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Teoremas inversos discretos

Resumen

La presente tesis estudia dos instancias diferentes de teoremas inversos discretos,
la primera relacionada con cuestiones de convergencia en la teoŕıa ergódica y la
segunda con problemas de distribución local en la teoŕıa de números.

El primer resultado nos permite caracterizar aquellas funciones que pueden for-
mar promedios ergódicos no convencionales grandes en la norma L2. Discutimos
luego descomposiciones abstractas de estructura y aleatoriedad y las extendemos al
contexto de la teoŕıa ergódica, habilitando la posibilidad de estudiar varios niveles
de estructura en forma simultánea. Combinando estas herramientas con el teo-
rema inverso previamente mencionado y un proceso inductivo adecuado, logramos
demostrar que los promedios ergódicos polinomiales múltiples provenientes de la
acción de un grupo nilpotente de transformaciones que preservan la medida en un
espacio de probabilidad siempre convergen en norma. Esto responde una conjetura
de Bergelson y Leibman.

El segundo resultado concierne la distribución de conjuntos en clases residuales.
Introducimos los conceptos de conjuntos caracteŕısticos y genéricos, y los aplicamos
en el marco de la criba de Gallagher para mostrar que si un conjunto grande de
puntos enteros S ⊆ {1, . . . , N}d, d > 1, ocupa pocas clases residuales modulo p,
para muchos primos p, entonces debe estar esencialmente contenido en el conjunto
de soluciones de una ecuación polinomial de grado acotado. Esto resuelve una
pregunta de Helfgott y Venkatesh.

Palabras claves: Promedios ergódicos no convencionales, teoremas de descom-
posición, secuencias polinomiales, problema inverso de criba, cribas multidimen-
sionales.



Discrete inverse theorems

Abstract

The present thesis studies two different instances of discrete inverse theorems,
the first one pertaining convergence issues in ergodic theory and the second one
problems of local distribution in number theory.

The first result allows us to characterize those functions that can form noncon-
ventional ergodic averages with large L2 norm. We then discuss abstract structure-
randomness decompositions and extend them to the context of ergodic theory, by
allowing for different levels of structure to be handled simultaneously. Combining
these tools with the aforementioned inverse theorem and an adequate induction
procedure, we are able to show that multiple polynomial ergodic averages arising
from nilpotent groups of measure preserving transformations of a probability space
always converge in norm. This answers a conjecture of Bergelson and Leibman.

The second result concerns the distribution of sets in residue classes. We intro-
duce the concepts of characteristic and generic sets, and apply them in the framework
of the larger sieve to show that if a big set of integer points S ⊆ {1, . . . , N}d, d > 1,
occupies few residue classes mod p, for many primes p, then it must essentially lie in
the solution set of some polynomial equation of low degree. This settles a question
of Helfgott and Venkatesh.

Keywords: Nonconventional ergodic averages, decomposition theorems, poly-
nomial sequences, inverse sieve problem, high dimensional sieves.
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Introducción

La presente tesis se concentra en el estudio de estructuras discretas en la teoŕıa
ergódica y la teoŕıa de números. Para explicar este concepto, es importante notar
que muchos de los problemas centrales en estas áreas buscan mostrar que los ob-
jetos de interés se comportan acorde a estimaciones probabiĺısticas y principios de
equidistribución. El objetivo entonces es entender en qué forma estos objetos pueden
agruparse dentro de estructuras discretas que conspiren contra tales heuŕısticas.

Este punto de vista lleva naturalmente a la consideración de teoremas inversos
discretos. El objetivo de estos teoremas inversos es proveer una caracterización de
aquellos elementos que no se comportan en forma aleatoria con respecto a nues-
tro problema de interés. Un tema notable que es recurrente en esta dirección, y
efectivamente aparecerá en esta tesis, es que tales obstrucciones a la aleatoriedad
frecuentemente manifiestan lo que puede llamarse ’rigidez algebraica’. Una primera
aproximación a este fenómeno es la afirmación de que únicamente elementos pres-
criptos a satisfacer fuertes restricciones algebraicas pueden comportarse en forma
anormal.

Por supuesto, un principio de esta generalidad es aplicable a una gran variedad de
problemas, pero muchas de sus manifestaciones pueden ser unificadas bajo el t́ıtulo
de Combinatoria Aritmética. Ejemplos notables de teoremas inversos discretos en
esta área incluyen teoremas de tipo Freiman (ver por ejemplo [6, 24, 29, 46] y la
exposición [21]), teoremas inversos para la norma de Gowers [8, 25, 50] y la teoŕıa
inversa de Littlewood-Offord [48, 49].

Esta tesis contiene dos nuevas instancias de teoremas inversos discretos, una
correspondiente a la teoŕıa ergódica y la segunda a la teoŕıa de números. En el
primer caso, caracterizamos aquellas funciones que dan lugar a promedios ergódicos
no convencionales con valores grandes en la norma L2. Luego aplicamos esta carac-
terización para establecer la convergencia de estos promedios. En el segundo caso,
caracterizamos aquellos conjuntos en dimensiones altas que están mal distribuidos
en clases residuales módulo p, para muchos primos p. Ambos resultados evidencian
el tipo de rigidez algebraica discutida con anterioridad. En el caso ergódico, estas
funciones especiales están restringidas por relaciones algebraicas entre las transfor-
maciones involucradas. En el segundo caso, los elementos del conjunto deben estar
esencialmente contenidos en el conjunto de soluciones de una ecuación polinomial
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de grado acotado.

A continuación proveemos una breve descripción de ambos resultados.

Promedios ergódicos no convencionales

Sea T : X → X una transformación que preserva la medida de un espacio de
probabilidad (X,Σ, µ). El teorema ergódico clásico de von Neumann nos dice que
los promedios ergódicos

1

N

N∑
n=1

f(T nx),

siempre convergen en L2(X), para toda elección de f ∈ L2(X). En mayor generali-
dad, supongamos que nos es dado un grupo G de transformaciones que preservan la
medida de (X,Σ, µ). ¿Podemos garantizar también que los promedios de la forma

1

N

N∑
n=1

f1

(
T
p1(n)
1 x

)
f2

(
T
p2(n)
2 x

)
. . . fl

(
T
pl(n)
l x

)
,

siempre convergerán en L2(X), para toda elección de T1, . . . , Tl ∈ G, f1, . . . , fl ∈
L∞(X) y polinomios a valores enteros p1(n), . . . , pl(n) : Z→ Z?

El estudio de estos promedios ergódicos ’no convencionales’ se origina con el
trabajo de Furstenberg sobre el teorema de Szemerédi [18] y efectivamente, existe un
gran número de trabajos sobre este problema, motivados en parte por las conexiones
con la combinatoria y la teoŕıa de números (ver §1.1). De todas formas, el problema
de convergencia se mantuvo abierto aún en el caso abeliano.

El objetivo del Caṕıtulo 1 es establecer la convergencia de estos promedios para
todo grupo nilpotente G. Precisamente, probamos el siguiente resultado.

Teorema ([53]). Sea G un grupo nilpotente de transformaciones que preservan la
medida de un espacio de probabilidad (X,X , µ). Entonces, para todo T1, . . . , Tl ∈ G,
los promedios

1

N

N∑
n=1

d∏
j=1

(
T
p1,j(n)
1 ◦ . . . ◦ T pl,j(n)

l

)
fj,

siempre convergen en L2(X,X , µ), para todo f1, . . . , fd ∈ L∞(X,X , µ) y todo con-
junto de polinomios a valores enteros pi,j.

Esto responde en forma afirmativa una conjetura de Bergelson y Leibman [7],
quienes también demostraron que incluso los promedios ergódicos no convencionales
más simples pueden divergir si G sólo se asume soluble.

Un papel importante en la demostración es jugado por un sencillo teorema in-
verso discreto (inspirado en [46]) que nos permite caracterizar aquellas funciones que
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pueden originar un promedio ergódico no convencional cuya norma L2 es larga para
algún tiempo N grande (ver Lema 1.15). Demostramos que una tal función debe
estar restringida por relaciones algebraicas entre las transformaciones involucradas
y esto lleva al concepto de funciones reducibles (ver §1.3.1).

La propiedad crucial de estas funciones reducibles es que dan lugar a sistemas
que son en principio más accesibles. La tarea de establecer este hecho rigurosamente
es llevada a acabo en §1.3. El problema se reduce entonces a demostrar que median-
te una iteración del anterior proceso podemos trasladar los promedios de interés
a sistemas más sencillos sobre los cuales es trivial establecer convergencia. Este
proceso de inducción es desarrollado abstractamente en §1.4, con varios ejemplos
concretos presentados en §1.6.

Para poder implementar el esquema anterior necesitamos introducir herramientas
que nos permiten descomponer funciones arbitrarias en componentes ’estructurados’
y ’aleatorios’. En general, para obtener aplicaciones útiles de teoremas inversos es
deseable poder llevar a cabo tal descomposición. En principio, esto debeŕıa permi-
tirnos distinguir el componente de una función que contiene el tipo de estructura
señalada por el teorema inverso, de la parte aleatoria de esta función, permitiendo
de esta forma la implementación de estrategias espećıficas en cada componente. Por
ejemplo, en el problema discutido en esta sección, la parte estructurada corresponde
a funciones reducibles, para las cuales un proceso inductivo adecuado es aplicado.

A pesar de que los teoremas de descomposición del tipo mencionado anterior-
mente poseen una larga historia, un tratamiento particularmente atractivo de estos
temas fue dado recientemente por Gowers [20]. Alĺı, él hace la importante obser-
vación de que muchos de los resultados de descomposición presentes en la literatura
se vuelven mucho más transparentes mediante la aplicación del teorema de Hahn-
Banach. En §1.2 presentamos una discusión de estas ideas y las adaptamos al con-
texto de nuestro problema. En particular, para la aplicación a promedios ergódicos,
necesitamos poder manejar diferentes niveles de estructura en forma simultánea y
las herramientas a este efecto son desarrolladas en §1.2.2.

El problema inverso de criba

Nuestro segundo teorema inverso estudia la distribución de conjuntos en clases
residuales a módulo primo. Este es un tópico importante de la teoŕıa anaĺıtica
de números. En general, es de esperar que los conjuntos de interés estén bien distri-
buidos en clases residuales. Por ejemplo, esperamos que los primos estén uniforme-
mente distribuidos en clases residuales primitivas. Esto no sólo es una pregunta
interesante en śı misma, sino que también suele conllevar aplicaciones significativas
al ser combinado con métodos de criba.

Por supuesto, no todos los conjuntos resultan bien distribuidos tras reducirlos
a módulos primos. Por ejemplo, si consideramos el conjunto de los cuadrados, es
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bien sabido que este conjunto ocupa únicamente (p+ 1)/2 clases residuales módulo
p para todo primo impar p. Asimismo, sabemos por la desigualdad de Lang-Weil
(la cual es equivalente a la Hipótesis de Riemann sobre cuerpos finitos en el caso
de curvas) que el conjunto de soluciones en Zd a una ecuación polinomial de grado
acotado puede ocupar únicamente O(pk) clases residuales al ser reducida módulo p,
para cierto entero k < d.

Estas observaciones llevaron a Croot y Elsholtz [14] e, independientemente, a
Helfgott y Venkatesh [30] en un contexto más general, a formular la notable conjetura
de que la única manera en la cual un conjunto grande de puntos enteros puede estar
mal distribuido en clases residuales es si este posee una fuerte estructura algebraica
(ver §2.1.1 y la Conjetura 2.16).

En el Caṕıtulo 2 probamos esta conjetura para toda dimensión d ≥ 2. El enun-
ciado preciso es el siguiente.

Teorema ([52]). Sean 0 ≤ k < d enteros y sean ε, α, η > 0 números reales positivos.
Entonces, existe una constante C dependiendo sólo de los parámetros anteriores, tal
que para todo conjunto S ⊆ [N ]d ocupando menos de αpk clases residuales para todo
primo p, por lo menos una de las siguientes afirmaciones es válida:

• (S es pequeño) |S| �d,k,ε,α N
k−1+ε,

• (S es fuertemente algebraico) Existe un polinomio no nulo f ∈ Z[x1, . . . , xd]
de grado a lo sumo C y coeficientes acotados por NC que se anula en al menos
(1− η)|S| puntos de S.

En §2.5 presentamos un número de ejemplos mostrando que este resultado es
óptimo. Proveemos también varios refinamientos y generalizaciones de este resultado
(ver el Teorema 2.5 y especialmente §2.6).

El caso k = 1 de este resultado fue resuelto por Helfgott y Venkatesh en [30]. Su
método se basa en ideas de Bombieri y Pila [10] que no se extienden a dimensiones
más altas. El problema, que es recurrente en este tipo de situaciones, es que los
métodos de criba suelen basarse en argumentos de contar y en consecuencia requieren
que el número de clases ocupadas por el conjunto sea pequeño, mientras que en la
presente situación únicamente sabemos que la densidad de estas clases es pequeña.
Para corregir esto, la estrategia presentada en el Caṕıtulo 2 procede haciendo uso
de la estructura espećıfica del conjunto estudiado (ver §2.3.2).

Un papel crucial en la demostración es desempeñado por el concepto de con-
juntos caracteŕısticos (Definición 2.2). En §2.4 demostramos que un conjunto mal
distribuido suficientemente ’genérico’ debe admitir un pequeño subconjunto tal que
si un polinomio de grado acotado se anula en este subconjunto, entonces también
debe anularse en una proporción positiva de los puntos del conjunto original (ver la
Proposición 2.3). Dado que cualquier conjunto suficientemente pequeño es el con-
junto de soluciones de una ecuación polinomial de grado acotado (ver Lema 2.4)
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esto se encarga ya del caso de conjuntos ’genéricos’. El resto del trabajo se re-
duce entonces a demostrar que cualquier conjunto grande mal distribuido admite un
subconjunto genérico denso (lo cual se establece en §2.3.2 y §2.4.2).
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Introduction

The present thesis is concerned with the study of discrete structures in ergodic
theory and number theory. To understand what is meant by this, it is important
to notice that many of the central problems in these areas seek to show that the
objects of interest behave in accordance with probabilistic estimates and principles
of equidistribution. The goal then is to understand in what way these objects may
arrange themselves into discrete structures that conspire against these heuristics.

This point of view leads naturally into the consideration of discrete inverse the-
orems. The aim of these inverse theorems is to provide a characterization of those
elements that fail to behave in a random manner with respect to our problem of
interest. A remarkable theme that is recurrent in this direction, and will indeed ap-
pear in this thesis, is that such obstructions to randomness often manifest what may
be termed as ’algebraic rigidity’. A first approximation to this phenomenon may be
the statement that only elements prescribed to satisfy strong algebraic restrictions
may behave in an abnormal manner.

Of course, such a general principle applies to a wide variety of problems, but
many of its manifestations can be unified under the heading of Arithmetic Combi-
natorics. Notable examples of discrete inverse theorems in this area include Freiman
type theorems (see for instance [6, 24, 29, 46] and the survey [21]), inverse theorems
for the Gowers norm [8, 25, 50] and the inverse Littlewood-Offord theory [48, 49].

This thesis contains two further instances of discrete inverse theorems, one per-
taining to ergodic theory and the second one to number theory. In the first case,
we characterize functions giving rise to nonconventional ergodic averages with large
L2-norm. We then apply this characterization to establish the convergence of these
averages. In the second case, we characterize high dimensional sets that are badly
distributed in residue classes mod p, for many primes p. Both results evidence the
algebraic rigidity discussed above. In the ergodic case, these special functions are
constrained by algebraic relations between the transformations involved. In the sec-
ond case, the elements of the set must essentially be contained inside the solution
set of some polynomial equation of low degree.

We provide below a brief discussion of both results.
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Nonconventional ergodic averages

Let T : X → X be a measure preserving transformation of a probability space
(X,Σ, µ). The classical mean ergodic theorem of von Neumann tells us that the
ergodic averages

1

N

N∑
n=1

f(T nx),

always converge in L2(X), for every choice of f ∈ L2(X). More generally, suppose
we are given a group G of measure preserving transformations of (X,Σ, µ). Can we
also guarantee that averages like

1

N

N∑
n=1

f1

(
T
p1(n)
1 x

)
f2

(
T
p2(n)
2 x

)
. . . fl

(
T
pl(n)
l x

)
,

will always converge in L2(X), for every choice of T1, . . . , Tl ∈ G, f1, . . . , fl ∈ L∞(X)
and integer valued polynomials p1(n), . . . , pl(n) : Z→ Z?

The study of these ’nonconventional’ ergodic averages arises with the work of
Furstenberg on Szemerédi’s theorem [18] and indeed, there is a large body of work
on the above problem, motivated in part by its connections with combinatorics and
number theory (see §1.1). Nevertheless, the problem of convergence remained open
even in the abelian case.

The aim of Chapter 1 is to establish the convergence of the above averages for
every nilpotent group G. Precisely, we prove the following result.

Theorem ([53]). Let G be a nilpotent group of measure preserving transformations
of a probability space (X,X , µ). Then, for every T1, . . . , Tl ∈ G, the averages

1

N

N∑
n=1

d∏
j=1

(
T
p1,j(n)
1 ◦ . . . ◦ T pl,j(n)

l

)
fj,

always converge in L2(X,X , µ), for every f1, . . . , fd ∈ L∞(X,X , µ) and every set of
integer valued polynomials pi,j.

