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Transicion de fase para modelos diluidos y grandes

desvios para magnetizaciones no homogéneas

Resumen

Esta tesis contiene dos partes con un tema en comin: en cada una de ellas, estudiamos
diferentes modelos de mecanica estadistica.

En la primera parte, estudiamos modelos diluidos de vecinos proximos con espacio de espines
finito, donde el grafo subyacente es un subgrafo aleatorio del reticulado d-dimensional. Mas
precisamente, proporcionamos condiciones suficientes y necesarias para que ocurra co-existencia
de fases mediante técnicas de aglomerado aleatorio.

En la segunda parte, estudiamos un modelo del tipo Ising con interacciones de vecinos
proximos ferromagnéticas y potencial cuadratico del tipo Kac asociado a un campo externo
no-homogéneo. En este caso, probamos que la energia libre y la presion existen y establecemos

resultados de grandes desvios y equivalencia de arreglos.






Phase transition for dilute models and large deviations for

inhomogeneous magnetizations

Abstract

This thesis contains two parts with one topic in common: in each one, we study different
statistical-mechanical models.

In the first part, we study dilute nearest-neighbour models with finite spin state, being the
underlying graph a random subgraph of the d-dimensional lattice. More precisely, we give
necessary and sufficient conditions for phase co-existence to occur via random-cluster techniques.

In the second part, we study an Ising-type model with ferromagnetic nearest-neighbour
interactions and quadratic Kac-type potential associated to an inhomogeneous external field. In
this case, we prove that the free energy and the pressure exist and establish large deviation and

equivalence of ensembles results.
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CHAPTER 1. PHASE TRANSITION FOR DILUTE MODELS

Chapter 1

Phase transition for dilute models

1.1 Introducciéon

Este capitulo estd basado en [AFSL15] y [FSL15].

Estudiamos modelos diluidos discretos de vecinos proximos con espacio de espines finito. Por
discreto, nos referimos a que los espines se organizan sobre los vértices del reticulado
d-dimensional Z%; por diluido, nos referimos a que las interacciones entre espines son gobernadas

por una subconjunto aleatorio de aristas o desorden
Fe{{oytcztja—yl =1}, (1.1)
en el sentido de que el Hamiltoniano formal es una funcién aleatoria definida como

Hp(o) = Z I(0,,0y), (1.2)
{z,y}eF
donde I es una interaccion que depende del modelo, dando lugar a un conjunto aleatorio de
medidas de Gibbs de acuerdo con el formalismo de DLR.

Establecemos una serie de condiciones suficientes para la unicidad y la no-unicidad de
medidas de Gibbs, que valen para casi toda realizacion del desorden. La herramienta principal
que utilizamos es la representacion de aglomerado aleatorio de Edwards-Sokal, introducida en
[ES88], junto a la estrategia propuesta por Aizenman, Chayes, Chayes y Newman en su trabajo
seminal [ACCN87], en donde vinculan unicidad de medidas de Gibbs con ausencia de
percolaciéon en la probabilidad de aglomerado aleatorio asociada.

El criterio de unicidad es general en los modelos: por supuesto, hipotesis sobre la
aleatoriedad del desorden son necesarias, pero no se piden hipétesis sobre la estructura del
conjunto de espines. En este sentido, este trabajo es una generalizacion del criterio de unicidad
introducido por Alexander y Chayes en [AC97].

Para el criterio de no-unicidad, necesitamos que el modelo de mecanica estadistica satisfaga
ciertas propiedades estructurales. Por un lado, el conjunto de espines debe ser un grupo
Abeliano y, por el otro, la interaccion debe ser invariante bajo rotaciones del grupo; este tipo de

modelos son llamados modelos de espines Abelianos e incluyen los importantes casos del modelo
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NAHUEL SOPRANO-LOTO

de Potts, el modelo del reloj generalizado y el modelo de Ashkin-Teller generalizado. Por el otro
lado, necesitamos ser capaces de definir una nociéon de reflexion generalizada sobre el conjunto
de espines, condicion que necesita ser verificada en cada modelo. La existencia de esta reflexion
generalizada permite demostrar un lema combinatorio crucial, al que consideramos como uno de
los principales puntos del capitulo.

Un comentario final: las principales dificultades aparecen en volumen finito; una vez que
estas dificultades son sobrellevadas, se aplican al caso de volumen infinito de una manera

sencilla.

1.2 Introduction

This chapter is based on [AFSL15] and [FSL15].

We study dilute nearest-neighbour lattice statistical-mechanical models with finite set of
spins. By lattice, we mean that the spins are assigned to the vertices of the d-dimensional
square lattice Z%: by dilute, we mean that the interactions between the spins are governed by a

random subset of edges or disorder

F C {{x,y} CZ%: ||z —y| = 1}, (1.3)

in the sense that the associated formal Hamiltonian is the random function defined by

Hp(o) = Z I(0,,0y), (1.4)
{z,y}eF
being [ and interaction that depends on the model, giving rise to a random set of Gibbs
measures according to the DLR formalism.

We establish a set of sufficient conditions for uniqueness and non-uniqueness of Gibbs
measure, that hold for almost every realization of the disorder. The main tools we use are the
Edwards-Sokal random-cluster representation, introduced in [ES88], and the strategy proposed
by Aizenman, Chayes, Chayes and Newman in their seminal work [ACCNS87], where they relate
uniqueness of Gibbs measure to absence of percolation in the associated random-cluster
probability.

The uniqueness criteria is general on the models: of course, hypotheses over the randomness
of the disorder are required, but we do not ask for any hypothesis over the structure of the set
of spins. In this sense, the present work is a generalization of the uniqueness criteria introduced
by Alexander and Chayes in [AC97].

For the non-uniqueness criteria, we require the statistical-mechanical model to satisfy certain
structural properties. On the one hand, we need the set of spins to be an Abelian group and the
interaction to be invariant under group rotations; these kinds of models are called Abelian spin
models and include the important cases of the Potts model, the generalized clock model and the
generalized Ashkin-Teller model. On the other hand, we have to be able to define a notion of

generalized reflection over the set of spins, a condition that has to be verified for each particular
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CHAPTER 1. PHASE TRANSITION FOR DILUTE MODELS

model. The existence of this generalized reflection allows us to prove a crucial combinatorial
lemma, that we consider one of the main points of the chapter.
A final comment: the main difficulties appear in finite volume; after these are overcome,

they apply to the infinite volume case in an easy way.

1.3 Finite volume

1.3.1 Statistical-mechanical model

In this subsection, we introduce the statistical-mechanical model for an arbitrary finite graph.
Let (V, E) be such a graph, where V' and F respectively denote the set of vertices and edges.
We assume that the edges are non-oriented and that there are no loops nor multiple edges. In
addition, we need to introduce the set of spins and the interaction. The set of spins is a finite
set S with cardinality ¢ := |S| € N\ {1}. The interaction is a function W : S x S — (0, 1] such
that W (a,b) = W(b,a) for every a,b € S; we will refer to this property as the symmetry of W.
For simplicity, we suppose W satisfies the following non-singularity condition: W(a,b) =1 if
and only if a = b. The interaction W (a, b) plays the role of e=#/(®b) where I is the function
appearing in the Hamiltonian (1.4) and 3 > 0 is the inverse temperature. The product space SV
is called set of vertex-configurations; its elements are denoted by the letter o. Fix a (possibly
empty) subset U C V' and suppose there are no edges linking vertices in U:
{{zy) € E: {z,y} U} =0. If U = (), we define i, = /i (V,0) as the uniform probability over
the set of configurations SV. If U # ), a boundary condition is an element n € SV, and we
define fif, = i (V,U, n) as the uniform probability over the vertex-configurations that coincide
with 7 in U:

A1 _ 1 _

fiy (o) = Wl {ov=n}. (1.5)

The Gibbsian specification associated to U = ) is the probability pf, = 1 (V, E,W,0) on SV
defined by

W (do) = p(do)—— T Wiowa,). (1.6)
V.E (zy)eE
where
Z?/,E =Z(V,E,W,0) := /ﬁ?,(da) H W(oy, 0y) (1.7)
(zy)EE

is the normalizing constant. Analogously, for U # () and n € SV, we define the Gibbsian
specification as the probability u{, = u (V, E,W,U,n) on SV given by

1

py (do) := fiy,(do) I W(ow.oy), (1.8)

13
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with

Zip =2 (V.E WU = [ fitdo) TT Wiowa,) (1.9)

(zy)eE

In case 1, = a for every x € U, we simply write uj, and 2y, ;.

Some examples

14

The Potts model. The interaction is constructed from the Hamiltonian or energy function
and a parameter 8 > 0 representing the inverse temperature. In the Potts model, the
Hamiltonian H is defined by

Hio)= Y 1o, #0,}; (1.10)
(zy)eE
it enumerates the number of discordances between neighbour vertices. The Gibbsian

specification fif, is proportional to e=?# (@)

1 - o 1 - ogFo
i (o) = e BH(o) — 7 IT e Fl{os#oy} (1.11)
V,E V.E (zy)eE

In this case, the corresponding weight is given by
W (a,b) = e #Ha7t}, (1.12)
The Potts model with ¢ = 2 is the well studied Ising model.

The generalized clock model. In this case, S is the set of ¢ equidistant angles defined by

21

S::{:izo,...,q—l}. (1.13)

q

The weight function is of the form W(a,b) = f (cos(a — b)) with f: [—1,1] — (0, 1] any
function satisfying f(t) = 1 if and only if ¢t = 1. If we take f(t) = e #H#1} we recover the

Potts model. The classical clock model is obtained when taking f(t) = e #(1=1),

The generalized Ashkin-Teller model. Here, the set of spins is the set {—1, 1}2. Let

W :{—=1,1}* = (0,1] be such that W(a) = 1 if and only if a = (1, 1), and define

W (a,b) = W (ab), where the product ab is defined coordinate-wise:

ab = (a1, az)(by, be) := (aiby, asbs). In the classical Ashkin-Teller model, as presented in
[Gri06] for example, the set of spins is the set containing four elements A, B, C' and D,

and the interaction is defined by

W(A,A) =W(B,B)=W(C,C)=W(D,D) =1, (1.14)
W(A,B) = W(C,D) = e ? and (1.15)
W(A,C)=W(A,D)=W(B,C)=W(B,D) =e "2, (1.16)
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with # > 0 and 0 < J; < Jy. This version can be recovered from the general one by
identifying A = (1,1), B = (1,—1), C = (—1,1) and D = (-1, —1), and defining W by
W(1,1) =1, W(1,-1) = e and W(—1,1) = W(—=1,—1) = e #/2,

Abelian spin models. The previous three examples are part of a wider family of
statistical-mechanical models called Abelian spin models. In each of these models, S is an
Abelian group with identity e € S, and the interaction W is defined by

W (a,b) = W(ab™"), (1.17)
where W : S — [0,1] is an even function (that is W (c) = W(c™!) for every ¢ € S) such that
W(a) = 1 if and only if @ = e. This is referred to as the non-singularity condition over W.
Note that the generalized clock model is an Abelian spin model. Indeed, the set

{% 1=0,...,9— 1} can be identified with the set of ¢-th roots of unity

U, ={acC:a’=1}. (1.18)
The condition W(a) = W (a~") implies that T/ depends only on the real part of a, that is,
on the cosine of the argument.

If we take S to be the product group Uy x U,y, we recover the generalized Ashkin-Teller
model. Indeed, observe that, in this particular group, we have a = a~! for every a € S, so

the product ab™! coincides with the product ab.

Notation 1.3.1. For ACV, o € S% and a € S, the notation 0 = a means o, = a for every
x e A.

Observation 1.3.2 (Rotational invariance of the specifications). Consider an Abelian spin
model with spin set S. For every a € S, let p, : S — S be the bijection defined by p,b := ab. We
use the same symbol to refer to the action (also a bijection) of v, over SV: (pa0), = puaos for
every x. Observe that v, preserves W in the sense that W (b, c) = W (@ab, pac) for every b,c € S
and, as a consequence, p¥(0) = pb (pa0) for every o € SV. Also, for every a,b € S and every
A CV, the sets

{UGSV:OUEa,UAEa} and {JESV:UUEb,UAEb} (1.19)
are in one-to-one correspondence under the action of @,-1p, and hence

pl(oa=a) =pb (04 =0). (1.20)

1.3.2 Edwards-Sokal random-cluster representation

In this subsection, we adapt the material from [ES88] to our purposes.
Let T :=Im(W) C (0, 1] and enumerate its elements as 0 < ¢ty < ... <t = 1. We consider
the product set T'%. Elements of TF are called edge-configurations and denoted by the letter w.

15
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To 1 Tk
0 lo 131 L1 tr =1
Figure 1.1

Definition 1.3.3. Given a subset of edges E' C E, and a pair of configurations w € T¥ and

o €SV, we say that w and o are compatible if and only if
Wiayy < W(oy,0y) for every (zy) € E'. (1.21)
In this case, we write w < 0.

Observation 1.3.4. In the previous definition, if ty is achieved at an edge, then this does not
impose any restriction over the compatibility condition. More precisely, let (xy) € E' and

w € TF such that Wiay) = to, and let W' € TE\@Y) be the projection of w over E'\ (xy). Then

o = w if and only if o = w'. On the other hand, the value t;, forces the corresponding values of
the spins to coincide. More precisely, if o € SV and w € T are such that W(gyy = ti for some
(zy) € E', then o, = 0,.

Observation 1.3.5. Tuking E' = FE in the previous definition, we can extend the notion of

compatibility to the union set T®* U SY in the following way:

w < w' if and only if w,) < wzxw for every (zy) € E, (1.22)
o < o' if and only if W (0,,0,) <W (a;, a;) for every (xy) € E, (1.23)
o < w if and only if W (04, 0y) < wiay for every (xy) € E and (1.24)
w < o if and only if wiyy < W (0,,0,) for every (zy) € E. (1.25)

It is easy to see that < is a pre-order on TF U SV (it satisfies reflexivity and transitivity). Its
restriction to SV is again a pre-order and its restriction to TF is a partial order (it satisfies
reflexivity, transitivity and antisymmetry). The later one is the partial order used in section 1.6

to define the notion of stochastic domination.

We define the base probability ¢r = gg(E ,W) on T by

op (w) = ] [inl{w@w:ti}], (1.26)

(zy)eE Li=0

where ro 1=ty and r; :=t; — t;_ for i > 0 (see figure 1.1). In words, the law of ngﬁE is obtained
by independently sampling for each edge an element t; € T' with probability r;. For U = (), let
Q?/, r=Q(V,E,W,0) be the probability on the product space T¥ x SV defined by

Qv (d(w,0)) = 6 x fv(d(w, o)) —g—1{w S o}; (1.27)

16



CHAPTER 1. PHASE TRANSITION FOR DILUTE MODELS

Q?/ g 1s the product probability bp ¥ f1%, conditioned to the event (w < o). Here Z& g 1s the
same normalizing constant appearing in expression (1.6). For U # (), the Edwards-Sokal

probability associated to n € SY is defined by

Ve (d(w,0)) == 05 x i, (d(w,0)) Z—1{w < o} (1.28)
Theorem 1.3.6 (Edwards-Sokal coupling). For U # 0 and n € SY, u{, is the second marginal
of QY- Analogously, u?, is the second marginal of Q?,E

Proof. We only prove the first case; the proof with the empty-boundary condition is similar. For
every (zy) € I, let 6,,,) be the probability on 7" defined by 0, (t;) = r; for every 0 <1 < k.
Under this definition, ngSE is the product probability H 0 (zyy and

(zy)eE
ti=D 1= / 01y (dw(ayy)1 {wiay) < i} (1.29)
7=0
Then
. 1
i do) = i (do) 7y T W(ow0,) = (1.30)
ViE (zy)eE
. 1
/11‘7/ (dO') 0 H 9(zy> (dw<xy>) 1 {w@y) S W(O}C,O’y)} = (1.31)
ZVE {
zy)EE
. 1 ~
i (o) o [ de(d) T 1wty < Wiow0)} = (1.32)
ZVE ({
) zy)EE
1 ~
s (do) n/ng(dw)l {w<zy> < W(oy,0,) for every (xy) € E} = (1.33)
Zv.p
N 1 n ~ N 1
iy (do) — ¢p(dw)l{w =0} = [ ¢op X iy, (d(w,0)) o7—1{w = 0} = (1.34)
Zy,p Zv,g
[ Qe .0, (1.35)
completing the proof. O

For U = (), the associated random-cluster probability gb@E = ¢ (V,E,W,0) is defined as the
first marginal of Q?/ g~ It has the form

A~ 1 ~ 1
¢%(dw) = dp(dw) ——ity {0 € S 10 = w} = dp(dw) z— [{o € S¥ 1 0 = w|, (1.36)
VB Zv.i
with Z?/E = q|V|Z€0/7E. It is convenient to define the weight
<w>% = Ha eSSV 0= wH : (1.37)

17
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Analogously, for U # () and n € SY, we define ¢}, = ¢ (V, E,W,U,n) to be the first marginal of
V.- It has the form

A 1
¢p(dw) = ¢p(dw) =— (W), (1.38)
where ZP/E e q‘V\U‘Z&E and (w)7}, := Ha €SV 0= w, UU:n}‘. As before, we simply write

(W)} and ¢% if n, = a for every x € U.

