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Homogeneizadbn de autovalores en operadores giticos
cuasilineales

(Resumen)

Distintos problemas clasicos de vibraciones mecanioasnsodelados con ecuaciones diferen-
ciales, y las frecuencias de vibracion corresponden auts/alores de éstas. Estructuras tales
como columnas, placas, membranas o cuerdas, obedecenadistiases de problemas elipticos
(el sistema de ecuaciones de la elasticidad, el laplacelnoiaplaciano, ecuaciones de Sturm
Liouville). Estos operadores han sido muy estudiados y secam numerosas propiedades de
sus autovalores, ver por ejemplo los trabajos clasicosodeadt, Hormander, Timoshenko, Titch-

marsh, WeinsteinQoHi53, Hor68 Hor07, Ti46] entre otros.

Durante el siglo XX, la teoria no lineal gener6 nuevasdmarentas y problemas, y los autoval-
ores son interpretados en este contexto como un paranebifudcacion, correponden a valores
criticos para los cuales una estructura puede deformeotapsar o salir de equilibrio (buck-
ling, bending). Podemos citar como ejemplo los trabajos mienan, Browder, Berger, y Amann
[Am72, An83, Be68 Br65).

En los Gltimos afos, los nuevos materiales han creadmsuwmsafios. En particular, cuando se
consideran mezclas de dos o mas materiales se van obtemejdres propiedades especificas, y
gracias a estas mejores caracteristicas los materigl®geneos reemplazan a los homogéneos.
Particularmente, materiales compuestos como por ejeraplpdlimeros reforzados con fibras de
vidrio o fibras de carbono, presentan unas excelentesorkxrigidegpeso y resistencipeso que
los hace idbneos para determinados sectores produatistushace que vayan desplazando a ma-
teriales tradicionales como el acero, la madera o el aleamDésde el punto de vista matematico
esto significa principalmente que las soluciones de un @nodlde valores de contorno, que de-
penden solo de un parametro pequefio, convergen a la@oldeiun problema limite de contorno
que puede ser explicitamente descrigt®p, CD99, OSY92 BCR0G SV93|.

Un problema interesante, comin a muchos problemas difsremas, es obtener informacion
sobre la existencia de transiciones de fases, situaciankes euales la variacion del parameiro
provoca diferentes comportamientos de las soluciones.
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En este trabajo nos centramos en el estudio de la homogeideizte problemas de autovalores
en ecuaciones elipticas con condiciones de contornopeDirichlet y Neumann.

Esta tesis se divide esencialmente en tres partes. Prireemdectamos propiedades conocidas
sobre el espectro dg-Laplaciano, y luego las generalizamos a una familia masrgede op-
eradores. Hecho esto, definimos las nocioneld € G—convergencia para operadores elipticos.
Luego nos centramos en el estudio del comportamiento dgrads oscilantes, esto es, integrales
gue involucran coeficientes rapidamente oscilantes. Eriitima parte aplicamos estos resulta-
dos al estudio de la homogeneizacion de problemas de dotesalipticos y la estimacion las
tasas de convergencia de los autovalores.

Palabras Claves:p-Laplaciano; operadores monotonos; homogeneizaciooyalotres; tasas de
convergencia{s—convergencia; integrales oscilantes.



Eigenvalue homogenization for quasilinear elliptic
operators

(Abstract)

Different classical problems of mechanic vibration are modeltdddifferential equations, and the
vibration frequencies correspond to the eigenvalues sith8tructures such as plates, membranes
and strings, obey flierent class of elliptic problems (the laplacian, the béajfdn, Sturm Liouville
equations). Those operators have been extensively stadiedare known many properties of
their eigenvalues, see for instance the classical worksasfmander, Timoshenko, Titchmarsh,
Weinstein CoHi53 Hor68 Hor07, Ti46].

Along the XX century, the non-linear theory has generated twols and problems, and in
this context, eigenvalues are interpreted like a bifuoteparameter, corresponding to the critical
values for which a structure can be deformed, collapse ertlesequilibrium (buckling, bending).
We cite, for instance, works of Antman, Browder, Berger, yakm [Am72, An83, Be68 Br65].

During the last years, new materials have created new ciggte Particularly, when are con-
sidered mixing of two or more materials, better specific props are obtained. Due to this better
characteristics, heterogeneous materials replace todemeous ones. Particularly, materials like
polymers reinforced with glass fibers or carbon fibers, priesecellent relations sthess weight
and strengthi weight. For these characteristics are ideal to certairoseaof production, and they
are displacing to traditional materials like steel, woodminum.

From a mathematical point of view, this means mainly thattsmhs of a boundary value prob-
lem, which only depend of a small parameter, converge todhstign of a limit boundary problem
which can be explicitly described\[02, CD99, OSY92 BCR0G SV93.

Homogenization describes the global behavior ofdbmposite materialsThey are heteroge-
neous but the heterogeneities are very small compared tlinitesnsion. The aim of this theory
is to give macroscopic properties of the composite by talkimg account the properties of the
microscopic structure.
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In this work we focus in the study of the homogenization apélt eigenvalue problems either
with homogeneous Dirichlet or Neumann boundary conditions

This thesis is divided in three parts. First, we collect kngwoperties about the spectrum of the
p—Laplacian operator, and then, we extend them to a more ddaprdy of operators. Done this,
we define theH— and G—convergence for elliptic operators. Then, we focus in thelsof the
behavior of rapidly oscillating integrals, i.e., integrahvolving rapidly oscillating caicients.

In the last part we apply these results to the study of the lg@miaation of elliptic eigenvalue
problems and estimate the eigenvalue convergence rates.

Key words: p-Laplacian; monotone operators; homogenization; eigelegalrate convergence;
G-convergence; oscillating integrals.
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CONTENTS XV

Notation

For convenience of the reader, we list some symbols usea ithésis.

lullx :  The norm ofu € X, whereX is a normed space
{un} : A sequence of functionss.

ur — u: {up} converges strongly ta.

U, — u: {up} converges weakly ta.

Unh Zu: {un} converges weakly* to.

Q: Anyopen bounded subset .

My The linear space of square matrices of order

M.p:  The subespace d¥ly made of coercive matrices with coercive inverses
L7(Q, Myp):  Space of admissible cfiients onQ.

List of the asymptotic notation

#(X) = O((X)) whenx — Xo :  mean thatp(X)| < Cy(X) whenx — xg for someC > 0.

o(X) = o(y(X)) whenx — Xp :  mean that(x)/y(X) — 0 whenx — Xg.

d(X) ~ w(X) whenx — Xg:  mean thatp(x)/¥(X) — 1 whenx — Xo.

#(X) < y(X) whenx — X :  mean thaty(x) < ¢(X) < Cy¢(x) whenx — xg for somec, C > 0.

List of function spaces. All functionsare assumed to be measurable
LP(Q): Allfunctionsu: Q — R such that

1/p
luhoey = ([ 19P)* < co.p> 1
Q

L™(Q): Allfunctionsu: Q — R such that

[lullLe (@) = €SS SURqIU(X)| < co.
WAP(Q) 1 All functions u € LP(Q) such that their first-order distributional derivates aref(Q)

ullwzpay = (U5 + IVUIEpq) < oo
Wé’p(Q) : All functions u € W*P(Q) such thau = 0 ondQ

=|V .
IIUIIWé,p(Q) IVUllLr(0)

WLP(Q): The dual space aN-P(Q), % + pi =1
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Introduction

The mathematical theory of homogenization try to desciiiteebiehavior of composite materials.
This kind of materials are characterized by having two orerforely mixed constituents, for in-
stance, the fibred or layered structures are widely used. eSmmposites built are reinforced
concrete, plastic reinforced by glass or carbon fiber, bertettexists some heterogeneous mate-
rials with a fine microstructure that occur naturally, sushiraporous rocks. Although they are
heterogeneous, the heterogeneities are very small cothpariés dimension. This fact allows
us to diferentiate two scales that characterize the material: tloeosgopic one, describing the
heterogeneities, and the macroscopic one, describingdbaldoehavior of the composite. From
a macroscopic point of view, the composite looks like a hoemegpus material. The aim of the
homogenization is to give macroscopic properties of thepmsite by taking into account the
properties of the microscopic structure.

When we are studying some physical phenomenon like heatuctiod, elasticity or fluid dy-
namics, diferential equations are good tools to describe the proces#sahehavior. The main
difficulty when we try to solve the equations arises from the dteristics of the material. In the
case of a composite material due to the fine microstructbeephysical parameters describing it
are rapidly oscillating. For this reason, to handle withd¢bearesponding diierential equation can
be very hard.

Figure 1.1: The process of homogenization of a microestract



2 Introduction

1.1 The simplest model problem

The idea of the method of homogenization is to describe howtamal behave at the macroscopic
level from its microscopic structure.

To illustrate we study a simple model problem. Suppose we waknow the stationary tem-
perature in ehomogeneoubody occupying a bounded open sub€et: RN with constant heat
conductivity A, with a heat source given biyand zero temperature on the surféceof the body.
Then the temperature can be modelated by the following texyndhlue problem:

(2.1.1)
u=0 onoQ

{—div(AVu) —f  inQ
where f is a given function or2 andA : RN — RN satisfies certain suitable conditions that
guaranties the existence and uniqueness of the solutiah Dfly.

Now, suppose that the materialiisterogeneoys.e., A is not constant o, A = A(X), here we
obtain:

(1.1.2)

—div(A(X)Vu) = f in Q
u=0 onoQ.

The dependence o (1.2 on x does more diicult to handle.

An interesting special case is the case of periodic homaggan. We will assume that the
body Q is a heterogeneous material which is built by of identicdlesuwith side lengtla, where
¢ is a small positive number.

e 00008

eeoe00000 0 PP
40000000000 :
s60ccce(l)ecccee . s e e
veeoeoeoeososocsoevr SO
‘e eeeccc0oer 3

e 90000~

Figure 1.2: A periodic heterogeneous material.

The heat conductivityA now is a periodic function which represents how the heatgaover
a reference celY. For simplicity we can choos¥ to be the unit cube. Substitutingby %, we
obtain that the functiol\(2) oscillates periodically with period asx go over, i.e.,

A(X) =A%), xeq.

The variablex s called themacroscopic variableandZ themicroscopic variableIn this case the
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distribution of temperature® will be the solution of the problem

{-div(ASVue) —f  inQ
(1.1.3)

u =0 onoQ.

For each value of the parametethere is a corresponding equation like1.3, and as tends to
zero we obtain a sequengg} of solutions.

From a numerical point of view, solving equatiadh 1.3 by any method will require too much
effort if £ is small since the number of elements (of degree of freedong fixed level of accuracy
grows like ¥&N. Itis this preferable to average of homogenize the progeafQ and compute
an approximation off on a coarse mesh.

Many natural questions arise:

Q1: Does the temperatung converge to some limit function? Isu a good approximation of
ue?

Let us observe the following example: Rt= (0, 1), f(X) = x> andA(x) = 1/(2+ sin(2rX)).

In figures1.3 1.4 and 1.5 we have plotted the limit solution of (1.1.3 (which can be
obtained explicitly) and the solutiasf calculated by a numerical method foffdrent values

of . Moreover, it was plotted the filerence between both solutions to appreciate how the
approximation improves as we leget smaller.
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Figure 1.3:u andwe for ¢ = 0.4.

Q2: If u® converges to a limit function, doesu solve some limit boundary value problem? Are
then the cofficients of the limit problem constant?

When we study the convergence of the solutighase go to zero we would expect that the
material behaves like a homogeneous one. From a macroguoipicof view, it would be
reasonable that the limitbe described by an equation of the form

—div(A*Vu) = f  inQ

(1.1.4)
u=0 onoQ
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Figure 1.5:uanduwe for £ = 0.01.

with A" a constant matrix. Since this limit problem does not congaiy oscillation, it is
easier to solve than the original one. ThusAifwas known we could find, which give us

a very good approximation of the temperature distributiothe limit material. But, how
can we findA*?

Answering these questions is the aim of the mathematiealry of homogenization

1.2 G- and H-convergence. Homogenization

Related to the convergence of the solution of elliptic peaid of the type1.1.3 are the notion

of H- andG-convergence. The mainftirence between these two notions of convergence is
that G—convergence deals with symmetric matrices wiklleconvergence is defined for general
sequences (not necessarily symmetric). MoredBefgonvergence supposes the convergence of

the solutionas® only while H—convergence supposes not only the convergence of theswufi
but also ofA°VLE.

Let My be the linear space of square real matrices of ddeith bounded coicients. Given

a, B two positive constants, we define a spaceMy; made of coercive matrices with coercive
inverses

Map=(MeMy:ME-E>alél?, ME-£>p¢P VeeRN).
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Figure 1.7:8,(X) = 1/(2 + sin(2r¥)), a= [, a(x) dxanda’.

Given a sequence of matrice&”} € M, g we say thatA® H-convergego A" if and only if for
every functionf € W~2(Q) the solutionu? of (1.1.3 is such that

) w—u weakly inW) (),
i) APVU — A*Vu weakly in L2(Q))N,

whereu is the unique solution of the probler.{.4).

In the particular case of symmetric matricesM), s we say tha{A®} G—convergedo A" if and
only if for every functionf € W-2(Q) the solutionu? of (1.1.3 is such that

U —u  weakly inW4(Q),

whereu is the unique solution of the problem.{.4. Let us observe that in the cabe= 1,
H-convergence always impli€s— convergence. WheN > 1 this implication is true in the case
of symmetric matrices.

1.2.1 A one-dimensional example

In the following classical example we will sediitiulties that arises when we try to obtain the ho-
mogenized equation astends to zero inX.1.3. Here, in the one-dimensional case, thiudiion
matrix A(X) it is reduced to a real functioa(x) which we will assume be-dperiodic for simplicity.
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We will see that the main fliculty presents when we need to pass to the limit in products of
only weak convergent sequences. To overcome this problérnuiged the notion of the called
compensated compactnegarticularly, in the one-dimensional case, we will be dblebtain an
explicit formulation of the limit cofficienta* through algebraic manipulation afx).

We considerQ be a bounded interval iR, Q = (0, 1) for simplicity. Letf be a function be-
longing toL2(Q) and leta be a positive Zperiodic function inL*(Q) such that for some constants

a,f
O<a<alX) <B<+c0, fora.e.xeR. (1.2.1)

We definea.(x) := a(%) and consider the following sequence of equations

_ AYAY — f n Q
(a(u?)) l (1.2.2)
u?(0) = u*(1) = 0,
where’ := &.
The weak form of {.2.2 is
1 .,
o 2wy’ = [ fo  foreveryp e WyA(Q) 1.2
w e W¥(Q).

By a standard result in the existence theory of partifiedential equations, using Lax-Milgram
Lemma (see for instanc&y10), there exists a unique solution of these problems for each

Let us observe that by duality

1 1
a’||(us)’||i2(9) < jo‘ asl(us)/lz = ﬁ fu® < ||f||W—1,2(Q)||U8”W3_2(Q). (124)
By Poincaré inequality we have that

IU¥llLoqq) < 1IU7) llLay
which implies that
1
W2y < N Fllz()- (1.2.5)

SinceW:*(Q) is a reflexive space, there exists a subsequence still byt such that
U —u  weakly inW>4(Q) (1.2.6)

and since>%(Q2) is compactly embedded ir(€2) we have by Rellich Embedding Theorem (for
instance, seedqv1() that
U > u strongly inL%(Q).

In general, however, we only have that

(W) —u  weakly inL%(Q). (1.2.7)
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Sinceais a I-periodic function we have that the sequefigg converges weakly* i.*(Q) (and
hence weakly ifL2(Q)) to its arithmetic mean, i.e.,

1
a — a:f a  weakly* in L®(Q). (1.2.8)
0

From (1.2.3,(1.2.69 and (.2.8 it could be reasonable that in the limit we have thas solution
of:

(1.2.9)

fol auy = fol fo for everyp e Wy2(Q)
ue Wy2(Q).

However thisis not true in general, since.(u®)’ is the product of two weakly converging se-
quences. This is thenain difficulty in the limit process. To obtain the correct answer we proceed
as follows.

Leté, = a.(uf)’. According to (.2.8 and (1.2.9, {&.} is bounded in_?(Q) and (L.2.3 implies
that-¢, = f in Q. Therefore, there exists a const&independent ok such that

€2/l 2() < C.
Again, sinceW2(Q) is reflexive, there exists a subsequence still denoted bych that
& — & strongly inL2(Q).