This answers in the affirmative a conjecture of Bergelson and Leibman [7], who
also showed that even the simplest nonconventional ergodic averages may diverge if
G is only assumed to be solvable.

An important part of the proof is played by an easy discrete inverse theorem
(inspired by [46]) that allows us to characterize those functions that can originate
nonconventional ergodic averages with big L2 norm at some large timeN (see Lemma
1.15). We show that such a function must be constrained by algebraic relations
between the transformations involved and this leads to the concept of reducible
functions (see §1.3.1).

14



Teoremas inversos discretos Walsh, Miguel N.

The key feature of these reducible functions is that they give rise to systems
that in principle are more amenable to study. The task of establishing this fact
rigorously is accomplished in §1.3. The problem is then reduced to showing that
by an iteration of the above procedure one can translate the averages of interest
to simpler systems over which it is trivial to establish convergence. This induction
process is performed abstractly in §1.4, with several concrete examples presented in
§1.6.

In order to develop the above scheme we need to introduce tools that allow us
to decompose arbitrary functions into a ’structured’ and a ’random’ component. In
general, in order to obtain useful applications from inverse theorems it is desirable
to be able to perform such decompositions. This should permit us to distinguish the
component of a function that contains the kind of structure signaled by the inverse
theorem, from the random part of this function, thus allowing for specific strategies
to be implemented in each component. For instance, in the problem discussed in
this section, the structured part corresponds to reducible functions, for which an
adequate induction is to be applied.

Although decomposition theorems of the above kind have a long history, a par-
ticularly appealing treatment was given recently by Gowers [20]. There, he makes
the important observation that many of the decomposition results in the literature
become much clearer by means of the Hahn-Banach theorem. In §1.2 we present a
discussion of these ideas and adapt them to the context of our problem. In partic-
ular, for the application to ergodic averages, we need to be able to handle different
levels of structure simultaneously and the tools for this purpose are developed in
§1.2.2.

The inverse sieve problem

Our second inverse theorem studies the distribution of sets in residue classes to
prime moduli. This is an important topic of analytic number theory. In general, we
expect our sets of interest to be well distributed in residue classes. For instance, we
expect the primes to be uniformly distributed in primitive residue classes. This is
not only an interesting question in itself but can also lead to striking applications
when combined with sieve methods.

Of course, not all sets are well distributed when reduced to prime moduli. For
example, if we consider the set of squares, it is well known that this set only occupies
(p+ 1)/2 residue classes mod p for every odd prime p. Also, we know by the Lang-
Weil inequality (which is equivalent to the Riemann Hypothesis over finite fields in
the case of curves) that the set of solutions in Zd to a polynomial equation of low
degree may only occupy O(pk) residue classes when reduced mod p, for some integer
k < d.

These observations led Croot and Elsholtz [14] and, independently, Helfgott and
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Venkatesh [30] in a more general context, to the remarkable conjecture that the only
way a big set of integer points may be badly distributed in residue classes is for it
to possess some strong algebraic structure (see §2.1.1 and Conjecture 2.16).

In Chapter 2 we prove this conjecture for every dimension d ≥ 2. The statement
reads as follows.

Theorem ([52]). Let 0 ≤ k < d be integers and let ε, α, η > 0 be positive real
numbers. Then, there exists a constant C depending only on the above parameters,
such that for any set S ⊆ [N ]d occupying less than αpk residue classes for every
prime p, at least one of the following holds:

• (S is small) |S| �d,k,ε,α N
k−1+ε,

• (S is strongly algebraic) There exists a nonzero polynomial f ∈ Z[x1, . . . , xd]
of degree at most C and coefficients bounded by NC vanishing at more than
(1− η)|S| points of S.

In §2.5 we give a number of examples showing that this result is sharp. We also
provide several refinements and generalizations of this result (see Theorem 2.5 and
especially §2.6).

The case k = 1 of this result was handled by Helfgott and Venkatesh in [30].
Their method is based on ideas of Bombieri and Pila [10] and fails to extend to
higher dimensions. The problem, which is natural in such a situation, is that sieve
methods are usually based on counting arguments and therefore require the number
of classes occupied by the set to be small, while in the present situation we only
know that the density of these classes is small. In order to remedy this, the strategy
presented in Chapter 2 proceeds by making use of the specific structure of the set
being studied (see §2.3.2).

A crucial role in the proof is played by the concept of a characteristic subset
(Definition 2.2). In §2.4 we show that a sufficiently ’generic’ set that is badly dis-
tributed must admit a small subset such that if a polynomial of low degree vanishes
at this subset, then it must also vanish at a large proportion of the points of the
original set (see Proposition 2.3). Since any sufficiently small set is the solution set
of some polynomial of low degree (see Lemma 2.4) this already handles the case
of ’generic’ sets. The rest of the proof is then reduced to showing that any large
set that is badly distributed admits a dense generic subset (this is accomplished in
§2.3.2 and §2.4.2).
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Chapter 1

Decompositions and
nonconventional ergodic averages

1.1 Introduction

The aims of this chapter are two-fold. In Section §1.2 we introduce and discuss the
general philosophy of decomposition theorems, the goal of which is to decompose an
arbitrary object of interest into well-defined components that are easier to handle:
the so called ’random’ and ’structured’ parts of the object. As we will see, this
idea is intimately linked with the concept of inverse theorems. Then, in the rest of
the chapter, we will see how this philosophy can be applied to ergodic theory, more
precisely, to the study of nonconventional ergodic averages.

1.1.1 Nonconventional ergodic averages

The subject of ergodic theory is concerned with the study of a probability space
(X,Σ, µ) and (possibly a family of) measure preserving transformations T : X → X
on this space. In this context, the main interest lies in understanding how does the
space X evolves along iterations of the map T , which could be regarded as the ’time’
parameter. In the foundations of ergodic theory lies the following classical result of
von Neumann.

Theorem 1.1 (von Neumann’s mean ergodic theorem). Let T : X → X be a
measure preserving transformation of a probability space (X,Σ, µ). Then, the ergodic
averages

1

N

N∑
n=1

f(T nx),

converge in L2(X) for every choice of f ∈ L2(X).

Here L2(X) stands for the space of square integrable functions in the probability
space (X,Σ, µ). The question we will be interested in is the extent to which this
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result can be extended to more general families of transformations. Thus, let G be a
group of measure preserving transformations of the space (X,Σ, µ). There are three
distinct directions in which the desired generalization may be accomplished.

• (multiple compositions). Given T1, . . . , Tl ∈ G, do the averages

1

N

N∑
n=1

(T n1 ◦ T n2 ◦ . . . ◦ T nl ) f,

converge in L2(X) for every f ∈ L∞(X)?

• (multiple functions). Given T1, . . . , Tl ∈ G, do the averages

1

N

N∑
n=1

T n1 f1 . . . T
n
l fl,

converge in L2(X) for every f1, . . . , fl ∈ L∞(X)?

• (polynomial orbits). What about the averages

1

N

N∑
n=1

T
p1(n)
1 f1T

p2(n)
2 f2,

where T1, T2 ∈ G, f1, f2 ∈ L∞(X) and p1, p2 : Z → Z are integer valued
polynomials?

The goal here is to understand what conditions should be imposed on G in order
to guarantee the convergence of the above averages. Notice that, in contrast with
the statement of Theorem 1.1, we assume our functions to lie in L∞(X) instead
of L2(X). This in fact is necessary, as it can easily be seen from the product of
functions being unbounded in the L2-norm (but see Theorem 1.20).

It is important to remark that while the limiting behavior of these averages
is interesting from a strictly ergodic theoretical point of view, it turns out to be
deeply related to interesting phenomena in number theory and combinatorics. The
most remarkable manifestation of this connection involves the following fundamental
result of Szemerédi [44].

Theorem 1.2 (Szemerédi’s theorem). Let A ⊆ Z be a subset of the integers of
positive upper density, that is, such that

lim sup
N→∞

|A ∩ |[−N,N ]||
|N |

> 0.

Then, A contains arbitrarily long arithmetic progressions.
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Shortly after this result was obtained, a different proof was found by Furstenberg
[18], who connected it to the study of ergodic averages. In fact, he was able to prove
the following result, and to show that it implies Szemerédi’s theorem.

Theorem 1.3 (Furstenberg’s multiple recurrence theorem). Let T : X → X be a
measure preserving transformation of a probability space (X,Σ, µ). Let A ∈ Σ be
such that µ(A) > 0 and write 1A for the characteristic function of this set. Then,
for every integer k,

lim inf
N→∞

1

N

N∑
n=1

∫
T n1AT

2n1A . . . T
kn1Adµ > 0.

For a nice discussion of the fruitful interactions between ergodic theory, combi-
natorics and number theory originating from this work, the reader is referred to the
survey articles [36, 45].

Given a group G and two elements x, y ∈ G, we write [x, y] := x−1y−1xy for the
commutator of x and y, and define the lower central series of G as G0 := G and
Gi := [G,Gi−1] for every i ∈ N. We recall that a group G is said to be nilpotent if
there exists some finite integer r such that Gr = {1G}, where 1G is the identity of
G. The integer r is called the nilpotency class of G.

It turns out that the assumption of G being nilpotent is particularly relevant to
the study of the ergodic averages mentioned above. Indeed, it was conjectured that
this is the right assumption to be placed on G in order to guarantee convergence of
these averages. The main purpose of this chapter is to prove this claim in the form
of the following result.

Theorem 1.4. Let G be a nilpotent group of measure preserving transformations of
a probability space (X,X , µ). Then, for every T1, . . . , Tl ∈ G, the averages

1

N

N∑
n=1

d∏
j=1

(
T
p1,j(n)
1 ◦ . . . ◦ T pl,j(n)

l

)
fj, (1.1.1)

always converge in L2(X,X , µ), for every f1, . . . , fd ∈ L∞(X,X , µ) and every set of
integer valued polynomials pi,j.

Notice that the averages in (1.1.1) do indeed generalize the three directions
discussed above. This result was conjectured in the present form by Bergelson and
Leibman, who also showed that even

lim
N→∞

1

N

N∑
n=1

T nfSng,

need not exist if T and S only generate a solvable group [7].
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1.1.2 Historical background

Partial results towards Theorem 1.4 have a rich history. Notice that when d = l = 1
and the polynomial is linear it reduces to Theorem 1.1. The only case of Theorem
1.4 that was fully settled is that in which T1 = . . . = Tl, that is, when G is a
cyclic group. The study of this case originated in the seminal work of Furstenberg
[18] on Szemerédi’s theorem, while a general solution when the polynomials are
linear was later provided by Host and Kra [32] following the work of several authors
(with a different proof subsequently found by Ziegler [55]). Convergence for general
polynomials was established by Bergelson [5] under the assumption of weakly mixing,
while the first unconditional non-linear result was obtained by Furstenberg and Weiss
[19]. The general result for cyclic groups and arbitrary polynomials was finally
settled by Host and Kra [33] and Leibman [39].

Another case of Theorem 1.4 that is known is that in which G is abelian and
every polynomial is linear. Here, the case d = 2 was proven by Conze and Lesigne
[13] and assuming extra ergodicity hypothesis on the transformations Zhang [54]
gave a proof for d = 3 and Frantzikinakis and Kra [15] for general d. Without these
assumptions, this result was established by Tao [46] and by now possesses several
different proofs [2, 31, 51]. However, when G is abelian but the polynomials are
arbitrary, very little was known. It was shown by Chu, Frantzikinakis and Host [11]
that

1

N

N∑
n=1

T
p1(n)
1 f1 . . . T

pl(n)
l fl (1.1.2)

converges whenever the polynomials pi have distinct degrees, but the convergence of
(1.1.2) has remained open for arbitrary polynomials. Notice that (1.1.2) corresponds
to taking pi,j = 0 whenever i 6= j in Theorem 1.4. More generally, very little was
known until now for convergence of Zd actions along polynomials. A particular
result in this direction is the convergence of the averages

1

N

N∑
n=1

T n
2

f
(
T n

2

Sn
)
g,

which was established by Austin [3, 4].

Finally, when G is only assumed to be nilpotent the results are much scarcer.
Prior to the result discussed in this chapter, it was known by the work of Bergelson
and Leibman [7] that the averages

1

N

N∑
n=1

T nfSng,

always converge in L2, but even in the linear case no convergence result has been
previously established for more than two transformations.
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1.1.3 Overview of the proof

Our proof of Theorem 1.4 does not make use of the aforementioned results and
therefore provides an alternative proof of these statements, which in many cases is
substantially simpler than the original ones. In particular, we do not make use of
the machinery of characteristic factors that is heavily used in previous literature.
The price we pay in doing so is that we do not obtain any explicit description of the
limits. In this sense, our approach is similar to that of Tao [46], in that we use a
weak inverse theorem (see Lemma 1.15) to decompose our functions into the sum of
a random component, which is easily treatable, and a structured one, which can be
handled by an adequate induction. Interestingly, we find that our decomposition is
best carried out by adapting ideas of Gowers related to the Hahn-Banach separation
theorem [20] and this is done in §1.2. This is arguably the first time that these ideas
are used in a purely ergodic theoretical context.

The main new ingredient of the proof is the concept of an L-reducible function
(Definition 1.14), which will play the role of the structured component of our de-
compositions. We refer to §1.3 for precise definitions, but for now let us discuss
what these are in the linear abelian case. Here, an L-reducible function σ with
respect to a set of transformations T1, . . . , Tj, is a function for which the behavior
of T nj σ can be somewhat recovered from that of the set T n1 b1, . . . , T

n
j−1bj−1, for some

prescribed set of functions bi. This way, the problem of convergence for the set of
transformations T1, . . . , Tj is reduced to the analogous question for the smaller set
T1, . . . , Tj−1, and one may then proceed inductively. The details of these reductions
are carried out in §1.3.

When either G is not abelian or the polynomials are not linear, the system of
transformations to which L-reducible functions allow us to pass does not admit such
a simple expression. In general, it will consist of twice as many transformations as
the original one and the degree of the polynomials involved may not necessarily
decrease, so that it may seem that we have not gained much with this procedure.
As it turns out however, one can define a suitable notion of complexity for every
set of transformations and show that the above process does indeed lead us to a
set of lower complexity. The proof that every system of transformations of the type
studied in Theorem 1.4 reduces in finitely many steps to one consisting only of the
identity transformation Ix = x is performed in §1.4, and this completes the proof
of Theorem 1.4.

The methods discussed immediately shield some further convergence results and
these are discussed in Section §1.5. We also include in Section §1.6 several examples
of how the induction process mentioned in the previous paragraph works in some
concrete cases.
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1.2 Structure-randomness decompositions

Intrinsically related with the notion of an inverse theorem, is the idea of decomposing
a given object into a structured and a random component. Indeed, since the purpose
of an inverse theorem is to characterize those objects or functions that posses a
particular property that is relevant to the problem at hand, perhaps as a potential
obstruction to certain type of arguments, it is then desirable to be able to decompose
an arbitrary object into a structured part that manifests this property in some way,
and a random part that has no trace of such a potential obstruction. This reduces
the general problem in two instances that allow for specific strategies to be applied.

The purpose of this section is to present some of the tools developed by Gowers in
this direction and extend them to the context of our problem. A crucial observation
of Gowers is that many of the decomposition arguments present in the literature
become much cleaner by means of the Hahn-Banach theorem, and this will be the
point of view taken here. For a better discussion of these ideas the reader is referred
to Gowers’ article [20].

1.2.1 Applying the Hahn-Banach theorem

We will concentrate on the study of a real Hilbert space H with norm ‖·‖. In our
application to ergodic averages, this space will be given by H = L2(X,µ), the space
of square integrable functions in the probability space (X,µ). Nevertheless, for the
present discussion we allow H to be arbitrary.

We let Σ ⊆ H be a bounded set in the norm ‖·‖. The choice of Σ is arbitrary,
but once this is made we consider the elements of Σ as ’structured’. Of course, in
order to obtain meaningful applications the choice of the distinguished set Σ should
be appropriate for the problem being studied, but we emphasize that the arguments
and results to be presented in this section are independent of such a choice, and this
accounts for their usefulness. A fruitful example to keep in mind is that of Fourier
analysis, where the set of structured elements Σ corresponds to the characters.

Our goal is to decompose an arbitrary element f ∈ H in the form f = u + v,
where u resembles the elements of Σ, while v is a ’random’ component, in the sense
that it has a small correlation with these elements. Of course, a natural possibility
would be to require in this decomposition that u itself belongs to Σ, but this turns
out to be too weak for applications. In fact, it is often desirable to have some
flexibility, since it is natural to expect that if σ1, σ2 ∈ Σ are structured elements,
then their sum σ1 + σ2 will also retain some of this structure even if this sum does
not itself belong to Σ. Because of this, it is useful to allow u to be the sum of a few
elements of Σ.

We can now give an informal statement of the type of decompositions we are
looking for.
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Theorem 1.5 (simple decomposition, informal statement). Let Σ be some bounded
set in H. Then, every bounded f ∈ H may be written as

f =
k∑
j=1

λjσj + v,

where

• σj ∈ Σ for every j,

•
∑k

j=1 |λj| is bounded,

• |〈v, σ〉| is small for every σ ∈ Σ.

As we mentioned, there is a nice analogy with Fourier analysis, where we can
decompose any bounded f into its large Fourier coefficients and an element v that
has small correlation with every Fourier character.

