials of degree di — i j d;. If this last number is
negative, then the corresponding polynomial is treated as zero.

Proof. Select two fixed indexes j, k, write X = X3 and denote by Dy the restriction of the divisor
Dr to X. According to the relations assumed, the family of polynomials {B;ji}ix )« determines a
well defined object in H(Dy, Oop, (dy)).

Now, take the usual short exact sequence of sheaves

0—TIp, »O0x —i(Op,) =0
and consider its tensor product by Ox(dy), to get the induced long exact sequence:
0 — H(X, I, (d)) — H’(X.Ox(dy)) = H*(Dx,Op,(di) = H' (X, Ip,(d) > ...

In addition, observe that Dy = (F ik = 0) N X and so according with the hypotheses assumed over
the polynomials {F;}, we get:

I py(dy) = Opn(dy — (d —dj—d))lx = OxQdy + dj = d).
With this identification ,the first morphism of the above long sequence corresponds to:
H°(X,0x(2dj + d; — d)) — H(X,Ox(dy)
G G.ij

Also, note that H' (X, Ox(2di+d;—d)) = 0, which implies that the second morphism of this sequence
is surjective. This last vanishing property used is true since X is a complete intersection over P” (see
for instance [37]). Summarily, we have obtained the following short exact sequence:

(4.4.2) 0 — H°(X,0x(2d) + d; — d)) — H°(X,0x(dy)) — H*(Dx, Op,(dy)) — 0.
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Because of that, we conclude the existence of an element A ik € H(X, Ox(dy)) whose restriction to
Dy equals to the element {B;ji}ixj x. Moreover, with a similar argument, it is easy to see that the
restriction:

HO®", 0p(di)) 2> HO(X, Ox(dy)

is surjective. So we can choose a global homogeneous polynomial H j; such that:
ij = Bj; over X,'jk ,Vi# J, k.

Also, notice that (H jx|x — Bijlx)lpy = 0 (for all i # j, ,k), and so according to the sequence 4.4.2,
we can construct for each i a global homogeneous polynomial B; jk fulfilling:

Bijk = ij + ijBijk~

In addition Hjx = B;jx = Bjix = Hj over X;j. For this reason, we have construct a family of
homogeneous polynomials {H i} ;x with deg(H j;) = dj such that Hy, = H j on the triple intersection
Xijk. Then, for the more basic fundamental lemma stated at 2.5.23, we conclude the existence an
homogeneous polynomial F; of degree d such that:

ij = F;( +Fkl:ljk over X.

The polynomials {F; } and the family {tildeB;} satisfy the needed condition and this ends the proof.
o

We end this part of the section with an useful construction.

Remark 4.4.6 (Field’s with the 6-hypothesis and a short digression about Logarithmic vector fields).
For the rest of the chapter, including various proofs, we need to consider certain rational fields,
dual (in some sense) to the 1-forms {dF;}. We keep the same notations and hypotheses on the
homogeneous polynomials {F;}"" | involved in the definition of the logarithmic regular forms.

The desired construction is the following:

Fix an integer k < n, and selectamulti_—index I={i,...,ix}c{l,...,m}. Foreach j e {1,...,k}
we need to select a rational vector field V;j such that:

(4.4.3) iv;-j(dF,-l) =0 Ylell,... k},

over the points of X; (or alternatively of its affine cone ¥ = (F};, = --- = F;, =0)).

At first note that outside the closed subset of points where the k-form dF;, A --- AdF;, vanishes,
we can construct rational vector fields with the property 4.4.3. This is for example the construction
needed in the proof of [15, Proposition 3.1], where the Authors deal with the same equations for
the moduli space of foliations with higher codimension. The problem with these rational fields is
that we can not ensure that we are able to evaluate them at the points of the subvariety X;. So the
problem is to understand when we are able to remove the functions like F; of the denominators of
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our rational fields. This seems to be hard and technical, but the affirmative answer would be again
related to the word “logarithmic”.

The correct objects needed in this case are the so called Logarithmic vector fields. The formal
definition of the logarithmic derivations over an hypersurface O (with associated ideal 7) of a
complex algebraic variety X, is the following:

Derx(—1log D), = {x € (Derx), : x(I ) C I,}

In other words, if /1, is the local defining equation of D at a point p, we are dealing with derivations
x such that: yh, € (h,)Ox,.

In the case where D is the union of smooth subvarieties, which are normal crossing, this notion
can be consulted at [18] and [36]. And for a treatment in singular and non-normal crossings cases
we refer to [47].

As it can be seen at [47], the modules:

Qy(log D), and Derx(-log D),

are reflexive Oy, ,-modules, dual to each other.

Coming back to our purposes, as it can be also seen at [43], the simple normal crossing case
provides a simple example of the renowned Saito’s critterion ([47] pp.270). With the same notation
asin 3.3.1, fix local coordinates fi, ..., f, in p, and assume the divisor is defined by the zero locus of
fi,--.» fs. Then %, e %,dfsﬂ, ...,dfy, is a free system of generators of Q;(log D),. Moreover
the local fields:

1= i fer b= for o Get = 5O = A
determines a basis of Derx(—1log D),, dual to the usual basis for the local logarithmic 1-forms.

In conclusion, for the simple normal crossing projective divisor D determined by the zero
locus

it is possible to construct, locally on each point of the component X;, fields V;j with the property
4.4.3. We just need to consider the well defined field F#é j (according to the notation of the previous
i

paragraph).

This last digression ends our technical tools needed for the proof of the surjectivity result 4.4.2.

Beginning of the proof of proposition 4.4.2
Note: The hypothesis of d being 2-balanced will be introduced only when necessary.

Let (A1 A Ao, (F)L)) = (A, F) € Ux(d), and w its image by p, which is described by the formula:

w = Z /ll‘jF\,'de[ A dFj.
{i.j}
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Take a@ € T,(2(d,P")) a Zariski tangent vector of F,(d,P") at w, i.e. a projective form a €
HOP", QI%W (d))/(w) satistying the equations 4.3.11 and 4.3.12. What we want to prove is there exist
an element (', (F))? ) € T(a,r)U>(d) such that:

dp(A, FY(',(F)™)) = a.

We consider important to keep in mind the notations introduced at 4.3.4, in special such for A’
lying on the corresponding tangent space to A on the grassmannian space Gr(2,Cy). Taking into
consideration the formula 4.3.14, the problem is equivalent to show that:

a = Z/l:jﬁl]dFl A dF] + Z /Ljﬁlij;(dFl A dFJ + 22 /lljFA'l]dF: A dF]
i#j i#j#k i#j
In the sake of clarity, we will separate the proof in several remarkable steps related to the possi-
ble vanishing of the perturbation a over each stratum ng‘

Our first step is to prove that @ must vanish on X%F:

Proposition 4.4.7 (Step 1). If « is a tangent vector at w, then «| Xy, = 0. Moreover the following
decomposition holds:
a = Z FijkAijdei A dFj + &
i# j#k

for some homogeneous polynomials (A; jx)ix jx« of the correct degree (or the zero polynomials in any
other case). Also, this family of polynomials can be selected antisymmetric on the first two indexes,
ie. Ajjx = —Aji. In addition, the introduced form & € HOC 1, Qém) is a homogeneous affine
form of total degree d satisfying: sIX% = 0.