Since{i} converges tcg weakly* in L*(Q) (and hence weakly ih?(Q)), we can pass to the limit
in the weak-strongproduct

() = igs - gg weakly inL2(Q). (1.2.10)
Thus, by (.2.6 and (.2.10, we obtain that
&= (@, (1.2.11)
Now we can pass to the limit irL(2.3 obtaining

fol auy = fol fo for everyp e Wy2(Q)
w0 e W(Q)

wherea" = (F)‘l. Beings™! < a! < o' we conclude that the homogenized equation has
a unique solution and thus that the whole sequdunteconverges. Finally is solution of the
equation
—@u)y=1f inQ
u(0) =u(1) =0.
Here, through algebraic manipulation, we have obtainediéhee of theG-limit a* explicitly.
However, wherN > 1 or the problem is non-linear the procedure can be much méieudt.
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1.3 Eigenvalue problems

Having defined the notion of convergence of probldni (3, we are devoted to the study of the
eigenvalue problem and its behavioreas> 0. Let us consider a sequence of symmetric matrices
in M, g(Q) for a bounded domai in RN. Fixed a positive value of, the constant® is an
eigenvalueof the operatotA, = —div(A?V) with Dirichlet boundary conditions, if there exists
u®# 0 solution of

—div(A°VUF) = A°u° in Q
{ iV(AVU?) u i (1.3.1)

w=0 onoQ.
The functionu® is called aneigenfunctionof A., associated with the eigenvalué. The set of
the eigenvalues is called tspectrumof A.. The symmetry assumption implies that the spectrum
of A, is a countable subset 8ff whose unique accumulation point-iso, i.e., the spectrum is a
increasing sequendgy} with
0<A] <A<+ — +oo,

Given the matricegA¢}, let A* be the corresponding homogenized matrix in the sense of the
G-convergence. Obviously, from the symmetryAst, the matrixA* is symmetric too. Conse-
quently, there exists a sequence of eigenvajdgscorresponding to the operatét, = —div(A*V)
such that

O<AQ1 £ <+ > +o0.

Some natural question arise:
Q1: Is {A} the limit of {47} ase — 07

Q2: If the answer is positive, can the rate of the convergencestimated?

When we mention the order of convergence of the eigenvaluesefer to find explicit bounds
one andk for the diferenceay — Ayl.

As we will see in Sectiory.3.2 in the one-dimensional ca$¢ = 1 whena, is a 1-periodic
function, through a change of variables, problem

—(@. (W) = 2°uf inl:=(0,1)
u?(0) = (1) =0,
can be converted in one of the form

{-w{; — 1OpsW inl :=(0,1)

(1.3.2)
ws(0) = ws(1) =0

wherep is a 1-periodic function defined by

p(y) = alLy), ps(y) = p(2),
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Figure 1.8: Behavior of?, eigenvalues of1(.3.9.

with .
L,= | ——ds—>L=al
0 a(s)

The new parameter is= eL/L, and the eigenvalue j& = L21°. From a computational point of
view, estimate of the eigenvalues is easier in equatiorshiimg only a weight function.

For example, let us considg(x) = 2 + sin(2rx). In this case, we obtain that = flz +
sin(2rx)dx = 2, and the eigenvalues of the limit problem associated .9 are given byuy =

ﬁgz. When¢ tends to zero the value o{/;‘i tends to the limit valueypr = 7/ V2 ~ 2.2214
displaying oscillations, as we see in Figlr&.

1.4 The FWik spectrum

Consider the Laplacian eigenvalue problem with Dirichletifsdary conditions

—Au = Am(X)u inQcRN

(1.4.2)
u=0 onoQ.
As have been mentioned,.4.1) admits a sequence of eigenvalygg}yx such that
0<AT <A<+ — +oo. (1.4.2)

Given a functionuy, it can be written asl = u* — u~, beingu* the positive and negative part of
respectively. Now, instead considéu in the right term of 1.4.1), we are interested in consider a
more general case. Letandg be two real parameters such that

(1.4.3)

—Au = m(X)(au® — Bu") inQ
u=0 onoQ.
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We denote by to thespectrumof (1.4.3, i.e., the set of pointsa( 8) € R? such that {.4.3 has
non-trivial solution.

Observe that ifx = B we recover 1.4.]) then, eigenvaluesl(4.2 will be contained in the
spectrum of 1.4.3.

One can ask:

Q1: What happens with the spectrum d£4.37? Is the spectrum a discrete sequence?

Taking a look to {.4.3 we immediately observe that the spectrum is not a discesfaence:
¥ contain the lined1(m)xR andR x21(m), which are called th#ivial lines of the spectrum.
Here, the sequenddy(m)} denotes the eigenvalues of the weighted linear problem3).
See figurel.9.

Q2: Can the spectrum be characterized?

In the caseN = 1 (for instance, seeRy0(q, [Dr92]) T is made of the two trivial lines
R x A3(m) and 2:(m) x R together with a sequence of hyperbolic like curveRih x R*
passing throughii(m), A4(m)), k > 2; one or two such curves emanate frotp(n), Ak(m)),
and the corresponding solutions df.4.3 along these curves have exadty 1 zeros in
0,12).

WhenN > 1, the situation is dferent and a characterization of the full spectrum is not
known .

Understanding the behavior of probleth4.3 it is useful for the study of th&utik spectrum
with weights, that is, the following asymmetric problem:

—Au = am(X)ut — gn(x)u” in Q

(1.4.4)
u=0 onoQ.

wherem andn are two positive functions.
What happens with the spectrdrof (1.4.47?

In the one-dimensional cad¢ = 1 with constant ca@cients (letm = n = 1 andQ = (0,1)
for simplicity) the spectrum of1(4.4 can be characterized explicitly, for instance seel§d.
Moreover, it is composed by the following curves:

i i

Zzi: %"'—ﬁ:l,
. i i—1
X5t %+( \/B)ﬂ =1
_ i—-1 i
5! ( \/&)ﬂ+7ﬂﬁ =1



1.4 The FEik spectrum 11

| I [ N
Lo \
| ‘| | II I'I | LR \ \
: | I | \__\ \ \ \
| \ \ ", =
B 1 | || IlI \ III II". \'-.\ \\\ ]
I | o A *,
I ‘ R I N\ g
A I U N N -
8 ! | Lo s ™ —
L N =
: | | \'\. \ \'H.x__ T
R A Ry -
! |y \\ N
4 | | ! . T
| AN - T T
| \ S 'x,_______ e
| \ — — —
\ N - —
| AN . -
2 | AN e
' —
T
|
o - - - - - - e
|
I
|
|
-2 |
|
-2 0 2 4 6 8 10

Figure 1.9: The Fu€ik spectrum

In Fig 1.9 we plot this spectrum, where the axes have been moveftor and v/g/x, respec-
tively.

In the case in whichm and n are non-constants weights, iIAG01] a characterization of the
spectrum is proved in terms of the so-called zeroes-funstidJnfortunately, such construction
does not provides an explicit characterization of the cirve

WhenN > 1, is only known a full description of the first nontrivial e of £, which we will
denote byC1 := C1(m, n), see ACCGO0Z ACCGO0].

1.4.1 Homogenization of the spectrum

Let us consider two sequences of functigmg(x)} and{n.(x)} depending on a real parameter
wherem, n are uniformly bounded away from zero.

We are interested in studying the spectriipim,, n.) of problem (.4.4 with weightsm, and
ng, i.e.,

(1.4.5)

AW = a.m (XU — BN (X)uz inQ
w=0 onoQ.

Particularly, for each value of there exists a curve€f := {a.,pB:} in the spectrunt (mg,n.)
associated to probleni 4.5.
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Having in mind these problems, we wonder:

Q1: There exists a limit curv€; = {(@o,5o)} such thaC{ — C; ase — 0?
Q2: Can this limit curve be characterized like a curve of a linnalgem?

Q3: If the answer is positive, can be estimated a rate of connesgefC;?

WhenC{ — C; ase — 0 we would like to obtain a estimate of the remaindets- ao| and
IB=—pol, that is, ifC] can be described &8r.(s), B:(9)), s € R"} andCy as{(ao(S), Bo(9)), s €
R*}, we want a estimate of the kind

las — agl| < cr(9)e
with ¢ a constant independent ofands, andr a functions depending only as

Q4: What happens with other boundary conditions? Can a singkults be obtained ?

1.5 Outline of the thesis

In Chapter §2, we deal with the eigenvalue problem of the weighfeelaplacian operator
Apu := div(|VuP~2Vu) with Dirichlet boundary conditions in a bounded domgirc RN, N > 1,
ie.,

—ApU = Ap|uP2u inQ

(1.5.1)
u=0 onoQ

wherep is a weight bounded uniformly away from zero and infinity. elewe define the concept
of eigenvalue and eigenfunction associatedli®.() as well as its variational spectrum. Then,
we remember some useful properties about the (variati@igdnvalues: the first eigenvalueis
positive, simple (the eigenfunctions associated to it aeeraultiple of the other one) and isolated
(there is no eigenvalue betwegnand; + 6 for a smalls). Moreover, eigenfunctions associated
to the first eigenvalue do not change sign{dn The second eigenvalue is variational and an
eigenfunction associated to it has two nodal domains. lrotledimensional casd = 1 it is
well-known that thek-th eigenvalue are simple and its associated eigenfurschiamek — 1 zeroes
and the variational eigenvalues exhaust the full spectrum.

Also, we define the concept of monotone operators, whichneist€l.5.1) to a more general
family of eigenvalue problems of the form
—div(a(x, Vu)) = Ap|ulP2u inQ
u=0 onoQ

(1.5.2)

wherea(., -) satisfies certain properties that we made precise lateSéxtion2.4). Here, we
generalize all the properties known for the eigenvaluet@pt-Laplacian for the cas® = 1 and
N> 1.
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In Chapter §3 we study the asymptotic distribution of eigenvalues in direensional open
sets. We consider a s& c R which is a disjoint union of bounded interval®, = (Jjqy |j such
that

il =12l = - 2 [ljl =~ N\, O,

and we assume that there exists some nonincreasing fumgtif® c) — (0, o) such that
Il = 9())-

We consider the two equivalent following problems:

e A Lattice Point Problem: to estimate, far  ~, the number of lattice points below the
curve xg(t),

N9 = #((j.k) € N x N: k< xg(i)} = ) [xa(j)]. (1.5.3)
=1

¢ An Eigenvalue Counting Problem: to estimate, foy” ~, the number of eigenvalues less
than or equal tal of —(Ju’[P~1u’)” = AJu|P~2u in Q with zero Dirichlet boundary conditions
onoQ,
N(2) = #j e N: 2; < 4},

Indeed, both problems are the sarh) = - 3.7 |a())at].

We are interested in the asymptotic number of eigenvaluéisedbllowing problem irQ:
— (U'[P2u) = AuPu, (1.5.4)

with zero Dirichlet boundary conditions @if2, and 1< p < +co.

In the linear casef = 2) and when the measure ©fis finite, He, Lapidus and Pomerance
[HL97, La93 obtain that

1 /11/2 f(d)

N() =#jeN: 1<) = f(AY?) + o( f(1Y?))

where 0< d < 1, f(x) = g1(1/X) and¢ is the Riemann Zeta function.

In this Chapter we characterize the growth of the number géraialuesN() in terms of the
decay of the lengths of the intervals when the measuteisffinite. WhenQ c R is bounded and
p > 1, we obtain

N1, Q) = 'Q'/ll/p 5(d)f(/11/p)+o(ful/r’)) as A1 — oo

Tp p

wheref(x) = g~(1/x) and 0< d < 1. Moreover, when the measure @fis not finite we obtain
the following non-standard asymptotic formula

N() =#jeN: ;<) = %f(ﬁ/p)m(f(ﬂ/p)),
p



14 Introduction

where nowd > 1.

In Chapter §4 basically we discuss the definitionsldf andG-convergencéor elliptic oper-
ators. Here, we deal with classical examples of homogeaizat the one-dimensional case and
difficulties that arise. Furthermore, we deflaeconvergence for elliptic monotone operators and
we review some essential results for the important caseraigie homogenization.

In Chapter §5 we prove some results concerning to the estimate of inegmablving rapidly
oscillating functions. They allows us to replace an integneolving a rapidly oscillating function
with one that involves its average in the unit cube. This kfidesults will be very useful to
estimate the rate of convergence of eigenvalues in hompoaggm problems. Indeed, following
the ideas of Oleinik®SY97 we prove the following results. For evenye W-P(Q) there exists a
constanC independent of such that

‘ fg 9(3) - Q)u‘ < Cellullwzp(ey- (1.5.5)

whereg is aQ-periodic function andj denotes the average goverQ

In the case of functions in € Wé’p(Q) we prove that
| [ )~ 9P| < Castvuifyg, 156)

In both cases constan@andCy are unknown. The fact of enlarge the set of test functions is
reflected in the regularity of the domain In (1.5.5 we need little regularity, let us say Lipschitz
boundary or less. Instead, ih.6.6 is necessary a more regularity, for instance a domain @Ath
boundary.

In the one-dimensional case we can be more precise and wd fmumexplicit value of the
constantsC andCs: for every functionu Wé’p(l), I :=(0,1) we have

X p — /1P p gp_l
| fl(g(g) - g)lul | < g - dllL=w)ellu ||Lp(|)[H + T]
Tp

whereg = fol g. In the case of functions € W-P(I) we obtain that

pl
P

_ 1 P —
| [0 -8 < o B (2 + 3@ + BHF + i alluhunsy,

In Chapter §6 we are devoted to study the asymptotic behaviore(as 0) of the eigenvalues
of the following problems

—div(a.(x, VU?)) = A%p|uf|P2u? inQ
{ (8 (X VU)) = Ap, e -

uw =0 onoQ,

wheree is a positive real number, and is the eigenvalue parameter.
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The weight functiong, are assumed to be positive and uniformly bounded away froamared
infinity and the family of operatora.(x, £) have precise hypotheses, but the prototypical example
is

— div(a.(x, VU?)) = —div(A®(X)|Vu?|P-2Vu?), (1.5.8)
with 1 < p < 400, andA?(x) is a family of uniformly elliptic matrices (both i € Q and ing > 0).

As ¢ tends to zero, eigenvalues df.5.7) tends to those of a limit problem of the kind

—div(a(x, Vu)) = Ap[ulP2u inQ

(1.5.9)
u=0 onoQ,

wherea(x, &) is theG-limit of a.(x, &).
In this Chapter, we analyze the order of convergence of eajees of (.5.7) to the ones of its
limit problem and prove that

A = A, 5 -1 ase—0.

In the periodic framework the first result in this problen, ttoe linear case, can be found in the
work of Olelnik, Shamaev and Yosifia®EY97. In the case in which the flusion matrix does

not depends os, using tools from functional analysis in Hilbert spacegytdeduce that
CA(A)?
g — 4 < B g
1- By

Here,C is a positive constant, argf satisfies
0<pf<al, |irr3)ﬁ!; =0
E—

for eachk > 1.

More recently, Kenig, Lin and SheKK[S11] studied the linear problem (allowing andepen-
dance in the diusion matrix of the elliptic operator) and proved that fopschitz domain$2 one
has

IZ — Al < Cellog(e) 2+

for anyo > 0, C depending ok ando-.

Moreover, the authors show that if the dom&iris more regular@™! is enough) they can get
rid of the logarithmic term in the above estimate. Howevererplicit dependance & onk is
obtained in that work.

When the dependance enonly appears in an oscillating weight we prove that thekth-
variational eigenvalue of problenl.6.7) converges to th&th-variational eigenvalue of the limit
problem (.5.9. In this case we estimate the rate of convergence as

E - Al < Cki e
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with C independent ok ande. By 4; andAx we refer to the variational eigenvalues of problems
(1.5.7 and (L.5.9 respectively. This result generalizes the mentioned dsdor the linear case.

Also, we prove that this estimates still holds for the Neumbaundary condition:
e %) 2P

for someC independent ok ande, wherey and i are the variational eigenvalues of problems
(1.5.7 and (.5.9 with Neumann boundary condition, respectively.

In Chapter §7 we study problem.5.7) in the one-dimensional cadé= 1. Now, the function
a:(x, &%) in (1.5.7 can be explicitly expressed ag(x, £2) = a.(X)|£?|P~2¢¢ and itsG-limit (1.5.9
is given byan(x, &) = an(X)|€|P2£. Moreover, in the periodic framework,(X) is constant and is

given by
* _1 _(p_l)
a, = a(x) r1 .
o= ( [aw )

In this Chapter, we analyze the convergence of eigenvalfi¢$.5.7) to the ones of its limit
problem and prove that for ea&he N,

A = A, ase—0

wheredy and ik are the variational eigenvalues of problerisH(7) and (L.5.9 with N = 1.