An important observation of Gowers is that the decompositions of the type de-
scribed above are closely related to the study of certain kind of norms. In order
to make this observation precise, given some norm ‖·‖X on H equivalent to ‖·‖, we
define its dual norm by

‖f‖∗X := sup
‖g‖X≤1

|〈f, g〉| .

Notice that ‖·‖∗X is then also equivalent to ‖·‖.

We have the following result.

Lemma 1.6 (cf. [20, Corollary 3.5]). Let Σ ⊆ H be a bounded set and suppose the
norm

‖f‖Σ := inf

{
k−1∑
j=0

|λj| : f =
k−1∑
j=0

λjσj, σj ∈ Σ

}
, (1.2.1)

is well defined and equivalent to ‖·‖. Then its dual norm is given by ‖f‖∗Σ =
supσ∈Σ |〈f, σ〉|.

Proof. Given some f ∈ H it is clear on one hand that

sup
σ∈Σ
|〈f, σ〉| ≤ sup

‖g‖Σ≤1

|〈f, g〉|.

On the other hand, for every ε > 0, if g =
∑k−1

j=0 λjσj with
∑k−1

j=0 |λj| < 1 + ε, then
|〈f, g〉| ≤ (1 + ε) supσ∈Σ |〈f, σ〉|. The result follows.
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What this lemma shows is that the definitions of structure and randomness
suggested in Theorem 1.5 are dual to each other in a very precise sense. An element
having a small norm ‖·‖Σ will be structured, while a small value of the dual norm
‖·‖∗Σ characterizes random objects. In particular, notice that this makes both sets
convex.

In order to exploit this fact, we will make use of the classical Hahn-Banach
theorem.

Theorem 1.7 (Geometric Hahn-Banach). Let A be an open convex subset contain-
ing 0 of a real topological vector space V and suppose v ∈ V does not lie in A. Then
there exists some continuous linear functional φ : V → R such that φ(v) ≥ 1 and
φ(w) < 1 for every w ∈ A.

The idea of Gowers to obtain decompositions can roughly be described as fol-
lows. While it may be difficult to check directly whether an arbitrary function can
be described by the sum of a structured and a random component, if such a de-
composition fails to exist an application of the Hahn-Banach theorem would allow
us to find some large functional which does not correlate with random functions
(therefore having a kind of structure itself) nor with structured functions (therefore
also having some randomness). This way, we are only left with proving that no
object can be random and structured at the same time, which generally tends to be
an easier task.

To apply this scheme, we will need the following refinement of Theorem 1.7.

Corollary 1.8 (cf. [20, Corollary 3.2]). Let A1, . . . , An be open convex subsets
containing 0 of some real Hilbert space H. Let c1, . . . , cn > 0 be positive real numbers
and suppose f ∈ H cannot be written as

∑n
j=1 cjfj with fj ∈ Aj. Then there exists

some φ ∈ H such that 〈φ, f〉 ≥ 1 and 〈φ, gi〉 < c−1
i for every gi ∈ Ai.

Proof. Since the set A :=
∑n

i=1 ciAi will be an open convex set in H containing 0
but not f , it follows by the Hahn-Banach theorem that there exists some φ ∈ H
satisfying 〈φ, f〉 ≥ 1 and 〈φ, g〉 < 1, for every g ∈ A. The result follows immediately,
since cigi ∈ A for every g ∈ Ai.

We can now prove the following formal version of Theorem 1.5 (see [20, Propo-
sition 3.6])

Theorem 1.9 (Simple decomposition, formal statement). Let ‖·‖X be some norm
on H equivalent to ‖·‖ and let C > 0 be an arbitrary positive real number. Then,
every f ∈ H with ‖f‖ ≤ 1 may be written as f = u + v, with ‖u‖X < C and
‖v‖∗X < C−1.

Proof. Write
A1 := {u ∈ H : ‖u‖X < 1} ,
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and
A2 := {v ∈ H : ‖v‖∗X < 1} ,

for the respective unit balls and assume the claim fails. It follows from Corollary
1.8 that there exists some linear functional ϕ such that 〈ϕ, f〉 > 1, 〈ϕ, u〉 ≤ C−1

for every u ∈ A1 and 〈ϕ, v〉 ≤ C for every v ∈ A2. But by Cauchy-Schwarz, the
boundedness of f and the definition of dual norms, this implies that

1 < 〈ϕ, f〉 ≤ ‖ϕ‖ ≤ ‖ϕ‖∗ ‖ϕ‖∗∗ ≤ 1,

giving us the desired contradiction.

It follows from Lemma 1.6 that this indeed corresponds to Theorem 1.5. The
only issue lies in the fact that we cannot ensure that the norms ‖·‖Σ are always
well defined and equivalent to ‖·‖. However, this is not a serious problem as long
as we are prepared to tolerate a small error term, since we can simply adjoin a
small ball in the norm ‖·‖ to the set Σ (see (1.3.8)). The real inconvenient is that
this decomposition is too weak as it stands. In fact, it would be desirable to have
stronger bounds on the norms of the components, and also to be able to handle
several notions of structure at the same time. In the next subsection, we will see
how all these can be accomplished.

1.2.2 Nested structures

We now proceed to obtain a strong decomposition theorem as it will be needed for the
study of nonconventional ergodic averages. There will be two main improvements
over the kind of decompositions we obtained in §1.2.1. First of all, we will obtain
much sharper bounds on the size of the norms. The second improvement is more
suggestive and it allows us to study simultaneously a large family of distinguished
sets. In fact, instead of considering a fixed set Σ we will study a nested family
Σ1 ⊇ Σ2 ⊇ . . . ⊇ Σn ⊇ . . .. These should be understood as different levels of
structure, with an element σ ∈ Σn being more structured the larger the value of n
is.

The reason why we need to consider such a family simultaneously instead of
simply fixing a large value of n is that, while it is certainly advantageous for the
elements σj in Theorem 1.5 to belong to Σn for some large n, the property of the
element v in Theorem 1.5 of being random becomes weaker as n increases. In fact,
since this amounts to avoiding high correlations with elements of Σn, this information
is weaker the more restricted the set Σn is. Because of this, it is desirable in practice
to arrange for the σj to lie in ΣB, for some large value of B, while ensuring that the
component v stays random with respect to ΣA, for a much smaller value of A.

It is often the case that allowing a small error term permits one to obtain a
sharper estimate for the main expression being studied. This is also the case here
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and fortunately such a small error term can be easily dealt with in the applications.
As before, we begin with an informal statement of the decomposition we are looking
for.

Theorem 1.10 (strong decomposition, informal statement). Let Σ1 ⊇ Σ2 ⊇ . . . ⊇
. . . ⊇ Σn ⊇ . . . be a family of bounded subsets of H and let M > 0 be some positive
integer. Then, there exists a pair of integers A,B with A much smaller than M and
B much larger than M , such that every bounded element f ∈ H may be written as

f =
k∑
j=1

λjσj + f2 + f3,

where

• σj ∈ ΣB for every 1 ≤ j ≤ k,

•
∑k

j=1 |λj| is bounded,

• |〈f2, σ〉| is very small for every σ ∈ ΣA,

• f3 is a small error term (i.e. ‖f3‖ is small).

Some remarks are in order. The reason we emphasize that the expression |〈f2, σ〉|
is very small is because we will indeed be able to make this arbitrarily small in terms
of the bounds on

∑k
j=1 |λj| (see Proposition 1.11). On the other hand, there is a

slight inaccuracy in our choice of integers A,B since we will not be able to obtain
such a decomposition for an arbitrary value of M , but instead we will deduce the
assertion for some M in a bounded region. Finally, it is important to notice that
the constants we shall obtain in the decomposition are absolute, in the sense that
they do not depend on the choice of the family Σ1 ⊇ Σ2 ⊇ . . . ⊇ . . .Σn ⊇ . . .. This
amusing phenomenon will be of much use later.

We now turn to the details. Given a positive real number δ and some decreasing
function η : R+ → R+, we will consider the sequence of real numbers Cδ,η

1 , . . . , Cδ,η
d2δ−2e

defined recursively by

Cδ,η
d2δ−2e := 1, Cδ,η

n−1 := max
{
Cδ,η
n , 2η(Cδ,η

n )−1
}
. (1.2.2)

We shall also write Cδ,η := Cδ,η
1 . These constants will provide the parameters for the

decomposition obtained below and the fact that they are independent of the specific
family of sets, as anticipated in the previous paragraph, will allow us to do a priori
modifications on our set of structured functions so that they are better suited to the
resulting bounds.

By an appeal to Lemma 1.6 the problem we are studying reduces to the con-
sideration of an infinite family of norms (‖·‖N)N∈N measuring increasing rates of
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structure and for which their dual norms (‖·‖∗N)N∈N measure decreasing rates of
randomness. As we have discussed, we are interested in studying this large family
of norms simultaneously, so that if we know one of the components is random at a
level A (that is, ‖·‖∗A is small), we need the other component to be structured at a
much higher level B (that is, ‖·‖B must be small for some B much larger than A).
This is accomplished by the following result.

Proposition 1.11 (Strong decomposition). Let (‖·‖N)N∈N be a family of norms on
H equivalent to ‖·‖ and satisfying ‖·‖∗N+1 ≤ ‖·‖

∗
N for every N . Let 0 < δ, c < 1 be

positive real numbers, η : R+ → R+ some decreasing function and ψ : N→ N some
function satisfying ψ(N) ≥ N for all N . Then, for every integer M• > 0, there
exists a sequence

M• ≤M1 ≤ . . . ≤Md2δ−2e ≤M• = OM•,δ,c,ψ(1),

which does not depend on the specific family of norms, with the property that for
any f ∈ H with ‖f‖ ≤ 1, we can find some 1 ≤ i ≤ d2δ−2e and integers A,B with

M• ≤ A < cMi < ψ(Mi) ≤ B,

such that we have the decomposition f = f1 + f2 + f3 with

‖f1‖B < Cδ,η
i , ‖f2‖∗A < η(Cδ,η

i ), ‖f3‖ < δ.

Proof. Our proof is modeled on the proof of Proposition 3.5 of [20]. Set A1 := M•,
M1 := dc−1A1 + 1e and B1 := ψ(M1). If there is no decomposition of the desired
form with these parameters and C1 := Cδ,η

1 , we may apply Corollary 1.8 to obtain
some φ1 ∈ H such that

• 〈φ1, f〉 ≥ 1,

• ‖φ1‖∗B1
≤ C−1

1 ,

• ‖φ1‖∗∗A1
≤ η(C1)−1,

• ‖φ1‖ ≤ δ−1,

where we are using the fact that if ‖·‖N is some norm equivalent to ‖·‖, then
{f ∈ H : ‖f‖N < 1} is an open convex set in H containing 0.

Recursively, if we cannot find a decomposition with parameters Aj−1, Mj−1,

Bj−1, Cj−1 we set Aj := Bj−1, Mj := dc−1Aj + 1e, Bj := ψ(Mj) and Cj := Cδ,η
j .

If no such decomposition exists with these parameters we can then use Corollary
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1.8 to find some φj ∈ H with properties analogous to the ones above. This way we
construct a sequence of elements obeying the orthogonality relationships

|〈φj, φi〉| ≤ ‖φj‖∗∗Aj‖φi‖
∗
Aj

≤ ‖φj‖∗∗Aj‖φi‖
∗
Bi

≤ η(Cj)
−1C−1

i

≤ 1/2,

whenever i < j, by construction of Ck. But then, by the bounds on ‖φi‖, we obtain
upon expanding the inner product

‖φ1 + . . .+ φr‖2 ≤ δ−2r +
r2 − r

2
, (1.2.3)

for each r ≤ d2δ−2e. On the other hand, the condition 〈φi, f〉 ≥ 1 for all i implies
that the left-hand side of (1.2.3) is at least r2. Since this is absurd for r = d2δ−2e
the result follows.

1.3 Norm convergence for systems of finite com-

plexity

From now on fix a nilpotent group G and a probability space X as in the statement
of Theorem 1.4. By a G-sequence we shall mean a sequence {g(n)}n∈Z taking values
in G. An ordered tuple g = (g1, . . . , gj) of G-sequences will be called a system, and
for each system one can ask whether the corresponding ergodic averages

Ag
N [f1, . . . , fj] := En∈[N ]

j∏
i=1

gi(n)fi, (1.3.1)

converge in L2(X) for every f1, . . . , fj ∈ L∞(X). Here, for a finite set A we write

Ex∈Af(x) :=
1

|A|
∑
x∈A

f(x),

and for every positive integer N it is [N ] := {1, . . . , N}. We say two systems
are equivalent if they consist of the same G-sequences, so for example if g, h are
G-sequences then the system (h, g) is equivalent to the system (g, h), and so is
(g, h, h). Clearly, the convergence of the averages of the form (1.3.1) for some system
implies the convergence of the averages associated to every equivalent system, since
T (f1)T (f2) = T (f1f2) for every T ∈ G and f1, f2 ∈ L∞(X).

To each pair of G-sequences g, h we will associate, for each positive integer m,
the G-sequence

〈g|h〉m(n) := g(n)g(n+m)−1h(n+m),
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and we define the m-reduction of a system g = (g1, . . . , gj) to be the system

g∗m = (g1, . . . , gj−1, 〈gj|1G〉m, 〈gj|g1〉m, . . . , 〈gj|gj−1〉m),

where by a slight abuse of notation we write 1G for the G-sequence 1G(n) := 1G,
where 1G is the identity of G. The main purpose of this section will be to show
that one can deduce the convergence of the averages (1.3.1) for some system g from
knowing this (actually, the slightly stronger Theorem 1.13 below) for every reduction
g∗m of g. This leads us to define the complexity of a system.

Definition 1.12 (Complexity of a system). We say a system g has complexity 0 if
it is equivalent to the trivial system (1G) (that is, the system consisting only on the
sequence 1G). Recursively, we say a system g has complexity d, for some positive
integer d ≥ 1, if it is not of complexity d′ for any 0 ≤ d′ < d and it is equivalent
to some system h for which every reduction h∗m has complexity ≤ d− 1. We say a
system has finite complexity if it has complexity d for some integer d ≥ 0.

Given a system g = (g1, . . . , gj), some set of functions f1, . . . , fj ∈ L∞(X) and a
pair of integers N,N ′, write

Ag
N,N ′ [f1, . . . , fj] := Ag

N ′ [f1, . . . , fj]−Ag
N [f1, . . . , fj].

We have the following result.

Theorem 1.13. Let G and X be as above and let d ≥ 0. Let F : N → N be some
non-decreasing function with F (N) ≥ N for all N and let ε > 0 be some positive
real number. Then, for every integer M > 0, there exists a sequence of integers

M ≤M ε,F,d
1 ≤ . . . ≤M ε,F,d

Kε,d
≤M ε,F,d = Od,F,ε,M(1), (1.3.2)

for some Kε,d = Oε,d(1), such that for every system g = (g1, . . . , gj) of complexity
at most d and every choice of functions f1, . . . , fj ∈ L∞(X) with ‖fi‖∞ ≤ 1, there
exists some 1 ≤ i ≤ Kε,d such that∥∥Ag

N,N ′ [f1, . . . , fj]
∥∥
L2(X)

≤ ε, (1.3.3)

for every M ε,F,d
i ≤ N,N ′ ≤ F (M ε,F,d

i ).

This type of statement already appears in the works of Tao [46] and of Avigad,
Gerhardy and Towsner [1]. Clearly, Theorem 1.13 implies that the averages (1.3.1)
converge in L2(X) for every system g of finite complexity, since otherwise one could
find some ε > 0 and some increasing function F : N→ N such that∥∥∥Ag

N,F (N)[f1, . . . , fd]
∥∥∥
L2(X)

> ε,
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for every integer N . The usefulness of Theorem 1.13 lies on its uniformity over
all systems of a fixed complexity, which plays an important role in the inductive
argument. In fact, the ergodic averages (1.3.1) associated to a system g for which
the reductions g∗m do not satisfy stability bounds which are uniform on m may
not necessarily converge, even if the ergodic averages associated to each individual
reduction g∗m do converge.

The rest of this section is devoted to the proof of Theorem 1.13. In §1.4 we
will show that every system of the form given in Theorem 1.4 has finite complexity,
thereby completing the proof of that theorem.

1.3.1 Reducibility

Since Theorem 1.13 is trivially true when d = 0, we may proceed by induction. Thus,
let d > 0 be some positive integer and assume the result holds for every d′ < d. Let
F and 0 < ε < 1 be as in the statement of the theorem and let g = (g1, . . . , gj) be
some system of complexity at most d. Since it clearly sufficies to prove the result for
any system equivalent to g, by definition of the complexity we may assume without
lost of generality that g∗m has complexity ≤ d− 1 for every positive integer m.

Let C∗ denote the quantity Cδ,η defined in (1.2.2) associated to δ := ε/(253) and
η(x) := ε2/(2333x), so that in particular C∗ depends only on ε. We will sometimes
use the shorthands ‖·‖∞ for ‖·‖L∞(X), ‖·‖2 for ‖·‖L2(X) and 〈·, ·〉 for 〈·, ·〉L2(X). The
following definition will be crucial.