Proof. At first we need to observe that X;)F is contained in the singular set of w, i.e. a)IX% =0.
F

So, itis clear that i,(w)lx,; = 0, for each vector v and every component X; . of X%F. In addition, for

i, J, k fixed, dw can be described in each of these components by:

dwlx,;, = ((Aij — ik + L) FidF; AdF; A dF)),

ik
According to these remarks the perturbation equation:
(@) ANdw+i,(w)ANda=0

reduces to:
iy A (Aij — A + Ag)FijdF; AdFj AdFy) =0 over Xij.

Notice that sometimes we will use in some equations the phrase “over” instead the restriction sym-
bol. Now, since the element £ i jk 18 not zero on the corresponding graded coordinated ring associated
to X;jx, and taking into consideration the conditions imposed on A in the definition of U>(d), we get
the simple equation:

“4.4.4) iva AdF; A dFj ANdF, =0 over Xijk-
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Alternatively, we can work out the equations on the open set determined by X; ik = Xijk — X%F. This
last deduction combined with the next general property for the inner product by a field

iv(a/\dFi/\dFj/\dFk) =
= ivcl’/\dF[/\dFj /\dFk+a’/\(V(F,')dFj/\dFk—V(Fj)dF,' A dFy + V(Fk)dF[/\dFj),

let us deduce:
i@ NdFi NdF; ANdF) =0 over Xi  Yv:v(F) =v(F;)=v(F;) =0

Also if we take into consideration certain local bases (turned up for this particular case) at the
points of Xi.,-k, which were described at the remark 4.4.6, we can obtain:

a//\dFi/\dFj/\dFkIO over Xijk-
Now, we can apply the division lemma 4.4.3 in order to get the decomposition:
4.4.5) a’=’y,‘/\dF,'+’yj/\dFj+’yk/\dFk over Xijk,

for some homogeneous forms y, € H/(C"*!, Q) of total degree d — d;.
Next, we need to use the helpful constructed fields with the property 4.4.3 developed in the
remark 4.4.6. So, we ought to choose a local rational vector field Yi'/jk such that:

Gy @y =1 Gy @F))ly, = iy @Flx, = 0

With a slight abuse of notation we are considering the entire restriction to X; jx, where formally the
conditions hold locally at every point. The important fact behind this abuse, is that the conclusion is
not going to depend on the local fields chosen, and will be valid at every point of X; ;. For simplicity
we also write Y; = Yi]}k. Now, the equation 4.4.4 combined with the decomposition 4.4.5 imply the
following:

0=ixiaAdFiAdFjAdFk =
= (l'yj()/l')dFi + iyj()/j)dFj + iyj(’yk)dFk + )/j) ANdF; A dFj ANdFy =
=’)/j/\dFl'/\dFj/\dFk,
always over the points of X;;. Moreover, we could permute the indexes and deduce the same

condition for y; and y;. Now, apply again the lemma 4.4.3 to decompose each homogeneous affine
1-form v;, and achieve the formula:

(4.4.6) a = G,’jde,' A dFj + ij,'dFj ANdFy + Gikdei ANdFy  over Xijk’

for some homogeneous polynomials {G,} s of the correct degree.
Next, fix another index / and compare the previous decompositions on their restriction to the
intersection X;jx; = X;ji N Xjig N X

(a’)|xijk, = (Gijdei A dFj + ijidFj AN dFy + G,‘kde,' A dFk)lXijkl
= (ijldFj ANdFy + ledek ANdF; + Gﬂdej ANdF)|x

i jkl
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Since the divisor Dr is normal crossing, at every point of X; i, the restricted forms dFj| Xijirs dFjlx;,»
dFlijx and dFy|; ji; are independent as elements of (Qé:,H A X,.jk,) «. Therefore, we get a lot of conditions

for the polynomials collected, in particular observe that necessarily:
Gijplxy =0 YI#14, j k.

Then, for every selection of indexes i, j, k, we can deduce the existence of an homogeneous polyno-
mial A;j with the property: G;jx = F; kA jk. This fact is supported of the hypotheses assumed over
the polynomials Fy,..., F,. Moreover, it is easy to check both families of polynomials {G;j;} and
{A;jx} must satisfy the antisymmetric conditions announced in the first two indexes.

Finally, from 4.4.6 it follows that @ and }; jx F; «AijkdF; A dF; has the same restriction to
each component X; ;. This in particular implies that the form & = @ — }}; ik F; KAijdF; A dF;is a
homogeneous affine form of total degree d which vanishes when restricted to X%F. O

The next step is related to finding the expected polynomials ”F” (remember the middle term of
the formula 4.3.14). Taking into consideration the last proposition, we need to pick up some correct
equations for the polynomials {A; i} to deduce that A;j/A4;; only depends on the index k.

Proposition 4.4.8 (Step 2). With the notation of proposition 4.4.7, for each selection of distinct
indexes i, j, k denote by B;jx = A;ji/A;; a slight correction of the polynomial A;j. Then, these new
polynomials {B; jk};."j 1~ hecessarily satisty the relations:

Biji(x) = Bju(x) = Bir(x) Vx € Xjji

Proof. First we need to describe better the factor &, introduced in the previous step for the descrip-
tion of the perturbation a. So, according to the restriction lemma 4.4.4, we get:

e= > Fiei,
i<j
for some homogeneous affine forms {g;;}. From now on, we develop a similar argument to that used
at Step 1 and work out the perturbation equation for our purposes. We will fix in some order four
indexes i, jo, ko, lo towards to deduce the desired conditions on the component X, ok, -
Fix jo and ly, and use again the lemma 4.4.6 to select a local rational vector field Y;, = yo

. Jolo?
now with the property:

inO(dFjo) =1 iY_,-O(dFlo) =0 over Xj

olo-

Also, we need to use again a slight abuse of notation and work on the entire restriction to X ;,, when

0lo>
formally the conditions holds locally. The abuse is supported on the fact that the obtained equations

are not going to depend on the selected field, and will be valid at all the points. For easiness we will
work separately over the two terms of the restricted perturbation equation:

4.4.7) (iv, (@) A dw)lx, , + (i, () Ada)ly,, =0.

First term Second term
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In order to develop a manageable expression of the first term notice that:

iy, (@) = Z 2ﬁijkAijkin0 (dF)dF; + Z Fiti,-o (&ij).

i# j#k i<j

So , the elements of the first term on their restriction to the subvariety X, can be describe by:

=0
. A . A T
(v, (@), = (Z 2F jokAnjoiv, (dF j)dFy, + Z 2F ok ok iy, (dF1,) dF N

k k

+ Z ZﬁijoloAijoloi(on)(dFi)dFjo + Z 2ﬁijoloAilojoinO (dF,')dFlO +
i i

+ Z 2F o A jo oy, (dF jo)dF j + Z 2F o jiyAnjjo i,y (dF1y) dF +

+ Fjoloiyjo (gjolo) ) |Xj010

and
(dw)lxjolo =( Z /lijﬁijdei A dFj A\ dFk)|Xj010 = (/\/jolo A dFjo A dFlo)|onzo-

itk

In addition, the form y j,;, represents a certain new introduced homogeneous affine form, which is
going to be used only to express that the restricted form (dw)lx; , is in the direction of dF j, A dF,.
Having said that, we get a description of the whole first term on its restriction to X o, :