Observation 1.3.7 (monotonicity of the weights). From the definition of the partial order <
on TF introduced in observation 1.3.5, it can be easily checked that the functions ()% :TF 5 R
and ()1 : T¥ — R are decreasing:

(@) > ("% and (W) > (') whenever w < . (1.39)

Observation 1.3.8 (Rotational invariance of the weights). In the Abelian spin model, for every
a,bc S and w € TF, the sets

{a €SV :op=a,o = w} and {0 e SV op=bo = w} (1.40)

are in one-to-one correspondence under the action of pp,-1 (recall the definition of . introduced
in Observation 1.3.2). We conclude that the weights (W)}, and (w)}, coincide and, as a

consequence, the probabilities ¢% and ¢% also do.

Notation 1.3.9. In general, we use the letter II to denote projections. For example,
[z, : T x SV — TF is the projection over the first marginal. We also use it to project on sets
of vertices or edges. For example, if E' C E is an edge subset, Ilg : TP — T denotes the

projection on E'.

In the following observation, the shorthand Q?/’ g(o|w) refers to Q% g (gv = o|llpe = w); the
analogous notation is used for Qy, p(o|w). As a general convention, we stablish that a

probability conditioned to an event of probability zero is the null measure.

Observation 1.3.10. As a consequence of the Edwards-Sokal coupling, we have

= Y QVp(olw) o (W) (1.41)

weTE

for every o € SV. Also, for every o € SV and w € T, we have

Qb o) = 7R (142
Then
o) = 3 Ho=edg () (1.43)

weTE <W>E

In words, a random vertez-configuration o € SV with law u?/ can be sampled by first sampling a
random edge-configuration w € TT with law ¢% and then sampling a vertex-configuration over

the ones that are compatible with w. The analogous property holds for Q?/E

18



CHAPTER 1. PHASE TRANSITION FOR DILUTE MODELS

1.3.3 Markov property and positive correlations

Notation 1.3.11. For A, B C V wvertex subsets, E(A, B) denotes the set of edges with one

vertex in A and the other one in B:
E(A,B):={{zy) € E:{z,y} NA# 0 {z,y} "B #0}. (1.44)
To shorten notation, we write E(A) for E(A,A) and EN A for E(A,V).

For the rest of this subsection, we suppose U # () and take n € SY. We also fix a non-empty
subset A C V\U. Observe that E can be written as the disjoint union E(A)UE(A°)U E(A, A°).

Observation 1.3.12 (Factorization of the weights). If w € TF is such that WE(A,Ac) = to,
identity

(W)p = <WE(A)>Q;(A) <WE(AC)>7;(AC) (1.45)
holds. Also, for ¢ € S4, we have
HJ e SV :oy=n,04=C 0 = w}’ = <wE(AC)>ZJ(Ac) 1 {C = wE(A)} . (1.46)

Notation 1.3.13 (Concatenated configurations). For E' and E" disjoint subsets of E, and
W eTF andw” € TE" edge-configurations, the concatenated edge-configuration w'w” € TEVE"
is defined as the one satisfying g (w'w”) = W' and U (w'w”) = w". The same notation is used

for vertex-configurations.
As a consequence of the previous observation, we obtain the following proposition.

Proposition 1.3.14 (Markov property for the random-cluster probability). Let w' € TF(A) pe
such that ¢ (wE(Ac) = w’) > 0. Then

o (WE(A) =w" ’WE(AC) = WlawE(A,AC) = to) = ¢@E(A (w”) (1.47)
for every w" € TEW . An immediate consequence is that, if X C TF is an event depending on
E(A), that is if it is of the form HE(A) ()) for some event Y C TEA | we have

(bn (X‘LUE (Ac) = w y WE(A,Ac) = to) (25@ ( ) (1.48)
Proof. Let & € TEAA%) be the configuration defined by @ = t,. The left hand side of (1.47) is

op (Waw") dp (Waw") (Waw")L (1.49)
> o Wad) Y dp (We() (Wa)y |

CETEM) CeETEM)

The terms of the form ¢z (wW'@() factorize as QASE(Ac) (w') QASE(A,Ac) (@) QASE(A) (¢) and, from
observation 1.3.12, (w'G() g = (W) Eae) (€ >%( 4 factorizes as well. After cancellation, we get

n 0
Or(a) (W) (W) peay

. =0 (W), (1.50)
S e (O QO%
CETE(A)
as desired. []
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Proposition 1.3.15 (Markov property for the Edwards-Sokal coupling). Let w' € T4 pe
such that ¢ (wE(Ac) = w’) > 0. Then

Q?/,E (O‘A:OJ ’wE(Ac) = w',wE(A’Ac) = t()) = ug (U/) (1.51)

for every o’ € S4. As in Proposition 1.3.14, if X C SV is an event depending on A, that is
X =1, (Y) for some Y C S4, we have

VE (a eX ‘WE(AC) =W, Wea,a0) = to) =% (). (1.52)

Proof. Let again & € T4 be the configuration defined by & = ty. The left hand side of

expression (1.51) can be expanded as

Z Q?/,E (UA = 0/ \w’d)w”) ¢77E (wE(A) = w” ’CUE(AC) = w', wE(A’Ac) = (Z)) . (1.53)
weTE(A)

From the Markov property for the random-cluster probability (Proposition 1.3.14), we have
oy (OJE(A) =" ’WE(AC) =W, WA, 40) = Jf) = ¢®E(A) (w"). (1.54)

From observation 1.3.10 and observation 1.3.12, we get

HO’E SV:UU:n,aAza’,U?w’ww”}

7‘7/:E (UA = 0_/ |wla}w//) — <w,a}w”>% (155)
10_/>_w// w/ﬁ . 1 ——

1 - }<n>E(A): {o gw}_ (1.56)
(W) ey (@) Eac) (W) pay

Replace in expression (1.53) and use observation 1.3.10 to conclude. ]

The rest of this subsection is dedicated to Abelian spin models (with its associated weight
function VV) We give a positive correlation result that applies if the model satisfies a crucial
combinatorial lemma (section 1.3.6 is dedicated to it). To state it, we need to introduce some

concepts.

Definition 1.3.16. For a function R: S — S, let

Fix(R) :={a € S: Ra =a} (1.57)
be the set of fixed points of R. For an element a € S, the hemisphere of a is defined by

Hem(a) ={be S : W(a,b) > W(a, Rb)}. (1.58)

Definition 1.3.17. A function R : S — S is a generalized reflection if it is an involution (that
is R* =1d), it preserves W (that is W (a,b) = W (Ra, Rb) for every a,b € S) and
Hem(b) C Hem(a) for every a,b € S such that b € Hem(a).
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The third condition can be replaced by the following one: the relation ~ defined on
S\ Fix(R) by a ~ b if and only if a € Hem(b) is an equivalence relation. Indeed, suppose R is a
generalized reflection. Reflexivity reads a € Hem(a) for every a € S\ Fix(R), that follows from
the non-singularity of W. Symmetry is obvious from the definition of Hem and transitivity
follows from the third condition of the definition of generalized reflection. Reciprocally, suppose
R is an involution that preserves W and that ~ is an equivalence relation. By definition of ~,
the equivalence class of an element a € S\ Fix(R) is Hem(a). Also, every element a € Fix(R)
satisfies Hem(a) = () and a ¢ Hem(b) for every b € S. From these properties, if a,b € S are such
that a € Hem(b), we conclude that a,b ¢ Fix(R) and that they both are in the same equivalence
relation Hem(a) = Hem(b). Hence Hem(a) C Hem(b), as we wanted.

The canonical generalized reflection is given by the function R, : S — S defined by
R,b = ab! for a € S. It automatically satisfies the involution property and preserves W. The

third property needs to be verified for each model.

Lemma 1.3.18. Suppose R is a generalized reflection. Then
HJ €SV 0, =a,0,=a,0 w}‘ > HO’ €SV :0,=Ra,0,=a,0 = w}‘ (1.59)
for every z,y € V,a €S andw € TF.

After identifying all the vertices in U with the vertex y, we immediately conclude

~Q

iy (0 = a,0 %= w) > iy (0, = Ra, 0 = w) (1.60)
for every z € V' \ U.

Definition 1.3.19. For two vertices z,y € V and an edge configuration w € T, we write
x5y (resp. x <55 y), to denote there exists a path of edges (xoxy) , (x123) ..., (xj_11;) € E
such that o = x, 1 =y and Wi, 2,y = ti (T€SP. Wy 1z > to) for every 0 < i < 1. For two
verter subsets A, B CV, we write A+~ B (resp. A &5 B) if there exist x € A and y € B
such that x < y (resp. © <5 y).

Proposition 1.3.20 (Positive correlations). Suppose R is a generalized reflection. Then
wy (o0, = a) > p5 (0, = Ra) + ¢% (x < U) (1.61)
for every x € V\ U and every a ¢ Fix(R).

Lemma 1.3.18 is proven at the end of the chapter in a more general framework. Before going

to the proof of Proposition 1.3.20, we give some examples.

The Potts model and the generalized clock model. We recall that, in this case, we have
S=U,={aecC:a?=1} and W(a) = f (Real(a)) for a function f: [~1,1] — (0,1]
satisfying f(¢t) = 1 if and only if ¢t = 1. For a € S, the function R, is the reflection with

arg(a)

respect to the line connecting the origin 0 € C with ¢/~ 2~ (see figure 1.2), and Fix(R,) is
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22

Hem(b)

Figure 1.2
the intersection set .S N {ieiargz(a) } In the Potts model, where
f(t) =1{t =1} + e P1{t # 1}, we have Hem(b) = {b} for every b € S\ Fix(R,), so R, is
a generalized reflection for every a € S. If f is strictly increasing, we have

_ -arg(a)

Hem(b) = {c € S:Im(ce™ 2 ) > 0} (1.62)

_jars(a)

(the intersection between S and the shaded area in figure 1.2) if Im (be 2 ) > 0 and

Hem(b) = {c €S: Im(ce_iw) < 0} (1.63)

arg(a) arg(

if Im (bei 2 > < 0. Indeed, call t = ¢! 5 and suppose we are in the first case, that is

.arg(a)

Im (be‘lz) = Im (bt) > 0 or, equivalently, —i (bf — 5t> > 0. On the one hand,
¢ € Hem(b) <= W(c,b) > W(c, Rab) <= W (cb) > W (cab) <= (1.64)
f (Re (cB)) > f (Re (Eag)) <= cb +¢b > cab + cab. (1.65)

On the other hand, after multiplying by —i (bf — Et), it is easy to check that the
right-hand side of (1.65) is equivalent to Im(ce‘imgz(a)) = —i(ct —7ct) > 0. Then

.arg(a)

¢ € Hem(b) <= ce " 2

>0 (1.66)

and characterization (1.62) follows. One can analogously prove characterization (1.63). As

a consequence, R, is a generalized reflection.

The generalized Ashkin-Teller model. We call a, b, ¢ and e = (1, 1) the four elements of

S = U, x Us. Here a, b and ¢ are indistinguishable in the sense that they satisfy identities

1

a?=b=c2=e,ab=-c, ac=>band bc = a. As every a € S satisfies a~! = @, we have

R; = g in this case, that is Rz(b) = ab. We claim that R, is a generalized reflection.
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Observe that the non-singularity condition over W implies e ¢ Hem(a) and a € Hem(a). If
Hem(a) = {a}, we are done. If b € Hem(a) (the case ¢ € Hem(a) is analogue), we have

W (a,b) > W (a, Ryb) or, equivalently, W(c) > W (b). As a consequence, ¢ ¢ Hem(a)

(c € Hem(a) if and only if W (b) > W(c)), so Hem(a) = {a,b}. It remains to prove that
Hem(b) C Hem(a) or, in other words, that ¢,e ¢ Hem(b). Again from the non-singularity
of W, e ¢ Hem(b). Finally, ¢ € Hem(b) is equivalent to W (a) > W (e), that contradicts the

non-singularity of W. As a is arbitrary, also R, and R, are generalized reflections.

Proof of Proposition 1.3.20. First observe that, for every b € S,
1 (00 = b) = Qb (00 = bw <5 U) + QU (az = b,z A U) = (1.67)
Qie (70 = bl 5 U) 6t (3¢ U) + Qi (72 = b ‘x U)o (/> U) = (169

1{a:b}¢%(x<L>U>+Q(\l/,E (szb

PN U) 2 (:p s U> : (1.69)

the last identity follows from observation 1.3.4. Taking b = a and b = Ra, and comparing the

obtained expressions, the result is reduced to proving that

o (aa, ~ Ra

xé@U)SQ%&E(ax:a

PPV U) . (1.70)

Of course, it follows if we prove

Qvp (02 = Ralw) < Qv p (02 = alw) (1.71)

for every w € TP. But, from observation 1.3.10 and inequality (1.60),

na

My (Ufﬁ = RG,O' 7 w)

na

< iy (0, =a,0 = w)
plozw) = iy (0zw)

Y

Qv,p (02 = Ralw) = =QVp (0. =alw).

(1.72)

O

Observation 1.3.21. In the examples described above, R. is a generalized reflection for every
c € S. Note that Rub = a, so we can take R = Ry, in Lemma 1.3.18 and in Proposition 1.3.20

to respectively obtain

Ha €SV 0, =a,0,=a,0 w}‘ > HO’ €SV :0,=bo,=a,0 % wH (1.73)
for every a,b € S and

by (00 = a) > i 0, = B) + 6 (1 € V) (174
for every b # a.
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1.3.4 Stochastic domination from above

We dominate the random-cluster probability by Bernoulli probabilities. The domination from
above works in full generality; additional hypothesis are required while dominating from below

in the next subsection.
Definition 1.3.22 (Bernoulli probability). For p € [0,1], let B, = B(E, p) be the Bernoulli
probability on T defined by

B (w):= ][ [pl {w<xy> = tk} +(1—p)1 {w@w = tOH : (1.75)

(zy)€E

Despite Bf, is supported over the subset {to, tk}E, we define it on the hole space T for
technical convenience. The following result is an immediate application of Holley’s theorem; for

the statement of this theorems and the definition of stochastic domination, go to subsection 1.6.

Proposition 1.3.23 (Stochastic domination from above). For every boundary condition

n € SY, the stochastic domination

¢h <a Bp " (1.76)
holds. The same result holds for the random-cluster probability with empty boundary condition:
¢®E' Sst BlEiro-

Proof. If we take P = ¢/, and P’ = B, ™ in Theorem 1.6.1, it is easy to see that condition (a)
is satisfied. Then the problem is reduced to proving that, for any (zy) € E, any t € R and any

pair of configurations w’,w” € TE\#Y) satisfying

(ﬁ% (wE\(xw = w') ,B}_;TO (wE\@y) = w”) >0 (177)

and W’ < W, we have

Ok <W<xy> > Wi\ (o) = W'> <Bp" (W<xy> > Wi\ () = W"> : (1.78)

For t <ty and t > t, this inequality is trivialy satisfied. For tq < ¢t < ¢, the right hand side is

simply 1 — 7o and we can then restrict to the case to < t < t;. In this case, inequality (1.78) can

be written as

oL (w<xy> # tolwr (uy) = w’) <1-—ry, (1.79)
or as

ro < ¢k (w<my> = to|wp\(uy) = w') : (1.80)

For every i, let w; € TF be the concatenated configuration defined by II B\ (zy) (wl’t) = w' and

gy (w{t) = t;. Last inequality follows from the simple computation

A 7 7
or (w;, ) (W ro (W)
o (w<fvy> = to|llp\(@y) = w’) Tk ( 0) < 0>E = < 0>E =To (1.81)
n n n
Sds (i)l S,
where, in the inequality, we used the monotonicity of the weights (observation 1.3.7). O
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Observation 1.3.24. In the previous proof, we showed that the conditional probabilities outside
a given edge (the ones of the form ¢ (cu(xw # to|WE (zy) = w’)) are bounded from above by

1 —1rg. Of course, it is also true if we condition outside a smaller region. More precisely, for an
edge subset E' C E, an edge (xy) € E\ E' and a configuration «' € T, we have

% (Wiay) # tolwp =w') <1—ro. (1.82)

As in the previous subsection, we now take A C V' \ U. The following proposition shows how
to estimate the behaviour of random-cluster probabilities with different boundary conditions in
the region E(A).