The problem, in the linear and periodic setting, and in disl@mN = 1, witha = 1, was
recently studied by Castro and Zuazua@xp0, CZ00H. In those articles the authors, using the
so-called WKB method which relays on asymptotic expansufrtbie solutions of the problem,
and the explicit knowledge of the eigenfunctions and eigkms of the constant cficient limit
problem, proved

1A — Al < CKle

Let us mention that their method needs higher regularityhernvieighto and on the dtusiona,
which must belong at least ©2 and that the bound holds fér ~ ¢™1. Also, the value of the
constantC entering in the estimate is unknown.

Our main result in this chapter is the following: in periodiettings, i.e.a. = a(x/e) and
pe = p(X/€) are -periodic functions, there exists a const@iepending only oip, a andp such
that

A — Al < CkePe

where 4y and 4 are the variational eigenvalues of problemis5(7) and (.5.9 with N = 1.
Moreover,C can be estimated explicitly in terms of the functiaandp.

Also, we study problem1(5.7) in the one-dimensional cas¢ = 1 with Neumann boundary
conditions. We prove that for eaéhe N, 47 — A¢ ase — 0. In the periodic framework we find
an explicit expression of the constahin the inequality

1 - Al < C(k— 1)%Pe
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where 4; and i are the eigenvalues of problemt.§.7) and (.5.9 with Neumann boundary
conditions andN = 1, respectively.

In Chapter §8 we deal with the following asymmetric problem
~ApUs = aem ()Pt - Ben.(u)Pt inQcRrN (1.5.10)

either with homogeneous Dirichlet or Neumann boundary itmms. For eache > 0, consider
the Fucik spectrum defined as the set

(Mg, Ng) = {(ae.B:) € R?: (1.5.1Q has nontrivial solutioh

It is known thatE contain the trivial linestj(m) x R andR x A7(n). Also, only a characterization
of the first non-trivial curve in the spectrum, s@y, is known:

1 = {(:(9),8:(9), s€ R*) (1.5.11)

wherea(s) andB(s) are continuous functions defined by in terms of a min-maxignd Assuming
thatm,(xX) — m(x) andn,(x) — n(x) weakly* in L*(Q2), the natural limit of {.5.10 ase — O is

~Aplp = aom(X)(U)P ! = Bon(¥)(Uup)P*  iInQ (1.5.12)

either with homogeneous Dirichlet or Neumann boundary. fireenon-trivial curve in the spec-
trum of (1.5.19 is given by
C1 = {(@0(9),5o(9), s€ R™}. (1.5.13)

Under these considerations we prove that
f(mg,n) —» Ci(mn) ase—0

in the sense that.(s) — a(s) andp.(s) — B(s) Vs € R*. Moreover, when the weights, andn,
are given in terms oQ—periodic functionam, nin the formm,(x) = m(X) andn.(x) = n(%), being
Q the unit cube irRN, for eachs € R* we have the following estimates

lag(S) — ()] < c(1+ 97(9e,  |B:(S) — Bo(S)| < cH1 + 9)7(9)¢e (1.5.14)

wherec is a constant independent®findsandr is a function depending only an

Included publications

The results in have appeared published as research arfldiese results are readable as individ-
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papers:
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2

Eigenvalues

2.1 Eigenvalues of the weighteg—Laplacian in RN

For 1< p < oo the p—Laplacian operator is defined as
Apu = div(|VulP2Vu) (2.1.1)

Obviously, A, = A is the usual Laplace Operator. Note that forr 2 the operatorZ.1.]) is
(p-1)-homogeneous but not additive. For this reason, some authbrsquations involving the
p-Lalacianhalf-linear equation.

Eigenvalue problems for thp—Laplacian operator subject to zero Dirichlet boundary ¢ond
tions on a bounded domain have been studied extensivelggltite past two decades and many
interesting results have been obtained. In this sectionoleat some of those one more important
to our purpouse.

We consider the following weighted eigenvalue problem liithichlet boundary conditions

—ApU = p(X)|ulP2u inQ
{ pU = Ap(X)|u| (2.1.2)

u=0 onoQ

whereQ is a bounded domain iRN and 1 is a parameter. The weigltis such that for two
positive constantg™ < p*

O<p <p(X)<p' <o a.e. inQ. (2.1.3)

The solution of problem2.1.2 is understood in the weak sense; we say thiataeigenvalueif
there exists a function € W,"P(Q2), u# 0, such that

f IVU[P~2Vu - V¢ = 2 f plulP?ug
Q Q

for everyé e Wé’p(Q). The functionu is called areigenfunction
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The first eigenvalug; = 11(Q) is obtained as the minimum of the Rayleigh quotient

(2.1.4)

where the infimum is taken over all Wé’p(Q), u£ 0. If urealizes the infimum in2.1.4), so
doesu|, and this leads immediately to the following statement.

The following strong maximum principlaolds:

Theorem 2.1.1fu € Wé’p(Q) is non-negative such thatApu > 0 then either g 0 or u(x) > O for
all x e Q.

Proof. It follows from the Harnack’s Inequality, se8¢Pu8} O

Theorem 2.2. The eigenfunction u associated with the first eigenvalyeoes not changes its
sign inQ. We assume & 0, then u> 0in Q.

Proof. The functionv = |u| minimizes @.1.4 thenv > 0 verifies—Apv = AplVIP?v > 0. Then
from the Strong Maximum Principle given in Theoreih]) it follows thatv > 0 inQ and sau > 0
in Q. ]

The first eigenvalug; satisfies two important properties: itsgmple(i.e., if u andv are two
eigenfunctions corresponding fig thenu = av for somea € R), and it isisolated (i.e., there
existss > 0 such that in the intervallg, 1; + 6) there are no other eigenvalues &f1.2). These
results are proved in the following theorem.

Theorem 2.3. The first eigenvalue 0{2.1.2 is simple and isolated for any bounded domain
Q c RN,

We omit the proof, which can be found i€@{i0]], Proposition 4.1 and Proposition 4.2, where
the more general case in which the weighhay change sign i@ and satisfies

q>%ﬁ1<p§N

peLIYQ) where{ (2.1.5)

g=1lifp>N.
is considered.

We recall that anodal domainof an eigenfunctionu is a connected component Qf\ {x € Q :
u(x) = 0}. In the following result is given an estimate of the measurié® nodal domains of the
eigenfunctions for the general case in whicimay changes of sign.

Theorem 2.4. Let p satisfying(2.1.5. Then any eigenfunction u associated to a positive eigen-
valueO < A # A1 changes signs. MoreoverA is a nodal domain of u then

IN1 = (CAllpllLage) ™

wherey = % and C is some constant depending only on N and p#fld and on N and qif
p=N.
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The result is proved in Theorem 3.2 @(i0]]. In the case of positive weights, se&H9€. As
corollary, it is obtained that each eigenfunction 2f1(2 has a finite number of nodal domains.
Moreover, Theorem&.2 and 2.9 say that an eigenfunction associated to the first eigenwaflue
(2.1.2 has only one nodal domain; and any eigenfunction assactatthe second eigenvalue of
(2.1.2 has exactly two nodal domains.

The following definition will be useful to define the variatial eigenvalues of21.2.

Definition 2.5. Let A be a symmetric subset in a Banach space, Aes —A, we define the
Kranoselskii genusf A as

¥(A) = {the minimal integem such that there exists a continuous odd mapping ef R™\ {0}}.

If no such integer exists we sg(A) = o, and for the empty set, we defin€d) = 0, see Ra74
DSPO03 for properties.

Let us denote
I = (C c W, P(Q) : C compactC = ~C, ¥(C) > kJ.

By means of the critical point theory of Ljusternik—Schiinann (see$z89,[Le04]) it is straight-
forward to obtain a discrete sequence of variational eiglei®s{ Ak} tending to+co. Thek—th
variational eigenvalue is given by (see Theorem 6.1.2DiR(QY, for p = 1 see GAP89)

A = inf supfngIIO (2.1.6)
K Celk veC Lp|v|p o
We denote the sequence of variational eigenvalues by
Yvar i= {Ak given by .1.6,k € N}. (2.1.7)

Note that it is an open problem whether1.6 described all eigenvalues d?.(1.2 (in contrast
to the scalar casd = 1, see Theorer2.13.

Remark2.6. Intuitively, the Kranoselskii genug provides a measure of the dimension of a sym-
metric set. For example, i is a bounded symmetric neighborhood of the origirRiR, then
v(0Q) = m.

Remark2.7. One can also define another sequence of critical values mimng along a smaller
family of symmetric subsets (Wé’p(ﬁ). The following result can be proved using the minimax
principle of [Cu03. Let us denote byX the unit sphere ak**! and

O(S*, WP(@Q)) := th e C(SK, Wy P(Q)): his odd.
Then for anyk € N the value

A = inf max M

1 k (2.1.8)
heo(s-LweP(@) 2851 [, plZP
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is a eigenvalue of2.1.2. Moreoverl, < A and it is a trivial fact thatl; = 1, is the infimum
givenin 2.1.4. In Theorem2.8we also see that, = 1. Whether or nofl, = A for other values
of kis still an open question whem# 2. Forp = 2 the proof thatl, = Ay is simple: wherN = 1,
p =1andp> 1litis proved (for instance inJu99q) that Ay = A for all k > 1 but this last equality
remains an open question whisin> 1.

Since 4, is isolated in the spectrum and there exists eigenvalu@sreint fromas, it makes
sense to define theecond eigenvaluef (2.1.2 as

Ay =inf{a: Ais eigenvalue 0fZ.1.2, andA > A1}.

There exist several variational characterizationga,ahrough minimax formulas.

The following result it is obtained as a consequence of timstraction of the firsEucik’s curve
in the paper ACCGO0Z of Arias, Campos, Cuesta and Gossez (see Ch§pjer

Theorem 2.8. Assume thap satisfieq2.1.3. Then

Ao = inf  max [VulP
heF ueh(-1.1]) Jo

where¥ = {y € C([-1, l],Wé’p(Q) t¥(£1) = +¢1} and ¢ is the positive eigenfunction associ-
ated to1;. Moreover,
Ao =22 =p2

whereA, is given by(2.1.6 andu, by (2.1.8.

From Theoren®.2 it follows that an eigenfunction associated with has an only one nodal
domain. With respect to the number of nodal domains of eigarifons associated tp we have
the following result.

Theorem 2.9. An eigenfunction associated to the second eigenvalue blgrp(2.1.2 admits
exactly two nodal domains.

This result was proved by Cuesta,De Figueiredo and Gosseeinasep = 1. For positive
weights, see Theorem 3.1 IACFKO7].

2.2 Eigenvalues of thep—Laplacian in R

2.2.1 The one-dimensionap—Laplace operator
For the one dimensiongl-Laplace operator i

— (U P2u) = AuP2u (2.2.1)
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with zero Dirichlet boundary conditions all the eigenvaad eigenfunctions can be found ex-
plicitly.

To give such characterization, first we remember the dedmitif the generalized trigopnometric
functions.

The function sig(x) is the solution of the initial value problem

~(Iu'P~2ur)” = JulP2u
ul0) =0, u() =1,

and is defined implicitly as

Sinp(X) p—1 1/p
= [ () e

Moreover, its first zero isp, given by
1
p-1\1p
=2 — ) dt
P fo (1=%)

prrp = 20(1/p')0(L/p) = p'7y. (2.2.2)
Whererl is the Gamma function.

Note that

It is well known from the basic calculus that

1
f 1 di-
0 V1-1t2

X
1
arcsin«):f dt
0 V1-t2
1

define a diferentiable function on [@]. Since—=; is positive on (01), the function is increasing
and one-to-one from [@] to [0, 7/2]. This function isarcsin(x) and can be used to define the
function sin on [0r/2]. By standard symmetry arguments we can extend the sirifumto the
wholeR. We extend this to k p < co. We define for 1< p < oo the function

NI

and that

X
1
Fo(X) :f dt, xe[0,1].
P o Yi-tp
ThenF,(x) = sin"}(x). As Fp is strictly increasing it is a one-to-one function onJ0with range

[0,7p/2]. Then it has an inverse, which we denote by,dmemphasize the confection with the
usual sine function. This is defined in the intervalfg/2], where

1 1
Tp Y f 1 1f 1 2 1 (1 1)
— =sin."(1) = dt=— svds=-B|—, —
2 p (1 o ¥Yi—-tr  pJo YI-s p \p’p

whereB is the Beta function. Hence

2n

= 5o (2.2.3)

Tp
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Note thatr, = 7. Moreover,r, decreases gsincreases, and

limmap,=oc0, liMm a, =2, Iim(p—Lrp=Ilimny =2
p—1 P p—oo p p—»l(p ) P p—1 p

We see that sinis strictly increasing on [Or,/2], siny(0) = 0 and sip(rp/2) = 1. It may be
extended to [Orp] by defining siny(X) = sinp(rp — X) for x € [mp/2, 7p]; further extension to
[-mp, mp] is made by oddness, and finally siis extended to the whole & by 2r,-periodicity.

Let us call sin(x) to the generalized sine function, the unique solution of

—(U (JIP2U' () = (p = LIu(x)P~2u(x) in (0, 1)
u0)=0 (2.2.4)
u)=1

The function sig(x) has a zero if and only ik = krp, where

_ 2n/p
Tp = SN/ D)’ (2.2.5)
We define the function cgsy the rule
d .
CoSH(X) = &smp(x), X €R.

Clearly cog is even, Zp-periodic and odd about,; cos = cos. The following identity is derived
easily

|cosp(X)IP + | siny(X)P = 1.
Observe that i # 2, the derivative of cgsis not— sinp.

Now, we enunciate the characterization of eigenvalues syahfunctions of 2.2.1). The fol-
lowing result is duo to del Pino, Drabek and Manasevieb99].

Theorem 2.10. The eigenvaluesy and eigenfunctionsuof equation(2.2.1) on the intervalQ :=
(0, ¢) are given by

ﬂka
/lk = W, (226)

Uk(X) = sinp(mpkx/?).

Remark2.11 In [DM99], Drabek and Manasevich proved that that they coincidé tiie varia-
tional eigenvalues given by equatich 1.6. However, let us observe that the notation i$edent
in both papers.
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2.2.2 The weightedp—-Laplacian in R

As we have seen, using minimax formulas it is possible to ttoasa sequence of variational
eigenvalues 0f4.1.2 which approach infinity. In the linear cage= 2 those are the only eigen-
values of 2.1.2. In this section we will see that whgn# 2 andN = 1 the variational eigenvalues
exhaust the full spectrum.

Problem R.1.2 is well understood in the one dimension cébe 1,

—ApU = —(U'|P~2U) = Ap(X)|ulP~2u inQ:=(0,¢)
u(0) = u(¢t) = 0.

(2.2.7)

We denote to the spectrum d.2.7) by

¥ := {1 € R: there existal € Wé’p(Q), nontrivial solution to 2.2.7)}.

By means of the critical point theory of Ljusternik—Schimmann, in @.1.7) we have defined
the sel, 4 Of the variational eigenvalues. Moreover, they are giveii2y.6.

In [ACMO02], Anane, Chakrone, and Moussa studied probl2r.{) and, among other things,
it is proved that any eigenfunction associatedifdhas exactlyk nodal domains (this result had
been proved in\Va9q for the radialp-laplacian). As a consequence of this fact, it is obtained th
simplicity of every variational eigenvalue.

Theorem 2.12. The eigenvaluesy € X4 Of (2.2.7) satisfy that

1. Every eigenfunction corresponding to the k-th eigerevaly has exactly k- 1 zeros inQ.

2. For every k.1 is simple and verifies the strict monotonicity property wiklpect to the
weightp and the domain.

3. The eigenvalues &f 5 are ordered a® < A3 < Ap < -+ - < Ak < --- — +o0 aS K— +o0.

From Theoren2.12it follows that eigenvalues of problen2.2.7) are given by the variational
ones, i.e.Xyar = X.

Theorem 2.13. Every eigenvalue of2.2.7) is given by(2.1.6.