(First Term:)

ino (@) Ndw = Z Z/lijAjorlo ﬁjolorﬁijk dF, NdF; A dFj ANdF |+ Zﬁjoloiyjo (8{]‘0,10}) A dw.
N———

i# j#k#r N N
(& r#jo.lp) =Fjyi Fijkr
On the other hand, we ought to make the same description for the other term of the formula
4.4.7. In this case, observe that over X, the following holds:

(v, @Dy, = O 244 Fijiv, (AF) AF Dl = Qo FigodFiy)lx

0lo Jolo
i*j

Also, the other component (da) can be described by:

da = Z AijkﬁijkrdFi /\dFj ANdF, + Z ﬁijdeijk ANdF; A dFj+
i#jEkEr i#j#k
+ Z Fijdek A &jj+ Z Fijdsij-
i# itk i<j
i<j
For the moment, we are not going to describe better this term on the restriction to the subvariety
Xjy1,- For our purposes, it is sufficient to take the wedge product of the two components as they
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were written above, and deduce the following formula:

(Second term:)

iyjo(w) ANda = Z/leIOFA'jOIOdFIO A Z AijkﬁijkrdFi A dFj ANdF, | +
i jEktr

+ 2/1joloﬁ'jolodFlo A Z Fijdeijk ANdF; A dFj + Z Fijdek Agij+ Z F,'jdb‘,‘j
i# j#k itk i<j
i<j

With a view to complete the description of the equation 4.4.7, it is needed to add the first and
the second terms obtained. In addition, we are also allowed to cancel the polynomial factor F ',
repeated in all summands. After that, consider the restriction to Xj, ok, Where most of the sum’s
terms involved vanish, and finally obtain:

0= ZZ/lijAjorloﬁijkrdFr ANdF; A dFj ANdFy, + Z Z/ljoloAiijijkrdFlo ANdF; A dFj ANdF, ,

i# jEk#r i#jEkEr
r#£jo.lo

over all the points of X;, jo k-

Obviously, this is not the optimal formula. At once it is clear that only survive the terms whose
indexes i, J, k, r coincides in some order with iy, jo, ko, lp. After doing all the possible assignments
of iy, jo, ko, lp into both sum’s indexes, we get a more useful equation:

((/ljoko + Akt A joiolo + (i jo + AlgigJA jokoly + /ljoloAiokolo) FiojokolodFio ANdFj, NdF, NdFj, =0
Since the restriction of the global forms dF,,dF j,,dFy, and dF), to the subvariety X; j k.1, are inde-
pendent, it is possible to deduce:

(/ljoko + /lkolo)Ajoiolo + (’liojo + /lloio)Ajokolo + /ljoloAiokolo =0 over Xiojokolo
According to the definition of the polynomials {B;j}, and if we recall the order in which they where
selected the fixed indexes, we have produced an equation [Eq ook, ] for these new polynomials:
(/ljoko/ljoio + ’lkolo/ljoio)Bjoiolo + (/liojo/ljoko + /lloio/ljoko)Bjokolo + /ljolo/liokoBiokolo =0

In order to end this step, notice that any permutation of the fixed indexes gives rise to another
linear equation over X; k., for the polynomials {B;;}. So, it is sufficient to prove that the linear
system produced in this way let us deduce the desired equations.

For this purpose, figure out from 4.4.7 that the original family of polynomials {A;;} are anti-
symmetric on the first two indexes, i.e. A;jx = —Ajy. Using this fact, the equation [2Eq jiok, +
Eqiyiyjoke + Eqioloijo] can be exactly described by:

(/liojo - ’lioko + /ljoko)(Biojolo - Bjokolo) =0 over Xiojokol()‘

#0

Also notice that the above linear combination of coefficients does not vanish because of the con-
ditions assumed on the definition of U>(d). Finally, the other equalities follow from appropriated
permutations of the selected indexes, and this completes the proof of step 2.

O
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Now, we are able to apply the fundamental lemma 4.4.5, in order to deduce that every tangent
vector at w can be decompose as a perturbation in the image of the differential of the parametrization
(associated to some polynomials {F}} and vanishing on X;‘)F). in addition to another perturbation
that vanishes on X%F. This development falls into the description made at the remark 4.3.18, and
can be summarized in the following step.

Proposition 4.4.9 (Step 3). Let w = p(4, F) be a logarithmic form in the image by p of the open set
U>(d). For a given a € T,%2(d,P"), there exist a family of homogeneous polynomials {F yit, of
respective degrees (d;)! |, and a projective homogeneous form & € HOP", Qén (d)) which is another
tangent vector at w, such that:
=Y AFipFidFi AdFj+ ) 20FdF] AdF;+ & = dp(d, F)O, (F))L)) + &,
i+ j#k i<j
where also @lys = 0.
Df

Proof. At first combine the steps 1 and 2 of the previous two propositions to get the following
decomposition for a:
a= Z FijkAijdei A dFj + €.
i# j£k
And also recall that the family of polynomials {B;; = %"} satisfy the relations

Biji = Bju = Bik,

on their restriction to the subvariety X; ;. Now, according to the fundamental lemma 4.4.5, there
exists a family of homogeneous polynomials F’, ..., F, of respective degrees di, .. ., dy, such that:

Bijk = F;( + ijBijk

over the points of X, for some new homogeneous polynomials {B; ik} of the correct degree. So, it
is clear that the forms @ and
Z /ll‘jﬁiij;(dF,‘ A dFj + Z /lijﬁijkﬁjkgijdei A dFj
i#j#k i# j#k
has the same restriction to the every component of X% = |J Xijk. Furthermore, since the second
term of the previous above form vanishes on X7, we can write:
a = Z /lijFA‘,'ij;chi A dFj + &,
i#jk
where & vanishes on X%. Finally, we need to add and subtract a suitable term to obtain the desired
formula:
a= Y AFipFidFi AdFj+ ) 20FdF] A dF;+ & = dp(d, F)O, (F))L)) + &,
i+ j*k i<j
where @ is another polynomial affine form such that &| X3 = 0.
Since dp(4, F)(O, (F] );’; |) 1s an homogeneous projective form tangent to w, i.e descends to the
projective space (ir(dp(4, F)(0, (F} )7 ))) = 0) and satisfies the equations 4.3.11 and 4.3.12, the

same characteristics hold on &. O
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In conclusion, from now on, we need to deal with the same problem as in the beginning, and
characterize the elements @ € 7,% (d,P") but with the additional vanishing condition: &| X3 = 0.

In advanced, taking the expression 4.3.14 into consideration, the form & is expected to be related
to a perturbation of the coefficients A (its the term @ of the formula). As in the case of 1-forms, this
last is going to be true only assuming certain extra conditions over the vector d (balanced case).

The following proposition set the background to end the proof in the balanced case, and also it
is useful to understand the possible trouble if d do not satisfy the desired assumptions.

Proposition 4.4.10 (Step 4). If @ € 7,7 (d,P") is a Zariski tangent vector at w and vanishes when

a= Fya.

i£]

restricted to X% , then:
F

Where {@;;} represent some homogeneous affine forms such that @;; = @;;.
Moreover, for each ordered selection of distinct indexes i, j, k, there exist a constant /ll’.j € C and

a homogeneous polynomials Biljc and B’JJk of the correct degree (or zero in any other case) such that:
&ij = A dFi AdF; + Fig(BjdF; NdFy + BJdF; AdFy)  over Xij.