Proposition 1.3.25. Let n,7' € SY be two boundary conditions and X C T an event
depending on E(A) (as defined in Proposition 1.3.14). Then

0% (X) = 6% (X)| < By (A5 0). (1.83)

Proof. We follow the proof given in [AC97]. Let v be the graph distance on (V, E): v(z,x2) =0

and

v(z,y) :=min{n € N: I (zoz1), (z122),...,{(xp_12,) € E such that zg = z,z,, =y},
(1.84)

with the convention min () = co. For a vertex subset B C V and a vertex x € V, we define
v(z, B) :=min{v(z,y) : y € B}. (1.85)

If, for n € NU {0, 00}, we define V,, := {x € V : d(z,U) = n}, then V can be partitioned as
Unenufo,00} Vo We give the order ey, e, ..., e/p ) to the edges of E'\ E(A) starting with the
ones in E(U, V), following with the ones in E(V}), continuing with the ones in E(V7, V3), then
with the ones in E(V3), and so on, finishing with the ones in E (V). For N < |E\ E(A)|, we
define the following growing algorithm. We start by randomly assigning to e; either the value
(or flag) to or t;; they are assigned with respectively probabilities ry and 1 — ry. We continue by
choosing the minimum ¢ € {2,3,..., N} such that e; € E(U, V;) or such that one of the extreme
vertices of e; is connected to U by a path of edges that have been already flagged with the value
tx. For every step 1 < i < N of the algorithm, let I'; C V' be the support of the edges that have
not been flagged yet (the support of an edge subset E' C E is defined by

supp(E') :={z € V:z € {y, 2z} for some (yz) € E'}.) (1.86)

The algorithm stops when all the edges in E(I';, ') has been flagged with ¢, or when it reaches
the N-th step; in the later case, we say that the stop is forced. An outcome of this algorithm is
a configuration 0 € {t, tk}F, where F is the set of edges that have been flagged when the
algorithm stops. Let T' := supp (E \ F) be the support of the “not flagged” edges. Observe that
Hgr,re) (Or) = to for every non-forced outcome 0. Observe also that, in the case

N = |E\ E(A)|, we have I' = A for every forced outcome. Let X and Y be random elements
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1—rg

taking values on TP with laws ¢ and By " respectively, and let P be the underlying
probability: P (X =w) = ¢’h(w) and P (Y = w) = B "(w) for every w € T¥. Under this
definition, the probability of obtaining the outcome 6 is P (Yr = 0F), and
> P(Yr=0F) =1 (1.87)
0 r outcome

The result follows from the following lemma.

Lemma 1.3.26. Fiz 1 < N < |E\ E(A)| and consider the growing algorithm defined above.
Then
P(X =)= Z P(Yr =0r)ay, (); (1.88)

0 outcome

for every outcome O, g, is a measure on T defined by

00 ()= X AaplC)P (X = Xr = ). (159)
CrETT
(r<Op

with (AN, (Cr))cperrcp<op convex coefficients (that depend on the boundary condition 1).

Before giving the proof of this lemma, we see how we conclude from it. Let N = |E \ E(A)|.

We have
PL(X)=P(XeX)= > P({Yr=0p) ay, (X). (1.90)
6r outcome

We say that the outcome 6 is good if it has not been forced (that is if [Igr ey (0F) = to, as
mentioned before). We claim that, for 0 a good outcome, ay, (X) does not depend on 7. More
precisely, as A C T, X depends on E(I) so there exists Vg C TPT) such that
X =Tl (yE(F)). By Proposition 1.3.14,

P(X € X|Xp=(p) =0} (e X |wr =Cr) = by (Ver) : (1.91)

indeed, if (p is such that (p < p, we have Ilgr rey((r) = to; from the fact that

(M5 (CP))eperr.cp<o, are convex coefficients, we conclude

. (X) = Sy (Vo)) - (1.92)
Then the right hand side of expression (1.90) can be written as
> P(Yr=08) b (Ver) + Y. P(Yr=0r)a, (X). (1.93)
0 good O forced

The first sum does not depend on 7; the second one can be controlled in the following way:

> P(Yr=0p)ap, (X)< Y. P(Yr=0r) =By (A5 U). (1.94)

0 forced O forced

As the analogous expression to (1.93) holds for ¢ (X), we have
6% () — o (X)] < 2B (A5 U), (1.95)

as desired.
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Proof of Lemma 1.53.26. The proof is by induction.

For N =1, we have two possible outcomes. In this case, we have to prove that
P(X =) =roay(-) + (1 —ro)ay, (-), (1.96)

where oy, (+) :== P (X = -’Xel = to) and oy, is a convex combination of the measures

(P (X = ~’Xel = ti))lio. (We remind that if the conditioning has probability zero, the
conditioned probability is not a probability but the null measure.) For i > 0, define

P(Xe - tl)
Ay = —— 7 1.97
bi 1-— To ( )
and
)\tO =1- Z Ati' (].98)
>0

Observe that » | A, <1 thanks to observation 1.3.24. It is easy to check that the convex
i>0
combination

atk(') :

i
™
<
~

(X =|x., =t;) (1.99)

works.

Suppose the conclusion holds for N < |E \ F|. Then we can write

P(X=9)= Y PYr=0r)ap(), (1.100)
with
QQF(') = Z AeF((F)P (X = ’XF = (F) . (1.101)

Cr<OF

We can write expression (1.100) as

> P Yr=0r) g ()= (1.102)

O outcome

Y. P(Yr=0r)ag. )+ > P(Yr=0r) g (). (1.103)

O good 0 forced

For every forced outcome 6, let e = e(fp) be the (N + 1)-th edge to be sampled in the
algorithm of N + 1 steps (if O is a good outcome for the algorithm of N steps, it is also a good
outcome for the one of N + 1 steps; in this case, there is no edge to be flagged in the next step).
Every outcome of the algorithm of N + 1 steps is a good outcome of the algorithm of N steps or
is of the form 6% or of the form 6%, with 0 a forced outcome of the algorithm with N steps and
0% the concatenated configuration defined by Iy (9}) =0p and II, (9?) =t;. Then we are done

if we are able to write

> P(Yp=0p)ay, () (1.104)

O forced
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as
T (P (Ve = 02) ago () + P (Ve = 0) (~)> (1.105)
O forced
with
%;z(') = Z )‘9;3‘ (Crue) P (X = "XFUe = CFUe) ) (1.106)
Crue<o

i € {0,k}. Observe that this expression can be written as

> Ago(G)P (X = | Xp = Cr, Xe =10 (1.107)

Cr<OFp

for i = 0, and as

k
> Z)‘Q;k (C#)P (X = "XF = (r, Xe = ti) ; (1.108)

(rp<Op =0

for i = k (¢} defined analogously to 6%). We can conclude if we prove that identity
P (Yr = 0r) ag, (1) = P (Yive = 0) ago () + P (Vi = 04 ) agu () (1.109)

holds for every forced 0. Define

Agto (Crue) = Aoy (Cr)- (1.110)
Define also
. P(X.=14Xr=C(r
Ngir (CE) 1= Ao (Cr) ( ) (1.111)
F 1—17g
for + > 0 and
P(X. >t Xr= CF
A (C) = X, (Cr) (1 - ( 1_’% )) : (1.112)
As before,
P(X,=t|Xr=
( F=r) <1 (1.113)
i>0 L =g

follows from observation 1.3.24. After replacing on the right hand side of (1.109) and making

some standard computations, we obtain

P(Yp=0r) > )\GF(CF)ZP(X:"XFZCF,Xeth)P(XeZti

Xp=Cp);  (1114)

(r<Op i>0
of course, this is
P(Yr=0p) g, (-), (1.115)
as we wanted. ]

]
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1.3.5 Stochastic domination from below

During this subsection, we suppose our model is an Abelian spin model (with its associated
weight function ). Let

NP , (1.116)

St W)

=0

Observe that ~ is well defined and that 0 < v < 1. The definition of v becomes clear in the

proof of the following proposition.

Proposition 1.3.27. Let S be an Abelian spin model and suppose that R, is a generalized

reflection for every a € S. Then the stochastic domination
B <y 64 (1.117)
holds for every a € S. The same domination holds for the empty boundary condition case.

Observation 1.3.28. The hypothesis of constant boundary condition is necessary in the later
statement. Indeed, suppose x,y € U and n € SY are such that n, # n,, and suppose there exists
a path of edges in E connecting them. In such a case, ¢} (wg = tx) = 0. On the other hand,

Bl (wg =tg) > 0. As (wg = t) = 0 is an increasing event, we have B}, £g ¢

Proof. We take P = B}, and P' = ¢5, in Theorem 1.6.1. In this case, condition (b) is satisfied.

Then, in a similar way that in the proof of Proposition 1.3.23, the problem is reduced to proving

v < 9% (w(zy) =t ‘WE\@y) = w') (1.118)

for every (zy) € E and every w' € TP\ such that the conditioning has positive probability.
For every 0 < i < k, let w;, € T* be the concatenated configuration defined by
g\ (ayy (wi,) = w" and L, (wi) = t;. Under these definitions, the right hand side of (1.118) can

be written as
]:baE <Wék) _ I:bEA(ng) <w7/tk>Ea . :k <W£k>Ea ‘ (1119)
Soi() Lorla)), ol

Inverting this expression and replacing on (1.118), we reduce the problem to proving that

B {wl ) kot~
Zﬁ< tl>g <! :Zﬁ WLt (1.120)
i=0 i=

Let (V, E*) be the auxiliary graph defined from (V, E) by adding all the edges connecting the

vertices in U:

E*:=FEU{{xy) : {z,y} CU}. (1.121)
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For every 0 < i < k, let wi, € T be the configuration defined by Mg« g(w}) = t), and
p(w;) = w;,. Fix 0 <i <k for a moment. After observation 1.3.4, we get that every o € SV

such that o %= w}, satisfies 0, = o, for every z,y € U. We can then write
* w / b
(i) o =0 (wh) - (1.122)
bes

b c
But, from observation 1.3.8, we have <wg>E = <w,§>E for every b,c € S, implying
0 a
<w;“i>E* =q <w£1>E Taking into account this consideration, the left hand side of (1.120)

coincides with

N
Sl (&) . ' (1.123)

0

=0 i)
=0 w
tk E*

Observe that, if we define w* € TF N by Mg g(w*) =t and gy 4y (W*) = ', then

<wz>®E* = §>: HJ €SV 0 =w W(o,,0,) = tj}‘ (1.124)
J=t

for every 7. For fixed j, we have

Hcf €SV 0w, W(o,0,) = tj}] = (1.125)
> > {oesVionwo=a0,=b} (1.126)
a€esS besS

W(a,b):tj

By rotational invariance, we have

Z HUGSV:akw*,aw:a,ay:bH: (1.127)
Wb,

> HUESV :0>w*,ax:e,ay:a_lb}‘ = (1.128)
W(ab’eli):tj

2;9 HUESV:akw*,%:e,ay:cH (1.129)
ce
W(C):t]'

for every a € S. (Remember e € S is the unit element.) Replacing on (1.126), we obtain

q Z HUES‘/:okw*,ax:e,ay:cH. (1.130)
Wice)itj

Replacing on the right hand side of (1.124), we get

<w:>i =q) Zg HUESV:0>W*,%:€,J?J:CH. (1.131)
i>i ce
W(c):tj
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From the non-singularity of W, in the particular case ¢ = k, the later expression is
q‘{UESVIU?—‘W*,O'x:@,O'y:‘SH. (1.132)

Replacing in expression (1.123), we obtain

k . ceSV:ox=wo0,=¢€0,=c
Iy i . v =1} (1.133)
i=0 j>i 'k ceS HUES U?CU*,U:CZG;%—(?H
W(C):tj
From observation 1.3.21, the quotient
ceSY o= wo,=¢e0,=c
i - v=c} (1.134)
HU eSSV 0 xwo, = e, 0, = e}’
is bounded from above by 1; we conclude (1.133) is bounded from above by
k -
SN S| (1.135)
i—0 j>i 'k
Finally, inequality (1.120) follows by observing the later expression can be written as
Y Tt—k WL(t;)| after a change of variables (and using that ¢; = 0T5)
The proof for the empty boundary condition is similar. O

1.3.6 Combinatorial lemma

In this subsection, we give a more general version to Lemma 1.3.18. We intentionally allow some
notation overlapping. Let (V) E) be a finite graph as in section 1.3, and let z,y € V' be two
distinguished vertices. Let S be any set (not necessarily finite). Fix a configuration w € RF and
a symmetric function W : S x S — R. As before, by symmetric we mean W (a,b) = W (b, a) for
all a,b € S. Fix a function R : S — S such that R? = Idg (involution property) and

W(a,b) = W(Ra, Rb) for all a,b € S (R preserves W). R plays the role of a generalized

reflection. For each a € S, we define the hyperplane associated to a by

Hem(a) = {be€ S: W(a,b) > W(a, Rb)}. (1.136)
As R satisfies

W (a, Rb) = W(Ra, R*b) = W(Ra,b) (1.137)
for every a,b € S, the hemisphere Hem(a) can be written as

Hem(a) ={be S : W(a,b) > W(Ra,b)}. (1.138)
Finally, for a,b € S, we define the set

L(a,b) = {0 esSV:0, = a,0,="0b,0 = w} (1.139)
where, as usual, we have ¢ = w if and only if Wiy < W (04, 0y) for every (uv) € E.
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Lemma 1.3.29. Let a,b € S such that W(a,b) < W(Ra,b). Suppose R satisfies
Hem(c) C Hem(a) for every ¢ € Hem(a). Under these hypothesis, there ezists an injection
®: L(a,b) — L(Ra,b).

Taking b = a, Lemma 1.3.18 follows immediately.

Before going to the proof of Lemma 1.3.29, we show an application that is important from
the point of view of the intuition. Let S = Z and, for simplicity, let b = 0. An integer Lipschitz
function is a configuration o € Z" such that |o, — 0,| < 1 for every (uv) € E. This definition
corresponds to the standard definition of Lipschitz function with constant 1, if we consider on V'
the graph distance v as defined in the proof of Proposition 1.3.25. Let W be defined as
Wi(ec,d) = —|c— | and w as wiy,) = —1 for every (uv) € E. According to these definitions,
L(a,b) is the set of Lipschitz functions taking the value a in x and 0 in y. Fix o’ € Z and
suppose 0 < a’ < a. Define the function R by

Re=a+d —c (1.140)

a+ta’
2

preserves W. The previous lemma tells us there exists an injection

®: L(a,0) — L(Ra,0) = L(a’,0) provided that |0 — a| > |0 — d'|, inequality that is satisfied by
hypothesis, and that Hem(c) C Hem(a) for every ¢ € Hem(a). Last condition follows from the
fact that

As R is the reflection with respect to , we have Ra = a’. Obviously, R is an involution and

’ . /
(¢4%,00)NZ  in case ¢ > &

Hem(c) = (_007 az“/) N7 in case c < %‘1/ . (1141)

a+ta’
2

0 in case c =
Then the lemma proves inequality

|L(a,0)] < |L(d,0)]|. (1.142)
Using the fact that

|L(b,0)| = |L(=,0)| (1.143)

for every b € S, that holds by symmetry, we deduce that property (1.142) is actually true for
every pair of integers a and o satisfying |a| > |a/| (not necessarily non-negative). Last fact can
be rephrased in the following way: if we uniformly sample a function over the set

{0 eSV:0,=0,0% w}, the probability of the event (o, = a) is decreasing on |a|.

Proof. Let o € L(a,b). We define a dependent-on-o sequence Ay C Ay C Ay C ... C V of nested

subsets of V. Let Ayg = {z} and, for n > 0, define, in a recursive way,

Api1 = A, U {u € 0A,, : W(ou, Roy) < wiy for some v € An} )
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The set A,4+1 \ A, has to be read as the set of vertices where incompatibilities appear after
applying the transformation R to all the vertices in A,,. We define
A= U A,

n>0

and the injection ® by

(®0)4 = (Ro), and (Po)y, 4 =0v\a,

where Ro € SV is the configuration defined by (Ro), = Ro, for every u € V. We have to see
that ® is well defined and that it is injective.
Good definition. We have to prove that ®o = w and that (®o), = b.

$o = w. For (uv) € E, we have to see that W ((®0),, (®0)y) > Wi The case {u,v} C A
follows because R preserves W and the case {u,v} C A° because, in this case, the values
of the configuration are not modified. If u ¢ A and v € A, the concerning inequality must

be true because, on the contrary, it would be u € A.