Proof. See FBP0J, Theorem 1.1. O

2.3 The spectral counting function

We denote byN(1) to the number of eigenvalues less than or equalab (2.1.2, i.e.,

N(1) = #j € N: 4j < A},
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When Q := (0,¢) is a interval, by the characterizatio.2.]) of the eigenvalues of the
p-Laplacian, it is easy to see that

N(4,(0,¢)) =#j e N: 4; < A : A eigvalalue of 2.2.1)}

- Ly O(1).
Tp

The case wher€ is a disjoint union of intervals, was treated, for instanogFBP0J. There, the
authors proved the following.

Proposition 2.14. LetQ = Ujey |}, Where{l j}jen is @ pairwise disjoint family of intervals. Then,
N(L,Q) = > N 1)). (2.3.1)
=1

The following Theorem was proven ifBP03 and is a suitable generalization of the Dirichlet—
Neumann bracketing method of Courant.

Theorem 2.15 ([FBP03, Theorem 2.1) Let U;,U, € R" be disjoint open sets such that
(Ul U U2)O =U and|U \ U1 U U5| =0, then

Np(2, U1 U U2) < Np(4,U) < Nn(4,U) < Nn(2,Uq U Up).

Here, Nb(2, U) (resp., Ni(4, U)) is the spectral counting function of the Laplace operatotJi
with Dirichlet boundary conditions oéU (resp., with Neumann boundary conditions).

Remark2.16 In Chapter§3 is also considered the case in whi@hc R is a open set which is a
disjoint union of bounded interval§) = (Jjay |j. Let us suppose that the lengths of the intervals
are decreasing and goes to zero,

ol >lo| >+ > [l >--- N\, 0.

We can assume that there exists some nonincreasing fungtioii0, o) — (0, o) such that
;| = g(j). Here,Q hasfractal boundaryoQ with Minkowski dimensiond € (0, 1). In that case,
in Section3.3it is obtained that

N(1) = #{j € N: 1j < A: A eigvalalue of 2.2.1)}
B yp, 49
Tp

f(ﬂl/ P) + o(f(2"'P))

with f(1Y/P) = g~1(1~YP), for 0 < d < 1, and/ is the Riemann Zeta function.

For the weightedo—Laplacian 2.2.7) in an bounded interval2 c R, in [FBP03 Fernandez
Bonder and Pinasco proved that

AP
N(a,g):—fpl/houl/p). (2.3.2)
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Remark2.17. From 2.3.9 it is easy to prove the asymptotic formula for the eigenealof .2.7).
Sincek ~ N(1y), it follows immediately that

T
v )

2.4 Monotone operators

We start this section with the definition and some propedfdabe so-called monotone operators.

LetQ c RN, N > 1 be a bounded domain. We consider the operatoiV, ?(©) — WP (Q)
given by
Au = —div(a(x, Vu)), (2.4.1)

wherea: Q x RN — RN satisfies, for every € RN and a.ex € Q, the following conditions:

(HO) measurability: &,-) is a Carathéodory function, i.&(x,-) is continuous a.ex € Q, and
a(-, &) is measurable for eveeye RN.

(H1) monotonicity:0 < (a(x, £1) — a(X, £2))(é1 — &2).

(H2) coercivity: alé|P < a(x, £)E.

(H3) continuity: gx, &) < Bl¢|PL.

(H4) p—homogeneity: &, t¢) = tP~ta(x, £) for everyt > 0.

(H5) oddness: &, —&) = —a(x, &).

Let us introduceP(x, &1, &) = a(x, £1)é1 + a(x, &)& for all &, & € RN, and allx € Q; and let
6 =min{p/2,(p - 1)}

(H6) equi-continuity:

la(x, £1) — a(x, £2)| < CP(x, &1, £2) P 1P(a(x, £1) — a(x, £))(E - £)7/P

(H7) cyclical monotonicity: Zik:l ax, &)1 - &) < 0, forallk > 1, andéy, ..., &q 1, With
&1 = &1

(H8) strict monotonicity:lety = max(2 p), then

alér — EPP(X 1, E)0P < (a(x, £1) — a(x £2))(E1 - ).
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As we will see in Chapte§6, the hypothesis (H1)—(H3) are necessary to ensurécibra/er-
gence”of (2.4.7). On the other hand, the hypothesis (H4)—(H7) are all ingotrin the context of
a well-posed eigenvalue problem. We assume (H8) for teahréasons.

We add that the conditions (H0)—(H8) are not completely jrehelent of each other. It can be
seen easily that (H8) implies (H1)-(H2) and that (H4) impl{el3) in addition to the continuity
of the codficient, for details seeCR04.

Remark2.18 The prototype for such functionsagx, &) = A(X)|£|P-2¢, whereA(-) is a measurable
function with values in the set & x N symmetric matrices which satisfies

AP < AXE-E IAXE < Bl YEeRN, aexe Q.

for some positive constants andg’.

In particular, under these conditions, we have the follgafroposition due to BAco, Conca
and RajeshBCRO0g

Proposition 2.19. Given dXx, &) satisfying(HO)—(H8)there exists a unique Carathéodory function
@ which is even, phomogeneous strictly convex angfelientiable in the variable satisfying

alél? < O(x, &) < pIEIP (2.4.2)

for all £ e RN a.e. xe Q such that

qu)(xa ‘f) = pa(X, ‘f)

and normalized such that(x, 0) = 0.

Proof. See Lemma 3.3 inCRO04. ]

2.5 Eigenvalues of monotone operators

This section is devoted to the study of the following (noedin) eigenvalue problem 2 c RN,
N>1

—div(a(x, Vu)) = Ap|ulP2u inQ
(a(x, Vu)) = Ap|ul (2.5.1)
u=0 onoQ
wherea(x, &) verifies (HO)—-(H8) and
O<p <p(X)<p* <o a.e. inQ. (2.5.2)

The purpose of the section is to extend @5(1) the results that are well-known for the
p—Laplacian case, i.e. the existence of a sequence of varéte@genvalues, the simplicity and
isolation of the first eigenvalue, etc.
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The methods in the proofs here very much resembles the oad$arghep—Laplacian and we
refer the reader to the articleBCMO02, AT96, An87, KL06, Li90].

We denote by
Y :={1 e R: there existal € Wé’p, nontrivial solution to 2.5.1)},

the spectrum ofZ.5.7). It is immediate to check that c (0, +o0) and that it is closed.

By means of the critical point theory of Ljusternik—Schiinann it is straight forward to see
that we can obtain a discrete sequencevarfiational eigenvaluegAylken tending to+oo (see
[CVD9Q]). We denote by, 4 the sequence of variational eigenvalues.

Thekth—variational eigenvalue is given by

_ i, (% VV)
A = inf sup=——
Celk veC fg plviP

where®d(x, &) is the potential function given in Propositi@il9
I = {C c W, P(Q) : C compactC = ~C, ¥(C) > k)
andy(C) is the Kranoselskii genus.

Below, we define the capacity of a set with the intention ofredeefa Maximum Principle for
quasilinear operators.

Definition 2.20. Given a compact sef contained in an open subsetof RN andp > 1, the
W2L-P-capacityof the pair K, U) is defined as

Cap,(K,U) :=inf {f IVelP : ¢ € CF(U),¢ > 10n K}.
u
If U is an open subset &f, the correspondingV:-P-capacity is defined as
Cap,(U’,U) := supCap,(K,U) : K c U’,K compac,
and the definition is extended to a generalBet U as follows:

Cap,(E, U) := inf{Cap,(U’,U) : U’ openE c U’ c U}.

AsetE c RN is said to be ofV-P-capacity zerpand we write Cag(E) = 0, if Cap,(EnU,U) =
0 for any open set) c RN,

For an extended discussion we also refer to the book of E&anepy EG97.

The following maximum principle for quasilinear operatgsa generalization of Theorefl,
and it was proved inKLPO7] by Kawohl, Lucia and Prashanth. It will be most useful in the
sequel.
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Definition 2.21. A functionu : Q — R is W-P—quasi continuousf for eache > 0 there is an
open setJ c Q such that Calg(U, Q) < g and f|q\y is continuous.

Theorem 2.22. Assume that & V\/li’f(Q) satisfies

f a(x, VUV + pluP2up > 0, V¢ € C3(Q), ¢ > 0.
Q
Consider its zero set
3:={xeQ: l(x) =0},
wherell is the W-P—quasi continuous representative of u.
Then, either Ca‘;(;%) =0oru=0.

Proof. See Proposition 3.2 irkLPO7]. ]

The positivity of the first eigenfunction together with thimplicity of the first eigenvalue was
proved in KLPO7].

Theorem 2.23. Let u; be an eigenfunction corresponding 19, then y does not changes sign
on Q. Also, the first eigenvalue is simple, that is, any other rfigiection u associated t@; is a
multiple of y.

Proof. See Section 6.2 irLP07]. m|

Next, we show that the first eigenvalug is isolated inX. The key step in the proof of the
isolation is the next result:

Proposition 2.24. Let A € ¥ and let w be an eigenfunction correspondingto 1. Then,
w changes sign o, that is w#0 and w £0. Moreover, there exists a positive constant C
independent of w and such that

Qf|>CaA77, |Q7|>=Ca7,

whereQ* denotes de positivity and the negativity set of w respdygtiyas a positive parameter,
and C depends on,, p* and the coercivity constant in (H2). Here,y = (N - p)/pif p < N,
v=1ifp=N,andy = (p— N)/Nif p> N.

Proof. Let w be an eigenfunction corresponding.to# 1; and letu be an eigenfunction corre-
sponding tol;.

Assume thatv does not changes sign éh We can assume that> 0 andu > 0 in Q. For each
k € N, let us truncates as follows:

Uk(X) := min{u(x), k}
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and for each: > 0 we consider the functionf/(w + &)P~* € W, P(Q). We get

U Y
a(x, Vu)Vu — a(x, WWV(————) = | A1puP — 1pwP———. 253
[ a0 vuvu-ate V(o) = [ gl @53
We claim that the integral in the left hand side B1g.3 is non-negative. Indeed, I€t be the
potential function given by Propositicgh19 Then, asb is p—homogeneous in the second variable
we have (seeLP07], p.19, 5.15)

p
a(x, Vu)Vu — a(x, VW)V(L) -

(w u+ g)P1 ’ (2.5.4)
p{CD(x, Vu) + (p — 1)®(X, ”” J': 8VW) —a(x, ” 4'_( 8VW)Vuk}.

By using the property that — ®(x,¢) is convex, we easily deduce th&.%.4 is nonnegative.
Therefore, coming back t@(5.3 we get
, W
A1puP — JpwP————— > 0. 255
l;”“ P et 259

Since by the strong maximum principle for quasilinear ofmesa(Theoren®.22 the set{w = 0},
wherewis the p—quasi continuous representativengfis of measure zero thef.6.5 is equivalent

to
p

u
ApuP — JpwPt—X >0, (2.5.6)
j{Lv>0} (w+ )Pt

Now, lettinge — 0 andk — oo in (2.5.6, we get

(h—axfpwpzo
Q

which is a contradiction. Therefom changes sign of.

The second part of the proof follows almost exactly as inghkaplacian case. Let us suppose
first thatp < N. In fact, asw changes sign, we can ug€ as a test function in the equation
satisfied byw to obtain

f a(x, Vw)vw' = 1 f PIWP~2ww*
o Q

=2 f plwiP
Q+
< p* f w|P
Q+

< /lp+||W+”||:_)p*(g)|Q+|p/(N—p)

S/1,0+Kp|Q+|p/(N_p)fQ|VW+|p,

whereK, is the optimal constant in the Sobolev-Poincaré inequalit
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Now, by (H2), it follows that

fa(x,Vw)Vw* Zaf|VW+|p.
Q Q

Combining these two inequalities, we obtain

a \(N-p)/p
Q> (—— .
| | - (Kpﬂp+)

The estimate folQ~| follows in the same way.

The remaining cases are similgs:= N follows by using the Sobolev’s incIusidNé’N(Q) c
LN(Q), and the case > N follows from Morrey’s inequality (seegv10)). ]

Now we are ready to prove the isolationAqf.

Theorem 2.25. The first eigenvalug; is isolated. That is, there exisés> 0 such that(11, 11 +
)N =0.

Proof. Assume by contradiction that there exists a sequdneeX such thatlj — 1; asj — co.
Let u; be the associated eigenfunctions normalized such that

| Pl =1
Q

By (H2) it follows that the sequendg;} v is bounded irWé’p(Q) S0, passing to a subsequence
if necessary, there existse Wé’p(Q) such that

uj—u  weakly inW,P(Q)
uj—u strongly inLP(Q).

Now, as the functional

Vi L D(x, VVv)

is weakly sequentially lower semicontinuous (SBERO0]), it follows thatu is an eigenfunction
associated ta;.

Now, by Theoren®.23 we can assume that> 0 and by Propositio@.24we havd{u = 0}| > 0.
But this is a contradiction to the strong maximum principlgKLP07], Theorem2.22 m|

As a consequence of Theoretri?5it makes sense to define the second eigenvalias the
infimum of the eigenvalues greater than Next, we show that this second eigenvalug co-
incides with the second variational eigenvalye This result is known to hold for the weighted
p—Laplacian (see Theoreth8) and we extended here for the general c2sg.J).
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Theorem 2.26. Let A, be the second variational eigenvalue, andAetbe defined as
As =inf{l> A1 A e Xh

Then
/12 = Az.

Proof. The proof of this Theorem follows closely the one FBR0ZJ where the analogous result
for the Steklov problem for the—Laplacian is analyzed.

Let us call
= inf {f d(x, Vu): ||pu||Ep(Q) =1 andQ*| > cﬂz},
Q

wherec,, := CA,” andC, y are given by Propositio.24

If we takeu, an eigenfunction of4.5.1) associated witlh, such thallpu||fp(g) =1, by Propo-
sition 2.24 we have thatl, is admissible in the variational characterizationuoflt follows that
1 < Ay. The proof will follows if we show tha: > 1. The inverse of: can be written as

E = sup{f plulP: f(I)(x, Vu) = 1 and|Q*| > C,lz}.
H Q Q

The supremum is attained by a functiane Wé’p(Q) such that, d(x, Vw) = 1 and|Q*| > c,,.
Asw* andw~ are not identically zero, if we consider the set

C = spartw’, w™} 1 u € W(Q): lullzn(q) = 1)

Q)

theny(C) = 2. Hence, we obtain

1
_ i p
- =it ol (2.5.7)

but, asw™ andw~ have disjoint support, it follows that the infimurd.5.7 can be computed by
minimizing the two variable function

G(a,b) := Ialpfplw+lp+IblpprW‘lp
Q Q
with the restriction
H(a,b) := |ajpf D(x, Vw*) + |b|pf d(x, VW) = 1.
Q Q

Now, an easy computation shows that

L i Joy ol | JoplwrIP |
A2 i, @0 VW) [ ©(x, Yw-)
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We can assume that the minimum in the above inequality izeshivithw*. Then, fort > -1
the functionw + tw* is admissible in the variational characterizatiornuphence if we denote

plw + tw*|P
Q) = Jo ,
J;, (. Vw + tVw)
we get
0=Q0)=p f pIwP~2ww* — P f a(x, yw)vw*,
Q M Jo
therefore
Jopw P 1
J, @ Vw*)
and the result follows. O

2.5.1 Monotone operators in one dimension

When we consider a functiom: Q x R — R satisfying properties (H0)—(H8), it can be explicitly
expressed aa(x, &) = a(x)|¢|P-2¢, wherea is bounded uniformly away from zero and infinity.

In this case problen?(5.]) is reduced to (for simplicity we tak@ = (0, 1))

—@X|U|P2u) = 2uP2u inQ:=(0,1
(B0 P2uY = Aplu ©.1) (25.8)
uQ) =u(1l) =0,
wherep satisfies 2.5.2 anda is such that forr < 8 positive constants,
O<a<alX) <B <+ a.e. inQ. (2.5.9)
We denote by
Y := {1 € R: there exista1 € W>P, nontrivial solution to 2.5.8)},
the spectrum of4.5.7). It is immediate to check that c (0, +o0) and that it is closed.
Observe that here, ify is thek—th variational eigenvalue,
a(x)lu'fP
A = inf supfg— (2.5.10)

CelkveC [, P(IVIP

As we have seen in Sectiéhl, the question of whethet,;, = £ or not is only known to hold
in the liner setting and also for the-Laplacian in one space dimension. It is an open problem in
any other situation.

We have the following result about the simplicity of the eigalues of 2.5.8:
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Theorem 2.27.Every eigenfunction corresponding to thetk eigenvaluely of (2.5.8 has exactly
k — 1 zeroes. Moreover, for every Ry is simple, consequently the eigenvalues are ordered as
O< A1 <Ap <+ <Ak +oo.