Definition 1.14 (reducible functions). Given a positive integer L, we say σ ∈
L∞(X), ‖σ‖∞ ≤ 1, is an L-reducible function (with respect to g), if there exists
some integer M > 0 and a family b0, b1, . . . , bj−1 ∈ L∞(X) with ‖bi‖∞ ≤ 1, such
that for every positive integer l ≤ L∥∥∥∥∥gj(l)σ − Em∈[M ] (〈gj|1G〉m(l)) b0

j−1∏
i=1

(〈gj|gi〉m(l)) bi

∥∥∥∥∥
L∞(X)

<
ε

16C∗
.

Reducible functions will play a similar role than the one played by basic anti-
uniform functions in [46]. We stress that we do not care for the value of M in
Definition 1.14. We will show in Lemma 1.15 below that every function giving rise
to a large average must resemble a reducible function. The main feature of these
objects is that the role of the G-sequence gj on the averages (1.3.1) can essentially
be recovered by means of the set of G-sequences 〈gj|1G〉m, 〈gj|g1〉m, . . . , 〈gj|gj−1〉m.

Lemma 1.15 (Weak inverse result for ergodic averages). Assume the inequality

‖Ag
N [f1, . . . , fj−1, u]‖2 > ε/6,

holds for some ‖u‖L∞(X) ≤ 3C, some 1 ≤ C ≤ C∗ and some f1, . . . , fj−1 ∈ L∞(X)
with ‖fi‖∞ ≤ 1. Then, there exists some constant 0 < c1 < 1, depending only on ε,
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such that for every positive integer L < c1N there is an L-reducible function σ with
〈u, σ〉 > 2η(C).

Proof. We begin by noticing that ‖Ag
N [f1, . . . , fj−1, u]‖2

2 = 〈u, h〉, where

h := En∈[N ]gj(n)−1Ag
N [f1, . . . , fj−1, u]

j−1∏
i=1

gj(n)−1gi(n)fi. (1.3.4)

We claim σ := h/3C is an L-reducible function for every L < c1N and some 0 <
c1 < 1 depending only on ε, from where the result immediately follows since by the
observation above it is 〈u, σ〉 > 2η(C).

It remains to prove this claim. Write c1 := ε
96(C∗)2 and assume 0 < l < c1N .

Then, if we shift [N ] to [N ] + l we see that the right hand side of (1.3.4) changes by
a magnitude of at most 6lC∗/N < ε/(16C∗) (since ‖Ag

N [f1, . . . , fj−1, u]‖∞ ≤ 3C ≤
3C∗) and thus∥∥h− En∈[N ] gj(l+n)−1Ag

N [f1, . . . , fj−1, u]

×
j−1∏
i=1

gj(l + n)−1gi(l + n)fi

∥∥∥∥∥
L∞(X)

<
ε

16C∗
.

Applying gj(l) we get∥∥gj(l)h− En∈[N ] (〈gj|1G〉n(l))Ag
N [f1, . . . , fj−1, u]

×
j−1∏
i=1

(〈gj|gi〉n(l)) fi

∥∥∥∥∥
L∞(X)

<
ε

16C∗
.

The claim then follows with M := N , b0 := 1
3C
AN [f1, . . . , fj−1, u] and bi := fi.

As mentioned early, the advantage of L-reducible functions is that they allow
us to reduce the study of the ergodic averages of g to the study of averages arising
from the reductions g∗m, which we already know to satisfy uniform stability bounds
by the induction hypothesis. This idea is carried out in the next proposition.

Proposition 1.16. For every positive integer M∗ there exists a sequence

M∗ ≤M1 ≤ . . . ≤MK̃ ≤M∗ = OM∗,ε,d,F (1), (1.3.5)

depending only on M∗, ε, d and F , and with K̃ depending only on ε and d, such that
if f1, . . . , fj−1 ∈ L∞(X) with ‖fi‖∞ ≤ 1 and

f =
k−1∑
t=0

λtσt,
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where
∑k−1

t=0 |λt| ≤ C∗, and each σt is an L-reducible function for some L ≥ F (M∗),
then there exists some 1 ≤ i ≤ K̃ such that∥∥Ag

N,N ′ [f1, . . . , fj−1, f ]
∥∥
L2(X)

≤ ε/4,

for every pair Mi ≤ N,N ′ ≤ F (Mi).

Proof. For every σt let M (t) be the integer coming from the definition of an L-
reducible function and let b

(t)
i ∈ L∞(X) be the corresponding family of functions.

It follows from the definition of an L-reducible function that for every N ≤ L and
every 0 ≤ t ≤ k − 1 we may replace Ag

N [f1, . . . , fj−1, σt] by

Em∈[M(t)]

[
En∈[N ]

(
j−1∏
i=1

gi(n)fi

) (
(〈gj|1G〉m(n)) b

(t)
0

)
×

(
j−1∏
i=1

(〈gj|gi〉m(n)) b
(t)
i

)]
,

at the cost of an L∞ error of at most ε/(16C∗). Therefore, we get by Minkowski’s
inequality that for N,N ′ ≤ L, the expression∥∥Ag

N,N ′ [f1, . . . , fj−1, f ]
∥∥

2
,

is bounded by(
k−1∑
t=0

|λt|Em∈[M(t)]

∥∥∥Ag∗m
N,N ′

[
f1, . . . , fj−1, b

(t)
0 , b

(t)
1 , . . . , b

(t)
j−1

]∥∥∥
L2(X)

)
+ ε/8. (1.3.6)

We are thus given a large family of averages coming from the lower complexity
systems g∗m. Write γ := ε

16C∗
. Clearly, it would suffice to find a suitable interval

on which each of this lower dimensional averages is bounded by γ. Although this
will not be possible, we will indeed show by repeated applications of the induction
hypothesis that we can get such a bound for all but a negligible subset of these
averages. In order to do this, consider non-decreasing functions F1, . . . , Fr : N→ N,
for some r = Oε,d(1) to be specified, defined recursively by Fr := F and

Fi−1(N) := max
1≤M≤N

Fi(M
γ,Fi,d−1),

where we are using the notation in the statement of Theorem 1.13. Also, let K :=
Kγ,d−1 be as in that theorem and for each tuple 1 ≤ i1, . . . , is ≤ K, s ≤ r, and
integer M , we define recursively

M (i1,...,is) :=

(((
Mγ,F1,d−1

i1

)γ,F2,d−1

i2

)
. . .

)γ,Fs,d−1

is

.
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Thus, M (i1) is the integer Mγ,F1,d−1
i1

obtained in (1.3.2) by starting at M , M (i1,i2) is

the integer Mγ,F2,d−1
i2

obtained by starting the sequence (1.3.2) at M = M (i1), etc.
In particular, notice that this sequence depends only on ε, F, d and M . Observe also
that since each of the averages in (1.3.6) satisfies∥∥∥Ag∗m

N,N ′

[
f1, . . . , fj−1, b

(t)
0 , b

(t)
1 , . . . , b

(t)
j−1

]∥∥∥
L∞(X)

≤ 1, (1.3.7)

the sum on (1.3.6) is bounded by
∑k−1

t=0 |λt| ≤ C∗.

We now proceed as follows. By the induction hypothesis we know that each of the
reduced averages in (1.3.6) is bounded by γ for every pair N,N ′ ∈ [M

(i)
∗ , F1(M

(i)
∗ )]

and some 1 ≤ i ≤ K, which depends on the particular average. By the pigeonhole
principle and (1.3.7), this implies that we may find some 1 ≤ i1 ≤ K such that
the contribution to (1.3.6) of those averages which are not bounded by γ for every

pair N,N ′ ∈ [M
(i1)
∗ , F1(M

(i1)
∗ )] is at most

(
K−1
K

)
C∗. We now apply the induction

hypothesis to these remaining averages with the function F2, the parameter γ and
the starting point M

(i1)
∗ . This way, for each of these remaining averages, we know

that there exists some 1 ≤ i ≤ K such that the average is bounded by γ for every
pair N,N ′ ∈ [M

(i1,i)
∗ , F2(M

(i1,i)
∗ )]. Since by construction of F1 it is

[M (i1,i)
∗ , F2(M (i1,i)

∗ )] ⊆ [M (i1)
∗ , F1(M (i1)

∗ )],

we see that those averages which we bounded in the previous step remain bounded
by γ on each of these new intervals. Thus, we may apply the pigeonhole principle
as before to find some 1 ≤ i2 ≤ K such that the contribution to (1.3.6) of those

averages which are not bounded by γ for every pair N,N ′ ∈ [M
(i1,i2)
∗ , F2(M

(i1,i2)
∗ )] is

at most
(
K−1
K

)2
C∗.

Iterating the above process r times, we find a tuple 1 ≤ i1, . . . , ir ≤ K such that
the set of reduced averages which are not bounded by γ for every pair

N,N ′ ∈ [M (i1,...,ir)
∗ , Fr(M

(i1,...,ir)
∗ )] = [M (i1,...,ir)

∗ , F (M (i1,...,ir)
∗ )],

contributes at most (
K − 1

K

)r
C∗ < ε/16,

to (1.3.6), upon choosing r sufficiently large in terms of ε and d. Since the sum
over the remaining terms will be bounded by

∑k−1
t=0 |λt|γ < ε/16, we conclude that

(1.3.6), and therefore ∥∥Ag
N,N ′ [f1, . . . , fj−1, f ]

∥∥
2
≤ ε/4,

for every N,N ′ ∈ [M
(i1,...,ir)
∗ , F (M

(i1,...,ir)
∗ )].

Notice that while the specific integer M
(i1,...,ir)
∗ we have obtained depends on

the set of functions f1, . . . , fj−1, f and the system g, this integer belongs to the
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sequence M
(j1,...,jr)
∗ , 1 ≤ j1, . . . , jr ≤ K, which depends only on F, ε, d and M∗. The

result follows from this observation with the sequence (1.3.5) given by the integers

M
(j1,...,jr)
∗ , 1 ≤ j1, . . . , jr ≤ K.

1.3.2 Proof of Theorem 1.13

We can now conclude the proof of Theorem 1.13. As it was done before, we fix
X,G, F, ε, d and g as in the statement of that theorem and assume without lost of
generality that each reduction g∗m of g is of complexity at most d− 1 and that the
result is already proven for every d′ < d. We will also write M0 for the integer M
to be chosen as the starting point of the sequence (1.3.2) in Theorem 1.13. Let δ, η
be as specified at the beginning of §1.3.1 and write Ci := Cδ,η

i for the constants
defined in (1.2.2). Given some positive integer L write ΣL for the set of L-reducible
functions and set

Σ+
L := ΣL ∪B2(δ/C∗), (1.3.8)

where we write B2(δ/C∗) for the set of f ∈ L2(X) with ‖f‖2 ≤ δ/C∗. Consider on
L2(X) the norms ‖·‖L := ‖·‖Σ+

L
defined as in (1.2.1). It is easy to see that these

norms are well defined and equivalent to ‖·‖L2(X) (by the presence of the small L2

ball and the fact that reducible functions are bounded by 1). Also, notice that
Σ+
L+1 ⊆ Σ+

L for every L which in turn implies (by Lemma 1.6) that ‖·‖∗L+1 ≤ ‖·‖
∗
L.

Given any integer M write ψ(M) := F (M∗) where M∗ is the integer obtained
in Proposition 1.16 with M∗ = M . Let f1, . . . , fj ∈ L∞(X), ‖fi‖∞ ≤ 1, be given
and consider for fj a decomposition of the form provided in Proposition 1.11 with
(‖·‖L)L∈N, ψ, δ, η as above and c equal to the constant c1 in Lemma 1.15. This allows
us to find a constant 1 ≤ Ci ≤ C∗ and some integer M with M0 ≤M = OM0,ε,F,d(1),
such that

fj =
k−1∑
t=0

λtσt + u+ v, (1.3.9)

where
∑k−1

t=0 |λt| ≤ Ci, each σt belongs to Σ+
B for some B ≥ ψ(M) (and therefore

to Σ+
ψ(M)), ‖u‖

∗
A < η(Ci) for some A < c1M and ‖v‖2 < δ. We remark that this

constant Ci is the one defined in (1.2.2) and that the integer M obtained belongs
to the sequence given in Proposition 1.11, which does not depend on the family of
norms (‖·‖L)

L∈N and in the present case is therefore independent of the particular
system g we have fixed (although it certainly depends on its complexity d, as well
as on ε, F and M0). Since ‖

∑∗
t λtσt‖2 ≤ δ, where the sum is restricted to those

σt ∈ B2(δ/C∗), we may assume that each σt in (1.3.9) actually belongs to Σψ(M), at
the cost of softening our bound on v to ‖v‖2 < 2δ.

We would like to use Lemma 1.15 to study the function u, but first we need to gain
some control on its L∞ norm. In order to do this, denote by S ∈ X the set of points
on which the inequality |v(s)| ≤ Ci holds (in particular one has µ(Sc) < (2δ/Ci)

2)
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and write v′ := u1Sc + v. From the fact that ‖σj‖L∞(X) ≤ 1 for every σj ∈ Σψ(M),

(1.3.9) and the definition of S, one easily checks that |u1Sc(x)| ≤ 3|v(x)| a.e. and
therefore ‖u1Sc‖2 ≤ 3 ‖v‖2. Hence, it follows that for every pair of integers N,N ′,

‖AN,N ′ [f1, . . . , fj−1, v
′]‖2 ≤ ‖AN ′ [f1, . . . , fj−1, v

′]‖2

+ ‖AN [f1, . . . , fj−1, v
′]‖2

≤ 2(4 ‖v‖2)

< ε/3, (1.3.10)

where we are using Minkowski’s inequality and the fact that ‖fi‖∞ ≤ 1 for every
1 ≤ i ≤ j − 1. Consider now u1S. Similarly as above, one sees that ‖u1S‖L∞(X) ≤
3Ci. Also, it follows from Lemma 1.6 that for every σ ∈ ΣA it is

|〈u1S, σ〉| ≤ |〈u, σ〉|+ |〈u1Sc , σ1Sc〉|
≤ ‖u‖∗A + ‖u1Sc‖2 ‖σ1Sc‖2

< η(Ci) + 12δ2/Ci

< 2η(Ci).

We are now in a position to apply Lemma 1.15, which implies that for every pair
N,N ′ ≥M

‖AN,N ′ [f1, . . . , fj−1, u1S]‖2 ≤‖AN ′ [f1, . . . , fj−1, u1S]‖2

+ ‖AN [f1, . . . , fj−1, u1S]‖2

≤ ε/3. (1.3.11)

It only remains to analyze
∑k−1

t=0 λtσt. But we may now invoke Proposition 1.16 to
conclude from our choice of ψ that∥∥∥∥∥AN,N ′ [f1, . . . , fj−1,

k−1∑
t=0

λtσt]

∥∥∥∥∥
L2(X)

< ε/3, (1.3.12)

for every pair Mi ≤ N,N ′ ≤ F (Mi) and some Mi ∈ [M,ψ(M)] which belongs to the
corresponding sequence (1.3.5). Theorem 1.13 then follows from (1.3.9), (1.3.10),
(1.3.11), (1.3.12) and Minkowski’s inequality.

1.4 The complexity of polynomial systems

In this section we will prove that every system of the form given in Theorem 1.4 has
finite complexity, thereby finishing the proof of that theorem. In order to do this,
we begin by reviewing some facts about polynomial sequences in nilpotent groups.
For a detailed treatment of this topic, the reader is referred to the work of Leibman
[37, 38].
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For a G-sequence g = (g(n))n∈Z taking values in a nilpotent group G and some
integer m, we define the operator Dm which takes g to the G-sequence (Dmg)(n) :=
g(n)g(n + m)−1. In particular, we have 〈g|h〉m(n) = (Dmg)(n)h(n + m), for every
pair of G-sequences g, h and every positive integer m. We say that a G-sequence
is polynomial if there exists some positive integer d such that for every choice of
integers m1, . . . ,md, we have Dm1 . . . Dmdg = 1G, where we recall that 1G stands for
the constant sequence which equals the identity of G. It is known that if (g(n))n∈Z
is a sequence in a nilpotent group G which is of the form

g(n) = T
p1(n)
1 . . . T

pk(n)
k , (1.4.1)

where T1, . . . , Tk ∈ G and p1, . . . , pk is some set of integer valued polynomials, then
g is a polynomial sequence. Indeed, each T

pi(n)
i is clearly a polynomial sequence

and the product of polynomial sequences is polynomial by Lemma 1.17 below (the
converse also holds, see for example [37]).

By a polynomial system we shall mean a system g = (g1, . . . , gj), where each
gi, 1 ≤ i ≤ j, is a polynomial sequence. We define the size of such a system to be
|g| = j. To prove Theorem 1.4 it will suffice, by Theorem 1.13 and the fact that
sequences of the form (1.4.1) are polynomial, to prove that every polynomial system
has finite complexity.

In order to proceed, we will need to define the degree of a polynomial sequence.
Unfortunately, the natural choice of taking the least positive integer d for which every
d successive application of the above operators returns the identity is not appropriate
for our purposes, since with this definition the set of polynomial sequences of degree
≤ d need not form a group. In order to amend this, we need to introduce some
notation. Write N0 = N ∪ {0} and N∗ = N0 ∪ {−∞}. We say a vector d =
(d1, . . . , dk) ∈ Nk

∗ is superadditive if di ≤ di+1 for every 1 ≤ i < k and di + dj ≤ di+j
for every pair i, j, where we are using the conventions −∞+t = −∞ for every t ∈ N∗
and −∞ < r for every r ∈ N0. Also, given a superadditive vector d = (d1, . . . , dk)
and some nonnegative integer t, we write d − t := (d′1, . . . , d

′
k), where d′i = di − t if

t ≤ di and d′i = −∞ otherwise. Notice that d− t so defined is also a superadditive
vector.