(®o), = b. We are done if we prove that y ¢ A. The hypothesis W (a,b) < W(Ra,b) can
be rephrased as b ¢ Hem(a); it is then enough to prove that o, € Hem(a) for every

u € A\ {x}. We do it by induction. If A; \ {x} = 0 we are done; suppose A; \ {z} # 0
and take u € A; \ {«}. By definition of A, we have W (0, Ra) < wy
we have w, ) < W(oy,a). From this two inequalities, we obtain W (o, Ra) < W (o, a)

). Also, as 0 = w,

or, equivalently, o, € Hem(a). This completes the first step of the induction. Suppose now
o, € Hem(a) for every u € A, \ {z}. From the hypothesis over R, we have

Hem(o,) C Hem(a) for every u € A, \ {x}. We can suppose A, 1 \ A, # 0 and take

v € Ayqq \ A,. By definition of A, 1, there exists w € A, such that W (o, Row) < W)
As in the first step of the induction, from last inequality and the fact that ¢ > w, we
obtain o, € Hem(o,,) C Hem(a).

Injectivity. For two different configurations o, ¢’ € L(a,b), we have to prove that ®o # do’.
Call A, Ay, Ay, Ay, ... and A’ Aj, A}, AL, ... the associated sets, espectively. If A = A" we are
done because R is injective. Suppose A # A’ and let n = min {k : Ay # A}}; of course n > 1
and A, = A!,_,. If there exists u € A,,_; such that o,#0,,, we are done. Suppose o At o,
Without loss of generality, we assume A, \ A/ # 0 and take u € A, \ A/,. We claim that
(Po), # (Po’),. It must be o, # o,; on the contrary, because of the definitions of A,, and A}, u
would be in both A, and A] or in none of them. Then, we are done if we prove that u € A’.
Suppose u ¢ A’. Let v € A,_; be such that W (o, Ro,) < wiyy. From (1.137) and identity
(®o), = Roy, we have W(o,, Ro,) = W((®o),,0,), and then

W({(P0)u, 0v) < Wiuw)- (1.144)
On the other hand, as ¢’ = w, we have W (0, 0,) > wpwy. But
Wil ol)=W((®Pc")y,0,) (1.145)
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because u ¢ A" and o Anct o , and then
W((CI)U/)U, Jv) 2 Wiww)- (1.146)

From inequalities (1.144) and (1.146) we get (®o), # (Po’),. It completes the proof. O

1.4 Dilute models

In this section, we use the previous results in finite volume to give sufficient conditions for
uniqueness and non-uniqueness of Gibbs measure on dilute models. We start by defining some
basic notions. We now work in infinite volume: our lattice is constituted by the set of vertices

74 with its associated set of edges

&= {(wy) Nz —yll, =1} (1.147)

A local function is a function f : S 4 R depending on a finite number of coordinates: there
exists a finite subset A = A(f) C Z? such that f(o) = f(o’) for every pair of configurations
0,0 € 5% satisfying o 4=0"y. Our probability space is the product set 52" endowed with the

product g-algebra JF, that is the smallest one for which every local function is measurable.

1.4.1 The model

The dilute (or disordered) model is a statistical-mechanical model defined in a random graph.
More precisely, the set of vertices is deterministically given by Z¢ and the set of edges is a

random subset of £. To properly define it, we introduce the concept of disorder.

Definition 1.4.1 (disorder). An element J = <J<xy> (zy) € 5) € {0,1}¢ is called a disorder.
We identify a disorder J with its associated set of open edges

E(J) = {{wy) € € Jimy =1} (1.148)
The rest of the edges, that is the ones in which J takes the value 0, are called closed edges.

For fixed J € {0, 1}8, we define the notions of specification and Gibbs measure on the graph
(Zd, EWJ )) J has to be understood as a random element with law P,, where P, is the Bernoulli
bond percolation probability with parameter p € [0, 1] (defined on {0, 1}5). Despite we are not
working in a finite graph anymore, we use the same notation concerning subsets of edges: for

example, for A C Z<¢, £(J) N A is the set of edges with at least one extreme vertex in A.

Definition 1.4.2 (specification). The specification associated to a finite region A C Z2, a
boundary condition n € SZ and a disorder J, is the probability “K,J defined on (SZd,]—"> by

pa s (0) = = 1{one=me} I W(ow, o). (1.149)
(zy)e&(J)NA

Observe that iy ; (o) is supported on a finite set.
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As in the finite case, we write ug ; in case n = a.

Notation 1.4.3. For a vertex subset A C 72, we define the boundary of A by
0A = {x €74\ A: (zy) € € for some y € A}. (1.150)

Observation 1.4.4. If, in the previous definition, we take U = A, V = AUOA and
E =E&(J)NA, the specification M?\,J can be identified with the probability p¥ defined in the finite
graph (V, E) (as in subsection 1.3) in the sense that, for o’ € SV such that o}; = ny, we have

WY (') = b (o = o). (1.151)

Definition 1.4.5 (Gibbs measure and phase co-existence). A Gibbs measure associated to a
disorder J is a probability p; defined on (SZd,F) that satisfies the so called DLR condition:

[t = [ wstan ([ a2 taorsie) (1152)

for every local function f and every finite region A. The set of Gibbs measures associated to J is

denoted by G;. We say that phase co-existence occurs if |G| > 1.

As our set of spins is finite, the set of Gibbs measures is non-empty (see [F'V]), so we worry

only about the two cases |G;| =1 and |G| > 1.

1.4.2 Uniqueness criteria

In this subsection, we give a sufficient condition for absence of phase co-existence, that is
|Gs| = 1. Our criteria is of the quenched type: it holds for P,-almost every disorder J under
certain hypothesis over p. It is in the spirit of the uniqueness criteria given in [AC97]; we show
here how the uniqueness criteria appearing in the later article can be generalized (we do not ask
for any structure on the set of spins) and how the proof can be simplified by the use of a
different random-cluster representation. Alternative methods to prove uniqueness are the ones
introduced by Dobrushin [Dob68] and van den Berg and Maes [vdBM94].

Let p. be the critical bond Bernoulli percolation probability. (The reader who is not familiar
with the basic notions in percolation theory, such as critical probability and infinite cluster, can

for example consult [Gri99].)
Theorem 1.4.6. If p(1 —ry) < p, then |G;| =1 for P,-almost every disorder J.

Proof. The product JJ' of two disorders J and .J’ is defined coordinate-wise, that is the open
edges for JJ' are the ones that are open for both J and J'. Take P,_,, independent of P,. We
claim the subset X C {0,1}° defined by

X :={J:P_,, (J :JJ has an infinite cluster) = 0} (1.153)
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has P,-probability 1. Indeed, observe that if we sample a disorder J with law P, and a disorder
J' with law P;_,,, the product disorder JJ' has law P,1_,,). By the fact that P,q_,,) is

sub-critical, the later observation and Fubini’s theorem (in that order), we have

1= /Pp(l_ro)(dJ)l {J has an infinite cluster} = (1.154)
/Pp X Pi_y,(d(J,J'))1{JJ has an infinite cluster} = (1.155)
/Pp(dJ) / Py_,,(dJ")1{JJ" has an infinite cluster} . (1.156)

Then / Py, (dJ)1{JJ" has an infinite cluster} = 1 for P,-almost every .J or, equivalently,
P,(X)=1.

Take a finite subset A C Z¢ and a configuration ¢ € S®. The result follows if we prove that,
for every J € X and every pair of Gibbs measures u, i, € G;, identity
py (oa = C) = p; (6a = () holds. From the definition of Gibbs measure, for any finite subset
A C Z%, we have

1 (08 =€) = iy (o8 = )| = | / js(do)1 {os = C} — / iy(do)1 {0 = <}| — (1157)

/m(dn)/uX,J(dU)l{m = (} —/u&(dn)/uX,J(dU)l{m =C}‘ = (1.158)
/ pa(dn)py s (oa = ¢) — / py(dn)py 5 (oa = Q)| < (1.159)
max {ud ; (0a =C) = pf , (0a =)} (1.160)

. €82

The strategy will be to take e > 0 arbitrary and A = A(e) large enough such that

ks (oa=0) =l (oa=¢)| <= (1.161)
For every n € N, let A, := [—n,n]? N Z% From (1.153), we can take n = n(J) € N such that
A CA, and P_,, <A LN A%) < 7. (We use here the analogous to definition 1.3.19: A LN A¢
if there is a path of edges connecting A with A¢ taking the value 1 in JJ'.) Again from (1.153),
we can take N € N such that A,,;1 C Ay and P, (An+1 JEEIN A?v) <SHAC A= £ IAn|
(the choice of this bound appears naturally at the end of the proof). Ay plays the role of the
subset A mentioned before.

Take U = 0Ay, V = Ay UOAyN and E = £(J) N Ay (as in subsection 1.3). For a
configuration w € TF, the set family

[ACA,: E(A, A% =t} (1.162)
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is closed under unions. Let
C, = U{A C A, E(A A°) =t} (1.163)

be its maximal element, with the convention C, = 0 if {A C A,, : E(A, A°) =to} = 0. Asin

observation 1.4.4,

pay (0a=¢) =puy¥ (oa=¢) = (1.164)
Y Qg (oa=C(|Co=A)¢F (Co=A)+ > QW (oa=(C,=A4A). (1.165)
ACAy, ACA,

ACA AZA

For the second sum, observe that

> QUuloa=CCo=A)< 3 QUp(Co=A) = 3 oF (Co=4) = (1.166)
ACA, ACA, ACAn
AZA AgA AZA
w,* c 1—-rg W,k c\ __ J c €
W (A = An) < By (A = An) =P, (A — An) < 7 (1.167)

in the second inequality, we used Proposition 1.3.23 and the fact that (A &5 Afl) is an
increasing event. For A C A,, such that A C A, we claim that

Wy (oa =C|Co=A) =% (o4 = (). (1.168)

Indeed, (C,, = A) only depends on E N A% let Y C TP such that (C, = A) = Iz 4 (V).
Observe also that g4, 4e)(w') = to for every w’ € Y. As a consequence, (C, = A) is the disjoint

union
U (WEOAC = w/,(,UE(A’Ac) = to) . (1169)
w’EHE(AC)(y)
Then
Ve (oa=(|C,=A)= (1.170)
T Qo = Gl = nn) =0) 6 (s = amr = 0] = 4) -
V,E\0A = ( |WE(Ae) = W ,WE(A,4°) =10 | P | WE(Ae) = W, WE(A,Ac) = lo| Lw = =
w,EHE(Ac>(y)
(1.171)
[Lg (O'A = C) Z %U (UJE(Ac) = w',wE(AyAc) Cw = A) = [Lg ((TA = C), (1.172)
WIEHE(AC)(y)

in the second identity, we used the Markov property for the Edwards-Sokal coupling
(Proposition 1.3.15) to establish identity

ug (O’A = C) = 7‘7/le (O'A = C ‘wE(Ac) = w’,wE(A,Ac) = to) . (1.173)
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Replace in (1.165) to obtain

il (oa=¢) = >, 1% (oa = ¢) ¢ (C,, = A) + sth, (1.174)
ACA,
ACA

with 0 < sth < £. As the analogous formula holds for ,u?/lU (oa = (), we have

1 (08 =0) = p (0a = 0| < (1.175)
>t (oa= Q) |6l (Co=A) = ¢} (C = A)| + = (1.176)

ACA, 2

ACA

Finally, by Proposition 1.3.25,
O (Coo = A) = " (Co = A)| < 2B (A 5 U) = 2P, (A ¢ U) < (1177)
g\{ACAn}\_l. (1.178)

We conclude by replacing it in expression (1.176). ]

1.4.3 Non-uniqueness criteria

In this subsection, we give sufficient conditions for non-uniqueness of Gibbs measure in the

Abelian spin case. Remember the definition of v given in expression (1.116).

Theorem 1.4.7. Suppose we are in the Abelian spin case. Suppose also R, is a generalized

reflection for every a € S. If py > p., then |G;| > q for P,-almost every disorder J.

In the following proof, we use standard concepts concerning Gibbs measures; they are

studied in detail in [FV] for example.
Proof. Analogously to the proof of Theorem 1.4.6, the event Y C {0,1}° defined by
Y :={J:P,(J' :JJ has an infinite cluster) = 1} (1.179)

has P,-probability 1. It is then enough to prove that |G| > ¢ for every J € Y; fix such a J. Let
x € Z¢ be a vertex belonging to a J-infinite cluster and let

§ := P, (J' : x belongs to a JJ'-infinite cluster) > 0 (this choice of § is possible because of
(1.179)). The strategy will be to show that there exists a family (1%), s of Gibbs measures
satisfying

(o =a) > pS (o, =b)+4 (1.180)
for a # b; it immediately follows p4 # u% and |G| > q.
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As in the proof of Theorem 1.4.6, let A,, := [—n,n]? N Z% and take U = 9A,,, V = A, UOA,
and £ = &(J)NA,. We have
ph, g (0 =a) = py (0, = a) > py (0, = b) + % (x — U) > (1.181)
i (00 = b) + By (v €5 U) = iy (00 = b) + P, (J’ LN U) > (1.182)
i (00 = b) + 5 (1.183)

we used observation 1.3.21 in the first inequality and Proposition 1.3.27 in the second one. Then
pr,,g (0w =a) = gy, y(0z =b)+0 (1.184)
for every n € N. As the set of spins is finite, the space of probabilities defined on (SZd, F ) is
sequentially compact: we can extract a subsequence (uin,’ J)n/ of (,uf{m J)n weakly converging to
a probability on (SZd, F ) that we call u%. The later probability is a Gibbs measure. As the
weak convergence is characterized by the finite-volume events, we can take limit as n’ — oo in

expression 1.184 with n replaced by n’ to obtain
pG (o, =a) > ps (0, =)+ 4. (1.185)

It completes the proof. O

1.5 Comparison with the homogeneous case

The homogeneous version of the model is obtained by taking p = 1. In this case, non-uniqueness
methods such as the Pirogov-Sinai theory [PS75] or reflection positivity (as in Frolich, Israel,
Lieb and Simon [FILS78] or Biskup [Bis09]) prove that, for § sufficiently large, there exist at
least ¢ different Gibbs measures. Both Pirogov-Sinai theory and reflection positivity strongly
depend on the symmetry of the graph, an assumption that breaks down for the properly dilute
model p < 1.

In the homogeneous Potts model, both uniqueness and non-uniqueness criteria coincide with
1—e= 8

m > De, there are at

the ones given in [GHMO1]: if e=? < p,, uniqueness is guaranteed; if
least ¢ Gibbs measures.

It is instructive to analyse the homogeneous classical clock model (remember it is obtained
from the generalized clock model by taking f(t) = e7#(1=9). In this case, v = v(B) is a function
of the inverse temperature § and our criteria guarantees non-uniqueness for g such that
py(B) > p.. First of all, observe that, as functions of § € (0, 00), 1} is strictly increasing and ¢;
is strictly decreasing for every i < k, implying (/) is strictly increasing. See figure 1.3 for the
graph of v when ¢ = 4. Condition py(3) > p. is then equivalent to 3 > v~ (%ﬂ) =: fy. Using

that ‘W’l(ti) < 2for 0 <i < k and that 2k < ¢, we get

Tk Tk Tk Tk
= > > . 1.186
7 k-1 =1 - k-1 — 1+ thk—l 1+ qtk_l ( )
L+ 6 (W) 142> 4
1=0 i=0
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Bo(p)

Figure 1.3

Then fy is bounded from above by the solution to the equation

Pe _ Tk

=5 1.1
p  1+qtp (1.187)

2

Using that r, = 1 —t,_; and that t,_; = e_ﬁ(l_cos(f)), this solution can be explicitly computed
as
10g P+qpc
(p_p;r). (1.188)
1 — cos (?)
If we fix p and d, this expression is of order ¢*log(q) as ¢ — oo, the same order given by
Pirogov-Sinai theory and reflection positivity in the 2-dimensional homogeneous case. If we fix p

and ¢, it is of order

1

q
as d — oo, taking into account that p. ~ %. In particular, 5y — 0 as d — co. Finally,
lim, o fo(q, d, p) = oo, implying that our approach is not suitable to study the XY model, that
is the model with set of spins S = S' = {z € C: |z| = 1}; see van Enter, Kiilske and Opoku
[VEKOL11] for results concerning the approximation of the XY model via the clock model. With
respect to this assymptotics, for dimension d > 3 and p = 1, reflection positivity computes a

threshold /3 independent of ¢; see Maes and Shlosman [MS11] for a discussion.