Moreover, the spectrum o2(5.8 coincides with the variational spectrum. In fact, we have:

Theorem 2.28.% = X4, i.€., every eigenvalue of problgf2.5.9 is given by(2.5.10.

In order to prove Theoren&.27and?2.28 in the following remark we observe that equations
of the kind @.5.8 involving a difusion functiona(x) and a weight functiop can be converted in
one equation involving only a weight function.

Remark2.29 Through the following change of variables, problezb(8 can be converted in one

of the form @.2.7): we define y
1
P00 = [ sgmmds

and be the change of variables{) — (y, v) where

y=P(), V) =uX).

By simple computations we get

—(VMP-20) = 2Q(Y)MP2v, ye[0,L]
viO)=v(L)=0

where: = d/dy, with
1 1 d —_11
= _— = p—
fo a9y

Q) = a()"*Yp(x).

Now, we rescale to the unit interval defining

and

w(2) = v(L2), zel

and get

—(W[P2W) = LPAQ(LD)IWP 2w in |
w(0) = w(1) = 0.

So if we denote: = LPA andg(2) = Q(L2), we get thatw verifies

—(WP~2W) = ug(@IWP2w in |
w(0) =w(1) = 0.

Having in mind Remark.29, the proof of Theoren2.27it follows from Theoren.12and the
proof of Theoren®.28it is completely analogous to that of Theor@x.3
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An application: Refined asymptotic for eigenvalues on
domains of infinite measure

3.1 Introduction

Can one hear the shape of a drumésked M. Kac Ka6€ in 1966. What he meant was the
following inverse problem: consider the eigenvalue problef the p—Laplacian with Dirichlet
boundary conditions

—-Au=Au in Q
{ (3.1.1)

u=0 onoQ

whereQ is a open bounded set RN, N > 1. As we have seen in Chapt§2, the spectrum
of (3.1.]) is a discrete sequenday}k € R* tending to+co. Which geometrical information
concerningf2 could be recovered from the sole knowledge of the spectruthiférmation about
the spectrum can be obtained from ttigenvalue counting function(N) defined as

N() = #j € N: A; < A},

that is, it counts the number of eigenvalues ®f1(1) up to A, counted according to multiplicity
(see Sectior.3for properties).

Generalizing Weyl's classic asymptotic formula, Métivi®le7€] proves that
N(1) = (1+0(1))p(1), asd— +oo

where theWeyl termp(Q) is given by

with wy is the volume of the unit ball iRN and|Aly denotes théd—dimensional Lebesgue mea-
sure ofA ¢ RN. According to this formula, one can hear #heaof a drum. A conjecture about
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the second term in the asymptotic expansiom(f) it was made by H. Weyl\Ve 1] as follows
N() = ¢(1) - CnloQIn-1AN2 + 0o(AMND/2) | asd — +oo (3.1.2)

for the case o0bQ syficiently regulat
What happens if the boundarynsn-smoot M. V. Berry [Be79 Be8( conjectured that i Q
is fractal, then

N(2) = (1) = CynH(H; Q)12 + 0(2"7?),  asi — +oo (3.1.3)

whereCy 4 is a positive constant depending only NrandH, H denotes the Hausdéidimension
of the boundaryQ andH(H; 6Q2) the H—dimensional Hausd@rmeasure 0bQ. Observe that if
0Q is smooth, sag!, thenH = N — 1 and we recover3( 1.9 from (3.1.3. Unfortunately, Berry’s
conjecture has turned out to be false. Brossard and Carni@€] disproved it and suggested
that the Minkowski dimension was more appropriate than theddoft dimension to measure
the roughnesof the boundanpQ. A reformulation of Berry’s conjecture oN(1) was made by
Lapidus [a91]:

N(1) = ¢(1) — CnaM(d; Q) 1Y2 + 0(192),  asd — +co (3.1.4)

whereQ has fractal boundar§Q with Minkowski dimensiord € (N — 1, N) andCp g is a positive
constant depending only dviandd.

In[La93, Conjecture 8.1.9 it was proved folN = 1: if Q c R has fractal boundar§Q which
is Minkowski measurable and has Minkowski dimensiba (0, 1), then

N(1) = ¢(1) — CLaM(d; IQ)AY2 + 0(19?), asi — +oo (3.1.5)

where the constari, 4 is given by

1 1
Cid = m(l —d)(=¢(d), ()= 7—T|Q|1/11/2

and/ denotes the Riemann zeta function.

He and Lapidus inHIL97] extend these theorems by usigguge functionsnore general than
power functions (see Sectid2.] as follows. Let us consider an open $ketc R which is a
disjoint union of bounded interval§) = (Jjay |j. Let us suppose that the lengths of the intervals
are decreasing and goes to zero,

1] > [l > - > [1j| > --- N\, O.
We can assume that there exists some nonincreasing fumcti@ co) — (0O, o) such that
Il = g()-

Now, we may consider the following problems:
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e A Lattice Point Problem: to estimate, far ~ ~o, the number of lattice points below the
curve xg(t),

N9 = #((j. k) € N x N: k< xg(i)} = ) [xa(j)]. (3.1.6)
=1

¢ An Eigenvalue Counting Problem: to estimate, foy” ~, the number of eigenvalues less
than or equal tal of —u” = Au in Q with zero Dirichlet boundary conditions @if2,

N(1) = #j € N: 4; < A},

The first one is called plane multiplicative problepfollowing Kratzel [Kr88], and generalizes
the Dirichlet’s divisor problem that is, to count the asymptotic number of divisors of thie-in
gers less than or equal ¢ which is equivalent to count the number of lattice pointkWwethe
hyperbolay = x/t in the first quadrant.

The second one is a one dimensional variant of the old prgbBan one hear the dimension
of a drum?The idea behind this name is the following: the square rodhefeigenvalues of the
Laplace operator if2 ¢ R? coincide with the musical notes of a membrane with the shépe o
Q, and we can ask about the geometric propertieQ wfhich can be inferred from the sequence
of eigenvalues Here, we are interested in the dimensioneobttundary of dractal string 2, as
Lapidus called this kind of set& §91].

Indeed, both problems are the same: the eigenvalues’of= Au in I are{%}kzl. and we

have
0 21,2

= k :i
N(2) ;#{ eN g(j)ZS/l}

g(j)aY 2}

T

#keN: k< (3.1.7)

DM T

Il
iy

[g(j)/ll/z]

T
J

So, callingx = # this expression coincides with equatidh1(.§, and we see that there exists

a connection between the Dirichlet problem and the asyicpbathavior of eigenvalues. Let us
mention that the eigenvalue counting problem for the LaprawhenQ is the unit square iiR?
coincide with the Gauss Circle Problem, i.e., to estimagertbmber of lattice points inside an
expanding circle (sedHe74q).

Under these considerations, He and Lapidusibg7] prove that for O< d < 1,
£(d)

N(2) = %11/2 - Ff(«/ﬁ) +0(f(V2), asd— +oo
whereg(x) := h™1(1/x) and f(x) := 1/h(1/x). Particularly, whern(x) = x9 it is recovered 3.1.5

and the Minkowski dimension.
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Our aim in this chapter is extend the results of He and Lapifdusthe one-dimensional
p—Laplacian operator. When the measurefois finite and O< d < 1, in Section3.3 we ob-
tain that

N(Q) =#jeN: A< A} = K e @f(al/p) + o(f(AYP))
7Tp 7z'p
with f(1P) = g 1(17Y/P) and¢ is the Riemann Zeta function. The terhi1/P) is connected
with a generalized notion of fractal dimension, and we h{&/P) = 19P when the Minkowski
dimension oBHQ is d. The precise definitions and propertieggaind related functions is given in
Section3.2, together with the definitions of the generalized Minkowsbintent and dimension.

The proofs in those works depends ofifidult estimates of the remainder terms of certain
convergent series. We present in SectdoBa simplified proof based on the equivalence of the
two problems stated above and some arguments from numbmythé/hen the lengths of the
intervals satisfyflj| ~ j~%/9, as in La93, this ideas were used iP[06].

However, as a by-product of the number theoretic methodgrer@ble to extend those results
to fractal string<2 with infinite measure, and this is the main aim of our work. Webbserve that
the sum in equation3(1.7) is well defined whenevay(t) N\, 0 fort o, even whenZ‘j";l a(j)
diverges.

So, in SectiorB.4we characterize the growth of the number of eigenvalNigy in terms of the
decay of the lengths of the intervals when the measute isfnot finite. We obtain the following
non-standard asymptotic formula

N(Q) =#jeN: A< A} = 4G f(AYP) + o( f(2V/P)),
T

d
p

where nowd > 1.

In the finite measure case, the term dependind can be thought as a boundary contribution.
The measure of2 gives the main term of the asymptotic of the number of lagtioants, and the
second term can be understood as the number of points widaticae to the boundary and enter
when we dilate slightly the domain. Now, when the measui@ i infinite, the main term is still
a boundary term, which shows the asymptotic growth of thesmneaof the domain; in this case,
when we dilate slightly the domain, a huge number of lattiocmts enter although it has exactly
the same form that the second term in the other case.

The discreteness of the spectrum of an elliptic operatooiswell understood yet when the
domain has infinite measure. We refer the interested readeil 01, CH67, He74 He75 Si83
where a special class of setsRA is consideredhorn-shaped domains N — 1 dimensional set
scaled in the other dimension). I6IH67, He74 He74, an upper bound for the growth di(1) was
derived by using a trace estimate in the class of HilbertaBdhoperators, obtained with the aid of
some inequalities for the Green function of an elliptic @per. In [Si83 the asymptotic behavior
of eigenvalues was refined by using the Trotter product féenmuorder to obtain another trace
estimate by generalizing the Golden-Thompson inequadity] in [VLO1] were obtained more
terms in the asymptotic expansion by exploiting certaifrsietilarity of the horns. In SectioB.5
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we apply our previous results to this kind of problem&#f The main novelty here is the precise
order of growth ofN(4, Q) for horns which are not decaying as powers, although ispessise
for this kind of horns since the precise constant in the mgimtis known, see the paper of van
den Berg and Lianantonaki¥’[L01].

3.2 Generalized Minkowski content and Minkowski dimension

3.2.1 Minkowski dimension and content

We denote byA| the Lebesgue measure of the Aet R". Let A, denote the tubular neighborhood
of radiuse of a setA c R", i.e.

A, = {xe R": dist(x, A) < &}. (3.2.1)

We recall the classical definition of Minkowski dimensiordarontent (seeHa9Q HL97, La9l,
Tr82)).

Givend > 0, thed—dimensional upper Minkowski content &€ is defined as

M*(d; Q) := lim supe™ ™ 9|(6Q), N Q. (3.2.2)

&—0*

Similarly, thed—dimensional lower Minkowski conteni..(d, 0Q2), is defined changing the upper
by the lower limitin @8.2.2.

The Minkowski dimension ofQ is then defined by
dim(@Q) := inf{d > 0: M*(d; 0Q) < oo} = supgd > 0: M*(d; 9Q) = oo}. (3.2.3)
We will further say thabQ is d—Minkowski measurable if
0 < M,(d; 9Q2) = M*(d; 0Q) < o for somed > 0,
and we call this valud(d; 9Q) the d—dimensional Minkowski content GiQ. Following [La91],

we say thabQ is fractal if d € (n — 1, n], andnon-fractalotherwise.

3.2.2 Dimension functions

In this paper we will be interested in a suitable generabpabf the previous concepts. To this
end, given (< d < 1 we defing5q to be the class of functiorts (0, «0) — (0, o) continuous such
that

(H1) his strictly increasing and

lim h(x) =0, lim h(x) = .
X—0* X—00
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(H2) Foranyt > 0,
h(tx) d
x=0 h(X)
uniformly int on compact subsets of,(®).

’

(H3) his sublinear at 0, i.e.

One can check that the functions

h(x) dh(x)

(3.2.4)

S —Y 0 =
(log(z + 1)) (log(log( + 1))

are inGq for all d € (0, 1) anda > 0.

Remark3.1 Leti : (0, 00) — (0, o) be the functiori(X) = x"1. From now on, givern € G4, we
will always let

g = (htoi)(x) =h@/x), f(X):=(ohoi)(x) = h(1—1/x) (3.2.5)

With this notations let us now define the generalized Minkave®ntent and dimension that
was introduced by He and Lapidus idL[97].

Definition 3.2. Let Q c R" be an open set with finite Lebesgue measure. H.et G4 be a
dimension function. The uppé~Minkowski content ofHQ is defined by
M*(h; 6Q2) := lim supe™"h(&)|(6Q). N Q. (3.2.6)

&—0"

We define the loweh—Minkowski contentM.(h; 0Q) by taking the lower limit in 8.2.6. We
further say thadQ is h—Minkowski measurable if

0 < M,.(h; 0Q2) = M*(h; 9Q) < o
and denote this value a8(h; 9Q2) the h—Minkowski content 0B Q.

Let Q be an open set iiR. Then,Q = U]-)il i, wherel| is an interval of lengtti;. We can
assume that
l1>1> - >1j>-->0.

In [HL97], the authors obtained the following relation between émgthd ; and the Minkowski
measurability obHQ:

Theorem 3.3. LetQ = U‘j’il ij- Then,0Q is h-Minkowski measurable if and only if b Lg(j).
Moreover, in this case, thedMinkowski content ofQ is given by

21—d

L,
1-d

M(h; 6Q) =
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Note thatd being positive and less than one implies the integrabitiipfanity of the functiong,
which in turn implies that the Lebesgue measure of th@dsffinite. Therefore, thb—Minkowski
content and dimension are well-defined concepts.

The following proposition, that can be found ibg93, is a usefull estimate in our arguments
in order to compute the constants appearing from the EulgraMdrin formula.

Proposition 3.4. Suppose k& G4 for some de (0, 1). Then,

_ [Towdu g
lim = .
x—oo  XQ(X) 1-d

3.2.3 Nonintegrable Dimension Functions

We now consider the analogous of the dimension functionsel@fin the previous subsection to
the caseal > 1.

To this end we define the clag; to be the class of functions: (0, «0) — (0, o) continuous
such that (H1) and (H2) are satisfied and, instead of (H3) weire superlinearity at 0, i.e.

lim —~ = 0. (H3)

Remark3.5. As in the previous subsection, we let(0, o) — (0, =) given byi(x) = x 1 and

g(x) == (Mo i)(¥) =h™(1/¥), f(x):=(iohoi)(x) = /X"

Now we prove an analogous of Propositi®#4 to this case.

Proposition 3.6. Suppose k& G4 for some d> 1. Then,

A CLUR:
X—00 Xg(X) B d - 1

Proof. First, we need to show that hypotheses (H1), (H2) and (H3lym

lim as® _ sd
x=e g(X)

uniformly on [sp, o0) for any 5 > 0 and

(3.2.7)

)!m Xg(X) = co. (3.2.8)

Equation 8.2.8 is immediate from (H3’). Now, to prove3(2.7) we first observe that it is
equivalent to

h(sX _ 4

s () %,

(3.2.9)
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on compact sets of (6). In order to proved.2.9, let us note that (H2) implies
h(s® = sh(x) + o(1),
uniformly onx and ins € [0, s5]. Then, by the monotonicity df,
h™1(?h(x) — &) < sx< h™}(s7h(X) + &).
Finally, if we cally = h(x) andt = &%,
h(ty - &) < tY9hY(y) < hi(ty + &),

which trivially implies 3.2.9 and hence3.2.7).

With these observations, now the proof of the Propositidiovic easily. In fact, by 3.2.8), it
is enough to prove

S CLIN:
O T xg d—1

for xg large enough. Now, by3(2.7),

X
g(u) du 1 1
fx"— = Mols:f s Y94 o(1)ds= d +0(1).
xg(x) Xg/X g(x) Xg/X d-1
This fact completes the proof. ]

Remark3.7. Let Q = U‘j’il I; wherel; are disjoint open intervals of length < g(j) whereg is
associated to a functidme Gy with d > 1.

In this case, sincg is not integrable at infinity, one can check th@Q), N Q| = « for every
&> 0. So, we cannot define the correspondirdMinkowski content or dimension in this case.

Nevertheless, in the computation of the asymptotic belhafiche eigenvalues, we obtain an
order of growth forN(2) which depends or = (i o hoi).

So, in some sensé,can be considered as certapectral dimensiofior Q. That is why we
refer toh as anonintegrable dimension functiogven though there is no concept of dimension
associated to it. See Remak 6at the end of Sectiofb.