Proof. At first we apply the restriction lemma 4.4.4 to the form @, but, just for simplicity, we need
to take a slight correction of the obtained forms in order to make them symmetric on the selected
indexes. In other words, we can express:

@ = Z Fijaij,

i#]

where {@;;} is as a family of homogeneous affine forms such that @;; = @j;.

The following argument is similar to that used at the proof of 4.4.7, but adapted to each @;;.
Once more fix two indexes ip, jo. According to the remark 4.4.6, select a rational local vector field
Y, = Y;‘(’)j" with the condition 4.4.3. (with the same abuse of notation as usual).

Now, the two terms of the perturbation’s equation 4.3.12 associated to & can be described on the
whole space by:

iyjod’ ANdw = Z /lijﬁvlrﬁijkino(d’lr) ANdF; A dFj ANdFy
o
iY./o“’ ANda = Z ZAlrFlrFijkiY_/O (dF)dF, NdF; A &ij + Z Z/llrﬁ[rﬁijiyjo (dF))dF, A dd/ij

I#r I#r
i#j#k i#]

Next, restrict these terms to Xj, i, where most of them vanish. Also, remember that the obtained

0Jjo
equations are not going to depend on the selected local fields, and will be valid at all the points of
Xiojo-
making all the possible assignments of the two indexes fixed into the term’s indexes i, j, k. With

For simplicity, we are not going to write the optimal formula, it will be described without

those considerations, and using the properties of Y, we get:
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= Z 2/1ijﬁiojoﬁijk inO(d'iojo) ANdF; A dFj A dFy
iz )2k

(iy;, @ A dw)lx,

(iyjoa) A dd’)|xi Z 2/1j0i0ﬁi0joﬁijk dFio ANdF A @ij + 4/ljoioﬁi0joﬁiojodFio A d&iojo

i#jEk

ojo

Following the same idea as in the step 1, and after adding the two terms from above, we could
remove the polynomial £, jo Which is present in all sums, and then restrict the equation to X;, jox,:

(4.4.8) 2y jo = Aigko + Ajoko) Figjokoliv,, (igjo) dFig AdFjy A dFp+

+ 4/lj0i0Fiojoko dFio A dFko A d’iojo + 4/1j0ioFiojoko dFio A dFjo A @ioko =0

Note that if we take the product by (AdF )lx, , to the previous equation, we deduce:

inJjok
&iojo A dF,'O A dFjo A dFk() =0 over Xiojok()'

Also, the same conclusion holds for the forms &y, and &jyk,. Again, according to the division
lemma 4.4.3, it is possible to decompose each of the previous forms on the directions of dF,, dF j,
and dF,. For example, we obtain the following decomposition for &;,:
~ — (,,00Jj0)k (o jo)k (o jo)k
(ainO)IXinOkO - (l‘[k(? A dFk() +,uj(? A dFJ() +/'ll'00 RN dFi())|X,-0j0k0

for some homogeneous affine forms { ugio"b)ko}l, whose respective degree equals to d; + d; — d; (for

every index /).
What we want to prove now is that these new forms, restricted to Xj j «,, are also on the direc-
io joko
. . . . /O
with the corresponding property deduced from 4.4.6. Then, observe that this is an extended assump-

tions of dF,, dF j, and dFy,. For this purpose, select a new rational local vector field Z;, = Y

tion to that used at the beginning of the proof (for Y;;), however it allows us to deduce the same
equation (4.4.8 )for the components of @. The formal proof of this last fact is almost the same as the
developed for the field Y. It is important to respect the index’s order in how we restrict to X;q i

in order to be able to cancel the term F' In conclusion we obtain:

iojo*
(’11'0]'0 = Aigky + ﬂjoko)ﬁiojokoizjo (diojo) dFio A dFjo A dFko"'
+ 2/ljoiopiojoko dFiy NdFi, A\ &y jy + 2/ljoioFiojoko dFiy NdF jy A @igky = 0

Now, if we replace the above decomposition for &;,;, (and &;,,) on this last equation, and use

the properties of Zj,,

10 Jo)ki i0ko) J
((Aigjy = Ajoko + Aigko 1T = 20 j0 flO0) A dF3 A dFj) A dFy, = 0.

Jo 0

we finally obtain:

Our purpose is to show every form represented by
ﬁgiojo)ko — /Jgiojo)ko AdFy A dFjo A dFy,,

for [ € {iy, jo, ko}, equals to zero on its restriction to X; Also, we need to treat with forms of the

10, qHd] 0Jjoko-
type ﬁ;’ok())j % and ﬁEJ okodio "and additionally prove they vanish. According to this new notation we can

rewrite the above equation as:

. .
EqUjgigky) = (igjo = Ay + Aighg B = 210 jg B = 0,
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where Eq(1ji,k,) refers to the order in which the indexes were selected to deduce the equation.
So, Eq(1}i,k,) Was associated to the process summarized by the contraction with Z;;, then by the

restriction to Xj j,, and finally to X, ok, -

0Jjo>
In conclusion, if we permute the selected indexes, we could construct a linear system of equa-

tions for the forms of type 3, towards to deduce the desired property. For example, if we take:

Vg k)i
Eq(lj()i()k()) + Eq(lkoi()jo) : (ﬁi()jo - /ljok() - Aioko)(ﬁy(?m) 0 _ﬁ](cl(? O)JO) = Oa

we deduce ﬁ,ﬁﬁ’k")j" = 135,’:!'0)160

part of the desired conditions:

over Xj; jok,- With this deduction and the equation Eq(/,;,k,) we obtain

(iojo)ko _
ﬂjo =0 over Xiojok()'

Since &;; = @j;, the same process (with the indexes jo and iy permuted) implies that:

ik Ok
(,35({010) 0)|X,- — (,35:)0]0) O)|Xi

0Joko 0Joko
also vanishes.

(iojo)ko _
By,

It only rest to show: = 0. Although, this fact could not be imply by the equations of type

1. Tt will follow from something we have not done before, propose the equation 4.3.12 associated

Yiojoko
ko

described on this proof: first restrict the equation to X;

to a rational vector field Z;, = , and apply the same argument as in the deduction of 4.4.8

1jo» then cancel the polynomial factor F' ,:) jo»

and in the final step restrict to X The equation which hold after this process is the following:

0Jjoko-
2(igjo — Aigko + joko) Figjokoike @igjo) A dFig NdFjy ANdFy, =0 over Xigjoko-
According to the conditions established in U>(d), we get

(M;{i?j())ko A dFi() A dFjo A dFk())lX =0,

ioJoko
as claimed.
. o . . (o jo)l
Now we are able to apply again the division lemma, in this case to the forms of type u, """
After a correct regroupement we obtain:
= _ Alojo io jo i jo
4.4.9) iy jo = AiojokodFiO A dFJ'O + AiokojodF"O A dFko + AjokoiodFjO A dFkO over XinOkO’
where each the new polynomials of type A are homogeneous of the correct positive degree (or the
zero polynomials for negative possible degrees). Observe that we are close to the expected formula,
we just need to deduce some extra conditions for these new introduced polynomials.
Notice that if we fix another index /y, then the different possible formulas for &;,;, in the inter-
section X; j ko, must coincide, and so it is valid:
5~ . — Alojo i jo iojo _
Tipjo = AiojokodFiO A dFjO + AiokojodFiO A dFkO + AjokoiodFjO A dFkQ =