1.6 Appendix: Holley’s theorem and stochastic

domination

The version of Holley’s theorem we invoke is the one appearing in [GHMO01], with a slight
modification in the hypothesis that results in a slight modification in the proof; for

completeness, we include the statement here. We intentionally allow notation overlapping. Let
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T be any finite subset of R and E be any finite set. The set T inherits the order < from R,
order that induces a partial order < in the set T® defined by w < w’ if and only if w, < w/, for
every e € E. We say that a function f: 7% — R is increasing if f(w) < f(w') whenever w < '’
and, for two probabilities P and P’ defined on T, we say that P is stochastically dominated by
P’ if and only if P(f) < P'(f) for every increasing function f: T¥ — R; in that case, we write
P <, P'. We say a probability P on T¥ is irreducible if any two configurations w,w’ € TF of
P-positive probability can be connected via successive coordinate changes only passing through

configurations of P-positive probability.

Theorem 1.6.1. Let P and P’ be two probabilities on TF. Suppose one of the following

conditions is satisfied.
(a) P’ is irreducible and assigns positive probability to the maximal element of T .
(b) P is irreducible and assigns positive probability to the minimal element of TF.
Suppose also that

P (we > u ‘wE\e = w') <P (we >u ‘wE\e = w") (1.190)

for every u € R, every e € E and every pair of configurations w',w" € TE\® satisfying w' < w"

and such that the conditioning has positive probability. Then P < P’.

1.7 Descripcién del capitulo

Comenzamos por definir el modelo de mecanica estadistica en un grafo finito. Para ello, es
necesario introducir el conjunto de espines, el grafo y el potencial de vecinos préximos. El
conjunto de espines S es simplemente un conjunto finito. El grafo (V, E') también es finito, y
tiene un subconjunto U C V, posiblemente vacio, distinguido de vértices al que denominamos
frontera. El potencial de vecinos préximos es una funcién simétrica W : S x S — (0, 1]. Desde el
punto de vista fisico, W (a,b) es de la forma e="! (@) donde 8 > 0 es la temperatura inversa e

I (a,b) es el potencial de vecinos préximos, que depende del modelo que consideramos. Para una
configuracién n € SV, la probabilidad de Gibbs pf, con condicién de frontera es proporcional al

coeficiente

Hov=n} ][ W(ow0y). (1.191)
(zy)eE
El producto que aparece en esta expresion es el llamado factor de Boltzmann.
La probabilidad de aglomerado aleatorio de Edwards y Sokal es una probabilidad sobre el
conjunto 7%, donde T es la imagen de la funcién W. Para definir esta probabilidad, hace falta
definir una nocién de compatibilidad entre configuraciones de espines ¢ € SV y configuraciones

de aristas w € TP: ¢ y w son compatibles, lo que anotamos como ¢ ~ w, si toda arista (zy) € F
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satisface Wz < W (04, 0y). En particular, cuando w,,y = 1, debe ocurrir la coincidencia de

espines 0, = g,. La probabilidad de aglomerado aleatorio ¢}, es proporcional a

[ I fuy (w)] Ho €SV :o~w, oy = 77} : (1.192)
(

zy)EE

donde H 0(zy) (w) es una medida producto que depende de la interaccion Wy, al igual que
(zy)eE
antes, 7 € SY es una condicién de frontera. Las probabilidades de Gibbs y de aglomerado

aleatorio estas acopladas en el sentido de que las configuraciones sorteadas de manera conjunta
son compatibles.

En la seccién 1.3.3, demostramos que la probabilidad de aglomerado aleatorio satisface una
propiedad de Markov y que la probabilidad de Gibbs satisface una propiedad de correlacion
positiva. La propiedad de Markov serad utilizada subseccién 1.3.4. La propiedad de correlacién
positiva sera utilizada para el criterio de no-unicidad en la subseccién 1.4.3. Cabe destacar que,
para demostrar esta ulitma propiedad, se utiliza un lema combinatorio que resulta de vital
importancia en este capitulo (se vuelve a utilizar en la subseccién 1.3.5) y que las hipdtesis
adicionales de invariancia por rotaciones y existencia de una reflexiéon generalizada son
requeridas.

En la subseccion 1.3.4 se muestra como la probabilidad de aglomerado aleatorio puede ser
dominada estocasticamente por una probabilidad de Bernoulli con parametro adecuado
utilizando el teorema de Holley. Como corolario, se obtiene la proposiciéon 1.3.25, en la que se
controlan perturbaciones de la probabilidad de aglomerado aleatorio bajo el cambio de condicién
de frontera; la herramienta fundamental es un lema introducido por Alexander y Chayes.

En la subseccién 1.3.5, bajo las hipdtesis de invariancia por rotacién y existencia de reflexion
generalizada, demostramos la dominacion estocastica inversa: la probabilidad de aglomerado
aleatorio domina estocasticamente a una probabilidad Bernoulli con parametro adecuado. Las
herramientas utilizadas son el teorema de Holley y el lema combinatorio antes mecionado.

En la seccién 1.4 aplicamos los resultados de la seccién anterior para dar condiciones
suficientes para unicidad y no-unicidad de medidas de Gibbs es modelos diluidos. Un modelo
diluido es un modelo de mecanica estadisica en el que el grafo subyacente es el aglomerado
infinito que se obtiene al adelgazar las aristas del reticulado d-dimensional Z¢ mediante
percolacién independiente. Estos criterios se deducen facilmente de la maquinaria que se
desarrollé en la seccién anterior: el criterio de unicidad (teorema 1.4.6) de la subseccién anterior
es consecuencia de la proposicion 1.3.25; el criterio de no-unicidad (teorema 1.4.7) se deduce de
la proposiciéon 1.3.20.

Finalemente, en la seccién 1.5, se compara nuestro método con métodos ya existentes, como
la teoria de Pirogov-Sinai y reflexion positiva, en el caso particular en el que el grafo es

homogéneo.

42



CHAPTER 2. LARGE DEVIATIONS FOR INHOMOGENEOUS MAGNETIZATIONS

Chapter 2

Large deviations for inhomogeneous

magnetizations

2.1 Introducciéon

Este capitulo estd basado en [MSLT15].

Estudiamos un modelo con configuraciones del tipo Ising en el toro discreto d-dimensional
con interacciones ferromagnéticas de vecinos proximos y potencial cuadratico de Kac asociado a
un campo externo no-homogéneo. Més precisamente, el conjunto de configuraciones esta dado
por {—1, 1}A, donde el reticulado A C Z? es considerado con periodicidad. La distribucién de
las configuraciones esta gobernada por el factor de Boltzmann asociado al Hamiltoniano

Hpoo(0) = — > 0.0+ Y (Av, (0,2) — a (2))?, (2.1)

T,yeNA zEA
vecinos proximos

donde a: A — R es una funcién no-constante y Av, (o, ) es un promedio de rango 7! de la
configuracion o alrededor del vértice x. La segunda suma del lado derecho de (2.1) es un
potencial cuadratico de Kac que fija la configuracién al valor del campo externo «.

En la seccién 2.5, demostramos la existencia de la energia libre y de la presion asociadas a
nuestro modelo. Con respecto a la primera, un parametro intermedio [ es necesario para el
correcto planteo del problema. Estos resultados establecen una conexion entre los fenémenos
microscopicos y macroscopicos.

En la seccién 2.6, demostramos un resultado de grandes desvios que da informacién acerca
de las magnetizaciones tipicas asociadas al campo externo «. En particular, demostramos que la
interaccion de Kac da lugar a una biyeccién entre campos externos y perfiles magnéticos.

Finalmente, en la seccién 2.7, establecemos un resultado de equivalencia de arreglos que

relaciona las ya definidas energia libre y presion.

2.2 Introduction
This chapter is based on [MSLT15].
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In this chapter, we study a model with Ising-type configurations in the d-dimensional
discrete torus with ferromagnetic nearest-neighbour interactions and quadratic Kac potential
associated to a non-homogeneous external field. More precisely, the set of configurations is given
by {—1, 1}A, where the lattice A C Z¢ is considered with periodicity. The distribution of the

configurations is governed by the Boltzmann factor associated to the Hamiltonian

Hpno (o) i=— Z 0.0y + Z (Av, (0,7) — « (317))2 , (2.2)

z,yeA zeA
nearest-neighbours
where o : A — R is a non-constant function and Av., (o, ) is an average of range v~ ' of the
configuration ¢ around the vertex x. The second sum of the right-hand side of (2.2) is a
quadratic Kac potential that fixes the configuration to the value of the external field «.

In section 2.5, we prove the existence of the free energy and the pressure associated to our
model. In the former one, an intermediate parameter [ is required for the proper definition of
the problem. These results stablish a bridge between the microscopic and the macroscopic
phenomena.

In section 2.6, we prove a large deviation result that gives information about the typical
magnetizations associated to the external field . In particular, we show that the Kac
interaction gives rise to a bijective correspondence between external fields and magnetization
profiles.

Finally, in section 2.7, we stablish an equivalence of ensembles result that relates the already

defined free energy and pressure.

2.3 Classical results

d
Let T := {—%, %) be the d-dimensional torus, d > 2. For r € R?, let 7 be its representative in T,

that is the only element of the set
{r+(a1,...,ad):(al,...,ad)EZd}ﬂT. (2.3)

We endow T with the torus distance dr defined by

dy(r,r'") = HW (2.4)

1 )
this is the distance that determines the notion of continuity in T. For ¢ € Z*, we consider a

discretisation parameter ¢ of the form 27¢. From now on, hl% stands for le. The microscopic
e— q—00

version of T is the lattice A, := (¢7!T) N Z% For a non-empty subset A C Z%, let
Q4 = {—1,1}" be the set of configurations in A. The nearest-neighbour Hamiltonian is the
function HY" : 5, — R defined by

HY' (o) === > 0.0y, (2.5)
Ty,
z~y
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where x ~ y means x and y are nearest-neighbours in the torus, that is e 'dr (ex,ey) = 1. We
define also the Hamiltonian with external field h € R by

oy, (o) = HY" (o) —h ) oo (2.6)

TEA.

Its associated Gibbs probability is the probability on 2,_ defined by

nn 1 (o
Han (0) 1= e PR, (2.7)
Acsh

€

where 3 > 0 is the inverse temperature and Z}"; = > e PHAZn) is the grand canonical
JGQAS
partition function or normalizing constant. The parameter g is fixed and we omit it in the

notation in most of the occasions. For A C Z% non-empty and finite, B C Z¢ containing A and

Z o0,. To shorten

T€EA

o € Qp, we define the average magnetization of o in A by m4 (o)

|A|
notation, we simply write m (o) if A = B. For i € N, let

%::{2]Z—Z jezno, z]} (2.8)

Observe that V|4 is the image of m,4. For u € V|5_|, we define the finite volume free energy by

log > e ~AH (2.9)

5 ’ O'EQA
m(o)=u

facs (u) =

and extend the domain of fy_s to [—1, 1] by linear interpolation. For h € R, we define the finite

volume pressure by

Pa.p(h) = 5 ]A ’log Z e PH (2.10)

O’EQA

We are ready to state a classical result: the existence of the (infinite volume) free energy and

pressure.

Theorem 2.3.1 (Free energy and pressure).

The sequence of functions (fa, 3). point-wise converges to a function fg:[-1,1] — R
called free energy. fs is conver and continuous, differentiable in the interior of its domain,
and its derivative fj is continuous, satisfies 1}},191 f5 (u) = —o00 and 11%1 f5 (u) = 0o and is
bounded on compact subsets of (—1,1). Moreover, the convergence ll_% fa.p = fp is indeed

uniform.

The sequence of functions (pa. g). point-wise converges to a function pg : R — R called

pressure.
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The proof of this result can be found in [FV], with the exception of the uniform convergence
of the free energy that is proved in the appendix.
Observe that the first part of the later result could have been stated as

ll_r)% fAE,h,,B (U) = fg (u) — hu, (2.11)

where fa_ n g is defined as fa, s with H{" replaced by H{",. As a first consequence, we obtain a

large deviations result. To state it, we define the rate function I : [-1,1] — R by

B 0) = 3| U 0 = ) = i (£ (4) = )] (21
Theorem 2.3.2 (Large deviations). For every interval [a,b] C [—1,1],

1 n .

ll_I}I(l] N log (,uAah (ma, € |a, b])) =~ i In(u). (2.13)

The later result has the following interpretation: the typical magnetization averages are the

ones that minimizes the function fsz(u) — hu. Indeed, let [a,b] C [—1,1] such that no minimizer

of the previous function belongs to [a, b]: (arg min { fg(u) — hu}) N [a,b] = 0. Then there exists
u€[—1,1]
a positive constant C' > 0 such that

7o (1 (m (o) € . 8)) < =C (214)

for € small enough. Equivalently,
AT () € [a,B]) < O (2.15)

In words, the probability of the average magnetization to lie in [a, b] is exponentially small in
the volume of the box.
Another corollary to Theorem 2.3.1 is the following equivalence of ensembles result that

essentially asserts that the free energy and the pressure provide the same information.

Theorem 2.3.3 (Equivalence of ensembles at the level of potentials). The free energy and the

pressure are each other’s Legendre transform:

fs(u) = sup {hu — ps(h)} (2.16)

heR

for every u € [—1,1] and

pa(h) = sup {hu— fs(u)} (2.17)

u€[—1,1]

for every h € R.
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We finish this section with a brief analysis of the free energy fs. There exists a critical value
Be > 0 that separates the behaviour of the model into the following two scenarios: if 8 < f., f3
is strictly convex; if 8 > f,, there exists mg € (0, 1) such that fjs is strictly convex outside
(—mg, mpg) and is constant in [—mg, mg]. We can consider both cases together by defining mg
as zero if § < .. If B < f., the function fs(u) — hu is strictly convex for every h € R, and the
supremum in (2.17) is attained in only one point. By differentiating, this point is the solution of
equation fé (u) = h. The later observation gives a one-to-one relation between external fields
h € R and magnetizations u € (—1,1). If 8 > f3., the one-to-one relation can only be established
between external fields in R\ {0} and magnetizations in [—1,1] \ [=mg, mg|, and the external
field h = 0 is identified with the magnetization u = 0 in the sense of the observation made after
Theorem 2.3.2.

Let ¢ : R — (—1, 1) be the function defined by

o(h) = lim [ 3", (do)oo, (2.18)

where 0 = (0, ...,0) is the origin in Z¢. ¢ is well defined (the limit exists and is in (=1, 1)), is
odd (¢ (h) = —p (—h) for every h € R) and strictly increasing.
As in the previous chapter, an infinite volume Gibbs measures is a probability defined on the
space ()74 endowed with the o-algebra F generated by the local functions. For every
u € [—1,1]\ [-mg, mg], there exists a unique infinite volume Gibbs probability u;"™ associated to
the corresponding external field h := f5 (u), and the following convergence in probability holds:
lim g™ (Jma. —ul >6) =0 (2.19)

e—0

for every 6 > 0. (Indeed, a stronger result is known; we state it as we will use it.) The
probability " can be obtained as a thermodynamic limit: for every event E that depends on a
finite number of coordinates, the limit u}," (E) = ll_r}% py" p, (E) holds. (2.19) is another way of
expressing that the external field h fixes the magnetization u.

All these results can be found in [FV]; they will have their adapted-to-our-model correlates

in the following sections.

2.4 The model

In the model we study, in addition to the nearest-neighbour interactions, we consider
interactions at an intermediate or mesoscopic scale. To define them, we introduce a function

¢ : R — [0, 00) that we assume to be even (¢ (r) = ¢ (—7) for every r € R?), to have compact
support, to be Riemann integrable and to integrate 1. The hypothesis of Riemann integrability
guarantees it is bounded. The function ¢, together with a small parameter 0 < v < 1, is used to
determine the strength of the intermediate interactions. With this in mind, we define the
function Jy,_, : Ac x A. = R by

Inon (@,y) =" (ve e (@ —y)) . (2.20)
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As we are treating inhomogeneous external fields, we consider, instead of a number i € R, a
continuous function a € € (T, R) (we recall the notion of continuity is the one associated to the
distance dr). Similarly, instead of homogeneous magnetizations u € [—1, 1], we treat
inhomogeneous magnetizations u € € (T, (—1,1)). In many occasions, « and u will be constant
functions; in those cases, we use the same letter to denote the constant value they take. The

associated Hamiltonian to €, v and « is the function Hy_ 5o : Q4. — R defined by

Hy, vy (0) == HY" (0) + Z (Z Ir.~ (z,y) oy (ax)) ) (2.21)

z€Ae \YyEA

The sum Z Ja.~ (z,y) 0, has to be understood as an average around x. The second term is
yEAe
the quadratic Kac potential that induces the profile of the configurations to follow «. The

associated Gibbs probability is defined by

b e PHA7alo) (2.22)

II’LAE/%OZ (J) = ZA
€Y,

where Z,_ o is the grand canonical partition function.