3.3 The finite measure cased < d < 1

To prove the results in this Section will be very useful thiéofeings

We begin this section recalling the well known summatiomfola of Euler-MacLaurin, which
will be very useful in this Chapter, sek88] for a proof:
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Theorem 3.8. Let f(t) be a non negative, continuous and monotonically decredsimgtion tend-
ing to zero when t +oo. Then, there exist € R, depending only on f, such that

b b
Z f(j) = f f(t)dt + C + O(f (b)), (3.3.1)
j=a a
when b— +oco. In particular
b b
biToo(j; f(j) —fa f(t)dt) = C. (3.3.2)

An estimate of the number of eigenvalues of thd.aplacian equationl(5.4) relies on Lemma
3.9below. This Lemma has been proved iiLP7] but we provide here a fferent proof that will
allow us, in the next section, to deal with the infinite meastase.

Lemma 3.9. Let{l;} ;v be an arbitrary nonincreasing positive sequence such tiretdme he Gy
we have thatjl = g(j). Then
Z[Ijx] = Z lix+ Z(d)f(x) + o(f(x)), as j— co.
=1 =1
Proof. First, we need to control theftierence betweek[l;jx] and 3] I;x.
To this end, we firs observe thafX] = 0 if |;x < 1. Therefore, the first sum is finite.

Let J € R such thatxg(J) = 1. Therefore,

. 1
I=97(3)= (/%)

= f(X).

As[g(j))X] = 0if j > J, we get

00 J J
DU = > Tg)M = > g(i)x+0Q).

j=1 j=1 j=1

Observe that this equation immediately gives

i[ljx] :iljm O(f (X).

=1 =1
The rest of the proof will consists in refining the error term.

To improve the remainder estimate, we use Dirichlet’s amguinfor the number of lattice points
below the hyperbola: we count the points below the graph efftimction xg(t) and below its
inverseg~(t/x), up to the intersection point of these graphs and deletiegsize of the square
which we counted twice.
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xg(t)

glem
1 K

Figure 3.1: Symmetry argument in the proof.
So, letK € R be such that

xg(K) = g‘l(i) =K.
Then
/K 1 X
K:g 1(X):T§): f(R)
By symmetry we have:
J K J
P EONESYCOXEDY O
j=1 j=1 =K
K K ]
LA + > (g7 (3)] - KPP
j=1 j=1
o
= > g(i)x+ > g7(2) - K2+ O(K)
=1 =1
Applying the Euler-McLaurin summation formuld.8.J)
J K
o)A = f g(t)xdt+ A(x) + O(g(K)X)
i=1 !
K
N fl g-l()i()olur B(X) + O(g‘l(g)) — K2+ O(K).
Clearly

O(K) = O(xg(K)) = o(g—l(K)).
By symmetry (see Figure 1)

J K J K K
fg=f g+f g=f g+f g -K2+ ]
1 1 K 1 1

45
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then replacingflK gt)xdt+ flK g‘l(i) dtin the previous equation we have
J J X
Z[g(j)x] - f xg(t) dt — 3+ A(X) + B(x) + O(f(~-)). (3.3.3)
=1 ! K
Being the integral convergent, we may write the equat® 8.8 as
‘] 00 (oo X
Z[g(j)x] = f xg(t) dt—f xg(t) dt — 3+ A(X) + B(x) + O(f(+-))
j=1 1 J K
and again, by using the Euler-MacLaurin summation form8I3.(), we obtain

Do = > xg() - fjm xg(t) dt— J + B(X) + O(f(%)). (3.3.4)

=1 =1

Using that ast — o0, K — o and by (H2), we obtairf (x/K) = K ~ f(x)Y+d_ Then
J o o
loiA = X[Z g(j)] - X f g(t) dt - 3+ B9 + O(f ¥/ (x). (3.3.5)
=1 =1 J
To compute the integral we use the Propositiofto obtain

© d
ff ,, Jdu= F99(f 09N (15 + oD)-

Hence, using thal = f(x) and thatg(f (X)) = %( we arrive at

o d
fo g(t)dt = f(x)(1 — 0(1)), asx — o. (3.3.6)
Replacing in equatior3(3.5 we obtain
J 00
2,80 = X[Z g(J)J ~ 725100 + B0O + o(F(x). (3.3.7)
ji=1 ji=1

Our last task is to determinate the valueBg§k). Forb > 1 fixed, we have,
b i bt b
-1 -1 _ -1
276)- J, oG-+ 0fa(5)
Taking x big enough and remembering that(t/x) = 1/h(t/x), f(X) = 1/h(1/x),
°, h(3)
= h($)h(3)

bl b
_jl‘ h(i)h(%) dt_B(x)+O(g ()—())
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By (H2), for x large we have
) _
()

Whenb — oo, asg™ is decreasingd(g~%(2)) — 0. Hence,

~d 4 o(1).

b b
B() = f()(L+o(1) fim (" j™~ fl t~9dt), (3.3.8)
j=1

or equivalently,B(x) ~ Cf(x) asx — +oo. In order to find the constart, we use the next
expression for the Riemann zeta function, de9[:

b
Jiﬂl(;j_d‘fl t‘ddt):g(d)—ﬁ.

Hence, replacing in3.3.7) the expressiom(x) = f(x)(£(d) — d—fl + 0(1)) we have
00 J
PEOXED O
j=1 =1
- X[Z g(j)J — 225100 + BOY + o(F(x)
=1

= X{Z g(j)] +£(d)f(x) + o(f(x))
=1
and the proof is complete. ]

Now, we can prove our first theorem:
Theorem 3.10.LetQ = (Jjay |j € R where |j are disjoint open intervals. Assume that there exist
d € (0,1) and he Gq such thatl;| = g(j). Then,
N1, Q) = K2 e @ful/p) +o(f(AYP)) as 1 — oo.
Proof. As Q = jey I with [Ij] = g(j), from Propositior2.14
N(L, Q) = Z [g(J)/ll/p]

=1

Now the proof follows by a direct application of LemrBa@ with x = /ll/p/np. In fact,

p

as we wanted to prove. m|
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Remark3.11 Observe that the assumptions of Theo@&d0Dimplies the length of the intervalg
must be strictly decreasing. This is not desirable for maplieations (for instance, complements
of Cantor-type sets).

However, a simple inspection of the arguments show thatfliices to assume thit| ~ g(j).
Therefore, for example, complements of Cantor-type settatuded in our result. Se@ioq for
the details and also the next section.

3.4 The infinite measure cased > 1

We begin with a couple of lemmas in the spirit of Lemfa

Lemma 3.12. Given{lj}jey @ sequence of positive numbers and &4 for some o> 1. Then, if
lj < 9(j), we have

(o8]

Z[Ijx] = f(X) as x— +oo.

=1
Proof. Sincel; =< g(j), there exist two positive constants, ¢, such thatc;g(j) < I; < ¢2g(j).
Then

cixg()) — 1 < [eaxg(j)] < [15X < [e2xg(j)] < c2x(]).
So, if we denote); = f(cix), i = 1,2 we have thakjx < 1 for j > Jo. Then

J1 Jo 00 J
D oxd) = i< 3 ld = ) id < 3 eoxe()). (34.1)
=1 =1 =1 =1
From the summation formul&(8), we get
J; Ji
> eixg(j) = Gix ) g(t) dt + Cx+ O(xg(J)). (3.4.2)
j=1
Applying Propositior3.6, sinceJ; — o as,x — oo
J,
g(t) dt
, gt d +0o(1).
Jog(J) d-1

Also, asJ; = f(¢x), we have that;xg(J;) = 1. Moreover, by (H3'),x = o(f(x)). Collecting all
these facts, we arrive at

Ji d
2, 6xai) = 53 + o).
j=1

Replacing in 8.4.1) we get

Ji+o(d) < D1 <

=1

Jz + O(Jz).

d-1 d-1

Finally, it is easy to see (from (H2)) thdt = f(c;x) < f(X) so (1) follows. O



3.4 The infinite measure cased > 1

49

Lemma 3.13. Given{lj}jey @ sequence of positive numbers and &4 for some o> 1. Then, if

~ d(j), we have

i['jx] =7(d)f(X) + o(f(x)) asx— +co.

j=1
Proof. Sincel; ~ g(j), for a fixede > O there existgg such that, forj > o,

lj

a(j)

l-e<——<1+e.

From Theoren®.10and Propositior2.14

Z[' X = Z[g(nth[l X = [9(j)X]) + Z[' X.
=1

j=jo+1

Now, from 3.4.3 and @.4.4 we get

Zl(l 2)y(i)X] < Z[' X] - Z[' X = [9(7)X) < > "1 + £)g()A.
ji=1

Now, if K, is such that
(1£8)g(Ko)x =g (Ke/X(1 £ ¢)) = K,

arguing as in Lemma.9, we arrive at

(o8] Ki Ki
DA =a()d = > A +e)gi)x+ > g7Hi/x(1 £ &) - K2 + O(K.,).
j=1 j=1 =1

Applying the Euler-McLaurin summation formul&.6), we get

© Ky K.
DI £ e)g()M = f Lz e)gxdt+ | g ™(t/xA = e))dt
j=1 1 1

+ A(X) + B(X) — K2 + O(K.),

(3.4.3)

(3.4.4)

whereA(x) = C(1 + &)x and B(x) are the constants from the Euler-McLaurin formusag| for

(1 £ &)g(t)x andg~(t/x(1 + €)) respectively.

Again, as in Lemma&.9

K. K. J.
f g+f gl= [ geKuKe-1)- .
1 1 1

wherel. is given by (1+ &)xg(J.) = 1
Therefore, we arrive at

i[(l +&)g(j)N = J1(1 + &)xg(t) dt + AX) + B(X) — J. + O(K.,).
j=1 1
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Applying now Propositior8.6 and the definition ofl,. we obtain

ZKl = £)g(j)d =(1 = e)xJ+g(J+)( 7 +0(1))

+ A(X) + B(X) — J.. + O(K.)
1
d 1

:ﬁ f((1£&)X) + B(X) + o(f (X)),

where we have used thaf{x) = C(1 + &)x, x = o(f(X)) andK. = f(x(1 = &)/K.) = o(f(X)).

=J.(5— +0(1)) + A(¥) + B(X) + O(K.)

It remains to estimat®(x), but this follows exactly as in the proof of the finite measuase,
Proposition3.9. So

b b
_ ; —d _ —d
B(X) = f((1=£)X)(1+0(1) lim ( j§=1 j fl 9 dt).
In this case, both terms are convergent, and we easily get

B = (£(d) ~ =) (L £ £ + o(F(9).

Hence, we finally get
Z[(l +&)9(J)x] = Z(d)f((1 £ £)x) + o(f(x)).
=1

As ¢ > 0 is arbitrary, the proof follows. O

Now, we can prove our second theorem:

Theorem 3.14.LetQ = (Jjey |, and he Gq4 for some d> 1. Then

1. ifljl1 = 9(j), we have
N(1, Q) = O(f(1YP)) asA — +c.

2. if[ljly ~ 9(j), we have

£(d) (d)
p

N(1, Q) = f(AYP) + o(f(AYP)) asd — +co.

1/p

Proof. The proofs follow from Lemma8.12and3.13replacingx by A*/P/x;

We close this section with the following estimate for theegigalues.
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Corollary 3.15. Let h e Gy for some d> 1 and letQ = (J;qy1j be such thatlj| ~ g(j). Let
{A}keny be the sequence of eigenvalues of prob(&r.4 in Q. Then,

ﬂ%k -p
A~ o)l

Proof. Since
d d _, _
k= NGt @) ~ S gty = Ego1 10)
Tp Tp
we get
ik
p p
—)| "~ 2
[g(g(d))] k
and the proof is finished. m|

Remark3.16 Let us note that, fon(t) = t%, we have thag(t) = t-/9, so

ﬂ%k p/d ﬂka/d

v 7g) = g

For p = 2, the eigenvalues of the Laplace operator with Dirichlairimary condition in any
bounded open sét c RN satisfy
Ak ~ cke/N,

Hence, seems natural to considerns aspectral dimensiorior 9Q despite the fact tha® =
Ujewr Ij € R andd > 1.

3.5 Two-dimensional horns

For simplicity, we only consider here two dimensional damsaiFirst we derive a simple proof of
the upper bound for the eigenvalue counting function of thplace operator on horns. Then, we
give a lower bound with the same order of growth although wittifferent constant in the leading
term.

Leth € Gy, with d > 1, andg(x) = h™1(1/x). LetQ c R? be defined as
Q={(xy) eR?: x>1; Yyl <g(X)}

Clearly, the measure @ is infinite.

Let us consider the eigenvalue problem

—-Au=Au IinQ
{ (3.5.1)

u=0 onoQ.
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Sinceg(x) \, 0 asx " o, the domain is quasibounded, namely,

lim d(x,R?\ Q) =0,

[X|—c0

and the spectrum is discrete, consisting of a sequence efhalles O< 13 < A < -+ 7 oo,
repeated according their multiplicity.

We want to estimate the order of growth of
N2, Q) =#neN: A, < A}

To this end, let us introduce a family of rectang{é}ﬂ}jeN, and an open s&t such thaQ c V:
Q =1} i+1x[-g0.a.  Vv=(JQ).
ji=1

Also, the seV is quasibounded and the spectrum of the Laplace operatbisma sequencg; <
us < --- /" oo, repeated according their multiplicity. Moreover, the ratumicity of eigenvalues
respect to the domain gives

HMn < /ln, nz 1
We have the following inclusions of Sobolev spaces:
H3(Q) € H3(V) « EH HXQ)),
ji=1
where
HA(Q') = {u e HY(Q') : u(x +g(j)) = O}.

We can compute by separation of variables the eigenfursctimi eigenvalues of the Laplace
operator in eack)’ with mixed boundary conditions. We get

) k27'l'2
A2 =2+ —— ,
hk 49(j)?

Hence, we define the eigenvalue counting function

Ul (xy) = costiry) sinfery/20(j)),  h>0,k> 1.

j 5 5 k27T2
Nmixed(, Q') = #{(h. k) : hPn® + 507 <A
Let us note that we can assign to each eigenvalue a lattice (k) with h > 0 and the square
(h—1,h] x (k- 1, k], and the number of eigenvalues whh= 0 is [29(j)AY/?/x]. By using the area
of the ellipse which contains those squares, we get

hzO,kzl}.

Q(J')/l N 29(])/11/2 _
T

R
o2 —Q(J)(ﬁ‘F )

Nmixed(/l, QJ) < (3-5-2)
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Now, the Dirichlet-Neumann bracketing.(5 together with Propositiog.14implies
N(LQ) < D Nmixed(d, Q)
=1

but we cannot replace the previous bound yet. Let us notd\thaé(1, Q') = 0 if
, 2
Q! T
A5, = —=>1
01" Z(j)2 ~
i.e., forj > g~1(x/21Y%) = £(24Y/2/x). Hence, by using the estimat&.§.9, the Euler-McLaurin
formula (3.8) and Propositior8.6, we obtain

f(24Y2/x)

N(1,Q) < Z Nmixed(4, QJ)
=

f(24Y2/7)

1/2
< Y Aot )

=1 2
:(% + 2/1:2) [ fl e g(t)dt+ A+ O(g(f(u:/z))))
(3 ) (B g2 + o) + 06
=(% + Zﬂ:/z)f(zi/z)z; (5 f 7 +0(1)) +O(1*7?)
() o[ 221(2)).

Therefore, we have proved the following Theorem:
Theorem 3.17. Let he Gy, with d > 1, andQ c R? be defined as
Q={(xy) eR?: x>1; Yl <g(X)}
Then, the eigenvalue counting function of the eigenvalablem(3.5.1) satisfies
d i 20 § 12 (2 §
N(LO) < oz 2H(Z ) + o a2( =),
Remark3.18 Whenh(t) = t9 with d > 1, theng(t) = t-¥/9 and f(t) = t9. So, we have
d 2\d a1 d+l
N(/L Q) < m(;) A2 + 0(/1 2 )

Following [VLO1], the order of growth cannot be improved, since this is tgatrone for horn-
shaped domains.

In much the same way we prove the following lower bound:
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Theorem 3.19. Let he Gy, with d > 1, andQ c R? be defined as
Q={(xy) eR?:x>1; lyl < g(x)}.

Then, the eigenvalue counting function of the eigenvalablem(3.5.1) satisfies

1/2 1/2 1/2
N(1, Q) > rll%f(%) + o(/ll/zf(%)).