Fix a nilpotent group G of nilpotency class s and let G = G1 ⊃ G2 ⊃ . . . ⊃
Gs ⊃ Gs+1 = {1G} be its lower central series. As in [37, 38], we say a sequence
g = (g(n))n∈Z taking values in G is a polynomial sequence of (vector) degree ≤
(d1, . . . , ds) if (Dm1 . . . Dmdk+1

g)(n) ∈ Gk+1 for every n, every 1 ≤ k ≤ s and every
choice of m1, . . . ,mdk+1 ∈ Z. If dk = −∞ we take this to mean that g itself takes
values in Gk+1. We will make use of the following results of Leibman.

Lemma 1.17 ([38, §3]). Let d = (d1, . . . , ds) be a superadditive vector and let
t, t1, t2 ≥ 0 be nonnegative integers. Then we have the following properties.
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1. If g is a polynomial sequence of degree ≤ d − t, then Dmg is a polynomial
sequence of degree ≤ d− (t+ 1), for every m ∈ Z.

2. The set of polynomial sequences of degree ≤ d− t forms a group.

3. If g is a polynomial sequence of degree ≤ d− t1 and h is a polynomial sequence
of degree ≤ d− t2, then [g, h] is a polynomial sequence of degree ≤ d− (t1 + t2),
where [g, h](n) := g−1(n)h−1(n)g(n)h(n).

Remark. The results of [38] concern the operators

(D̃mg)(n) := g(n)−1g(n+m) = (Dmg
−1)(n).

Nevertheless, using Lemma 1.17 for these operators and a straightforward descending
induction on t one can easily check that a G-sequence g has degree ≤ d − t with
respect to the operators D̃m if and only if it has degree ≤ d− t with respect to the
operators Dm, from where we recover Lemma 1.17 as stated.

We say a polynomial system g = (g1, . . . , gj) has degree ≤ d if the degree of
gi is ≤ d, for every 1 ≤ i ≤ j. We will show that any system of degree ≤ d, for
some superadditive vector d = (d1, . . . , ds), has finite complexity. Notice that this
is enough to prove Theorem 1.4, since if a polynomial sequence g has degree ≤
(d1, . . . , ds), then it also has degree ≤ (d, 2d, . . . , sd), with d = max {di : 1 ≤ i ≤ s},
and this last vector is clearly superadditive.

Given a polynomial system g, we are concerned with the process that consists
of passing from g to an equivalent system g′, then taking the m-reduction (g′)∗m
of g′ for some m, passing to an equivalent system ((g′)∗m)′ and then taking the m′-
reduction of this for some m′, etc. What we are free to choose in the above process
is to which equivalent system we apply the reductions (but not the integer on which
we subsequently reduce) and our objective is to show that there exists some constant
C, depending on g, such that for every sequence of positive integers m,m′,m′′, . . .
we can go to the trivial system (1G) by means of at most C repetitions of the above
transformations. This clearly implies that the complexity of g is at most C.

In order to simplify notation we will omit the reference to the specific sequence
of integers on which we reduce. So for instance, we will generically refer to the
reduction of a system g = (g1, . . . , gj) to be the system

g∗ = (g1, . . . , gj−1, 〈gj|1G〉, 〈gj|g1〉, . . . , 〈gj|gj−1〉).

Similarly, we have the identity

〈g|h〉(n) = Dg(n)(Dh(n))−1h(n),

provided, of course, that the omitted subindices are the same. We define a step to
be the process of passing from a system g to the reduction (g′)∗ of some system g′
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equivalent to g. We will show that one can pass from a polynomial system g to the
trivial system in a number of steps which is bounded in terms of the size and degree
of g.

We define the complete reduction of a system g to be the system

g∗∗ = (g1, . . . , gj−1, 〈gj|g1〉, . . . , 〈gj|gj−1〉).

Thus, g∗∗ = g∗\{〈gj|1G〉}. We define a complete step in the same way as a step, but
with the reduction replaced by the complete reduction. Complete steps are needed
for a technical reason related to the inductive process to be applied. Precisely, in
order to handle steps involving systems of degree ≤ d we will need to assume some
control on both steps and complete steps over systems of degree ≤ d− 1.

Theorem 1.4 follows from Theorem 1.13 and the following result.

Theorem 1.18. Let g be a polynomial system of size |g| ≤ C1 and degree ≤ d, for
some superadditive vector d = (d1, . . . , ds). Then,

• one can go from g to the trivial system (1G) in OC1,d
(1) steps,

• one can go from g to a system consisting of a single sequence of degree ≤ d in
OC1,d

(1) complete steps,

for every sequence of positive integers m,m′,m′′, . . .. In particular, g has complexity
OC1,d

(1).

Proof. Let d be as in the statement. We begin by noticing that the result is trivially
true for systems of degree ≤ d − (ds + 1) = (−∞, . . . ,−∞), since 1G is the only
sequence lying in Gk+1 for every 1 ≤ k ≤ s. We will proceed by induction. Since
d − t is superadditive for every t ≥ 0, it will suffice to prove that if Theorem 1.18
holds for systems of degree ≤ d− 1 then it also holds for systems of degree ≤ d.

Thus, let g be as in the statement. We will first prove that we can go from g to
the trivial system in OC1,d

(1) steps (and therefore, that g has complexity OC1,d
(1)).

In order to do this, observe that g can be rewritten in the form

g = h0 ∪
l⋃

i=1

sihi, (1.4.2)

for some polynomial sequences s1, . . . , sl of degree ≤ d, l ≤ C1, and some poly-
nomial systems hi of degree ≤ d − 1 and size ≤ C1, with h0 possibly empty (for
example, one could simply take si = gi and hi = (1G) for every 1 ≤ i ≤ l). Here,
if h = (h1, . . . , hk), sh is the system (sh1, . . . , shk) and the union of two systems
(h1, . . . , hk), (h′1, . . . , h

′
r) is understood to be the system (h1, . . . , hk, h

′
1, . . . , h

′
r).
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The idea will be to show that for systems of the form (1.4.2) one can perform
steps in such a way that the resulting systems are also of the form (1.4.2) for the
same set of sequences s1, . . . , sl. Furthermore, we will show that in finitely many
steps we may actually discard the sequence sl, therefore arriving at a system like
(1.4.2) in which only the sequences s1, . . . , sl−1 are present. Iterating this l times we
shall then end up with a system of degree ≤ d− 1, from where one can proceed by
induction.

In order to carry out this plan we begin by observing that if si, sj are sequences
of degree ≤ d and hi, hj are sequences of degree ≤ d− 1, we have

〈sjhj|sihi〉 = D(sjhj)(D(sihi))
−1sihi

= siD(sjhj)(D(sihi))
−1
[
D(sjhj)(D(sihi))

−1, si
]
hi

= sih
j,i, (1.4.3)

for some polynomial sequence hj,i which is seen to have degree ≤ d − 1 by Lemma
1.17. Furthermore, if si = sj = s, it is easy to check that

〈shj|shi〉 = s〈hj|hi〉.

It follows from these formulas that, provided |hl| > 1, the reduction g∗ of g is
equivalent to a system of the form

h
(1)
0 ∪

(
l−1⋃
i=1

sih
(1)
i

)
∪ slh∗∗l , (1.4.4)

for some systems h
(1)
0 ,h

(1)
1 , . . . ,h

(1)
l−1 of degree ≤ d− 1 and size |h(1)

0 | ≤ 2|h0|+ 1 and

|h(1)
i | ≤ 2|hi| for every other i, and where we recall that h∗∗l refers to the complete

reduction of hl. Explicitly, if hi = (hi,1, . . . , hi,ji) for every 0 ≤ i ≤ l, then

h
(1)
0 = (〈slhl,jl |1G〉, h0,1, . . . , h0,j0 , 〈slhl,jl |h0,1〉, . . . , 〈slhl,jl |h0,j0〉) ,

while sih
(1)
i equals

(sihi,1, . . . , sihi,ji , 〈slhl,jl |sihi,1〉, . . . , 〈slhl,jl |sihi,ji〉) ,

for every 1 ≤ i ≤ l − 1. We see by (1.4.3) that this is of the desired form.

Observe now that if h is equivalent to h′ then the system sh is also equivalent
to sh′. Since by the induction hypothesis we know that one can pass from hl to a
system h consisting of a single sequence of degree ≤ d − 1 in OC1,d−1(1) complete
steps, it follows from the above observation and (1.4.4) that we may pass from g to
a system of the form

h
(2)
0 ∪

(
l−1⋃
i=1

sih
(2)
i

)
∪ slh, (1.4.5)

40



Teoremas inversos discretos Walsh, Miguel N.

in OC1,d−1(1) steps, where each system h
(2)
i has degree ≤ d − 1 and size OC1,d

(1),

and h is a system consisting of a single sequence of degree ≤ d− 1. But then we see
from (1.4.3) that the reduction of (1.4.5) will be of the form

h
(3)
0 ∪

(
l−1⋃
i=1

sih
(3)
i

)
,

with each h
(3)
i having degree ≤ d−1 and size OC1,d

(1). We have therefore succeeded
in discarding the sequence sl from our system. We can now repeat the same process
as before with sl−1 in place of sl. Since the size of h

(3)
l−1 is OC1,d

(1), we see that this
new process finishes in OC1,d

(1) steps, leaving us with a system of the form

h
(4)
0 ∪

(
l−2⋃
i=1

sih
(4)
i

)
.

Therefore, iterating the above process l times, we are finally left in OC1,d
(1) steps

with a system of degree ≤ d− 1 from where we may apply the induction hypothesis
to obtain the trivial system in OC1,d

(1) further steps, thereby completing the proof
of the finite complexity of g.

Now it only remains to show that one can pass from g to a system consisting of
a single sequence of degree ≤ d in OC1,d

(1) complete steps. But it is clear that the

above reasoning to pass from g to a system of degree ≤ d− 1 works in exactly the
same way for complete steps, since the only things that may change are the systems
h

(1)
0 ,h

(2)
0 ,h

(3)
0 , . . ., which nevertheless will always have degree ≤ d−1 and whose size

may only be smaller than in the previous case. Thus, the above reasoning allows us
to pass to a system of degree ≤ d−1 from where we may apply induction, as long as
we are not left after any of the complete steps with a system which can be written
in its entirety as sih, for some si as above and h of degree ≤ d− 1 and size |h| = 1
(because if the whole system has size 1 the complete reduction is not defined). But
since in such a case we are already done, this completes the proof of Theorem 1.18
and therefore of Theorem 1.4.

1.5 Further results

The next result is easily seen to follow from the methods discussed in the previous
sections.

Theorem 1.19. Let G be a nilpotent group of measure preserving transformations
of a probability space (X,X , µ). Then, for every T1, . . . , Tl ∈ G, every f1, . . . , fr ∈
L∞(X), every set of polynomials pi,j : Zd → Z, and every Følner sequence {ΦN}∞N=1
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in Zd, the averages
1

|ΦN |
∑
u∈ΦN

r∏
j=1

(
T
p1,j(u)
1 . . . T

pl,j(u)

l

)
fj (1.5.1)

converge in L2(X,X , µ).

During the proof of Theorem 1.4 we used crucially the fact that the L∞ norm
is an algebra norm (‖fg‖∞ ≤ ‖f‖∞ ‖g‖∞). While this is not true for the L2 norm,
if we are concerned with the study of a single function f ∈ L2(X), this issue is no
longer present. Furthermore, in this case our polynomial systems will always have
size 1, a fact that allows us to drop the hypothesis of nilpotency on our group G
(because we no longer need the product of polynomial sequences to be polynomial).
More generally, it is easy to see from these observations that our methods produce
the following result, which was also conjectured by Bergelson and Leibman in [7].

Theorem 1.20. Let G be a group of unitary operators on a Hilbert space H. If
(g(n))n∈Z is a polynomial sequence in G, then

lim
N→∞

1

N

N∑
n=1

g(n)u

exists for every u ∈ H.

This was established by Bergelson and Leibman [7] for nilpotent G. While our
result drops this hypothesis, it should be noted that it is not presently known if there
are polynomial sequences whose study does not essentially reduce to the nilpotent
case.

1.6 Some examples of reductions

We now provide some concrete examples of how the process studied in Section §1.4
returns the trivial system for some polynomial systems. Given systems g and h
we write g ∼ h to mean that both systems are equivalent and we write g

m→ h to
mean that h is the m-reduction of g. Given measure preserving transformations
T, S, C of a probability space, we will use the convention of writing T n

2
SnC for the

G-sequence g given by g(n) = T n
2
SnC.

Before giving the examples, we note that an unpleasant feature of the process
used in [53] is that in the simplest cases it is unnecessarily complicated (mainly, this
happens when the group is abelian). A way to amend this is the trivial observation
that the averages (1.3.1) for sequences gi(n) = hi(n)Ci, with Ci some set of trans-
formations, equal the averages associated to the system h = (h1, . . . , hj) evaluated
at the functions Cifi. Thus, we may extend the previous equivalence relation to
include those pairs of systems which may be obtained from each other by adding or
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removing a constant in the above manner. It is easy to check that the arguments
of [53, §3] work equally well with this alternative notion of equivalence. We write
g ∼∗ h if g and h are equivalent in this way and call this modification of the process
’cheating’. While there is no substantial gain by using this slight modification in
the general case, many of the examples discussed below become much cleaner in
this way. Nevertheless, we will also show in every case how the process is performed
without cheating.

Example 1.21. As a trivial example, suppose our system is constant i.e. of the
form (C1, . . . , Cj) for some constant G-sequences C1, . . . , Cj. Then its m-reduction
is equivalent to

(1G, C1, . . . , Cj−1),

for every m, so in particular we get the trivial system after at most j steps. Of
course, if one is allowed to cheat, one has

(C1, . . . , Cj) ∼∗ (1G),

to begin with.

Example 1.22. Suppose we are given a linear system

(Ln1C1, . . . , L
n
jCj),

consisting of commuting transformations L1, C1, . . . , Lj, Cj. Then, we see that the
m-reduction of this system is given by

(Ln1C1, . . . , L
n
j−1Cj−1, L

−m
j ,L−mj Ln+m

1 C1, . . . , L
−m
j Ln+m

j−1 Cj−1) (1.6.1)

∼∗ (Ln1 , . . . , L
n
j−1).

This highlights the advantage of cheating. Indeed, this would allow us to go to the
trivial system in j steps, while without cheating we would require more than 2 ↑↑ j
steps. We now see how the latter is accomplished. Our objective is to eliminate Lnj−1

from the reduction (1.6.1) (cf. the general strategy given in [53, §4]). In general, if
we are given a system of the form

(Ln1C1,1, . . . , L
n
1C1,i1 , . . . , L

n
kCk,1, . . . , L

n
kCk,ik),

with the transformations generating an abelian group, its m-reduction will be equiv-
alent to

(L−mk , Ln1C1,1, . . . , L
n
1C1,i1 , L

n
1C1,1L

−m
k Lm1 , . . . ,

Ln1C1,i1L
−m
k Lm1 , . . . , L

n
k−1Ck−1,1, . . . , L

n
k−1Ck−1,ik−1

,

Lnk−1Ck−1,1L
−m
k Lmk−1, . . . , L

n
k−1Ck−1,ik−1

L−mk Lmk−1, L
n
kCk,1, . . . , L

n
kCk,ik−1).
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In particular, Lni appears twice as many times as before for every 1 ≤ i < k, while
Lnk appears one time less, therefore disappearing after ik steps. Notice also that at
each step we get twice plus one as many constant sequences as before. Applying
these observations we see that the system (Ln1C1, . . . , L

n
jCj) reduces to one consisting

only of constant sequences after at most a(j) steps, with a : N → N the function
recursively defined by a(1) = 1 and a(n + 1) = a(n) + 2a(n). We may then proceed
as in Example 1.21.

Example 1.23. Consider now a system of the form

(Sn1C1, . . . , S
n
j−1Cj−1, T

n2

Snj Cj),

for commuting T, Si, Ci. The m-reduction is given by

(Sn1C1, . . . ,S
n
j−1Cj−1, T

−2mn−m2

S−mj ,

T−2mn−m2

S−mj Sn+m
1 C1, . . . , T

−2mn−m2

S−mj Sn+m
j−1 Cj−1),

which is a linear system and therefore reduces to the trivial system by the procedure
discussed in Example 1.22.

Example 1.24. If we are given a system of size 1 consisting of a polynomial G-
sequence g then it is obvious that the number of steps required to reach the trivial
system is the total degree of g. Notice that this is true even when the group G is
not assumed to be nilpotent.

Example 1.25. Consider (T n
2
, T n

2
Sn) for commuting T and S. The m-reduction

is given by

(T n
2

,T−2mn−m2

S−m, T n
2

S−m)

l→ (T n
2

, T−2mn−m2

S−m, T−2ln−l2 , T n
2

, T−2ln−l2−2m(n+l)−m2

S−m),

and this is equivalent to a system of the form studied in Example 1.23.

Example 1.26. Consider (T n, Sn) with T and S generating a nilpotent group. The
m1-reduction is given by

(T n, S−m1 , S−m1Tm1T n).