2.5 Free energy and pressure

This section is devoted to properly defining the free energy and the pressure. In contrast to the
nearest-neighbour case described in section 2.3 where they are functions with domains [—1, 1]
and R, they are functionals with domains € (T, (—1,1)) and % (T, R) in our case.

Let [ be an intermediate scale of the form 277, p € Z". From now on, hm stands for lim .

p—0o0

Let &) be the natural partltlon of T into cubes of side length [, that is the partltlon into the

cubes inside T of the form H [la;, 1 (a; + 1)), a; € Z2 for every i. &) has n := [~ elements that
i=1
we denote by Ay,..., A,. For o € Q,_and i€ {1,...,n}, let o; be its projection over

(e71A;) N Z%, and observe that ‘(5_1141-) N Zd‘ = (7). For g € € (T, R), the notation g, will

represent the coarse-graining approximation at scale [ of g, that is the function defined by

1
l( ) N ’Az| " ( )

i

for r € A;. For u € [—1,1], let [u]; be the magnetization in V; that best fits u from above:
[u], =min{t € V; : t > u}. (2.24)

We define the set of configurations whose magnetizations are close to u € € (T, (—1,1)) at

coarse-graining scale [ by
Qa.(u) == {0 € Q. :m(0) = [u;] -1y for every i € {1,... ,n}} . (2.25)
We are ready to state the main result of the chapter.
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Theorem 2.5.1 (Free energy). Foru € % (T,(—1,1)) and a € € (T, R),

lim lim lim —Llog dooe “AHA a0 :/[fﬁ( )+ (u—oz)ﬂ. (2.26)

-0 =0 =50 B|A,] e 1)

This limit is the free energy associated to our model and is denoted by F,, (u).

We start by proving an homogeneous version of this theorem in which the intermediate
coarse-graining parameter [ is not taken into consideration; instead of it, we consider a
microscopic parameter L. For u € V|5 |, we introduce the finite volume free energy associated to
the Hamiltonian (2.21) by

1
log e PHrcal®) (2.27)
AIA o 2

m(o)=u

FAea'YvO‘ (u> =

Lemma 2.5.2. For a € € (T,R) constant and v € (—1,1),

lim lim Fy, o ([u])y,)) = fo(u) + (u—a)*. (2.28)

v—0 =0

Proof of Lemma 2.5.2. We first show that the limit ll_I)I(l) Fi. vy (ﬁﬂ | AE|> exists for fixed v, we
then exhibit an approximation result, and we finally establish upper and lower bounds.

Step 1: existence of the limit ll_I)I(l) Frrva ((u} IAEI) for fixred v > 0. We need the following
continuity lemma that controls the difference between the values Fi_, , takes in neighbour

points; its proof can be found in section 2.8.

Lemma 2.5.3 (Continuity lemma).

2 _;log |A]
max  |Fa_ya(t) = Fa.qya <u— >‘:O<7 ! > 2.29
v ( ) v |A5| |Aa| ( )

u€Vip \M—1}

During the rest of this step, we use the notations A, := A, (recalling ¢ is of the form 279),
uqg = [ulj, | and Fy := Fj, 5. We are done if we prove that (£ (u4)), is bounded from below
and that, for every ¢, inequality

Fyi1 (mgr1) < Fy(mg) + a4 (2.30)

holds for a sequence (a,), of positive real numbers satisfying > ay < oo

Observe that

Z —BHpg,~,a(0) < Z BHY (o S Z —BHR! (o ‘ (231)
O'EQAq O'GQAq Q
m(o)=uq m(o)=u

Take logarithm and divide by —f |A,| to obtain

F,(u,) > — 5 |A | log > e PR ), (2.32)

UEQA
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The right-hand side of this expression converges to minus the pressure with zero external field
—ps(0) € R and the fact that (F, (u,)), is bounded from below follows.
Inequality (2.30) follows after estimating

Foa (mg) — Fy(my) = [Fypr (mgr1) — Foa (mg)] + [Fo (mg) — Fy (mg)] - (2.33)

To find an upper bound for F,i;(m,) — F,(m,), we can proceed by using the same sub-additive

argument appearing in sub-section 2.8. Indeed, by that argument and the fact that the

difference
2d
Hppir v (0) = > Hay oo (00) (2.34)
i=1

is O (y7129), it follows that F,,i(m,) — F,(m,) < O (y7'27%); for every i, the Hamiltonian
Hj, .o is considered with periodic boundary conditions (this is possible because « is constant).

To control F,i1(mgt+1) — Fy1(my), we need Lemma 2.5.3. The upper bound

_,log IAq+1|> (2.35)

Fya(imgss) = Fysatmg) <0 (128 2
q

follows after using this lemma repeatedly as m,; can be reached from mg, by moving trough

consecutive elements of V|, ,,| in a finite number of steps. To conclude, we define

(2.36)

a, =0 (,y—12—q) +0 (7—110g |Aq+1|>

|Aq+1|

and observe that Z ag < 00.
q

Step 2: coarse-graining approximation. We fix a microscopic parameter L of the form 2™,

m € ZT. Theset {e'A: A€ P} has N := (]A€| L‘d) elements that we call By, ..., By. For
i€{l,...,N}, let A; := B;NZ" be the discrete version of B;. We extend the domain of J,_ . to
(e71T) x (¢7'T) in the natural way:

Iner (r,1) =% (ve e (r =1)). (2.37)
Fori,5 € {1,...,N}, let

A 1
Iaoqy (1,7) = ][ d(r,r") Ja.~ (r,r") = de/ / drdr'Jy. . (r,1"). (2.38)
BiXB]' Bz Bj

For z,y € A. such that z € A; and y € A;, Ja, ~ (,y) stands for Jy_, (i, 7).

Let us introduce the following notation for the quadratic part of the Hamiltonian (2.21):

Wiea(0) = 3 (Z Saq (2,9) oy —a(ex)) : (2.39)

zeAe \y€EA:
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The idea is to approximate the nearest-neighbour part of the Hamiltonian H}" (o) by
N

Y HY" (0;), where o; is the projection of o over A; and HR" is considered with periodic
i=1
boundary conditions, and the quadratic term Wy, (o) by

Wiero (o) =3 (Z Ia. ()0, —a) . (2.40)

z€Ne \YEA:

The Hamiltonian Hy_. . (o) will then be approximated by

N
cmghos Y e -0 H 0 i 0] (2.41)
=1

5 ’AE, O'EQAE
m(o)=[u] |Ae]

To approximate the nearest-neighbour part, observe that, as there are dL¢"'N interactions

of the nearest-neighbour type between the boxes A1, ..., Ay, we have
N
Hy™ (o) = > HR (0:) + O (L7 [A]). (2.42)
i=1

To approximate the quadratic part, we need to control the difference

Z (Z JAs,v(xvy)Uy - 0‘) - (Z j[\g,’y<'r7y)0-y —04) . (2.43)

x€A yEAL IS

For each z € A, both arguments > Ja_, (z,y) o, —h and > Ju. (z,y) o, — h are uniformly
?/GAE yEAg
bounded in ¢, v and 0. As the function t — ¢? restricted to bounded sets is Lipschitz, it is

enough to control the difference between these arguments. Applying this argument to (2.43), we

get that it is enough to dominate

> Taen @y) = Jacs (2,9)] (2.44)

€A, yEAs

Fori,je{l,...,N}, let

Ineq (4,5) = sup Iy (r,1") (2.45)
reBi,r’ij
and
oo (i) = _jint o (7). (2.16)

As before, let Jy,  (2,y) i= Ja. 5 (i, 7) and Jy_, (x,y) == J4_, (i, 5) for x € A; and y € A;.
Under these definitions, (2.44) is controlled by

LS (Taen (5) = s () - (2.47)

i=1j=1
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Suppose, without loss of generality, that B; is the square containing the origin 0 = (0,...,0).

By rotational invariance, the later expression coincides with
N —
LN (Taeq (1,0) = Ja, (1,1)) (2.48)
i=1

For i € {1,...,n}, the subset B; — By := {5_1m :r € By,r' € Bl} is the union of the 24

cubes whose d.-1p-topological closures intersect By, where d.-1p is the distance defined on e='T
by d.-1 (r, 1) := dr (er,er’). (The difference B; — By should not be confused with the standard
set difference, the one that would have been denoted by B; \ B;.) Under this definition, identity

Ta o~ (1,3) — Iy - (1,7) =~ su r)—  inf r 2.49
v )= Lo ) =2 s 6=t o0) 2.49)
holds. Then (2.48) can be written as
su r)—  inf r)]. 2.50
i= 1 <T€7(B¢pB1)¢( ) TGV(Bi_Bl)¢< )> ( )
Let
al d
s ty= e (s o= e o0). 2.51)
i=1 rey(Bi—Bi) r&y(Bi—B)

As |v(B; — By)| = (2L’y)d and as ¢ has compact support, s; (¢,7, L) is (dominated by) the sum
of 2¢ differences between upper and lower Darboux sums associated to ¢ (when ¢ is small

enough), so lim lim s; (&,7, L) = 0. Rounding out,
¥—0 e—0

Z (Z ‘]Asﬂ(x7y)ay_h) = Z (Z j/\sﬂ(x7y)ay_h) + 51 (5777L)O(|A6|)‘

x€EA: \yEAL z€EA: \yEAL
(2.52)
From (2.42) and (2.52), we get
Fr. o ([t])a,) =€+ 0 (L71) 451 (2,7, L) O (1) (2.53)
As L can be chosen as large as desired, we reduced the problem to proving that
2
limy lim & = f5(u) + (m — h)". (2.54)
We finally observe that, after defining
Ia.r (i,5) o= Lr. (i, 7) (2.55)
¢ can be written as
2
1 o BHRN () d Y
_B|A|10g Z H Z ' exp —ﬁLZ ZAHZJ Uj —
€ U gy uNEVLd i=1 O'.LEQA i=1 \j=1
5 ZZ L Wi= |A | m(ai)zui
(2.56)
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As the convergence to the free energy fz is uniform (Theorem 2.3.1), the sum Z ¢ TPHR (@)

UiEQAi
m(o;)=u;
can be approximated by e~ PLU5(w) with error eﬁLdS?(L), So (L) vanishing as L goes to inﬁnity, SO
N
_ nn . N
the error while approximating the product [ > e BHXI (00 ig (eﬁLd‘”(L)) = efltels2(D). thig
=1 UiGQAi

m(o;)=u;

error vanishes after taking log, dividing by |A.| and choosing L large. Finally, we reduced the

problem to establishing the convergence of

2
1 N ] N [N
— log Z He_BL To(i) ) exp —5Ldz Z A3, U —
/8 |A€| UL, UNEV g i=1 i=1 \j=1
& iy wi=lul
(2.57)
e Step 3: upper and lower bounds. Let G : [—1, 1]N — R be the function defined by
2
1Y 1 Yoo
G (u1,...,uy) = szﬁ (wi) + Nz (Z ey (85 3)us — CY) : (2.58)
i=1 i=1 \j=1

Lemma 2.5.4. For every (uq,...,uy) € [—1,1

2

G (uy,...,uyN >f/3< Zu,) (1172:1%_0() : (2.59)

Proof of Lemma 2.5.4. From the convexity of fz, we have

1 X 1 Y
N; 5(ui) > fs (N;u> (2.60)

N
To deal with the other term, the notation C; := > Ji, (7, /)u; will be helpful. As

J=1
N

S ., (i,§) = 1 for every j (and e small enough),
i=1

DoCi=3up D Iny (i) =D uy. (2.61)

1 N N 2 1 1 N 2 1 N 2
> D Jasy GGy — :z:(C’i—a)Qz(z:CZ 04) —(Zuz—a>
N =1 \y=1 ! ’ N =1 N =1 N =1
(2.62)
The proof finishes after putting (2.60) and (2.62) together. O
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We start by showing that

liminf lim Fi. 0 ([u])y,) > f5 () + (= a)?. (2.63)

¥—0 =0

From step 2, it is enough to prove that expression (2.57) satisfies this inequality.
As the number of elements of the sum appearing in expression (2.57) is O (|A.|), that

vanishes after taking logarithm and dividing by (3 |A.|, the problem is reduced to controlling

min ]1[121 fs () + ]17 > (Z Jao (8, J)uj — a) : (2.64)

i=1 \j=1

From Lemma 2.5.4, expression (2.64) is bounded from below by

s ([U]|AE|> + (Juljp, — a)?, (2.65)

that converges to fs (u) + (u — a)®, and the lower bound (2.63) follows.
To show that

limsup lim Fy, o (Tu])y,) < f5 (u) + (u—a)?, (2.66)

~—0 e—0

we again control (2.57) but, instead of substituting the sum over wy, ..., uy with the supremum
times the cardinality of the sum, we choose particular values 1y, ..., iy. The idea is that these

values should be as close to [u],_| as possible and satisfy

;Zm:mM. (2.67)

s
Il
—

Let v~ and u™ be the best possible approximations of [u] A, 1D Va4 respectively from below and

from above:

u” i=max {t € Vpa:t <u} ut i=min{t € Va1t > u}. (2.68)
Notice that ut —u™ < % We define
utifi=1
. wif i € {2,..., N =1} and 27 005 @5 > [u] )y | (2.69)

uwtifie{2,...,N—1}and A Y02 45 < [ul|a,
Nluljy, =25 a4y if i = N

Notice that identity (2.67) is satisfied by construction. Notice also that

i; — [u] M <2L-% Vie{l,.. N} (2.70)
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As u € (—1,1), we can chose [a,b] C (—1,1) such that [u],_| € [a,] and @; € [a, D] for every
i, every € small enough and every L large enough. As f5 is bounded in [a,b] (Theorem 2.3.1)
and the function t — ¢? is Lipschitz over bounded sets, it follows that

G iy, i) =G ([ul ), [uly,) + O (L77). (2.71)

The error term O(L~?) is not a problem because L can be chosen arbitrarily large. By using
again the fact that Z jAs=’Y( j,i) = 1 for every j, it follows that

lim G (Tl jpsps o Tulay) = Falw) + (u = ). (2.72)
This concludes the proof of step 3 and, with it, the proof of the lemma. O

Proof of Theorem 2.3.1. We recall the definitions of [ =277, &2, and {A;,..., A,}. We add the
following ones: for every i € {1,...,n}, let B; :== e 1A; and A; := B; N Z% be the magnified and
discrete versions of A;, respectively. (This notation overlaps the one used while making the
microscopic analysis in the proof of the previous lemma.) As before, for o € Q,_, 0; denotes its
projection over A;.

The first step is to establish the approximation

Z e_BHAS,'y,a(U) ~ Z e_ﬁHAE:'Yval (0—)7 (273)

o€Q, 1(u) o€ 1(u)
where g is the coarse-grained image of a defined in subsection 2.5. As « is a continuous

function defined on a compact set, it is uniformly continuous and then

lim [Jo — oy, = 0. (2.74)
=0

Then, as the function ¢ ~ ¢? is Lipschitz on bounded sets,
Hy. a(0) = Ha, 5,0 (0) + O (JAc]) s (1) (2.75)
with s (I) vanishing as [ goes to zero. It follows that

Z e_BHAE,'y,a(U) — 60(|A5|)5(l) Z e_BHAE,'y,al (U) (276)

o€Qp, 1(u) o€Qp, 1(u)

The error vanishes after taking log, dividing by |A.| and taking %ir%.
%

The next step is to stablish the approximation

T e Mena@ xS [[e e, (2.77)

o€Qp, 1(u) o€Qp, (u) i=1

where o; 1= ][ « (as defined in subsection 2.5) and Ha, +.q, is defined with periodic boundary
Aj

conditions. As there are O (5_d+1l_1) interactions of the nearest-neighbour type between the

boxes A1, ..., A,, we have
Hy? (o) = HAM (03) + O (77171 . (2.78)
=1
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(As before, HX" (0;) takes into consideration the periodic boundary conditions.) As there are
O (z—:’d“v’ll’l) interactions between the boxes A1, ..., A, in the quadratic part of the

Hamiltonian, we have

) (Z Inq (T y)oy — (ex)) = (2.79)

x€EA: \YEAL

2
S D Jan(my)oy —ai(ex) | +0 (6’”17’1[’1) : (2.80)
i=1 zeA; \yeA;

In the later expression, Ja, , (x,y) is considered with periodic boundary conditions. From the

previous observations, we have

Z efﬁHAg,w,a(U) _ 6O(z—:—‘i“l—l)JrO(e—‘“rlrll—l) Z ﬁ e*BHAi,w,ai(Ui) (2.81)

o€Qy, 1(u) o€Q, 1(u) =1

for every o € Q4,. The error vanishes when we take logarithm, divide by the volume and send ¢
to zero.