_ Aloj io i0
=AY dF,'O A dFjo +Aizl§j0dFi0 A dFlo +Aj%lgi0dFj0 A dFlo

ioJjolo
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Once more we need to use that the restricted forms dF,ly, , .
1

cnet [Xigjororp - RIS allows us to deduce exactly the conditions required over
the polynomials of type A:

(for r € {ip, jo, ko, lo}) are inde-
pendent as elements of Q

iojo _ plojo . iojo _ plojo  _ o
(4.4.10) Aiojoko = Aiojolo ; Aiokojo = Ajokolo =0 (over X jokolo-

Finally, it is time to bring into consideration the homogeneous degree of each term on the above

.. io J —
it is easy to check that deg(A; 'Oko) =0.

equation 4.4.9. Since the degree of &, ;, equals to d;, + d; oo

Jo

So we have found the desired constants, defined by:
7 _ plojo _ 4lojo
/liOJO  “ojoko T Aiojolo eC.
Using the second condition obtained below at 4.4.10, and with the same argument we have used on
several times (for example on the proof of 4.4.7), we also deduce:

iojo _ p iojo.  qlojo  _ ioJ

A= Figjorg By AVR = Figjorg Bl over X;

ioko jo o joko 2 joky ? Jokoio 0Jjoko>

for some homogeneous polynomials B whose degrees adjust to the following formula:
deg(BLY) = AL —(d — diy — dj, - dyy) =

= deg(&,-ojo) — (dio + dk()) — (d - di() — djo - dk()) = Zdj() + di() —-d
O

Observe that if the formula obtained in the last proposition were true in the whole space P", and
the polynomials of type B were equal to zero, we would deduce that @ should be only associated to
a perturbation of the coefficients ("1"”).

In the case of logarithmic 2-forms of type d the concept of “balanced” will be again related to
the degrees obtained at the end of the last proposition’s proof. Moreover, it will be a more restrictive
concept than the used for 1-forms.

The balanced assumption

Towards to finish the proof of proposition 4.4.2, and according to the previous discussion, we need
to set up certain definition in order to restrict the possible degrees lying on d.
For a general natural number k we can define the concept of a k-balanced vector of degrees.

Definition 4.4.11. We say that an m-tuple of degrees d = (d;,...,d,) € N" is k-balanced if for

each selected multi-index I C {1,--- ,m} of size |I| = k, the following inequality holds:
Zd,’ :di1 +---+d,'l < Zdl.
i€l lgl

Remark 4.4.12. If a vector d is k-balanced then it is k’-balanced for all X’ lower than k. Furthermore,
notice that the following more precise inequality holds for every multi-index [ of size k and every

Ydi<>d

jeJ gl

selection of a sub-multi-index J C I:
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Although, the converse of this fact is not true (not even for large m). For example, take:

-2 -3 ) -3
d=(1,2,...,m—2, 20 (n2m3))

This vector is 1-balanced, but trivially not 2-balanced for every m.

Remark 4.4.13. Alternatively, let O = 3", D; = (F; = 0) be a divisor over P" of degree d, whose
irreducible components O; are defined by homogeneous polynomials F; of respective degrees d;
where d = 37", d;. We will say the divisor is k-balanced if the vector d = (dy)iL, is k-balanced.

Example 4.4.14. If all the possible degrees are all equal to 1,i.e. d = (1,..., 1), then d is k-balanced
if and only if 2k < m.

At last, we want to emphasize some aspects towards to understand the difficulty behind the
non-balanced case.

Remark 4.4.15. Unlike the case of 1-balanced vectors, it is no more true that if a vector d is not
k-balanced, then there exist a unique selection of k-indexes which is greater or equal than the rest.
In general, the possible number of unbalanced k-tuples is completely out of control.

At this time, we are prepared to give a possible end to the proof of the surjectivity of the natural
parametrization. From now on, we assume Dy is a 2-balanced divisor.

Let us recall the situation described at the last proposition 4.4.10 (Step 4). If @ = 3; ; F; @i 18
a first order perturbation of w which vanishes on X> .» then we have the following description:
(4.4.11) &ij = A dFi AdF; + Fiu(By dF; N dFy + B} .dF; AdFy) over Xij.

2
Also, remember that we want to deduce: @;; = /l;idF ; A dF;. In other words, what we will prove
(assuming d balanced) is that @ = dp(4, f)((/lg 150)).
The following lemma is really close to the formula we want to conclude.
Lemma 4.4.16 (Step 5). We use the same notation of proposition 4.4.10. Also, assume that the
vector d is 2-balanced. Then, there exist an homogeneous affine form g € HO(C"*!, Qém) of total
degree d, and such that | X2 = 0, which fulfill the following formula:

G = FidFi ndF;+p.
i#]
Proof. The previous proposition 4.4.10 (Step 4) determines a specific decomposition for &, which

involves some homogeneous affine forms denoted by @;; of respective total degrees d; + d;, and
whose restriction to X; j satisfy:

&ij = A dFi A dFj + Fiu(Bj dF; A dFy + B dF; A dFy).
Also, the degree of the homogeneous polynomials of type B perform the following:

deg(B)=dj— > di  deg(Bi)=di— ) di
ki, k#i,j
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Since d is 2-balanced, and in agreement with the remark 4.4.12, we deduce the terms associated to
the polynomials B;]Jq. and B’ﬁd cannot take part in the formula, because they should be of negative
homogeneous degree. So, for i, j and k fixed the important conclusion is the following:

&,‘j = /l;dei A dFj over Xijk-

Now observe that the form (@;; — /llfde P A dF‘,-)lxl.j vanishes on each component of the divisor
(F; jlx;; = 0), defined on the variety X;;. With a slight modification of the proof of the vanishing
lemma 4.4.4, it can be seen that:

d’,‘j=/1;/~dFi/\dFj+F,‘jﬁ,’j over Xij’
for a certain form f;; € HOCcm1, Qém) also homogeneous. Next, we can compute the possible
degree of g;;:
deg(ﬁl-j) = deg(d/,-j) - deg(l:",-j) = dl' + dj - (d - d,‘ - d]) = d,‘ + dj - Z dk.
k#i,j

These degrees are all strictly negative according to the balanced assumption on d. We deduce the
term associated to every S;; does not take part of the formula, and can be considered as zero. In
order to finish the proof observe @ and

Z /l,'jﬁ,‘de,‘ A dFj

i+
has the same restriction to each component X;;, and therefore their difference § = @ -}’ 4; jﬁ ijdF; A
dF ; vanishes when restricted to X%)F. O

With the notation and hypotheses of the above lemma, observe that & and ;. ; /l;jFAi jdFi NdF
satisfy the integrability perturbation equation 4.3.12, and so the same holds for 8. Therefore, we
reduce the problem to study the possible homogeneous affine forms which satisfy the perturbation
equation and vanish on the restriction to X%.

Note that we are being careful to not say 8 determines a first order perturbation of w, because,
a priori, it is not known if the form associated to A’ satisfy the locally decomposability perturbation
equation 4.3.11. We will deal with this problem later.

Lemma 4.4.17 (Step 6). Assume again that d is 2-balanced. If 8 € HO(C"!, Qé,m) is an homoge-

neous affine 2-form of degree d, satisfying the integrability perturbation equation:
i(B) Adw + iy(w) AdB=0 YveC™!,
and | X2, = 0, then necessarily 8 = 0.