Write C := S−m1Tm1 , C(1) := S−m1 . Then the m2-reduction of this is given by

(T n, C(1), CT−m2C−1,CT−m2C−1Tm2T n, CT−m2C−1C(1))

∼ (C(1), C(2), C(3), T n, [C−1, Tm2 ]T n).

for some constant G-sequences C(2), C(3) which depend on m1,m2. By the same rea-
soning we see that after reducing at m3, . . . ,ml (and passing to equivalent systems)
we get the system

(C(1), C(2), . . . , C(c(l)), T n, [[[[C−1, Tm2 ]−1, Tm3 ]−1, . . .]−1, Tml ]T n),
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for some constant G-sequences C(i), 1 ≤ i ≤ c(l), with c : N → N the increasing
function defined recursively by c(1) = 1 and c(n + 1) = 2c(n) + 1. Clearly, this is
equivalent to

(C(0), C(1), . . . , C(c(l)), T n),

for some l of size at most s+ 1, with s the nilpotency class of the group. Since any
reduction of this last system will be a constant system of size c(l+ 1) it follows that
our original system (Sn, T n) reduces to the trivial one in at most s + 2 + c(s + 1)
steps. Of course, s+ 2 steps would have sufficed if we were allowed to cheat.

Example 1.27. Our last example is the system (T n
2
, Sn

2
) for commuting T and S.

We have

(T n
2

, Sn
2

)
m1→ (T n

2

, S−2nm1−m2
1 , S−2nm1−m2

1T n
2

T 2nm1+m2
1)

∼ (S−2nm1−m2
1 , T n

2

, S−2nm1−m2
1T n

2

T 2nm1+m2
1)

m2→ (S−2nm1−m2
1 , T n

2

, T−2nm2−m2
2−2m1m2S2m1m2 ,

T−2nm2−m2
2−2m1m2S−2nm1−m2

1 , T n
2

S2m1m2T−2m1m2)
m3→ (S−2nm1−m2

1 , T n
2

, T−2nm2−m2
2−2m1m2S2m1m2 ,

T−2nm2−m2
2−2m1m2S−2nm1−m2

1 ,

T−2nm3−m2
3 , T−2nm3−m2

3S−2nm1−2m1m3−m2
1 ,

T n
2

, T−2nm3−m2
3−2nm2−2m2m3−m2

2−2m1m2S2m1m2 ,

T−2nm3−m2
3−2nm2−2m2m3−m2

2−2m1m2S−2nm1−2m1m3−m2
1)

and this last system is equivalent to one of the form studied in Example 1.23.
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Chapter 2

The inverse sieve problem

2.1 Introduction

In this chapter we will study a strong manifestation of algebraic rigidity, related with
the distribution of sets in residue classes. The study of such ’local’ distributional
properties is one of the main topics of interest in analytic number theory. Examples
abound, but folkloric ones include Dirichlet’s theorem, which tells us that the primes
are uniformly distributed along primitive residue classes, and the open problem of
determining how large may the least quadratic non-residue be.

Another example worth mentioning is the Bombieri-Vinogradov theorem [9].
Write ψ(x; a, q) for the number of primes congruent to a (mod q) below x and ϕ for
Euler’s totient function, that is,

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

We say that the primes have level of distribution θ if, for every A > 0 and ε > 0,
we have the estimate∑

q≤xθ−ε
max

(a,q)=1

∣∣∣∣ψ(x; a, q)− x

ϕ(q)

∣∣∣∣�A,ε
x

(log x)A
,

This is saying that the primes are very well behaved mod q on average. The
Bombieri-Vinogradov theorem states that the primes have level of distribution 1/2.
This is a remarkable result that equals what the Generalized Riemann Hypothesis
can say in this situation.

It is conjectured that the primes have level of distribution 1, but this seems to
be far out of reach of present technology. A spectacular result of Goldston, Pintz
and Yildirim [27] shows that, if there exists some ε > 0 such that the primes have
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level of distribution 1/2+ε, then there must exist some absolute constant C = C(ε)
and infinitely many primes p, such that p+ C is also prime.

The above example serves to illustrate two points. First of all, besides being
interesting in itself, there are strong applications to be drawn from knowing that a
set is well behaved in residue classes. This is particularly true for the application of
sieve methods (see [17]). The second point, which will be the most relevant for our
study, is that obvious obstructions notwithstanding, the main goal of the problems
mentioned above is to show that the sets of interest are, in fact, very well distributed
in residue classes.

2.1.1 Sieves and algebraic structure

From the point of view of discrete inverse theorems, the last point mentioned in the
previous paragraph raises an obvious question: may it be the case that every set
that is very badly distributed in residue class must be of a specific form? Since we
would expect a random set to be fairly well distributed, the main question becomes
whether a set occupying very few residue classes for many primes p has to have
some specific structure. The remarkable observation that this might indeed be the
case is due to Croot and Elsholtz [14] and Helfgott and Venkatesh [30]. Writing [N ]
for the set of integers {0, . . . , N} their observation can be resumed in the following
principle:

Inverse Sieve Problem. Suppose a set S ⊆ [N ]d occupies very few residue classes
mod p for many primes p. Then, either S is small, or it possesses some strong
algebraic structure.

An important example to keep in mind here is that of the squares. Indeed, let
S = {1, 4, 9, 16, . . .} ⊆ [N ] be the set of squares. It is well known that this set
occupies only (p + 1)/2 residue classes mod p for every prime p. That is, the set
of squares is very badly distributed in residue classes. However, it is clear that this
set is also a ’strongly algebraic’ set. The guess is then that every large subset of
[N ] occupying so few residue classes must be of this form, i.e. lie in the image of a
polynomial (see Conjecture 2.16).

There is a good reason why such inverse sieve results are of much interest in
number theory. One of the main features of sieve theory is the uniformity of its
results, which is a consequence of the fact that sieves only take into account the
cardinality of the classes occupied by the set. However, a clear drawback of this is
that the bounds thus obtained are limited to what happens in extremal cases. By
stating that such extremal sets must have a very specific structure, inverse results
should allow one to retain the uniformity of the sieve while providing much stronger
bounds. The reader may consult the book of Kowalski [35, §2.5] for further discussion
of the potential applications of this phenomenon and [21] for applications of similar
classifications in arithmetic combinatorics.
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In the present chapter we give a satisfactory answer to the inverse sieve problem
for every d ≥ 2. In order to discuss our results suppose we are given a big integer
set S ⊆ [N ]d occupying O(pd−1) residue classes in (Z/pZ)d for many primes p.
What does this imply about S? By the Lang-Weil inequality, we know that this
condition is satisfied by the set of integer points of a proper algebraic variety of
small degree and one would expect a partial converse to also hold. That is, that
any big set S ⊆ [N ]d occupying only that many residue classes for every prime p
should essentially be contained inside the solution set of a polynomial of low degree.
When d = 1 this follows from Gallagher’s larger sieve [26] (not to be confused with
the conjecture discussed in §2.6.3). The case d = 2 was proven by Helfgott and
Venkatesh in [30], by applying the Bombieri-Pila determinant method [10] to obtain
a two-dimensional generalization of the larger sieve. Although their methods are
only capable of handling the case d ≤ 2, they conjectured that such an inverse
theorem should in fact hold for every dimension d. In this chapter we introduce a
different approach and use it to answer this question by giving the following best
possible result.

Theorem 2.1. Let 0 ≤ k < d be integers and let ε, α, η > 0 be positive real numbers.
Then, there exists a constant C depending only on the above parameters, such that
for any set S ⊆ [N ]d occupying less than αpk residue classes for every prime p at
least one of the following holds:

• (S is small) |S| �d,k,ε,α N
k−1+ε,

• (S is strongly algebraic) There exists a nonzero polynomial f ∈ Z[x1, . . . , xd]
of degree at most C and coefficients bounded by NC vanishing at more than
(1− η)|S| points of S.

Theorem 2.1 is sharp. Indeed, the reader may consult Section §2.5 for examples
of sets of size |S| � Nk−1 occupying less than pk residue classes for every prime p
but possessing no algebraic structure. On the other hand, we only need to require
from S that it occupies few residue classes for sufficiently many small primes (see
Theorem 2.5). More generally, we will show in Theorem 2.14 that assuming some
necessary regularity conditions, every set of size� N ε occupying few residue classes
for many primes p must satisfy condition (ii). In Section §2.6.2 we shall give an easy
application of this generalization to the characterization of functions preserving some
structure when reduced to prime moduli.

Taking d = 2 in Theorem 2.1 we recover the result of [30]. Actually, the methods
of Helfgott and Venkatesh are capable of handling the case k = 1 of Theorem 2.1,
that is, when S is assumed to occupy only O(p) residue classes. However, the
approach fails as soon as the set occupies more than p log p classes. The reason for
this is that their method, as well as the larger sieve itself, is in essence a counting
argument (see §2.3.1) and therefore needs the number of classes occupied by S to be
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small, while the high dimensional setting requires us to take advantage of the local
density of S being small. This type of obstacle is not specific to the problem at hand,
but arises whenever one tries to extend these kind of sieves to higher dimensional
settings (see [34, Remark 3] for some discussion). So while we do make use of the
larger sieve, in order to establish Theorem 2.1 we need to introduce an approach
that overcomes this difficulty by taking advantage of the structure of the set and
which we believe to be applicable in more general situations.

2.1.2 Organization

The rest of this chapter is organized as follows. After setting up some notation, in
Section §2.2 we state and discuss Proposition 2.3, which is the main ingredient of
our study, and use it to deduce Theorem 2.1. Roughly speaking, this proposition
says that every set satisfying hypothesis similar to those of Theorem 2.1 admits a
subset of size O(rk) such that if a polynomial identity of degree r holds at this set
then it must also hold at a positive proportion of the points of S. Then, in Section
§2.3, we review some facts about the larger sieve and apply them to obtain a key
uniformization lemma. Using this, the proof of Proposition 2.3 is carried out in
Section §2.4. Finally, in §2.5 we construct several examples showing that our results
are sharp, while in §2.6 we discuss further consequences of our methods as well as
the remaining case (d = 1) of the inverse sieve problem.

2.2 A conditional proof of Theorem 1.1

2.2.1 General notation

We now fix some notation. By Oc1,...,ck(X) we shall mean a quantity which is
bounded by Cc1,...,ckX where Cc1,...,ck is some finite positive constant depending on
c1, . . . , ck. Also, we shall write Y �c1,...,ck X to mean |Y | = Oc1,...,ck(X). However,
since we will generally be concerned with the study of a set S satisfying the hypoth-
esis of Proposition 2.3 for some parameters d, h, κ and ε as in the statement of that
proposition, we will free up some notation by assuming that all implied constants
in the O,� notation always depend on these parameters even though this may not
be explicitly stated. So for instance Y �η X stands for Y �η,d,h,κ,ε X. Throughout
the rest of this chapter we will let the letter c denote a small positive constant whose
exact value may vary at each occurrence.

Given a statement φ(x) with respect to an element x ∈ [N ]d we will write 1φ(x)

for the function which equals 1 if φ(x) is true and 0 otherwise. Also, we shall write
πi : Zd → Z, 1 ≤ i ≤ d, for the projection to the ith coordinate.

The letter p will always refer to a prime number. We write P for the set of
primes and given any magnitude Q, we denote P(Q) the set of primes p ≤ Q. Since
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we will usually need to consider the weight log p
p

over P , for a finite subset P ⊆ P
we write w(P ) :=

∑
p∈P

log p
p

. We shall use the estimates

w(P(Q)) = logQ+O(1),

and ∑
p∈P(Q)

log p ∼ Q,

without explicit mention.

2.2.2 Characteristic sets

The purpose of this section is to state Proposition 2.3, which is the key ingredient of
our argument, and use it to derive Theorem 2.1. What this proposition essentially
says, is that for any ill-distributed set S as in the statement of Theorem 2.1, one
may find a very small “characteristic” subset A ⊆ S such that if a small polynomial
vanishes at A then it also vanishes at a positive proportion of S. The task of proving
Theorem 2.1 is thus reduced to that of finding a polynomial which vanishes at A,
and this will always be possible since A is small.

Before proceeding, we need to define exactly what we mean for a polynomial
to be small. Given a parameter N and some integer d > 0 by an r-polynomial,
for a positive integer r, we shall mean any polynomial f with integer coefficients
satisfying |f(n)| < N3r for every n ∈ [N ]d. The exponent 3r is chosen in order
to guarantee that if N is sufficiently large in terms of r and d, then a polynomial
f ∈ Z[x1, . . . , xd] of degree at most r, with coefficients bounded in absolute value by
N r, is an r-polynomial. This leads us to the following definition.

Definition 2.2. Let 0 < δ ≤ 1 be a positive real number and r > 0 some integer.
We say a subset A of a set S is (r, δ)-characteristic for S if we can find some subset
A ⊆ B ⊆ S of size |B| ≥ δ|S| such that whenever an r-polynomial vanishes at A,
then it also vanishes at B.

We can now state Proposition 2.3 which says that ill-distributed sets always
admit small characteristic subsets.

Proposition 2.3. Let d, h ≥ 1 be arbitrary integers and ε > 0 some positive real
number. Set Q = N

ε
2d and let P ⊆ P(Q) satisfy w(P ) ≥ κ logQ for some κ > 0.

Also, let r be an arbitrary positive integer. Suppose S ⊆ [N ]d is a set of size
|S| � Nd−h−1+ε occupying at most αpd−h residue classes mod p for every prime
p ∈ P and some α > 0. Then, if N is sufficiently large, there exists a set A ⊆ S of
size |A| = O(rd−h) which is (r, δ)-characteristic for S, for some δ > 0 which depends
on d, h, κ, ε but is independent of S, N or r.
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Remarks. The exact value of Q in the above statement is irrelevant and may be
replaced by any small power of N . The reason why we have made the change of
variables h := d− k with respect to Theorem 2.1 is that in the arguments to follow
we shall always set the quantity h to be fixed and induct on d. We believe it is
simpler to introduce this change of notation at an early stage.

To see why such a result might be expected consider some polynomial f vanishing
at an integer point x. Since polynomials descend to congruence classes, this means
that for any other integer y satisfying y ≡ x(mod p) for a prime p, we will have
p|f(y). Thus, if we are given a set S which occupies very few residue classes, one
may then hope to find a small subset A such that given some y ∈ S there are a
lot of primes p for which y ≡ x(mod p) for some x ∈ A. It would then follow that
if a polynomial vanishes at A then there would be many primes p dividing f(y).
If furthermore f is small, then this can only hold if f(y) = 0. Notice that this is
similar to the general idea of the larger sieve, where one uses the fact that S occupies
few residue classes mod p to conclude the existence of too many pairs of elements
of S occupying the same class, and contrasts this with the fact that no fixed pair of
distinct bounded integers can occupy the same residue class for many primes (see
§2.3.1).

On the other hand, the size hypothesis on S is necessary. For instance, one may
construct small (logarithmic size) sets S ⊆ [N ] as in [30, §4.3] which occupy few
residue classes for large moduli just because they are small, but which however have
at most one element in each residue class, making the above argument unviable in
this situation. Furthermore, it is clear that a similar pathology occurs in higher
dimensions, by considering for instance the product set S × [N ]. For the general
construction of this type of sets and to see that in fact one cannot take ε = 0 in
Proposition 2.3 the reader is referred to §2.5.

In order to deduce Theorem 2.1 from Proposition 2.3 we will need to find a
polynomial which vanishes at a specific set of points. This will be accomplished in
a standard way by means of Siegel’s lemma.

Lemma 2.4 (Siegel). Suppose we are given a system of m linear equations

n∑
j=1

aijβj = 0 ∀1 ≤ i ≤ m,

in n unknowns (β1, . . . , βn), n > m, where the coefficients (aij) are integers not all
equal to 0 and bounded in magnitude by some constant C. Then, the above system
has a non trivial integer solution (β1, . . . , βn) with

|βj| ≤ 1 + (Cn)m/(n−m),

for all 1 ≤ j ≤ n.
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Proof of Theorem 2.1 assuming Proposition 2.3. Let the hypothesis be as in the
statement of Theorem 2.1 and write h := d − k. Assume condition (i) fails, so
that |S| � Nd−h−1+ε. We claim that for any given integer r there exists a set
A ⊆ S of size |A| = Oη(r

d−h) which is (r, 1 − η)-characteristic for S, provided N
is sufficiently large. To see this we begin by noticing that Proposition 2.3 implies
the existence of some δ � 1 such that for every subset S ′ ⊆ S with |S ′| ≥ η|S|
there exists a set A′ ⊆ S ′ of size |A′| = Oη(r

d−h) which is (r, δ)-characteristic for
S ′. From now on we fix this value of δ. Let A0 be such a characteristic subset for S
and let B0 consist of those elements of S which vanish at every r-polynomial that
vanishes at A0, so in particular |B0| ≥ δ|S|. If δ ≥ 1− η we are done, otherwise we
have that S1 := S \ B0 satisfies |S1| ≥ η|S| and therefore contains a characteristic
subset A1 ⊆ S1 as above. If we now let B1 denote those points of S1 vanishing at
every r-polynomial that vanishes at A1 we see that either we get the claim with
A = A0 ∪ A1 or the set S2 := S1 \B1 satisfies

η|S| ≤ |S2| ≤ (1− δ)2|S|.

After iterating this process j times we see that if the set A =
⋃j−1
i=0 Ai is not (r, 1−η)-

characteristic for S then we can find some Sj ⊆ S with

η|S| ≤ Sj ≤ (1− δ)j|S|.