Proof. As before, let us introduce a family of rectang|€¥ } e andU c Q, where
Q =l i+Ux[-gi+10(+1l. U=(Jq)
j=1

Then,
P HaQ)) < H),

j=1

and the Dirichlet-Neumann bracketing.15 together with Propositio&.14implies

Z Np(4, Qj) < N(1, Q).
=1

The eigenfunctions and eigenvalues of the Laplace opara@y with Dirichlet boundary con-
ditions are

2.2

A% = Pa? + ﬁ U (xy) = sinforx/2g() sinfrry), k> 1.

Therefore, the counting functiadNp (4, Qj) is

k272
No (1, Q)) = #{(h. k) : h2r? + —

wﬁﬂ, h,kZl}

Let us assign to each eigenvalue the lattice pdink)(with h,k > 1, and the squar®nx =
[h,h+ 1) x [k k+ 1). Hence,
Np(1, Qj) = |( U Qh,k)|-

Qj
A=A

Clearly,
gi)d A2 2g(patz
2n2 n n ’
since in the first quadrant, the ellipse of semi-ax¥$/x and 2)(j)AY2/x is covered by the squares
Qnk and the rectangles [@) x [0, 1¥/?), [0, [2g(j)AY?] + 1) x [0, 1).
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We consider onlyj < f(1%2/2x) (if not, 44 — 22 < 0, andNp (4, Q;) is nonnegative) and we

17 T
get
0 f(AY2/2n) . 1/2 0172
gij)a 4 29(j)4
N(/LQ)ZJZ:;ND(/LQJ-)Z ; oy~ -1
Finally, as in the previous proof,
f(AY2/20) . 12 412 f(AY/2/2r)
gl Aaeyare N 21/2
N(1, Q) > 2 3 f(zﬂ) p. +0( ; 2g(j)2*?)
1 /11/2 /11/2 d /11/2 /11/2
=5 (5 ) (5 )g—7 + o) - —1(5)
/11/2
+o(21(5))
1 /11/2 o d /11/2 /11/2 /11/2
=55 f(z)m(m +0(1)) - — f(g) + o(/ll/zf(g))
212 21172 212
=7r(d —1) f(?) + O(ﬁl/zf(g))
and the proof is finished. ]

Remark3.20 From Theorem$8.17and3.19we obtain that
/11/2 2/11/2
1/2 1/2
cl f(z) <N Q) <C2a f(T),

for horn-shaped domains
Q={(xy) eR?: x> 1; |yl < g(¥)},

with f(x) = g~%(1/x), andg monotonically decreasing continuous function.

Observe that, als satisfies (H2), we have
N(1, Q) < AY2f(aY/?).

This result improves the upper bounds obtainediH$7, He74 He75, which only gives an upper
bound forN(4, Q) wheneverg(x) = x /9.

It would be desirable to obtain a better knowledge of the gdgtit behavior, namely,
N(1, Q) ~ ca¥?f(a1/?) (for certain constant) as in [5i83, and even a second term as Wi[01].
However, without imposing more restrictions on the funasib or g, we believe that this cannot
be possible, since the main term can oscillate, as the folpane—dimensional example suggest.
This example is borrowed fronPjOg).

Example3.21 Let Q = Uyey Ok, WhereQy consist ofmk intervals of Iengthml‘k, form > n.
Then, the spectral counting function of problein54 satisfies
29/p
N(2,Q) = ——s(log(1)) - O(*/?),

log(m)
log(n) -

wheres(log(1)) is a bounded periodic function, anid=
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Proof. Since

i| A [ AP 1/p
N(1, Q) = ; m npni—l] = _Z m [ni—lnp] —O(AV/P).
By changing variables,
_ log(a'P) — log(rp)
- log(n)

we getnk = AYP/r, andmk = (AYP/xp)d, ford = ',‘;g({;;) and we obtain

’

N(1.Q) = %p i M/~ ] - O(1"P) = %ps(logu)) - O(1"P)

j=—o0

and, asj — (k+ 1) = (j + 1) — k, s(log(1)) is a periodic function with period equal to one. O

This example can be extended &3, by definingQ = e Q« WhereQy consists ofmk
disjoints squares of sideg . WhenQ has finite measure, similar examples were considered
in [FV93, LV96, VLe96], where oscillating second term were obtained for the spkecbunting
function of the Laplace operator {& with Dirichlet boundary conditions in the boundary of each
square. It is not diicult to extend those arguments to the infinite measure chaeign? > n),
to obtain in this way a quasibounded set with an oscillatirgnnterm. However, the set obtained
in this way is not a horn.
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Homogenization: preliminaries

In order to answer the questions formulated in the Intrddactand others related to a more gen-
eral class of problems, we follow the approach which useshibery ofH— andG-convergence.

The notion ofH—-convergence was introduced by Murat and Tarfar7g to study a wide class
of homogenization problem for possibly non-symmetricpgiti equations.G—convergence was
introduced by SpagnoldSp69, [Sp7§, De Giorgi and SpagnoloS73, and it is restricted to
symmetric operators.

In the first part of this Chapter we introduce tHe andG-convergence for second order linear
uniformly elliptic operators.

Then, we emphasize in the important case of periodic honipgton, namely, when we deal
with families of matrices of the forrd\*(x) = A(x/e), whereA(x) are Q—periodic functions,Q
being the unit cube iRN ande a real parameter tending to zero. Here, it is possible to find a
explicit form of the limit operator.

Finally, we define the notion d&—convergence of nonlinear monotone operators in the general
setting, that is, a more general family of operadgix, £) satisfying certain properties and whose
prototypical example ig.(x, &) = A%(X)|£IP~2¢, related with thep—Laplacian operator. Here, we
also deal with the periodic case and some remarks about thedenization of nonlinear periodic
monotone operators.

4.1 H-convergence of linear equations

In this section, we deal with linear elliptic operators oé ttorm A.,u = —div(A®(X)Vu) where
A¢(X) = (afj(x)) is an elliptic matrix. LetMy be the linear space of square real matrices of order
N. Givena, S8 two positive constants, we define a subspacaigf made of coercive matrices with
coercive inverses

Map={MeMN:ME-E2 P, ME-£2pIEP VEeRN). (4.1.1)
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A coercive matrix with coercive inverse is also bounded. ekdi if M € M, g, introducing
n = M~1&, we deduce from4.1.1)

BIMn? < Mp - 7.
Applying Cauchy-Schwarz inequality, we obtain
Ml <8l Y e RN, (4.1.2)

Similarly, we have
IM™ gl <ol YpeRN

From @.1.7) and @.1.2 we deduce that a necessary conditionNbe M, s is that
o < Mé-é<p e veerN,

Therefore M, g is nonempty if and only if it is satisfied the conditiaf < 1.

H-convergence is a notion of convergence for theffbdents of an elliptic partial dierential
equation, which is defined through some convergence piepert the solution of this equation.

Definition 4.1. It is said that a sequence of matric&gx) € L*(Q, M, ) H-convergedo an
homogenized limit matridA*(x) € L*(Q, M,z) (called H-limit) if, for any f € W-12(Q), the
sequencer of solutions of

—div(A®(X)Vu?) = f in Q
(4.1.3)
w=0 onoQ
satisfies
u® — uweakly inH}(Q
yinHo() _ (4.1.4)
ACVLE — A*VU weakly in L2(Q)N
whereu is the solution of the homogenized equation
—div(A*Vu) = f inQ
(4.1.5)
u=0 onoQ.

This definition is justified by the following compactnessatem.

Theorem 4.2. For any sequence “x) of matrices in £°(Q, M, ) there exist a subsequence, still
denoted by A and an homogenized matrix (k) € L*(Q, M, g) such that A H-converges to A

Proof. See Theorem 7.4 irDg]. ]

Remark4.3. Let us observe the following remarks:
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1. By the definition ofH—-convergence, the homogenized ma#ixdoes not depend on the
source termnf.

2. Theorem4.2 implies that the setL>(Q; M,g) is closed undeH-convergence, i.e., the
coercivity constantg, 8 are the same for the sequen&®eand itsH-limit A*.

3. By definition, if a sequenc&® H-converges to a limitA*, then any subsequence also
H-converges ta\".

4. SinceL?(Q) is dense irH™1(Q) the source term in the Definitio 1 can belong td_2(Q)
insteadH1(Q).
The next theorem is about the localization of Hieconvergence:

Theorem 4.4. Let A (x) and B(x) be two sequences of matrices i°(Q; M,z), which
H-converges to Aand B, respectively. Letv be an open subset compactly embeddef,in
ie.,w C Q. If A°(X) = B%(X) in w, then A(X) = B*(X) in w.

Proof. See Proposition 1 infIT97]. m|

Remark4.5. Even though in Definitiord.1 we define thed—converge with Dirichlet boundary
conditions. It can be proved that te-limit is independent of the boundary conditions (see, for
instance AIO2] Proposition 1.2.19).

4.1.1 The periodic case

To define the concept of homogenization in the periodic fraark we need some definitions.

Definition 4.6. LetY = (0, £1)x- - - (0, £») be an interval iRN, wherety, - - - , £ are given positive
numbers. We will refer t&Y as thereference cell

Definition 4.7. A function f defined a.e. oRN is calledY -periodicif and only if
f(x+kég) = f(x) ae. oRN, VkeZ, Vie{l---,N},
where{ey, - - - , ey} is the canonical basis &N,

In the one-dimensional cadé= 1, we simply say thaf is ¢;—periodic

In the study of periodic oscillating functions is essentied definition of the average of a peri-
odic function.

Definition 4.8. Let Q be a bounded open set®f' and f a function inL*(Q). Theaverageof f
overQ is the real numbef given by

_ 1
f—@fgf(y)dy.
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The next result is related to the convergence in the wealesareriodic functions irP.

Theorem 4.9(Weak limit of rapidly oscillating periodic functions).etl < p < +oco and f be a
Y—periodic function in P(Y). Set

f.(x) = f(¥) a.e. onRM.

Then, if p< +o0,ase —» 0

fp— f =¥ f f(y)dy weakly in [P(w)

for any bounded open subseif RN.
If p = +c0, ONe has

fo— f IYI f f(y)dy weakly* in °(w).

Proof. See, for instance, Theorem 2.6 i6[)99. See also Chapte§4 where the rate of that
convergence it is obtained. ]

Remark4.1Q Let us point out some features of the weak convergence. Lebnsider the fol-
lowing example. Lety = (0,27) and f(X) = sinx. Lete be a sequence of positive real numbers
tending to zero. By Theorem.9 we have thatf,(X) = sin(x/e) — 0 weakly* in L*(Y) (hence
weakly inL2(Y)). Particularly,

21
f f(x)dx—>—f siny dy= 0,
0

i.e., the average of, converges to 0. Furthermore,

o 1 ("
I~y = [ ity dxs (1 [ siPy dy)er=n 20

which shows that we do not have convergencé.aff f in the strong topology of2(Y).

This simple example shows a mathematicdliclilty one meets by handling weak convergent
sequences. More precisely, if two sequences and their piodonverge in the weak topology,
the limit of the product is not equal, in general to the prddfdhe limits. Indeed, this example
proves thatf? = f,f, does not converge weakly LF(Y) to 0.

Let us consider functiona : RN — RN*N with A(x) = (aj(X)) such thatA € L*(Q; M, ) and
the functionsa;; areY-periodicVi, j =1,...,N.
We consider equatior(1.3 in the periodic framework, i.eA® is aY—periodic matrix defined

by
A*(x) = A(%) a.e. onRM (4.1.6)
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Figure 4.1:f.(X) = sin(2rx/e) with Y = (0, 1) ande = 0.1.

whereA(%) = (& (X)1<ij<n a.e. onRN with & (X) = &;j(%) a.e. onRN, foralli,j = 1,...,N.
Note that the functionafj aresY—periodic oan\'.

When we deal with a family oY —periodic matrices of the formi(1.6), it is possible to find an
explicit expression of the limit matriA* in term of certain auxiliary functions. In the following
Theorem a characterization of themogenized cgfcientsis given.

Theorem 4.11. The sequence“A= A(%) H—converges to a constant homogenized matrixcA
M, g defined by its entries

A= [ A@ + Vo (o + Tardy

where (g)1<i<n is the canonical basis dkN, and (w;)1<i<n is the family of unique solution in
HZ(Y)/R of the cell problems

—divA(y)(e + Vwi(y)) =0 inY N 4.1.7)
y — wi(y) Y -periodic
with
HZ(Y) = {f € HL.(R™) such that f is Y -periodic
Proof. See Theorem 1.3.18 irh\[02]. m|

4.2 G-convergence of linear equations

In the case of symmetric operators, i.e., when the mafixs symmetric, a notion of operator
convergence was introduced by Spagn@p7q under the name db—convergence. It is a little
simpler tharH—-convergence due to the symmetry hypothesis. From a hiatquraint of view, let
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us mention that th& stands forGreen since the original proof of the compactness theorem for
G-convergence used Green functions.

Let My, be the linear space of symmetric real matrices of oMieFor any positive constants
a, B, we define a subspace made of coercive matrices with coenviesses,

Mis=IMeMS  ME-£2alé?, M7%E-£2pE” VéEeRN) (4.2.1)

GivenQ c RN a bounded open set, we introduce the spaee; Mjﬂ) of admissible symmetric
codficient matrices.

Definition 4.12. A sequence of matricea®(x) € L*(Q, M(Sx,ﬁ) is said thatG—convergego an
homogenized limit matrixA*(x) € L“(Q,Mjﬁ) (called G-limit) if, for any f € H™(Q), the
sequencer of solutions of

(4.2.2)

—div(A*(X)Vu?) = f inQ
w=0 onoQ

satisfies that* — uweakly in H%(Q), whereu is the unique solution of the homogenized equation

{—div(A*Vu) —f  inQ
(4.2.3)

u=0 onoQ.

This definition is justified by the following compactnessatem.

Theorem 4.13. For any sequence “of matrices in °(Q, MZ,/;) there exist a subsequence, still
denoted by A and an homogenized matrix (k) € L*(Q, M, ) such that A G-converges to A

Proof. See RI02], Lemma 1.3.9. m|

The main diference betweekl— and G—convergence is that the latter does not require the
convergence of the fluR*Vu?. ThenG—-convergence is a weaker notion thidrconvergence in
the sense that if a sequence of symmetric matiéeld —converges to a symmetric homogenized
matrix A", then it automaticallyG—converges to the same limit. This is an obvious consequence
of the following lemma.

Lemma 4.14. Let A be a sequence of (not necessarily symmetric) matriceS’ (@M, g). If
A? H-converges to a limit Ain L*(Q; M, ), then the adjoint, or transposed, sequerisé)!
H—converges to the adjoint lim{A*)! in L*(Q; M)

Proof. See Al02], Lemma 1.3.10. O

By Lemma4.14 if A¢is symmetric andH—converges té\*, then automaticallA* is symmetric,
and thusA? alsoG-converges tdA*. The following Proposition is the converse of that Lemma.
This fact give the equivalence betweldr andG—convergence for symmetric matrices.
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Proposition 4.15. A sequence of2of symmetric matrices int(Q; Mjﬁ) G-converges to a limit
A" € L=(Q; M,p) if and only if it H-converges to A

Proof. See RI02], Proposition 1.3.11. m|

Remark4.16 For symmetric matrice8¢, the convergence of the flud¢Vue is a consequence of
the convergence of the solutioa% If the matricesA? are not symmetric, this is no longer true. In
particular, for nonsymmetric operator, the notion@fconvergence is inconsistent, since it does
not guarantee the uniqueness of Geimit.

4.2.1 The periodic case

Here we deal with functiong : RN — R¥N with A(X) = (a&;(X)) such thatA € L¥(Q; M; )
with a&;; Y-periodic functions?i, j = 1,...,N.

First, we deal with the one-dimensional problem and then illessee dificulties that arises in
the generalization to the cabe> 1.

The one-dimensional case

This problem was studied by Spagnolo (1967). Det (0,1) be an interval irR. In the one-
dimensional case equatiof.2.2 is reduced to

(4.2.4)

—(@())) = f enQ
wO)=u’(1)=0

where’ := % andag(x) := A(%). We assume that is a positive Eperiodic function inL*(Q)
such that for some constanisg

O<a<alX) <B<+c0, fora.e.xeR. (4.2.5)

The weak form of4.2.4) is

1 , 1
o 2wy’ = [ fo  foreveryp e WyA(Q) (4.26)
w e WaA(Q). o
Let us observe that by duality
1 1
CL’H(US)/HiZ(Q) < j; ael(us)/lz = fo fu® < HfHW’LZ(Q)”ugllwé,z(Q)- (427)

By the Poincaré inequality for functions with zero boundealues we have that

||U8|||_2(Q) < ||(U8)’|||_2(Q)-
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That implies that
1
I Tz < I llizc)- (4.2.8)

SinceWé’2 is a reflexive space, there exists a subsequence still dehgtesuch that
U —u  weakly inW(Q) (4.2.9)

and sinceWé’z(Q) is compactly embedded Ir?(Q), we have by the Rellich Embedding Theorem
(see for instancedv1(q) that
U > u  strongly inL%(Q).