Proof. The idea of this proof is essentially the same as in the step 4 (4.4.10). The advantage will be
that the involved form vanishes on a lower codimensional stratum. Therefore, since S X2 = 0, itis
possible to describe it using the vanishing lemma 4.4.4 by:

B= Zﬁlﬁl-
7
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For each possible index I, 8; € H°(C™*!, Qém) is homogeneous of total degree d;.
Now, fix two distinct indexes iy, jo € {1,...,m}, and use the construction made at the remark
4.4.6, to choose a rational local vector field Y;, = Y/ with the following 6-hypothesis on the

0Jo

restriction to the points of X; j,:

inO(dFio) =0 5 inO(dFjo) =1.
In this case, the terms of the integrability perturbation equation can be described by:

iy, (B) A dw = E AijFipFiiy, (B) A dFi AdF; A dFy
ik
1

iyjo(a)) A dﬁ = Z Z/Ijiﬁ,‘jﬁkliyjo (dFj)dFl‘ ANdFy A B+ Z 2/ljiﬁijFA'linO (dFj)dFi A d,Bl

i#] i#j#k
k#l 1

The first important thing to observe is that if we take the restriction of this integrability perturbation

equation to the point of Xj, ;,, we obtain:

0J0°
Livio(Finio)y* dFig NdFjy ABiy =0 (over Xiyjo)-

According to the hypotheses assumed on the open set U;(d), the restricted polynomial A joio(ﬁ i j0)2
is not zero, and then we are able to remove it from above. Once more, the division lemma 4.4.3
applied to S;,, implies the existence of homogeneous affine 1-forms ,ui.gjo and ,ulj%io such that:

0J0*

— 0 io
Bip = Hisio ANdF;, + Hioio A dFjo over X;
Next,since dF;, and &;, has the same total degree, we deduce /Ji:gjo =0.

Select a new index ko, and figure out that the above decompositions for S;,, associated to the

subvarieties X, j, and Xj x,, must coincide on the restriction to X;; j k. S0, we obtain:

0Jo
,3,'0 = Ml]%io A dFjo = 'u;;:)io A dFko over Xiojok()'
Moreover taking the wedge product by dFy, in the above equalities it is possible to deduce:

Hp o NAFj AdFy, = 0.

Using again the division lemma, there exist an homogeneous polynomial A;j .k, (possibly zero)
satisfying:
Biy, = AigjokodF j, NdFy,  over Xjjok,-
With the usual argument that we have been repeating throughout this work, we need to show that
the polynomial F iojoko divides A; jox,- For each index I ¢ {io, jo, ko}, in agreement with the following
equality over X; j ko1
Aigjoko@Fjo N dFyy = AigjordFjy A dF

and due to the normal crossing condition of D, we obtain:

Aiy joko |Xi0j0kol =0.
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So, it is possible to deduce the existence of a new polynomial A;, joko (possibly zero) fulfilling:
Biy = FiojokogiojokodFjo ANdFy, over Xijoko-
Furthermore, we could compute the possible degree of this new polynomial by:
deg(Aiojoko) = d;, — (d - dj, — dj, — di,) — dj, — di, = dj, — Z di,
I#ip
and note that it is negative since the divisor is also 1-balanced (deduced by the remark 4.4.12). As a

conclusion and after all the possible permutations of the indexes iy, jo and ky, we attain the following
condition for each homogeneous form f;:

ﬁilXijk =0 V jk#1i
This last fact is going to be the key to prove the vanishing of the forms 8. With this purpose, consider
the following suitable subvariety defined by:

3 3
X3 = Xk c X5,
ki

From where it is cleat that ; vanishes on Xfi). Also, recall that the ideal associated to X% can be
characterized by I% = (FAjk){j,k} (see A.0.20), and then observe that X(31.) = X% N (F; = 0). Soitis
clear that its associated ideal corresponds to:

fx{%’_) = (F) jei-

With a slightly modified proof of the restriction lemma (using the variety X(3L.) instead of X%), it is
possible to deduce the existence of affine 2-forms {§;;}+; also homogeneous (possible zero) such
that:
Bi = Z FijBij-
J#i
The possible degrees of these new introduced forms can be stated by:
deg(pij) = di — (d - d; - dj) = d; - ) d.
I#i,j

Finally, observe again that they are all negative since d is 2-balanced. This last imply each form g;
equals to zero over the whole space, and then we conclude the vanishing of the entire form 3, which

brings to a close the proof of this lemma.
O

Finally, we can summarize last step of the proof of proposition 4.4.2.

Proposition 4.4.18 (Step 7). We will keep the same notation as usual, and assume that the vector d
is 2-balanced. Let w = ¥, 4;;F;;dF; A dF; € HO(P", Q2,(d)) a logarithmic 2-form of type d, where
also 4 € Gr(2,Cy). If @ is a Zariski tangent vector of the moduli space #2(d,P") at w, and also
d/lX% = 0, then there exist A" € 7,Gr(2, Cy) fulfilling:

a = Z/l;jﬁ‘idei /\dFj
i#j
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Proof. The previous lemmas 4.4.16 and 4.4.17, imply that the form & can be described by:

&= AFidFi ndF; € H(P", Q5 ()] w,
i*]

where the antisymmetric matrix of constants (/l;j) can be thought as an element A’ € /\Z(Ca”) /-
Now, recall from section 4.3.4 that we can interpret the elements A’ € T,(Gr(2, C’:f) as vectors
A€ NX(CI/(xy which satisfy:

AN =0.

In conclusion, it only rest to prove that the element A’ obtained at the beginning, satisfies this last
equation. With this purpose, we just need to use in a correct way that & fulfill the decomposability
perturbation equation:

anNw=0,

which according to the representation attained for « is equivalent to:
0= (Z /l;jﬁ‘idei A dFj) A (Z /lklﬁkldFk ANdF)).
i#j k#l
Then, if we divide the expression by FZ, we get:

dF; dF; dFy dF,
0= Z A ADijg—— N —=—N— N —.
i jEkl Fi Fj B B
Finally, according to the extended Jouanolou lemma 3.5.4 for normal crossing divisors, we obtain
the desired result 1’ A A = 0, as claimed.
]

Corollary 4.4.19. Based on the combination of the propositions 4.4.9 and 4.4.18 (steps 3 and 7), we
can conclude the whole proof of the surjectivity result for the derivative of the natural parametriza-
tion p (prop. 4.4.2), and then we can deduce our main result: theorem 4.4.1.
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Appendix A

Restriction of forms to spaces associated
to normal crossing divisors

Let D = 3, D; be a simple normal crossing effective divisor of degree d over P", whose irre-
ducible components D; are defined by the zero locus of an homogeneous polynomial F; of degree
d;. We also write d = ) d;.

In order to study the restriction of homogeneous forms to certain spaces associated to D, let
us remark some simple facts about the differential forms which are going to be involved. The
space HO(P", Q]gm (d)) of global twisted projective forms of degree d can be characterized using the
pullback by the projection map 7 : C"*! — {0} — P".

Explicitly, for d > ¢ an element « € H(P", Q%(d)) is described in homogeneous coordinates
by the affine g-forms on C™*! of the type:

(A.0.1) a= Z Az, .-, 20)dziy N A dz,-q,
1c{0,...,n}:|l|1=q

where each A; is a homogeneous polynomial of degree d — ¢. In addition, we require (ZJ_“%) extra
polynomial equations on this family of polynomials in order to ensure the descend condition of
form, i.e. ig(@) = 0 (where R denotes the radial Euler field). In other words, we say that the affine
g-form a descends to the projective space.