Since this last possibility cannot hold for some large j = Oη(1), the claim follows.

Now it only remains to find some r-polynomial f which vanishes at A and which
is of the form given in Theorem 2.1. Notice that this is plausible since the size of A
is �η r

d−h while an r-polynomial has ∼ rd degrees of freedom. We now make this
rigorous by means of Siegel’s lemma. Thus, we may assume d|r and consider the

system of |A| linear equations in
(
r
d

+ 1
)d

unknowns given by∑
i={i1,...,id}≤r/d

βia
i = 0 ∀a ∈ A, (2.2.1)

where i ≤ l stands for ij ≤ l for all 1 ≤ j ≤ d and where we use the multi-index
notation ai = ai11 . . . a

id
d for a = (a1, . . . , ad). Notice that |ai| ≤ N r for every i

and that a solution (βi) of (2.2.1) corresponds to the coefficients of a polynomial

vanishing at A. If we now choose r = Oη(1) large enough so that
(
r
d

+ 1
)d
> 3|A| it

follows by Siegel’s lemma that there exists an integer solution (βi) to (2.2.1) with

|βi| �r N
r/2 ≤ N r,

provided N is sufficiently large. We thus see that the polynomial

f :=
∑
i≤r/d

βix
i,

is of the desired form (assuming again that N is sufficiently large) and, taking C = r,
this concludes the proof of Theorem 2.1.
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Notice that we have actually proved the following slight strengthening of Theo-
rem 2.1 in which the set S is only required to be badly distributed in a dense subset
of the primes.

Theorem 2.5. Let 0 ≤ k < d be integers and let ε, η > 0 be positive real numbers.
Set Q = N

ε
2d and let P ⊆ P(Q) satisfy w(P ) ≥ κ logQ for some κ > 0. Suppose

S ⊆ [N ]d is a set of size |S| � Nk−1+ε occupying at most αpk residue classes mod
p for every prime p ∈ P and some α > 0. Then there exists a nonzero polynomial
f ∈ Z[x1, . . . , xd] of degree Oη(1) and coefficients bounded by NOη(1) which vanishes
at more than (1− η)|S| points of S.

Remark. Since we have already mentioned that the exact value of Q in Proposition
2.3 is irrelevant, it follows that Theorem 2.5 also holds with Q any small power of
N .

2.3 Applying the larger sieve in high dimensions

2.3.1 A review of the larger sieve

We will now quickly review some facts about Gallagher’s larger sieve and use them
to prove two easy lemmas which we shall need later. For further discussion of the
larger sieve and its consequences the reader may consult [12, Section 2.2] and of
course Gallagher’s original paper [26].

Before proceeding we need to state some further notation that will be used in
this and the next sections. When studying a set S ⊆ [N ]d we will denote by [S]p
the set of residue classes mod p occupied by S. Given such a set S, we shall be
largely concerned with how many elements of S belong to a given residue class, so it
is important for us to have a specific notation for this subset. Thus, given a residue
class a = (a1, . . . , ad)(mod p) we write S(a; p) to refer to those elements of S which
are congruent to a(mod p). Moreover, we shall sometimes consider some a ∈ Z/pZ
and write S(a; p) for those elements of S having their first coordinate congruent to
a (mod p). Since we will always use the bold font a to denote a vector residue class
and since where this class lives shall be clear from the context altogether, we believe
the similarity of both notations will not cause any confusion. Finally, if p is fixed,
we may simply write S(a) and S(a) for the above sets.

Fix now a set S and consider some parameter Q. The main idea of the larger
sieve is to count in two different ways the number of distinct pairs x, y ∈ S and
primes p ≤ Q such that x ≡ y(mod p). Given two such integers x, y ∈ [N ] it is clear
that those primes for which they are congruent are exactly those dividing |x−y| ≤ N
and therefore ∑

p≤Q

∑
x,y∈S
x 6=y

1x≡y(mod p) log p ≤ |S|2 logN. (2.3.1)
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On the other hand, we have that the left hand side of (2.3.1) equals∑
p≤Q

∑
a(mod p)

|S(a; p)|2 log p− |S|
∑
p≤Q

log p. (2.3.2)

Notice that the above argument also works if S ⊆ [N ]d since if p is a prime for which
x ≡ y(mod p) then p must divide |π1(x)− π1(y)| which is bounded by N .

As an example, we have the following result due to Gallagher [26]. Suppose we
are given a set S ⊆ [N ] occupying at most αp residue classes, then the Cauchy-
Schwarz inequality implies ∑

a(mod p)

|S(a; p)|2 ≥ 1

αp
|S|2.

Combining this with (2.3.1) and (2.3.2) we obtain

1

α
logQ+O

(
|Q|
|S|

)
≤ logN +O(1).

Taking Q = |S| we conclude that |S| �α N
α.

For the purposes of our work, we need to apply Gallagher’s sieve in a slightly
more general context. Precisely, we will use the following lemma which is also
classical.

Lemma 2.6. Let X ⊆ [N ] be some set of integers and set Q = Nγ for some γ > 0.
Let c1, c2 > 0 be positive real numbers. Suppose there is a set of primes P ⊆ P(Q)
with w(P ) ≥ c1 logQ such that for every p ∈ P there are at least c2|X| elements of
X lying in at most αp residue classes for some α > 0 independent of p. Then, if α
is sufficiently small in terms of c1, c2 and γ, it must be |X| < Q.

Proof. Again, we count the number of pairs x, y ∈ X and p ∈ P with x ≡ y(mod p).
On one hand, we have as before that∑

p∈P

∑
x,y∈X
x 6=y

1x≡y(mod p) log p ≤ |X|2 logN. (2.3.3)

On the other hand, using the Cauchy-Schwarz inequality we see that our hypothesis
on X implies ∑

a(mod p)

|X(a; p)|2 ≥ 1

αp
(c2|X|)2,

from where it follows that the left hand side of (2.3.3) is at least

c1c
2
2

α
|X|2 logQ+O(|Q||X|).

It is then clear that if α is sufficiently small, then the only way for (2.3.3) to hold is
to have |X| < Q.
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Finally, we prove the following easy consequence of the larger sieve which already
handles the case d = h of Proposition 2.3.

Lemma 2.7. Let Q = Nγ for some γ > 0 and let P ⊆ P(Q) be some set of primes
with w(P ) ≥ c1 logQ for some c1 > 0. Let S ⊆ [N ]d occupy less than c2 residue
classes mod p for every prime p ∈ P and some constant c2. Then |S| = Oc1,c2,γ(1).

Proof. Gallagher’s sieve implies in this case

logN ≥
(

1

c2

− 1

|S|

)∑
p∈P

log p�
(

1

c2

− 1

|S|

)
Nγc1 ,

and clearly, for sufficiently large N , this can only hold if |S| ≤ c2.

2.3.2 Genericity

Our strategy to prove Proposition 2.3 will be to partition S into many lower di-
mensional subsets and apply induction. However, the main obstacle we encounter
in doing so (and which is not merely a technical issue, as can be seen from the
examples in §2.5) is the possibility that the resulting subsets are rather independent
from each other, in the sense that they do not share many residue classes. If this
happens, then the fact that a small polynomial vanishes at one of this subsets will
not give us much information about the behavior of this polynomial in the other
subsets. However, in order for this to happen it would be necessary for these sub-
sets to occupy very few residue classes and this would imply the existence of too
many elements in each subset occupying the same residue class. While with our
hypothesis one cannot guarantee that this never happens, the goal of this section
is to show that this indeed does not happen on average, which will be sufficient for
our arguments.

We begin with the following definition.

Definition 2.8 (Genericity). Given a real number B > 0 and some integer l > 0
we say that a set S ⊆ [N ]d is (B, l)-generic mod p if

|S(a; p)|
|S|

<
B

pl
,

for every residue class a(mod p).

Given a set of primes P ⊆ P(Q) we shall write P ′ ↪→ P to mean a subset P ′ ⊆ P
with w(P ′)� w(P ). Recall that by our conventions in §2.2.1 the implied constants
depend on the parameters d, h, ε, κ of Proposition 2.3. The rest of this section is
devoted to the proof of the following lemma.
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Lemma 2.9. Let d, h ≥ 1 be arbitrary integers and let ε > 0 be some positive
real number. Set Q = N

ε
2d and let P ⊆ P(Q) satisfy w(P ) ≥ κ logQ for some

κ > 0. Suppose S ⊆ [N ]d is a set of size |S| � Nd−h−1+ε occupying at most αpd−h

residue classes mod p for every prime p ∈ P and some α > 0. Then there exists
B = O(1) and a set of primes P ′ ↪→ P such that for each p ∈ P ′ there is some
subset Gp(S) ⊆ S, |Gp(S)| � |S|, which is (B, d− h)-generic mod p.

Remarks. Here again the exact value of Q is not important as long as it is a small
power of N . Also, as in the previous statements, all the hypothesis are necessary
because of the examples in §2.5.

Proof. From now on fix an integer h ≥ 1. If d ≤ h the result is trivial, so we may
proceed by induction on d. Thus, let d ≥ h + 1 be some integer and assume the
result holds for every smaller dimension.

Take S and P as in the statement and recall that πi(S) is the projection of S
to the ith coordinate. We claim that for some 1 ≤ i ≤ d there exists a set S ′ ⊆ S
with |S ′| ≥ |S|/2d such that every A ⊆ S ′ with |A| ≥ |S ′|/2 satisfies |πi(A)| ≥ Q.
Indeed, if the claim fails with S ′ = S and i = 1 we may find some subset S1 ⊆ S
with |S1| ≥ |S|/2 and |π1(S1)| < Q. Then, if the claim fails again with S ′ = S1 and
i = 2, we get some S2 ⊆ S1 with

|S2| ≥ |S1|/2 ≥ |S|/4,

and
|π1(S2)|, |π2(S2)| < Q.

Iterating this d times either we get the claim or end up with a set Sd ⊆ S satisfying

|S| ≤ 2d|Sd| ≤ 2d|π1(Sd)| . . . |πd(Sd)| < 2dQd.

By our choice of Q this is clearly absurd for sufficiently large N and therefore the
claim follows.

Since it sufficies to prove the lemma for such a subset S ′ we may assume without
lost of generality that S ′ = S and permuting the coordinates if necessary we may
also assume i = 1. Hence, we have that

|π1(A)| ≥ Q for every A ⊆ S with |A| ≥ |S|/2. (2.3.4)

We wish to construct a dense subset of S which is in an adequate position to
apply the induction hypothesis. Since we will be working with the first coordinate,
given some a ∈ Z/pZ, we will write S(a; p) to refer to those elements of S having
their first coordinate congruent to a(mod p). Let B1 be some large constant to be
specified later. Since |[S]p| ≤ αpd−h, it is clear that there can be at most αp/B1
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residue classes a ∈ [π1(S)]p ⊆ Z/pZ for which |[S(a; p)]p| ≥ B1p
d−h−1. We denote

by E1(p) this exceptional set. Also, we write

E2(p) :=

{
a ∈ [π1(S)]p : |S(a; p)| ≥ B1

αp
|S|
}
.

From the obvious fact that ∑
a∈Z/pZ

|S(a; p)| = |S|,

it follows that |E2(p)| ≤ αp/B1 and therefore |E(p)| ≤ 2αp/B1, where E(p) :=
E1(p) ∪ E2(p). By means of the larger sieve we may now deduce that not too many
integers in [N ] can lie in E(p) for many p ∈ P . Indeed, consider the set X which
consists of all elements x ∈ [N ] for which∑

p∈P

1x(mod p)∈E(p)
log p

p
≥ 1

2
w(P ).

By the pigeonhole principle, one may then find a set of primes P1 ⊆ P with w(P1) ≥
1
4
w(P ) and such that ∣∣∣∣∣∣

⋃
a∈E(p)

X(a; p)

∣∣∣∣∣∣ ≥ 1

4
|X|,

for every p ∈ P1. It then follows from Lemma 2.6 that upon choosing B1 sufficiently
large, we can ensure that |X| < Q.

By (2.3.4), we deduce that ∣∣S \ π−1
1 (X)

∣∣ ≥ 1

2
|S|.

We may therefore find a subset S ′ ⊆ S with |S ′| ≥ 1
4
|S| which does not intersect

π−1
1 (X) and such that S ′x := π−1

1 (x) ∩ S ′ satisfies |S ′x| � Nd−h−2+ε for every x ∈
π1(S ′). Every such x lies outside of X and therefore has associated a set of primes
Px ↪→ P for which x(mod p) /∈ E(p). Since E1(p) ⊆ E(p), we may apply the
induction hypothesis to S ′x for every x to see that there exists sets of primes P ′x ↪→ Px
and constants c, B2 > 0 independent of x, such that for each p ∈ P ′x there is a
(B2, d− h− 1)-generic mod p set Gp(S ′x) ⊆ S ′x containing at least c |S ′x| elements.

Since the sets P ′x constructed above satisfy P ′x ↪→ P , with the implied constant
independent of x, we may apply again the pigeonhole principle to locate some set
of primes P ′ ↪→ P and some constant c > 0, such that for each p ∈ P ′ there are at
least c|S ′| elements s ∈ S ′ for which p ∈ P ′π1(s). It thus follows that if for a prime
p ∈ P ′ we consider the set

Gp(S) :=
⋃

x:p∈P ′x

Gp (S ′x) ,

58



Teoremas inversos discretos Walsh, Miguel N.

then
|Gp(S)| � |S ′| � |S|,

and Gp(S)∩π−1
1 (x) = Gp(S ′x) is a (B2, d−h− 1)-generic set for every x ∈ π1(Gp(S)).

Also, we see that there are at most

B1

αp
|S| � B1

αp
|Gp(S)|,

elements of Gp(S) having the same first coordinate mod p since by construction it
does not lie in E2(p). It thus follows that Gp(S) is a B-generic set for some large
B depending on B1 and B2 but independent of p and this concludes the proof of
Lemma 2.9.

2.4 The proof of Proposition 2.2

In this section we give a proof of Proposition 2.3. As we did in the proof of Lemma
2.9 we will fix an integer h and induct on d. Since for d ≤ h the result is either
trivial or follows from Lemma 2.7 we may assume d ≥ h + 1 and that the result
holds for all smaller dimensions.

Before we proceed, we give a brief discussion of the strategy of the proof. By our
size hypothesis on S, we know that there must exist some coordinate i such that
both the projection πi(S) and the corresponding sections π−1

i (x)∩S are big (at least
on average), and therefore generically distributed in the residue classes they occupy
(by Lemma 2.9). Combining these two facts, one can deduce the existence of m� r
sections π−1

i (x)∩S of S such that the probability of some s ∈ S of being congruent
mod p to some element of these sections is roughly m/p for many p (see Lemma
2.10). This in turn implies that if an r-polynomial f vanishes at these sections, f(s)
is expected to be divisible by many primes, which by the boundedness of f would
imply that f(s) = 0. Thus, it only remains to find a set that is characteristic for
thesem sections, but by the induction hypothesis each section admits a characteristic
subset and the result then follows by taking the union of these.

2.4.1 Summary of notation

To help the reader, we provide below a summary of previously introduced notation
that will be needed during the proof.

• |A| - the cardinality of a set A,

• w(P ) :=
∑

p∈P
log p
p

.

• P ′ ↪→ P - a subset of primes P ′ ⊆ P with w(P ′)� w(P ),
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• πi(A) - the projection of A to the ith coordinate,

• Ax := π−1
1 (x)∩A for a set A ⊆ [N ]d (but Px will have a different meaning for

P a set of primes),

• [S]p - the set of residue classes occupied by S mod p,

• S(a; p) - those elements of S congruent to a mod p,

• S(a; p) - those elements of S with first coordinate congruent to a mod p,

2.4.2 Building good sections

We now turn to the details. We are thus given a set S and some positive integer r.
Our first step will be to find generic sets inside the sections of S for many primes p.
Proceeding as in the beginning of the proof of Lemma 2.9 we may assume that

|π1(A)| ≥ Q for every A ⊆ S with |A| ≥ |S|/2. (2.4.1)

This allows us, at the cost of passing to a subset of half density if necessary, to get
the bound

|Sx| ≤ 2|S|/Q for every x ∈ [N ], (2.4.2)

where Sx := π−1
1 (x) ∩ S. Finally we may also assume, again by passing to a subset

of half density if necessary, that |Sx| � Nd−h−2+ε for every x ∈ π1(S).

Let B be some large constant. For every prime p we denote by E(p) the set
of residue classes a ∈ Z/pZ for which |[S(a; p)]p| ≥ Bpd−h−1 (recall that S(a; p)
stands for those elements of S having their first coordinate congruent to a(mod p)
and thus [S(a; p)]p consists of those residue classes in [S]p ⊆ (Z/pZ)d having a as a
first coordinate). Since |E(p)| ≤ αp/B, applying Lemma 2.6 as in the proof Lemma
2.9, we conclude by (2.4.1) that if B is chosen sufficiently large, we may find some
S ′ ⊆ S, |S ′| � |S|, such that for each x ∈ π1(S ′) we have Px ↪→ P , with the implied
constant independent of x, and where

Px := {p ∈ P : x(mod p) /∈ E(p)} .