Approximations (2.73) and (2.77) imply approximation

N
Z e PHA7,0(9) oy Z He_BHAi,'y,al(Ui) _ H Z e PHA; ~.0;(0i) (2.82)

o€Qp, 1(u) o€Qp, i(u) =1 i=1 o€Qp,
m(o)=u;

For every i € {1,...,n}, the Hamiltonian Hj, ., is of the type studied in the previous
lemma. Take log, divide by —f|A¢| and take lim lim to obtain

¥—0 e—0
al 2
> Al [fﬂ (us) + (wi — ) } : (2.83)
i=1
Finally, take %ir% to obtain / { fs (u) + (u— a)ﬂ. It completes the proof. ]
- T

Once the free energy is well defined, we are ready to define the pressure.

Theorem 2.5.5 (Pressure).

- 1 :
Plyli% ll_r% A log Za, v = e in F, (u). (2.84)

This limit is the pressure associated to our model and is denoted by P («).

Proof. We first treat the constant case and follow with the general one.

Case a constant. We have to prove that

lim lim B1A]

log Y e Hrcnal®) = — min {fg(u) + (u— a)z} : (2.85)

oE0n. ue(—1,1)
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Observation 2.5.6. We give a similar discussion to the one given at the end of Theorem 2.5.5.
As fg is conver and (o — u)? is strictly conver, fg(u) + (o —u)? is strictly convew.

Differentiating fz(u) + (o — u)* and equating to zero, we obtain
fh () +u = o (2.86)

As fg is conver and its derivative fj is increasing and continuous in (—1,1), %fé (u) +u s
strictly increasing; this fact joint with the continuity of f§ and identities lim,  ; fj (u) = —o0
and limyq f3 (u) = oo imply there is only one solution to equation (2.86). We conclude that the
minimum appearing in (2.85) is achieved in only one point i (a). Reciprocally, to every

u € (—1,1) we associate the solution to equation (2.86) & (u) := 3[4 (u) +u. We have
established a one-to-one correspondence between (—1,1) and R that, in contrast to the

nearest-neighbour case, holds for every value of the inverse temperature (3.

We use the same definitions than in the proof of Lemma 2.5.2: L =2 N := (5L)_d,
{Bi,...,By} and {Aq,..., Ay}

The existence of the limit ll_I)I(l) with fixed v can be proved with the same sub-additivity
argument appearing at the beginning of sub-section 2.8 (this case is even easier because a
continuity argument is not necessary).

As in step 2 (of the proof of Lemma 2.5.2), we can approximate the left-hand side of (2.85)

N N [N 2
§ = FIA. log (H e_BLde(Ui)> exp § —ALY (Z Ine (8, J)u; — a) . (2.87)

UL yeeny UNEVLd =1 =1 \y=1

We first prove that

limsup lim £ < —  min {fg(u) + (u — a)2} (= —fs(t (@) — (@ (a) — a)?). (2.88)

"/—)0 e ue{flzl}

Controlling the sum by its cardinality times the supremum as in step 3 (of the proof of Lemma

2.5.2), we simplify the problem to controlling

— min_ G(up,...,un). (2.89)

By Lemma 2.5.4, (2.89) is bounded from above by

1Y 1N 2

The later quantity is controlled by

— min {fs (u) + (u—0a)’}, (2.91)

ue[—1,1]

and the upper bound follows.
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By controlling the sum by only one of its summands, we have

£E<G(m,...,m)= fz(m)+ (m—a)’ (2.92)
for every m € Vya4. Since m is arbitrary and U Vpa is dense in [—1, 1], it follows that
L
BH 5> a(g) _ ] _ 2
llgljglf llg% 5|A | log Y e > = in {fg(u) + (m—a) } : (2.93)

O'GQA

completing the proof of the homogeneous case.

e General case. We use the same notation than in the proof of Theorem 2.5.1: {B,..., B,} and
{Ay,...,A,}. Proceeding as in the mentioned proof, the problem is reduced to computing the
limit

lim lim lim log H S e PHA e o) = (2.94)
=0 v—=0 =0 ﬁ‘A‘ i=1 0,604,
1
,BHAI a; (04) —
%E%Zn'ly%l% Fiajlos 2 e (2.95)

UZEQA

1—0 1—0

—hmZ|A| min, {fﬁ() (u—a;)’} = —lim T[fﬁ(a(al))ﬂa(al)—alﬂ, (2.96)

where @ : R — (—1,1) is the bijective function defined in observation 2.5.6 and @ (a;) denotes a
composition of functions. In the second identity, we used the previous case. By dominated

convergence and the continuity of u, the later expression coincides with

- [ 113 @) + @) — o). (2.97)

Finally, as

fa(@(@) +(a(@)—a)’ == min {fa(w)+(u—a)}, (2.98)

we?(T,(—1,1))

(2.97) coincides with

~ gin /Tr ar [ o) + (u - a)?], (2.99)

we?(T,(—1,1))

and the result follows. O

2.6 Large deviation principle

For o € € (T,R), let I, : € (T,(—1,1)) — R be the rate functional defined by

Io() =0 |Fo(w) = min ()| (2.100)

The following large deviation result is an immediate corollary of theorems 2.5.1 and 2.5.5.
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CHAPTER 2. LARGE DEVIATIONS FOR INHOMOGENEOUS MAGNETIZATIONS

Theorem 2.6.1 (Large deviations).

1
lim ling lim A llogﬂAe'ya(QA i(u)) = —Io(u). (2.101)

As a byproduct of the large deviations, we can estimate the observed magnetization while
considering an external field o € € (T, R): at a region larger than v~! around any macroscopic
point r € T, we observe u (a (r)). This is the content of the next result. To state it precisely, we
need to introduce some background.

We consider a continuous function w : T — R that plays the role of a test function. Let
R > 77! be a mesoscopic parameter. More formally, we consider R : (0,1) — (0,00) as a

function of ~ satisfying hII(l) YR () = oo. For every x € A, we consider the ball B, centred at z
Yy

with radius R defined by
B, :={y €A :c"dy (ex,ey) < R}. (2.102)

Let X be the random variable defined by

> w (o). (2.103)

TEA,

X (o

|A |

X plays the role of the ergodic average of the function mp, weighted with w. The following

result is a “sort of” convergence in probability of X to / wu. We say “sort of” because the
T

probability space varies as € goes to zero.

Theorem 2.6.2. Let « € € (T,R) and let u:=u(a) € € (T, (—1,1)) its associated

magnetization. Then, for every d > 0,

iyt s ([

Proof. As usual, we proceed by cases.

> 5) = 0. (2.104)

Case o and w constant. As « is constant, so it is u. In this case, we have to prove that

g 5 o)

TEA:

> 5) =0, (2.105)

lim lim
~—0 e—0 HAe v

Actually, we will prove the stronger exponential bound

,UA€7’)/7()¢ (

that holds for € and « small enough.

_ 3
A > mp, (0) —u| > 5) < e OWIA:" (2.106)

xEA

To shorten notation, we write U, (o) for Y Ja_, (x,y) o,. The next step is to stablish the
yEA,:
approximation

> Ims, (o) —u| = |A|Z|Um o) —ul+s(1)0(1)+0 (v 'R, (2.107)

€A

IA!
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for s () vanishing as 7 goes to zero. We first observe that, for every = € A, (and & small

enough), we have

EA:E Taq(2,y) = y;g Vo(vy) = () =1+s(7), (2.108)
and then

me. () = le| yeszz v GZA I, (z,y) — 3(7)] o, — (2.109)

‘ |y€ZszeZAg Taq (2:9) 0y +5(7) O (1). (2.110)

For the first adding of the later expression, we have

ZZJAE’YZy ’Bl

S 3 Jnn ) o, +0 (IR, (2.111)

‘B ‘yeBz z€A. YEBz 2€By
Indeed,
S>> Ias(2y) oy B SN a2y (2.112)
| | yEBz zEA. | | yEBz z€B,
1
|B | Z Z JAEN (Z,y) O'y = | | Z Z JAE,’y (Z7y) Uy: (2113)

YEBy 2€8(Bayy~1) Tl 2€0(Bz v~ 1) y€EBy

where 9 (B,,7™!) is the set containing the vertices of A, \ B, whose distance to B, is less than

7L As Y a4 (2,y) 0y is O (1), the right-hand side of (2.113) is O (y"'R™!), implying
YyEBy

(2.111). Similarly,

> Jaa(zy o, +0 (R, (2.114)

YyEBz z€B,

ZUZU’Y |B|

yEB,

\B|

Putting (2.111) and (2.114) together, we obtain

Z Z JAE’Y < y |B | Z Uy7 < 71R71)' (2'115)

|B | yEBz zEA, y€By
Replacing (2.115) in (2.110), we obtain
mp, ( ’B | > Uy (o) +s()OM)+0 ('R, (2.116)

yEB,

(2.107) follows immediately from the later expression.

From (2.107), taking ~ small enough, we get

)
AL y,a (|A | Z |mp, (0) —u| > 5) < HA vy« (\A | Z |Uspy (0) — u| > 2) ) (2.117)

TEA, €A,
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As ¢ is arbitrary, the problem is reduced to controlling

LAz .o (|A | > NUsy (0) —u| > 5) : (2.118)

rEAL

From inequality,

GRS}

IA!

it follows that

HAe v, (|A |x§5 Uz (0) = uf > 5) < (2.120)
HA. ~.a <]A | Hzx e Ac 1 |Upy (0) —ul >6/2} > O (1) 5) . (2.121)

We reduced the problem to the following lemma, whose proof can be found in the appendix.

Lemma 2.6.3. For every c,6 > 0,
fino o ({2 € Ae: [Upy — u| > 6} > ¢AL]) < e MAelFe?/2 (2.122)

for v and ¢ small enough.

e General case. Let n, {By,...,B,} and {Aq,...,A,} as in the general cases of the proof of
theorems 2.3.1 and 2.5.5.

As u and w are uniformly continuous,

|A|Zm3x /Tuou

€A,

< (2.123)

+s(0) (2.124)

1
A Z mp,w; (ex) — /ulwl
|Ac] T

€ IEAE

with %in& s(l) =0. For z € A;, let mp, be the magnetization considering periodic boundary
—

conditions in A;. As mp, coincides with mp, if the distance between x and A, \ A; is larger
than R, (2.125) is controlled by

1
> mp,w (ex) — / ww| + O (5ld’1R> +s(1). (2.125)
‘AE‘ €A T
Also
1& 1 1 &
(2125) = |- Mp,wi — — > wwi| + O (el''R) + 5 (1) < (2.126)
n = A zEA; ni=
1 &1 . 1
[l ~ 3 |27 2 m. — i +O (e17'R) +s(1). (2.127)
n i A 2R,
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As ¢ is arbitrary, we reduced the problem to proving that

lim lim iz, .0 (1 > > mp, -y

v—0 e—0 n i1 veC.

1
Al

> 5) . (2.128)

To make the notations more compact, let

Zme—ui .

fDEAi

1
| A

Y; = (2.129)

We then need to control
- (if}y > 5> | (2.130)
We notice that
L3vi< 2ol

so (2.130) is bounded by

1 4]
Pr. v | — {1 Y >0/2} > ) : (2.132)
! (” 49/l
As ¢ is arbitrary, it is enough to control
1
fircona (100 Y > 0| > ) (2.133)
n
with ¢ := .
8119l

In order to apply the result given in the first step (the case o and w constant), we substitute
a by oy, neglect the interactions between the boxes Ay, ..., A, and put periodic boundary

conditions in each of them; as a consequence, we obtain a new probability jix_. ., that satisfies
PA. ~ya(B) < 6|A5|O(l)+o(6*d+ll*1)+O(€*d+1l*17*1)ﬂ/\g7%0” (B) (2.134)

for every event B. Let [¢N] be the roof of ¢N: [¢N] :=min{i € N:i > ¢N}. Under these

conventions, for v small enough,

N ) [eN]

A o ({70 Y >0} >¢eN) < ((CNW H fin e (Y >0) < €N50(1)€—|As|53o(1); (2.135)
=1

in the last inequality, we used (2.106) (here is where we need 7 to be small enough) and
Stirling’s formula. From (2.134) and (2.135), we obtain

i (152 Yi> 8} > ¢) < (2.136)
exp {[A|O(1) + O™ 17 + O(=~ 1171971 + N6O (1) — |A] 6°0 (1)} . (2.137)
For [ and 7 small enough, the coefficient of e~ inside the exponential is negative and thus
1N
g% T (N ; Y; > 5/2) =0, (2.138)
completing the proof. n
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2.7 Equivalence of ensembles
The following result is the analogue to Theorem 2.3.3.
Theorem 2.7.1 (Equivalence of ensembles). For a € € (T,R), identity
P(a) = _F, 2.139
(@) = max  —Fa(u) (2.139)

holds. Conversely, for u e € (T, (—1,1)),

[0 = e {-pi@) = [-ap}, 2.140)

Proof. We have already proved (2.139) in Theorem 2.5.5, so we just need to prove (2.140). As in
the proof of Theorem 2.5.5, (2.139) can be read as

P(a)=—F, (u(a)). (2.141)
Given u € ¥ (T, (—1,1)) and taking o = & (u), we get
P (&(u)) = —F&(u) (u) (2.142)

From the definition of Fj(,), it follows that

/T folw) = —P (h(w)) - /T = au)]. (2.143)
It remains to show that
/ng(u) > —/T(u —a)? — P(a) (2.144)

for every aw € € (T, (—1,1)). Observe that

—B[HR™(0)+Wa, ,0(0)]

Z eiﬁH;\L:(g) — ZAE,’y,a Z € Z eﬁWAE,,YYa(O') S (2145)
o€Qp, 1(u) o€, 4 (u) Acyy,a
Ihep Yy, €PMheral@) (2.146)
UGQAE,Z(U)

with Wj,_ 5o defined as in (2.39). With computations identical to the ones appearing in the
proof of Theorem 2.5.1, it follows that

. . H"” (o) _

%g%gi% 5|A |10gU€QEl e /fg (2.147)
BWae v,alo) — _a)?

m%%mﬁigf ﬁ“ﬁ- (2.148)

Dividing expression 2.145 by —f|A.|, taking limit and using the later identities, we obtain the
desired inequality (2.144), and the result follows. O
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2.8 Appendix

Proof of the uniform convergence in Theorem 2.3.1

During this sub-section, we use the notation A, = A, (recalling ¢ is of the form 277). Let
{AQJ, . ,Aq72d} be the natural partition of A,y into translations of A,. For o € 2y, let o; be
its projection over A, ;.

For u € Vip,, let

a, = Y e RO, (2.149)
UEQAq
m(o)=u

As, for o € Q,_,,, we have m(o) = u if m(o;) = u for every i, and as there are O (5_d+1)

q+1)

nearest-neighbour interactions between the boxes Ay, ..., A4,
2d
O(e=d+1 —BHY™ (01) _  O(e=d+1) od
ao > S S O e R = 0l ) 2 (2.150)
o1 eQAq,l Ood GQqud =1
m(o1)=u

m(02d>:u

Taking logarithm and dividing by —f |A 41|, we get

frgirs (W) < fagp (W) + 0 (). (2.151)

For a configuration o € Q. ,, let N* (0) := [{x € Ag41 : 0, = 1} be its associated number
of pluses. There is a one-to-one correspondence between V}y ., and the set [0, [Ag1|]] NZ
containing all the possible number of pluses. Let v and v’ be consecutive elements of Vi, |

such that u < o/, and let i and 7 + 1 be respectively their associated number of pluses. Then

D S = 1 DT Dl B CMAMCAE:)
o€, 1, o€,y Uns o€Qp, U’EQAQ_H
m(o)=u’ N+ (o)=i+1 Nt(o)=i  o'>0

N+t (o")=i+1

where ¢’ > o means o), > o, for every x € A 4. In the later sum, the configurations o’ are

perturbations in one site of the configurations o. As every site has 2¢ neighbours,

(o) > Hy" (o) — 24F (2.153)

Agt1 a+1

Replacing in (2.152), using the fact that [{o’ : 0’ > 0, NT (¢/) =i + 1}| = |Ay+1| — ¢ and the

I
bound % < |Ags1l], we get

> ¢ PR ) < [Ager| € > ¢ PR ) (2.154)
o—eQAq+1 O'EQAq+1
m(o)=u’ m(o)=u

Taking logarithm and dividing by —f |Ag4+1], we get

, log A
Frvons (W) — faors () <O (fA’ +q1+|1|> | (2.155)
q
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The same bound for fa,,, s (v') = fa,,, 5 (u) can be obtained by replacing the number of pluses
N7 by the number of minuses N~. Then

=0 <bg’A‘1“‘> : (2.156)
’AqH’

For u € V| |, let u_ and u, be the elements of V|5, that best approximates u respectively

’f/\q-u,ﬁ (U,) - qu+17,3 (U,)

from below and from above:
u_ := max {u’ €Vip, v < u} U4 i= min {u’ EVip, v > u} (2.157)

For u € Vip,,,| \ Vja,|, using (2.156) repeatedly, we get

log |A
Fran (0 % i () A o ) +0 (SR, 2.158)
q

where a A b stands for min {a,b}. From (2.151), the later expression is bounded from above by

log |Aq+1 ’)
‘Aq+1|

log |Aq+1 ’

ol < ot +ote+0

Sags (W) A fa,p(us) +0(e) +O (
(2.159)

log ’Aq—i-l |

|Ag1]

Let a, ::O(€)+O<
the previous paragraph and the fact that f,, s is defined by linear interpolation, we get

) and observe that a := Z a; is finite. From the estimates of

Fagins (W) < fags (W) + aq (2.160)
qg—1
for every u € [—1,1] and every q. Let g4 := fa, 5 — Z a;. Inequality (2.160) implies
i=0
9g+1(u) < gq(u) (2.161)

for every u € [—1,1]. The point-wise convergence of the free energy given in Theorem 2.3.1
guarantees the point-wise convergence of (gq)q to fs —a. Then (g,), is a sequence of continuous
functions defined on a compact set that converges point-wise and in a monotonic way to fz — a.
Under these hypothesis, Dini’s theorem asserts that the convergence is uniform; we deduce the

uniform convergence of fx, g to fs.