In conclusion, we refer to the forms of type A.0.1 as homogeneous affine g-forms of total
degree d, or alternatively as elements HO@Cr+l, Q?c"“ )(d). And we refer to those forms which also
satisfies the descend condition ig(a) = 0 as homogeneous projective g-forms of total degree d, or
alternatively as elements of H o, Qu(r{m (d)).

We write X’Z‘) for the codimension k projective subvariety associated to the divisor D defined by:
Xo= ) Xi=F,=...Fi=0 & P
L=k

An appropriated set of generators for the homogeneous ideals of X% can be described by:
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Proposition A.0.20. For each k € {1, ..., m}, the homogeneous ideals I associated to X’z‘) is:

Ik = <F] = Fi)/c(l..u,m)
|J|=k—1
igJ

Proof. For each J c {l1,...,m} of size k the homogeneous ideal /; associated to X; is clearly
generated by the polynomials F, ..., Fj,. Also, since X’Z‘) = U=k Xy, the ideal I is trivially
described by:
L= () (Fjpreeos Fi.
T I=k

For every integer k fixed, we will proceed by induction on the total number of polynomials m. In
addition, m > k is required. The base case (m = k) follows immediately from the definitions given.
Now, suppose the result is true for m — 1 polynomials with m — 1 > k, and let us show that:

<Fjl’ ey ij> = <F]>J(|:j{‘l:};:);1): .
JcAL,...my: =k h

The direct inclusion is always clear and does not require the inductive argument. For the reverse
inclusion, first observe that using the inductive hypothesis and pulling away the multi-indexes of the
intersection which do not contain m, we obtain:

For every homogeneous polynomial P in i, there exist homogeneous polynomials H; for each
multi-index J of size k — 1, fulfilling:

Moreover, for every Jo C {1,...,m — 1} of size k — 1 fixed, the class [P] in the quotient ring

Clzo, - - . ,Zn]/(Fjl, o is Fi (o F)

equals to zero, and so 0 = [P] = [H},] [F Jouimy]- Finally, since the quotient ring considered is integral
and F; ¢ (Fj,,...,Fj_,, Fy) for every index [ ¢ Jy (distinct of m), we get [H,] = 0.
O

We will also write J for the ideal sheaf associated to each projective subvariety X’Z‘). By the
last proposition this sheaf is generated on global sections by the elements of the type F; for every
multi-index J of size k — 1.

From now on, we want to study the restriction of homogeneous projective forms to this family of
subvarieties, and in particular characterize those whose restriction vanish. For this purpose, consider
the usual short exact sequence of sheaves

O—>Ik—>O]P>n—>iZ(OXkD)—>O,
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take the tensor product of the sequence by the twisted sheaf Q, (d) to get

(A.0.2) 0— Q]gn(d) @I — Ql(d) — Q%,,(d)IX?D — 0,

and finally take into consideration the related long exact sequence on cohomology:

(A03) 0 — HY(Q(d) ® ) — H(QL(d) — H(QL@ly) — H QL@ L) — ...

This last sequence allows us to think the elements n € HO(P", Q%n (d) ® I}) as homogeneous
projective g-forms of total degree d such that: 7| xo = 0. The next propositions give a first description
of those forms vanishing on this type of restrictions. For simplicity we shall assume that d; > ¢ for
i=1,...,m.

Proposition A.0.21. For every n € HO(]P’”,QICP’M(d)) satisfying nlx% = 0, there exist homogeneous

affine g-forms {ys},7=k-1 on crl of respecting total degrees (ey = ;¢ d;)j:|jj=k—1, such that:

(A.0.4) n= > F,
J:J|=k-1

with the extra condition ;.| j=x—1 F Jir(yy) = 0.

On the other hand, we get the same result for homogeneous affine forms. We use the notation
C (X’z‘)) to denote the affine cone over the projective variety Xg).

Proposition A.0.22. For every homogeneous affine g-form on C™*! of total degree d satisfying
nIC(Xzzc) y = 0, there exist homogeneous affine g-forms {y}.7=x-1 of respective total degrees (e; =

Yi¢s di)s1s1=k-1, and such that:
n= Z Frys,

J:|J|=k-1

Remark A.0.23. In the case where some degree d; is lower or equal than ¢, the corresponding form
n; can be considered as zero.

Proof. According to the characterization given at first part of this appendix, it is sufficient to prove
the statement for homogeneous affine g-forms, and separately deduce the extra condition.

Specifically, let € HO(C™!, Q«q:m) be an homogeneous affine g-form with the hypotheses of
A.0.22. Also, denote by I the ideal associated to C(X'z“)) (and I the respecting ideal sheaf). By the
above proposition, this ideal coincides with () j.| jj=k—1.

Now, consider the same exact sequence as A.0.2, but turned up for our purposes on the affine
cone C(X %). Properly, it is related to the pullback of the sequence A.0.2 by the projection morphism
m. So, we can express:

0-Qf,., 8L, = Qf., = ([()(Qf,.lox ) = 0.

Again, we need to consider the associated long exact on cohomology, and use the fact

0 +1 q ~ O4
H©, ol oIy~
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to describe the affine g-form 7 by:
n= Z Fryy
JJI=k~1
for some affine forms y; € HO(C"!, Qéﬁl ). Now, we need to take into consideration the grading
induced on the exterior algebra QE[Z
degree ¢, d;.
Finally, if the original form 7 is an homogeneous projective g-form, then it also satisfies the

] O regard each y; as an homogeneous affine form of total

condition ig(n7) = 0, and this fact imposes to the obtained formula the additional requirement:

Fjir(ys) = 0.
T T=k-1

O

Remark A.0.24. The relation between the propositions A.0.21 and A.0.22, and the corresponding
required short exact sequences, is based on the double complex which corresponds to the tensor
product of the Euler exact sequence

0— QIIPH - Op(-1)Y"*! 5 Op > 0.

by

0— Iy — Opr — i/t(oxg)) — 0,
and the corresponding twist by Opr(d).

Remark A.0.25. In the previous propositions, we particularly use the description made at the result
A.0.20, which implies that the ideal I receives a graded epimorphism:

@ S[=d;] > I.

I:|I|=k-1

It can be notice that our conclusions do not take into account the relations between the generators
of the ideal I;, which are also related to the different expressions like A.0.4 that n allows. In the
sequel, we deal with this problem and the resolution of the corresponding ideals.

As it was announced, we want to describe the resolution of the corresponding ideals I, and
provide better descriptions of the space of projective forms vanishing when restricted to Xg. We
start with the case k = 2.

Note that the ideal 7, is generated by the set { F;}, and also that between these elements we have
the simple relations:

R,"ji F,’F,'—FjFAj=O.

In addition, observe that R; ; = Ry ; — Ry ;, and also, that the set of relations {R; ;} are independent.
Next, we can prove the following result.
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Theorem A.0.26. The codimension two subvariety X% of P" is arithmetically Cohen-Macaulay,
and

0 — ©e(-d)"" 5 ) Ou(~d) > I, — 0
i=1

is a graded resolution of the corresponding ideal. The arrow B is defined by the vector of generators

(F\,...,F,), and the second arrow A is defined by the (m X (m — 1))-matrix of relations:
Fi Fi ... F Fi
-F, 0 ... ... 0
0 -F; 0 '
A=
0
: ... . . 0
0 er . 0 =Fy

Moreover, this short exact sequence can be reinterpreted in terms of the associated graded modules
of the involved sheaves, as the following sequence:

0 Si=dI"" 5 P s1-di1 5 b -0,
i=1

where S refers to the polynomial graded ring Clzo, . . ., z,].