This places us in a position in which we can apply the induction hypothesis to each
section S ′x of S ′ to find some δ0 � 1 independent of x such that each S ′x admits a
(r, δ0)-characteristic subset of size O(rd−h−1). In particular, we see that at the cost
of passing to a subset of S ′ of density δ0 if necessary, we may assume that inside
each S ′x we can find a set of size O(rd−h−1) which is (r, 1)-characteristic for the whole
section. Notice that since we are refining the sections, we still get a bound of the
form |S ′x| � Nd−h−2+ε for every x ∈ π1(S ′). Thus, we may also apply Lemma 2.9 to
every such S ′x obtaining sets of primes P ′x ↪→ Px such that for every p ∈ P ′x we can
find a (C, d− h− 1)-generic subset Gp(Sx) ⊆ S ′x, |Gp(Sx)| � |S ′x|, where C and the
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implied constants are independent of p and x. In particular, we may find some set
of primes P ′ ↪→ P such that for each p ∈ P ′ the set

Gp(S) :=
⋃

x:p∈P ′x

Gp (Sx) ,

satisfies
|Gp(S)| � |S ′| � |S|,

and each nonempty section (Gp(S))x of Gp(S) is a (C, d− h− 1)-generic set.

From now on we write Gp := Gp(S). The next lemma is crucial as it allows us
to find sections of S containing the residue class of many elements of S for many
primes p.

Lemma 2.10. There exists a set B ⊆ S ′, |B| � |S|, such that for every non empty
section Bx of B there is a set of primes

Px ↪→ P ′ ↪→ P,

with ∣∣∣{s ∈ S ′ : [s]p ∈ [Bx]p
}∣∣∣ ≥ c|S|

p
,

for every p ∈ Px, where c > 0 does not depend on x or p.

Proof. We begin by fixing a prime p ∈ P ′ and considering some residue class a ∈
[π1(Gp)]p. Since p is fixed we will simply write Gp(a) to denote those elements of

Gp with first coordinate congruent to a(mod p). Also, given a class b ∈ (Z/pZ)d

we write Gp(b) for those elements of Gp congruent to b(mod p). By the pigeonhole
principle and the fact that by construction of P ′ it is | [Gp(a)]p | ≤ Bpd−h−1 it follows

that we may find some b1 ∈ [Gp(a)]p ⊆ (Z/pZ)d with

|Gp(b1)| ≥ |Gp(a)|/(Bpd−h−1).

Consider now the set B1 ⊆ Gp(a) defined by

B1 :=
⋃

s:[s]p=b1

(Gp)π1(s) , (2.4.3)

that is, B1 is the union of those sections (Gp)x in Gp containing a representative of
b1.

Since each (Gp)x is a (C, d− h− 1)-generic set, we have that

|(Gp)x| ≥
pd−h−1

C
|(Gp)x(b1)|
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and therefore

|B1| ≥
pd−h−1

C
|Gp(b1)| ≥ 1

BC
|Gp(a)|. (2.4.4)

Notice now that since |Gp(a)| ≥ |B1| and |[Gp(a)]p| ≤ Bpd−h−1, by the first inequality
of (2.4.4) and the pigeonhole principle we may find another residue class b2 ∈ [Gp(a)]p
with

|Gp(b2)| ≥ 1

Bpd−h−1
|Gp(a) \ Gp(b1)|

≥ 1

Bpd−h−1

(
1− C

pd−h−1

)
|Gp(a)|,

which is at least |Gp(a)|/(2Bpd−h−1) if pd−h−1 > 2C. In such a case, if we now define
B2 as in (2.4.3), but this time with respect to b2, the same reasoning that gives
(2.4.4) implies

|B2| ≥
1

2BC
|Gp(a)|.

Iterating this process we end up with a sequence b = {b1, . . . ,bq} of residue classes,

q = dpd−h−1

2C
e, satisfying

|Gp(bj)| ≥
1

Bpd−h−1

∣∣∣∣∣Gp(a) \
j−1⋃
i=1

Gp(bi)

∣∣∣∣∣
≥ 1

Bpd−h−1

(
1− (q − 1)C

pd−h−1

)
|Gp(a)|

≥ |Gp(a)|
2Bpd−h−1

,

and |Bj| ≥ 1
2BC
|Gp(a)|. In particular, we have that

q∑
j=1

|Bj| ≥
q

2BC
|Gp(a)|. (2.4.5)

Now, we consider the set

B[a] :=

{
s ∈ Gp(a) :

q∑
j=1

1s∈Bj ≥
q

4BC

}
.

Notice that B[a]x := B[a] ∩ π−1
1 (x) equals (Gp)x whenever this intersection is not

empty. Also, (2.4.5) implies

|B[a]| ≥ 1

4BC
|Gp(a)|. (2.4.6)
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We see that B[a] is very close to what we want, since if we take any nonempty
section B[a]x of this set, then there are at least |Gp(a)|/(4BC)2 elements s ∈ G(a)
such that s ≡ y(mod p) for some y ∈ B[a]x.

We now let R ⊆ [π1(S)]p consist of those residue classes a ∈ Z/pZ with |Gp(a)| ≥
1
2p
|Gp| and write

B[p] :=
{
s ∈ S ′ : S ′π1(s) ∩ B[a] 6= ∅ for some a ∈ R

}
.

In other words, B[p] consists of those sections of S ′ intersecting
⋃
a∈R B[a]. In

particular, since B[p] contains the disjoint union
⋃
a∈R B[a], we see from (2.4.6) and

the definition of R that

|B[p]| ≥ 1

8BC
|Gp| ≥ c|S|,

for some constant c independent of p.

Recall now that w(P ′) ≥ c logQ. For an element s ∈ S ′ write P ′s for the set of
primes p ∈ P ′ for which s ∈ B[p]. It follows from the above paragraph that for an
appropriate choice of c the set

B := {s ∈ S ′ : w(P ′s) ≥ c logQ} , (2.4.7)

satisfies |B| ≥ c|S|. It is easy to check that B is of the desired form.

2.4.3 Construction of the characteristic set

To conclude the proof of Proposition 2.3 we will show that if an r-polynomial van-
ishes at the sections Bx for �r 1 distinct values of x, then it must also vanish at
a positive proportion of S. To this end, we choose m distinct sections of S ′ having
nontrivial intersection with B, where m = Or(1) is to be specified later. Notice that
by (2.4.2) and Lemma 2.10 this is always possible provided N is sufficiently large.
Call

L := S ′x1
∪ . . . ∪ S ′xm ,

the union of these sections. Let PL consist of those primes p for which there exists a
pair of sections S ′xi 6= S ′xj in L with [S ′xi ]p ∩ [S ′xj ]p 6= ∅. Given such a pair of sections
the fact that [S ′xi ]p ∩ [S ′xj ]p 6= ∅ implies in particular that xi ≡ xj(mod p). Since
xi 6= xj this implies that the sum of log p over such primes is bounded by logN .
Thus, we see that ∑

p∈PL

log p ≤
(
m

2

)
logN, (2.4.8)

and this implies that w(PL)�r log logN .

We now consider on S ′ the function

ψL(s) :=
∑
p≤Q

1∃x∈L:s≡x(mod p) log p.
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Thus, ψL(s) measures the extent to which the residue classes occupied by s have
a representative in L. If we write Pi to denote the set of primes in Lemma 2.10
corresponding to the section S ′xi ∩ B of B, it follows from this lemma and (2.4.8)
that ∑

s∈S′
ψL(s) ≥

m∑
i=1

∑
p∈Pi\PL

∑
s∈S′

1∃x∈S′xi :s≡x(mod p) log p

≥
m∑
i=1

∑
p∈Pi\PL

c|S|
p

log p

≥ m|S| (c logQ+Or(log logN))

≥ c0m|S| logQ,

for some c0 > 0 and sufficiently large N .

Set δ = εc0
4d

and suppose there are at most δ|S| elements s ∈ S ′ with ψL(s) ≥
3r logN . Since ψL(s) ≤ m logN for every s /∈ L we conclude that

c0m|S| logQ ≤ |L|2Q+ |S|3r logN + δ|S|m logN,

where we used that ∑
p≤Q

log p ≤ 2Q.

for large Q. Hence, by (2.4.2) we derive that

m

(
εc0

2d
− δ − 4

logN

)
≤ 3r.

Taking m = 7r/δ we get a contradiction for sufficiently large N . We may therefore
assume that the set

A := {s ∈ S ′ : ψL(s) ≥ 3r logN} ,

has size |A| ≥ δ|S| for the above choices of m and δ.

We will now show that if an r-polynomial vanishes at L, then it also vanishes at
A. Indeed, let f be such a polynomial and let x ∈ A be arbitrary. By definition, we
have |f(x)| < N3r. On the other hand, if p is a prime for which there exists some
y ∈ L with x ≡ y(mod p), then the fact that f(y) = 0 implies that p|f(x). But by
definition of A the product of all such p is at least N3r so we see that the only way
for this to hold is to have f(x) = 0, which proves our claim.

By the induction hypothesis and our construction of S ′ we know that for each
S ′xi ∈ L we may find a (r, 1)-characteristic set of size O(rd−h−1). Taking the union
of these m sets we have thus found a set of size O(rd−h) which is (r, δ)-characteristic
for S, with δ as above. This concludes the proof of Proposition 2.3.
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2.5 Ill-distributed sets with no algebraic struc-

ture

In this section we provide some examples of high dimensional ill-distributed sets pos-
sessing no algebraic structure. In particular, we show that the assertion of Theorem
2.1 fails when ε = 0. To begin with, we use a slight modification of the construction
given in [30, §4.3] to see that, given any 0 < η < 1, one may construct a subset
of [N ] of size � (logN)η which occupies at most pη residue classes for every prime
p and which possesses no algebraic structure. Indeed, if N is sufficiently large, we
may find some integer Q with Q < logN < 2Q such that the product of all primes
p ≤ Q, say R, satisfies N1/4 < R < N (this, of course, is very crude). For each prime
p ≤ Q choose bpηc residue classes. Then, by the Chinese remainder theorem, there
are ∼ Rη elements below R belonging to a selected class for every p ≤ Q. Choose
b(logN)η/2c of these elements and call this set X. Notice that for all primes p > Q
we have pη > |X| and therefore X occupies at most pη residue classes for these
primes p. Since by construction it also occupies that many classes for all primes
p ≤ Q, we get the claim.

We now proceed to give some examples of ill-distributed sets with no algebraic
structure. The first one already shows that Theorem 2.1 is best possible.

Example 2.11. This follows readily from the above construction. Fix some pair of
positive integers d, h with d ≥ h + 1 and consider h + 1 different sets X1, . . . , Xh+1

constructed as in the previous paragraph with η = 1/(h+ 1). If we define the set

S :=
{

(x1, . . . , xd) ∈ [N ]d : xi ∈ Xi ∀1 ≤ i ≤ h+ 1
}
,

then we have that |S| � Nd−h−1 logN while |[S]p| ≤ pd−h for every prime p, from
where it follows that we cannot take ε = 0 in Theorem 2.1.

Example 2.12. One can generalize the above example by “perturbing” arbitrary
algebraic sets. We show a simple instance of this. Let d = 3 and consider two
polynomials f, g ∈ Z[x]. Let X and Y be sets of size � (logN)1/2 occupying at
most p1/2 residue classes for every prime p. Then, we see that

{(x, f(x) ·X, g(x) · Y ) : x ∈ [N ]}

is a big set of integer points occupying at most p2 residue classes.

Finally, we show that not all possible counterexamples are perturbations of
strongly algebraic sets.

Example 2.13. Fix some small ε > 0. By the Chinese remainder theorem one can
construct a set X ⊆ [N ] of size |X| ∼ N1−ε occupying only one residue class for
every prime p ≤ ε logN . Take K = b(ε logN)1/3c and let f1, . . . , fK , g1, . . . , gK be a
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family of polynomials. Also, let X1, . . . , XK , Y1, . . . , YK be arbitrary sets of size at
most (ε logN)1/3. Then

K⋃
i=1

{(x, fi(x) ·Xi, gi(x) · Yi) : x ∈ X}

is a big set of integer points occupying at most p2 residue classes for every prime p.
Notice that this construction is of a different nature than the one given in Example
2.12, since the union of that many algebraic sets may not retain any algebraic
structure itself.

It follows from the above examples that strange things can happen if one allows
the set to possess too many very small sections. However, we shall show in Theorem
2.14 below that the methods presented in this chapter do indeed work as long as
one avoids this type of situation.

2.6 Further results and conjectures

2.6.1 A generalization of Theorem 1.1

We now state the most general result which follows at once from our methods. Let
0 ≤ k < d be integers and let ε > 0 be some positive real number. We say a set
S ⊆ [N ]d is (1, ε)-regular if |S| ≥ N ε. Recursively, we say S ⊆ [N ]d is (k, ε)-regular
if there exists some 1 ≤ i ≤ d such that for every x ∈ [N ]

1. |π−1
i (x) ∩ S| ≤ |S|/N ε,

2. π−1
i (x) ∩ S is either empty or (k − 1, ε)-regular.

The first condition allows us to recover (2.4.2), while the second one enables
us to use Lemma 2.9 and the induction hypothesis as it was done in the main
argument. As a consequence, one recovers the conclusions preceding Lemma 2.10
and from here the proof of (the analogous of) Proposition 2.3 proceeds without
further modifications. One can thus deduce that any (k, ε)-regular S set occupying
� pk residue classes admits a bounded polynomial vanishing at a positive proportion
of S. Furthermore, since it is easy to see that any subset S ′ ⊆ S of a (k, ε)-regular
set with |S ′| ≥ η|S| admits a (k, ε/2)-regular subset of half density (provided N is
sufficiently large in terms of η) we can in fact deduce the following stronger result.

Theorem 2.14. Let 0 ≤ k < d be integers and let ε, η, α be positive real numbers.
Then there exists C = Oε,η,α,k,d(1) such that for every (k, ε)-regular set S ⊆ [N ]d

occupying less than αpk residue classes for every prime p, there exists a nonzero
polynomial f ∈ Z[x1, . . . , xd] of degree at most C and coefficients bounded by NC

vanishing at more than (1− η)|S| points of S.
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One would expect a reasonable set to be well approximated by a bounded union
of (k, ε)-regular subsets, in which case it is clear that the same conclusion holds. For
example, it was implicitly shown in the proof of Theorem 2.1 that given any η > 0
and any S ⊆ [N ]d with |S| � Nk−1+ε there exists some S ′ ⊆ S with |S ′| ≥ (1−η)|S|
which is the union of a bounded number (in terms of η and d) of (k, ε/4d)-regular
subsets.

Finally, it is important to note that one cannot hope to do much better than
Theorem 2.14 in this generality, since the regularity conditions are necessary in order
to avoid those constructions emerging from the Chinese Remainder Theorem as in
§2.5.

2.6.2 Approximate reduction

We shall give a quick application of Theorem 2.14 to the study of functions preserving
some structure when reduced modulo a prime, that is, functions f for which knowing
the class of x(mod p) gives us information about the class of f(x)(mod p). Thus,
given a positive integer K, we say a function f : [N ]k → [N r]t has K-approximate
reduction if ∣∣∣[f ([N ]k(a)

)]
p

∣∣∣ ≤ K,

for every a ∈ (Z/pZ)k and every prime p. That is, f is said to have K-approximate
reduction if once the residue class of x is fixed, there are at most K possibilities
for the residue class of f(x). When K = 1 this implies the very strong property of
recurrence mod p and using this, it was shown by Hall [28] and Ruzsa [41] (see also
[43, §XV.41]) that for large N the only functions having 1-approximate reduction
are polynomials (notice that we are assuming our functions to have polynomial
growth, which is in fact a necessary condition [28]). Since the graph of a function
f : [N ]k → [N r]t is always a (k, 1/2r)-regular set, it follows from Theorem 2.14 that
this is indeed a very robust phenomenon:

Corollary 2.15. Suppose f : [N ]k → [N r]t has K-approximate reduction and
let Γ(f) be the graph of f . Then there exists C = Ok,r,t,K(1) and a polynomial
P ∈ Z[x1, . . . , xd] of degree at most C and coefficients bounded by NC, such that P
vanishes at more than (1− η)|Γ(f)| points of Γ(f).

2.6.3 The inverse sieve problem in one dimension

We conclude by mentioning a very strong version of the inverse sieve problem which
is conjectured to hold for sets S ⊆ [N ] (see [14, Problem 7.2] and [30]).

Conjecture 2.16. Suppose that S ⊆ [N ] is some set of integers of size |S| ≥ N ε

occupying less than αp residue classes for some 0 < α < 1 and every prime p. Then
S has a large intersection with the image of a nonlinear integer polynomial of degree
bounded in terms of α and ε.
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As a more precise instance of this, they conjecture for example that if a set S has
size |S| ≥ N0.49 say, and occupies less than 2p/3 residue classes mod p for every prime
p, then most of S must be contained in a set of the form {an2 + bn+ c : n ∈ Z}.
This can be seen as an inverse conjecture for the large sieve [22, 40].

Conjecture 2.16 seems to be hard. In the particular case in which the residue
classes occupied by S lie outside some interval of length (p−1)/2, nontrivial estimates
were obtained by Green, and also by Bourgain, with the bound |S| � (log logN)c

being recently achieved by Green and Harper [23]. In general, as noted by Helfgott
and Venkatesh [30, §4.2], Conjecture 2.16 implies that there are�ε N

ε points on an
irrational curve within a square of side N , which is itself a well known open problem.
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