Proof of Lemma 2.5.3

We consider identity (2.152) with H" replaced by Hy, . While comparing Hy, +,q () With
Hy, .o (0'), the nearest-neighbour part of the Hamiltonian can be treated as in sub-section 2.8.
To treat the quadratic part, observe that, as every vertex interacts with O (y~1) vertices, we

have

Hpya(0) 2 Haya (0) = O (y71) (2.162)

We can now repeat the arguments of sub-section 2.8 to conclude.
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Proof of Lemma 2.6.3

It is convenient to introduce a notation for the random variable “density of sites with the wrong

magnetization”: for § > 0, let

D (A.,9) = |A | Hz e A Uy —u| > 6} (2.163)
Under this definition, the statement of the lemma is the following: for u € (—1,1) and
a:=a(u),

Bac e (D (Az, 8) > ¢) < emIAlPe/2, (2.164)

We proceed by cases.
o Case 1: u € [—mg, mg|. Inequality

Hy 0 (0) = HY! (0) + c|A| 67 (2.165)
holds for every o € (D (A.,d) > ¢); then

S e PHnenal®) < o BelhlS T B ), (2.166)
c€(D(Ae,8)>c¢) oEQ,

As u € [—=mg, mg|, Theorem 2.3.3 tells us pg (0) = fz (u); then identity

3 o PHRT(0) _ ,=BIA|[f5(w)+s1(e)] (2.167)

UEQAE
holds for s; (¢) vanishing as € goes to zero. Putting (2.166) and (2.167) together, we obtain

T e el < o~ BINN[ed2+ 5 (w)+s1(e)] (2.168)
o€(D(Ae,0)>c)

As f5(u) = 0 in this case, we have a = v and P (o) = —fz (u) (see observation 2.5.6); then
Zn o = e PRIl 02 )] (2.169)
for s, (g,0) vanishing as € and 7 go to zero. Dividing (2.168) by (2.169), we obtain
fir e (D (Ae,8) > ¢) < e Pl tar@)=s2(e)] (2.170)

The proof of case 1 finishes after observing that the later expression is bounded by e~#lA<le8*/2 jf
¢ and vy are small enough.

e Case 2: u ¢ [—mg, mg|. Subtracting and adding v and expanding, we get
Hp o (0) = (2.171)
HY" (o) 4+ > [Usy (0) — ul* + 2 (u — a) Y Upy (o) —2u(u—a) A + (u— o)’ A,

€A, €A,

(2.172)
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As the constants are irrelevant in the computation of probabilities, the probability associated to

the Hamiltonian

Hyono(0) = H" (0)+ Y. Uy (0) —u* +2(uw—a) Y. U, (0) (2.173)

€A, €A

is also A, 4«

Z e_BHAS,'y,a(O')
c€(D(Ag,8)>c)

fir. e (D (e, 8) > ¢) = 0 . (2.174)

(Z. . is the grand canonical partition function associated to the Hamiltonian Hy_ ., ,.)

As u and « satisfy

f5 () =-2(u—aq), (2.175)

the value h := —2 (u — a) present in Hj_ ., (o) is the value of the external field associated to u

in the nearest-neighbour case. As in (2.108),

D Iny (@y) =D () = /Rd ¢+s(y)=1+s(7) (2.176)

e yEAL

for every = € A, and e small enough, where s () vanishes as v goes to zero, implying

ZU%’Y ZZJAsvxy ZUxZJAev$y ZUI+3 O (1) Al

yEA: yEA: zEAL TEA, yEA TEA
(2.177)
We can replace in (2.173) to obtain
Hi, o (0) = Hy" (0) +5(7) O (1) [Ac] + 32 (Uay (0) — ). (2.178)
TEA:
To control the numerator of the right-hand side of (2.174), we observe that, for
o€ (D (A;,0) > ¢), we have
> (Ueny (0) —u)® > e8% A, (2.179)
€A
implying
T e Prenal0) < o BB HOM() § AR, (2.180)
o€(D(Ac,8)>c) o€Qn,
To control the denominator, observe that, for ¢/, > 0 and o € (D (A, () < ),
ST Usry (0) =) <O (1) & A + ¢ AL, (2.181)

€A
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implying

Ihma> 3 e Prnal@) > o HAAOMEMI N TBHRLE) (9 189)

oc€(D(A:,¢)<c) c€(D(Ae,0)<)
Replacing in (2.174), we get
e~ BIA| (e8> +0(1)s()-0(1)c'~¢?)
HRT, (D (A, Q) < )

O (1)s(y) + O (1) + ¢ can be chosen to be as small as desired as ¢’ and ¢ are arbitrary. We

pire v (D (Ae; 0) > ¢) <

(2.183)

are done if we prove that the denominator can be chosen to be as close to one as desired; that is

the content of the following lemma.

Lemma 2.8.1. Let u € [—1,1]\ [=mg, mg| and h := f} (u) the associated value of the external
field for the nearest-neighbour case (as in the analysis after Theorem 2.3.8). Then

lim lim p}", (D (A, ) >¢) =0 (2.184)

v—0 e—0

for every ¢, > 0.

Proof of Lemma 2.8.1. For o € (D (A, () > ), we have

1 /
o > |Uesy (0) —u| > ¢ (2.185)
€l zeA.
then
1 nn
By, (ll\s! ; Vs — u|> > cGuit (D (e, ¢) > ). (2.186)

By rotational invariance, the left-hand side of (2.186) coincides with E,nn (|Up, — ul). As the
random variable Uy, — u| depends on a finite number of coordinates, the later expectation
converges to E,nn (|Uy, — ul) as € goes to zero (up" as in section 2.3). Then we are done if we

prove that
Lii% Epn (|Uoy — ul) = 0. (2.187)

In this particular case in which sup ||Up, — u|_ < oo, the concerned convergence in mean
7€(0,1)
is implied by the following convergence in probability:

lim 4" (|Uo,, — u| > 6) =0 (2.188)

for every ¢ > 0.

Let L be a microscopic parameter of the form 2™, J, : RY x R? — R be the function defined
by J, (r,7") :=~% (v (r — ")) (J, is the infinite-volume version of J,_ ), S, be the smallest
square of the form [—aL,aL)?, a € N, containing the support of .J, (0,-), {Bi,..., By} be the
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natural partition of S, into boxes of side L and {Ay,..., Ay} be their discrete versions,

assuming A; is the one that contains the origin. For ¢,j € {1,... N}, let

J, (i, f) = Ld]é N d(r,r') J, (r,7"). (2.189)

N

As in (2.56), the approximation Uy, = Y _ J, (1,4) ma, + s (7, L) holds, with s (v, L) vanishing
i=1

as v goes to zero for every fixed L . As ¢ is arbitrary, the problem is reduced to proving that

N
’lg(lj y (; J, (1,1) jma, —u| > 5) = 0. (2.190)

1
For ¢,c > 0 and o € Qgzq such that N|{z €{l,...,N}:|ma, (0) —ul > (}| < ¢, we have

N
ZJM 1,7) |ma, (0) —u| < cO (1) +C. (2.191)
Take ( =0/2 and ¢ = 0 to obtain the inclusio
= n 6—20(1) in inclusion
g 1
(Z Ia. (1,0) [ma, —u| > 5) C (N Hie{l,...,N}:|ma, —u| > (} > c). (2.192)
i=1

The problem is then reduced to proving that the convergence

: nn 1 ol
%1_% iy (N;lﬂmAi —ul > (} > c) =0 (2.193)

holds for every ¢,c > 0.
Take L sufficiently large such that

pn (Ima, —ul >¢) <c (2.194)

(the discussion at the end of section 2.3 guarantees this choice of L is possible). From the
multidimensional ergodic theorem (theorem 14.A8 of [Geoll]) applied to the function

1{|ma, —u| > ¢}, we obtain the following p}"-almost-surely convergence:

%%*Zl{\ma —ul > ¢ =" (Imay, —ul > (). (2.195)
Finally, (2.194) and (2.195) imply (2.193), completing the proof. O

2.9 Descripciéon del capitulo

11
Para describir el fenémeno macroscopico, se introduce el toro d-dimensional T := {—2, 2) . Las

configuraciones microscépicas viven en una discretizacion de dicho toro. Para definirla, se
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introduce un parametro pequeno ¢ de la forma 279, con ¢ € N. De esta manera, las
configuraciones son elementos del espacio producto o € {—1, 1}AE, con A, := (¢7'T) N Z4.

El Hamiltoniano asociado a nuestro sistema esta conformado por dos partes. La primera es
la correspondiente a las interacciones ferromagnéticas de vecinos proximos con periodicidad:

HY" (o) :== — > 0.0y (2.196)

z,yEAe
x,y vecinos proximos

La segunda es del tipo mesoscopica (interaccién de alcance intermedio), y serd la que tendra en
cuenta el campo externo. Para definirla, se introduce un parametro v > 0 y un campo externo
no-homogéneo o : T — R. El pardmetro v da lugar a un promedio de rango v~ ': Av, (o, z)
representa el promedio de la configuracion o € {—1, 1}A5 alrededor de una bola de radio y~!
centrada en el vértice x € A.. Finalmente, el Hamiltoniano queda definido como
Hp.yo (o) = HY" (0) + Y [Av, (0,2) — (ex)]?, (2.197)
z€A.

y su factor de Boltzmann asociado como
e PHr 7 alo) (2.198)

donde 3 > 0 es la temperatura inversa.

La primera parte de la seccién 2.5 consiste en definir la manera adecuada de fijar un perfil
magnético no homogéneo de manera candnica. Para ello, es necesario introducir un parametro
intermedio [ de la forma 277, con p € N. Este parametro da lugar a una particiéon de T en N
cubos, a los que denominamos {A4;, ..., Ay}. Sean {Ay,..., Ay} sus correspondientes versiones
microscépicas. Dado un perfil magnético no-homogéneo u : T — (—1, 1), definimos las

configuraciones fijas a u de manera candnica a escala [ como

Qi (u) = {0 e {—1,1}" :myp, (0) = {][ dr u(r)—‘ para todo z} ) (2.199)
A;

donde { ][ dr u(r)—‘ es un elemento aproximante de ][ dru(r) en la imagen de ma,. Una vez
Ai Ai

definido cémo fijar un perfil magnético de manera candnica, se procede a demostrar el primer
resultado: la existencia de la energia libre. Mas precisamente, se demuestra que el limite

lim lim lim

1
- § —BHA, ~,a(0)
150 =0 ==0  []A,| log © (2.200)

O'GQAEYZ(’UJ)

existe y que converge a la integral

F, (u) = /Tdr [fg(u(r)) + (u(r) — oz(r))2] : (2.201)

donde f3 es la energia libre que se obtiene si solo se consideran interacciones de vecinos
proximos. El segundo resultado de esta secciéon es la existencia de la presiéon. Més precisamente,

demostramos que el limite

- 1
,IYEI%) lll}l’(l) m log ZAg’%a (2202)
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existe y coincide con

P(a)=— inf F, (u). (2.203)

u perfil magnético

Mas atin, demostramos que este infimo se alcanza en una funcién @, mostramos cémo encontrar
U a partir de «, y demostramos que existe una relacion biunivoca entre campos externos y
perfiles magnéticos.

En la seccién 2.6, como consecuencia de la existencia de la energia libre y la presion,

obtenemos el resultado de grandes desvios

1
lim lim lim ——log pa_ ~.a(Qa. (1)) = —1a(u), (2.204)

1—0 =0 =0 ]AE]

donde 1,, es el funcional de tasa definido como

I, (u) =B |F,(u) — min F, (v)]. (2.205)

v perfil magnético

Como consecuencia de este resultado, podemos estimar la magnetizacién observada en presencia
del campo externo a. Para ello, consideramos un pardmetro R > v~ ! y definimos el promedio

ergodico pesado

X (0) =

> w(ex)msg, (0), (2.206)

donde w : T — R es una funcién test y B, es la bola de radio R centrada en € A.. El segundo

resultado de esta seccién es el siguiente limite en probabilidad: para todo § > 0,

lim lim pa, 4.0 <|X — / drw(r)u(r)| > 5) = 0. (2.207)
T

v—0 e—0

Para finalizar, en la seccién 2.7, establecemos el siguiente resultado de equivalencia de

arreglos, que establece una relacién entre la energia libre y la presion:

P(a) = max —F, (u) (2.208)

u perfil magnético

/T dr fo(u(r)) = max {—P(a)— /T dr (u(r)—a(r))2}. (2.200)

« campo externo
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Chapter 3
Conclusiones

A modo de conclusion, se presentan en este apartado las principales virtudes de nuestros
métodos, se las comparan con métodos existentes y se comentan aspectos de indole cualitativas
de los modelos considerados.

Con respecto al primer capitulo, la principal ventaja de nuestros métodos es la aplicacion en
grafos irregulares y, en particular, aleatorios. Ademas de los casos mencionados en la tesis, se
pueden considerar grafos que presentan no solo aleatoriedad en las aristas sino también
aleatoriedad en la distribucién espacial de sus vértices. Un ejemplo posible es en el que los
vértices se distribuyen de acuerdo a un proceso puntual de Poisson homogéneo y éstos se
vinculan entre si cuando estan a distancia menor que cierto radio R. Si R es suficientemente
grande, el grafo en cuestién tiene un tinico aglomerado infinito. Si adelgazamos las aristas
mediante percolacion Bernoulli con parametro suficientemente bajo, todos los aglomerados
aleatorios resultantes son finitos; es entonces aplicable el criterio de unicidad. Si, en cambio, las
aristas son adelgazadas tomando un parametro cercano a 1, el grafo resultante tiene una tnica
componente infinita; el criterio de no-unicidad es el que nos da informacién en este caso. La
propiedad abstracta que debe satisfacer el grafo es que tenga sentido adelgazar las aristas de
forma independiente. Nuestro método abarca entonces una gran familia de grafos en donde el
problema no se sabia resolver. Cabe hacer una comparacion con el método de Pirogov-Sinai, el
cual da un criterio de unicidad en grafos regulares pero no requiere la simetria en el conjuntos
de espines que nosotros necesitamos; la generalidad que ganamos en la estructura del grafo, la
perdemos en la estructura del conjunto de espines.

En relacion al segundo capitulo, es remarcable la aparicién del término cuadratico en la
energia libre que surge a partir de las interacciones mesoscépicas o coeficiente cuadratico de
Kac. Desde el punto de vista cualitativo, este hecho implica que la energia libre es estrictamente
convexa, es decir, que no se produce el fenémeno de co-existencia de fases presente en el modelo
de Ising ferromagnético de vecinos préximos a baja temperatura, lo cual es interesante desde el
punto de vista del modelado, ya que nos informa acerca de como fijar un perfil magnético
mediante un campo externo bajo la presencia de las mencionadas interacciones intermedias o

mesoscopicas, y mas aun, nos da una receta explicita para hacerlo.
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