Proof. First, note that the principal minors of size (m — 1) X (m — 1) of the matrix A corresponds
exactly with the generators of the ideal I,. Furthermore, it is a classical result for projective varieties
of codimension two, the fact that the announced short exact sequence is a free resolution of /I, and
also that the ideals described is such way determines an arithmetically Cohen-Macaulay variety (see
for instance chapter 18 of [19] or the [20, Theorem 3.2] for a general version of the Hilbert-Burch
theorem). Moreover, this resolution is its classical associated resolution of length two.

On the other hand, the Buchsbaum-Eisenbud theorem provides another way of proving the
exactness of the introduced sequence (see [20, Theorem 3.3 ]). We just need to observe that the
points where the map defined by the matrix A fails to be injective corresponds to the codimension
one variety X%). O

Remark A.0.27. The assumption of 9 being simple normal crossing is not really necessary for
the previous theorem. We only need to assume the necessary hypotheses to deduce that X%) can be
described by the zero locus of the ideal (F7)!",. Technically, we can assume that every selection of
three of the polynomials {F;}!" | define a regular sequence on the corresponding ring of polynomials.
So, we have deduced that under these assumptions, the codimension two set of singularities of a
logarithmic form is always an arithmetically Cohen-Macaulay projective variety. This is a particular
case of the result stated at [4], for the Kupka singularities of a codimension one foliation.

Now, we can use the resolution of the ideal I, to describe better the sheaf QZ,(d) ® 7> . Again,
for simplicity we shall assume that d; > g for i = 1,...,m. More precisely, consider the tensor
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product of the Theorem’s resolution by — ® Q7 (d), to get:

m
0 — (QL)"" — P L) — QL eI, —0,
i=1

and take into account the long exact sequence on cohomology:

2

[
(A035)  0— @, HUQLE) —— HOQL (@D @ I2) —— H' QL))" — ..

=

(i 7;1 — Z?il Fi’]i

In the previous development we were needed to use that the sheaf Q7, has no global sections. In
addition, according to:
0 if g>1
H'(Q,) = !
~C ifg=1

we are able to deduce two different results that depend on whether g > 1.
Proposition A.0.28. The space of projective q-forms of degree d vanishing on the restriction to X2,
HY(Q? (d) ® T5), can be characterized for ¢ > 1 by the isomorphism:

¢ ) HY QL (d)) — H(QL,(d) ® I),

m
i=1

So for each n € HY(QL.(d) ® T,) — HO(Q]%,I(d)) there exist a unique m-tuple of homogeneous
projective gq-forms (ni);’; , of degrees (d;) such that: n = Z;’; 1 F ini.

Proof. 1t follows from the above long exact sequence 3.5.1 and the previous observation about the
Hodge numbers hq;ll. O

Corollary A.0.29. Recall that we are assuming d; > ¢ for all index i. Then, according to the Bott’s
formula (see [42]), we are able to calculate the dimension of the space of global forms vanishing on
X%, according to:
- (n+d; — q\(d; 1
dim(H(QL, () @ 12) = )| ( ’ )( )
i=1 di q
Corollary A.0.30. The previous proposition complements the result A.0.21 with the following non
trivial feature. Fix ¢ > 1. If we consider a global homogeneous g-form 77 on C"*! of the type

n= me,

then ig(n) = 0 if and only if ig(y;) = O for all i.

On the other hand, observe that when ¢ = 1 the morphism ¢ from A.0.5 is not surjective. Also,
the space Ker(é%) determines conditions on a homogeneous form at HY(Q!,(d) ® I,) to be of the
type: 3. Fm; for some homogeneous projective forms 7;.
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Note that for a given 7 € HO(Q]%W(d) ® I,) c HY(QL,(d)), we know there exist homogeneous
m
i

affine 1-forms (y,)" | of respecting degrees (d;), which decompose 1 by the formula:

m
n= Z Fi%',
i=1

and also satisfy ig(n) = 2 F iir(y)) = 0. Since each ig(y;) is an homogeneous polynomial, the
previous equation establish a relation between the generators of the ideal /. Therefore, according

T~ such that the relation iz(17) = 0 can

to the theorem A.0.26, there exist unique constants c'17, ces oy

be expressed by 3 cZRl j-
It is easy to check that the connection morphism 6% is described by the assignment 17 — c’}. In
other words, after composing 62 with the isomorphism H'(QL,)"~! ~ C"!, we obtain:

2
HYQ,(d) ® T,) = ¢!

n - @l

In addition, the exactness of the sequence

0—— B, HUQL ()~ HQL @) & T !
)", ————= 3" Emi
()
agree with the following observation. The trivial relation ((c;?) = 0) corresponds exactly with forms

v; which are all projective, i.e. ig(y;) = 0.
In conclusion, we have proved the next result.

Proposition A.0.31. The space of projective 1-forms vanishing on X2, can be characterize by the
short exact sequence:

m

2
0 — P H@LE) S QL@ I 5" —0
i=1
with ¢ and ,u% are defined as before. So its dimension equals to:

m di -1
dim(HO(QL (d) ® T7)) = m — 1 + ;@' - 1)(n ' d )

Proof. It is an immediate consequence of A.0.5 and the following Bott’s formulas for k € Z (see for
instance [42]):

(k= (") k> 1

RQL.&)y=0 ; hO(an(k))={
0 otherwise
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With a slight abuse of notation, observe that we could proved the following isomorphism:
m
HO(QL(d) ® T2)/ @D H @k (d) = "',
i=1

So, in order to end this description, we need to set some canonical classes of that quotient cor-
responding for each vector of constants (c;) € C”"!. For this purpose, recall that for a given
n=>y, F i € HY(QL,(d) ® I,) we have the additional condition

Z Fiig(y) = 0,
which can be thought as a relation expressed by the product:
RO, - iR, - iR (F 1, Fis o F) =0,

The constants (c?)f:]l were defined to express the last relation as a combination of the linearly
independent relations Ry;, i.e.

ROV, - s IRV, -+« s IR(Ym)) = ZC?_I(FI,O,---,O, -F,0,...,0) =
i=2
m
= ((Z ! DF1,—c1Fy, ..., —Cmo1Fp).
i=2

The previous equality gives us equations relating the factors (y;) with the vector of constants (c?).
So, if we fix any constant ¢ = (¢;) € C™=1, observe that:

( m—1 C') m
- i) A
Ne = %FldFl + Z
1 =

Cj_1 A
7 F;dF;

is an element of H(Q,(d) ® 1), whose y;” are not projective forms, and also satisfies 13(1.) = ¢
(according to the previous equations). Then, these forms can be used as a canonical representative
of each class. In conclusion, we have the following result.

Proposition A.0.32. For every element n € H(Q!l,(d) ® I,), there exist unique homogeneous
projective 1-forms (1,) € -, H*(Q}.(dy)) and ¢ € C"!, such that:

m
n=mne+ » P
i=1

Corollary A.0.33. Using the previous proposition and notation, we can construct the following

identification:
m

H(Q}.(d) ® I2) = H' (@} (logD)) & ) H (@} (dh)
i=1
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