Being that is an 4periodic function we have that the sequelageonverges weakly > (Q) to
its average (and hence weaklyliA(Q)), i.e.,

1
a —a= f a  weakly* in L®(Q). (4.2.10)
0

From @4.2.9,(4.2.9 and @.2.1Q it would be reasonable that in the limit we have thahust be a
solution of:

1 1 1,2
auy’ = f for ever W5 4(Q
{fo o=k te Yo € Wo () (4.2.11)

ue Wy2(<).

However thisis not true in general, since.(u®)’ is the product of two weakly converging se-
quences. This is the mainfiiculty in the limit process. To obtain the correct answer wecped
as follows.

Let &, = a.(1f)’. By (4.2.8 we have that the sequen¢g) is bounded inL%(Q) and é.2.6
implies that-¢., = f in Q. Moreover, from the estimate @i and @é.2.5 one has
€6l < /—gnfan(g-
a
Hence up to a subsequence we get
& — & weakly inL%(Q).

Then, we can pass to the limit id..6 to get
1 1
f £ = f fo for everyyp e Wy2(Q)
0 0

d¢ :
——==f Q.
Ix in
Clearly, we obtain

ez < IfllL2qy (L + 'g)-

Hence¢, is bounded itWw2(Q) and by Rellich’s Theorem there exists a subsequence stibted
by ¢, such that
& — & strongly inL(Q).
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Since{} converges tcg weakly* in L*(Q) (and hence weakly ih%(Q)), we can pass to the limit
in the weak-strongproduct

(U = igs - gg weakly inL2(Q). (4.2.12)
Thus, by 4.2.9 and @.2.12, we obtain that
¢=@h . (4.2.13)
Now we can pass to the limit ir}(2.6 obtaining

1 koo A 1 3
Jyauy = [ fo  foreveryp e Wy(Q)
ue Wy(Q)

wherea* = (F)‘l. Being VB < alx< 1/a we conclude that the homogenized equation has
a unique solution and thus that the whole sequdnteconverges. Finally is solution of the
equation

—-au”’ = f enQ
u(0)=u(1)=0.

Observe that in the one dimensional case saicis a constant, one can compute explicitly the

[imit solution u:
(%) 1fxd fyf(t)dt 1(fld fyf(t)dt)
ux) = —— + — .
a Jo y 0 aJo Y 0

Remark4.17. Note that the value cit* obtained is the particular cage= 2 of the homogenized
codficient of thep—Laplacian equation

-(p-1
a = (aﬁ) (b=1)
given in Sectior.3.1

In the N-dimensional case witN > 1, it is more dfficult to obtain an expression of the homog-
enized matrix and it is no longer obtained by means of algelfoamulas fromA.

The N-dimensional case

Let Q be a bounded open subsetRdf. For a fixeds > 0, let us consider the Dirichlet boundary
value problem orf2

(4.2.14)

—div(A*VW) = f enQ
uw=0 enoQ

wheref € W-12(Q) is a function orQ.
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The variational weak formulation 0#(2.19 becomes then: fint® € W, ?(€2) such that

ASVUE -V = [ fv  forallve WH(Q
{fg I 0" (4.2.15)

U € Wy2(<).

Remark4.18 The existence and uniqueness 4f2(15 it follows from the Lax-Milgram lemma:
if we define the bilinear forna® : W%(Q) x Wy*(Q) — R by

a®(u,v) = fg Acu-v  forallu,ve WrQ).
we observe that from the boundedness assumption and Hoideduality it follows
12
[a°(u, V)| < C”u”Wé’Z(Q)||V||Wé’2(Q) for all u, v e Wy“(Q).
Moreover, from the ellipticity condition we get

a’(u,v) < a||u||\2NL2 @ (4.2.16)
0

Hence,a® defines a bilinear continuous and coercive forng}lz(Q) and the existence and
uniqueness is guaranteed.

From the estimate of the Lax-Milgram lemma we get

1
IIUgllwg.z(Q) < Ellfllw—l,z(g)-

Consequently, it follows that there exists a subsequeritalshoted bys and an element €
W,2(Q) such that
U —u  weakly inW%(Q).

Like in the one-dimensional case, to investigate the lumite define
& = A°VU°

which satisfies
f £VV = f fv  forall ve Wy2(<). (4.2.17)
Q Q

SinceA € L=(Q; Mzﬁ) and @.2.19 it follows that

I|§s|||_29 < éHfHWfLZ(Q).
(04
Then, there exist a subsequence, still denoteftdyand an element e L?(Q) such that
& — & weakly in LA(Q)N.

Hence, we can pass to the limit ih.2.17, to get

f £VV = f fv  forallve W)(Q),
Q Q
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—dive=f InQ.

To obtain the limit equation which is solution it is necessary to describen terms ofu. In
the one-dimensional case one can easily give the relatiomelbau and ¢ as we have seen in
(4.2.13. In the N-dimensional case the situation is completelffatent since the cdicients of
A" are no longer obtained as algebraic formulas framindeed, they are defined by means of
some functions which are solutions in the reference¢elf certain boundary value problems.

The classical convergence result states that:

Theorem 4.19.Let f e W-12(Q) and «f be the solution 0f4.2.14 with A¢ satisfying(H1)—(H4).
Then

1. & — uweakly in W3(Q).

2. VU — A'Vu weakly in(L2(Q))N.
where { is the unique solution in W(Q) of the homogenized problem

—div(A*Vu) = f enQ
w=0 enoQ.

The matrix A = (ai*j) is constant, elliptic and given by

%= (aj(y)+2a 05 ay)

wherewy is the unique solution to the local problem

J A + Yox(y)) - Vu(y)dy = 0 for every ve Wz (Y)
wk € W (Y).

This well-known result can be proved byfl@éirent methods. One of them is the variational
method of oscillating test functions due to Tartaal7, [Ta7g. Another way to prove it is by
using the two-scale method of Nguetsehig89 and Allaire [AI02]. Also, can be used the formal
method of asymptotic expansions, known as the multipleestathod.

Tartar's methods based on the construction of a suitable set of oscillagsgfunctions which
allows us to pass to the limit in problem.R.14 and this is related to the notion of compensated
compactness.

In another way, the two-scale method take into account tle dwales of the problem and
introduces a new notion of convergence, th@-scale convergenceaested on functions of the
form y(x, x/&).
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Themultiple scale methoduggests looking for a formal asymptotic expansion of thanfo

U(X) = U(X, 2) + sUg(X, %) + 2Up(x, X) + - -

with uj(x, y) for j € N such thau;(x, y) is defined forx € Q andy € Y, andui(-, y) is Y-periodic.
The two variablesxandZ take into account the two scales of the homogenization phenon; the
x variable is the macroscopic variable, whereasXhariable takes into account the microscopic
geometry.

4.3 G-convergence of monotone operators

In this section we deal with th&@—convergence of sequences of nonlinear monotone operators.
Given a bounded domai2 ¢ RN, N > 1 we consider the family of operatorA, : Wé’p(Q) N
W-LF(Q) defined in Sectior2.4 by

A = —div(ag (X, £)), (4.3.1)

wherea,: Q x RN — RN satisfies, for every € RN and a.ex € Q conditions (HO)—(H8).

Definition 4.20. Let Q be a bounded open domain BN, N > 1. We say thata.(x, Vu)
G-convergeso a(x, Vu) if for every f € WP (Q) and for everyf, strongly convergent td
in WP (Q), the solutionss of the problem

{—diV(as(x, V) =f. inQ (4.3.2)

w=0 onoQ
satisfy the following conditions

u® —u weakly inWP(Q),
a.(x, Vu®) — a(x, Vu) weakly in LP(Q)N,

whereu is the solution to the equation

—div(a(x,Vu)) = f inQ
u=0 onoQ.

For instance, in the linear periodic case, in Theodkeh®we have seen that the famiy(x/<)Vu
G-converges to a limiA*Vu whereA* is a constant matrix.

Remark4.21 For each positive value efthere exists a unique solutias € Wé’p(Q) of (4.3.2.
For a proof we refer, for instance, t&$00, Chapter Ill, Corollary 1.8 or tol[i69], Chapter 2,
Theorem 2.1.
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Remark4.22 It can be proved that this definition G—convergence is independent of the bound-
ary condition. A proof of this fact can be found, for instanice] CVD90], Theorem 3.8.

It is shown in BCRO4g that properties (HO)—-(H8) are stable und&rconvergence, i.e.

Theorem 4.23.1f a.(x, Vu) G—converges to &, Vu) and a.(x, &) satisfiegHO0)—(H8), then gx, &)
also satisfiegHO)—(H8).

Proof. See BCR04, Theorem 2.3. m|

In the general case, one has the following compactnesd chsuto [CVD9(Q].

Proposition 4.24. Assume that 4, &) satisfies(H1)—(H3) then, up to a subsequence,(8 &)
G-converges to a maximal monotone operat@x, &) which also satisfie@H1)—(H3).

Proof. See CVD9(], Theorem 4.1. O

Remark4.25 In the one-dimensional case, as we have seen in Ch§t8ection2.5.1, equation
(4.3.2 becomes

—@IWY P2 (uyy = f. inl:=(0,1)
w@O)=u*(1)=0

with a, satisfying 2.5.9.

(4.3.3)

4.3.1 The periodic case

Now, we deal with the homogenization of a sequence of noatinenotone operatord, defined
in (4.3.7) in the periodic case, i.ea.(x, &) = a(x/¢, &), anda(-, &) is Q—periodic for every € RN,

One has thatA, G—converges to the homogenized operatty = —div(a,(V)). But now, due
to the periodicityan : RN — RN can be characterized in term of certain auxiliary functiofise
following result is a generalization of Theoretrl9stated for linear periodic operators.

Theorem 4.26.Let f € W-12(Q) such that f strongly convergent to f in W-P' (Q) and & be the
solution of

U e W P(Q).
with a(-, -) satisfying (H1)—(H8). Then

1. & — uweakly in WP(Q).

2. a.(x, eVuF) — a*(Vu) weakly in(LP(Q))N.
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where u is the unique solution iné\ﬁ(g) of the homogenized problem

—div(a“(Vu)) = f enQ
u=0 enoqd.

where & : RN — RN can be characterized by

S—oo

a*(©) = lim 1 f a(x, Vs + &)dx (4.3.5)
SN Qs(zs)

where¢ € RN, Qq(zs) is the cube of side length s centered afar any family{zs}s.o in RN, and
Xé; is the solution of the following auxiliary problem

i & _ .
:IIV(a(f,p Vxs+¢)) =0 inQs(z) (4.3.6)
Xs € Wy (Qs(2),
Proof. See BCD97, Section 2. ]

An example of G-convergence

We finish this section by explicitly computing ti@&-limit operator in one space dimension in the
periodic case.

In the periodic linear case, (see Secti@.]) it is known that the familya(X) G-converges to

a, with
&= ( [ a0 tdx)
;= ([[a007tax
In the non-linear casp # 2, theG-limit of (4.3.3 in the periodic case is given in the following

Proposition.

Proposition 4.27. Let a € L*(R) be 1-periodic function such that for < 8 two constants it
holds that0 < @ < a(X) < 8 < co. Then gx/&) G—converges to g€ R given by

o= J o)

Proof. Let f, e WP (1) be such thaf, — f in WP (1).
Let g.(x) € LP(l), thenbe such thag, = f. andg, — gin LP(l). Henceg’ = f.
Letu® be the weak solution to
—@E)IYPA(w)) = e inl
{US(O) =uw(@)=0.

Then, there exists a constaptsuch that(x/&)|(Uf) |P?(Lf)’ = ¢, — gs.
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Letpp(X) = [XP~2x. Thengy is invertible and so
(W) = g5t - g:)a(¥) . (4.3.7)

Since (1)~ is bounded irWé’p(I ), we can assume that is weakly convergent to som(Wé’p(I)

and, sincea(g)lflp . aTh = flaﬁ weakly * in L*(l) andg. — gin LP(l), we can assume that
there exists such that, — c.

Now we can pass to the limit ir4(3.7) and obtain

’ -1 =
u =g, (c—gatr.

The proof is now complete. m|
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Oscillating integrals

In this section we prove some results concerning to the agtitf integrals of periodic functions
with rapidly oscillating cofficients. They allows us to replace an integral involving adigp
oscillating function with one that involves its averagehe unit cube. As we will see in Chapters
§6 and §7, it is essential to estimate the rate of convergence of e@ees in homogenization
problems.

Letu be a smooth function and lgtbe aQ-periodic function, beind the unit cube irRN. Let
us consider the following integral

fQ g(Z)u(x)dx, (5.0.1)

wheree is a real positive parameter. Note thatifs small theng(x/e) is a rapidly oscillating
function. Our propose is to obtain an expansion of the iate@r0.1) in terms of thes. We recall
the well-known result of Bensoussan, Lions and PapanicoleaP79g, which characterize the
asymptotic behavior 0f5(0.1) as

. X _i
lim fQ 9 = o fQ g(xdx fQ U()dx

Figure 5.1:9(%) = sin(2rx/e) for ¢ = 0.4 ands = 0.02.

We would wish to obtain more information about the seconahtierthe expansion.
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There are some works related to the estimate of oscillatiteggrals. The following result gives
an asymptotic expansion of oscillating one-dimensioni@grals in terms of the parameterhere
& = m~! with ma positive integer.

Theorem 5.1. If g € LY([0, 1]), u € C([0, 1]) then

folg(g)u(x)dx=folg(x)dx£1U(x)dx+sfol'ﬁ(g)u’(x)dx (5.0.2)

— — — 1
whereP(x) = [ [g- g(t)] dt andg = [} g(t)dt.
Proof. See BLL87], Corollary 3.3. m|

In higher dimensions some similar results are known. Whemp#rametet is a negative power
of a positive integer, oscillating integrals can be estedan the unit cube dkN.

Theorem 5.2. Let ge LP(Q), p > 1 be a Q-periodic function and @ C*(Q) then

ng(g)u(x):LgLu+sa(g)fQD7u (5.0.3)

where 4g) is a function depending on g ande R" is such thaty| = 1.
Proof. See [L88], Proposition 5. O

When the parameter is not of the formm™ with m a positive integer, up to our knowledge,
there are no equalities of the kin8.(.2 or (5.0.3. However, wherz is a real positive parameter
the following result due to Olelnik, Shamaev and Yosifian.

Theorem 5.3. Let ge L=(RN) be a Q-periodic function such thad < g~ < g < g* < co and let
g:fQ g. Then,

| [ (021 - 9 < cellhuea o
Q
holds for every v € W2(Q) where ¢ is a constant independenteofi and v.

Proof. See PSY94, Lemma 1.6. m|

Our aim in this Chapter is to give some generalizations ofrikéShamaev-Yosifian's result
for p # 2.

We give two independent proofs for functionswg’p(Q), the first one for the cagd > 1 and
the second one foN = 1. The need for this second proof comes from estimate eMplitie
constants in our result. We are unable to do that in higheedsgions.
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Finally, requesting more regularly to the domain, we givénailar result to Theoren®.3 for
functions belonging tW-P(Q) with p # 2 andN > 1.

In the following, we assume that & p < +oo, the functiong € L*(RN) be aQ-periodic
function uniformly bounded away from zero and infinity, ki@ the unit cube inRN, i.e., for
certain constantg®,

0<g <g<g'<oco.

Also, we will denote byg the average aof over Q.

The first result reads:

Theorem 5.4. Let ge L*(RN) be a Q-periodic function such tha@d < g~ < g < g* < c. Then,
|f(ge(x) - 9)lulP| < paillg - @|L“(RN)8||u”|r_);é2)||vu||Lp(Q)
Q

for every ue Wé’p(Q). Here, q is the optimal constant in Poincaré’s inequality if(RQ) given by
(5.1.0.

In one space dimension we can employ a more direct approaatuén to obtain the explicit
constant in the cas® = |, wherel is the unit interval irR.

Theorem 5.5. Let | := (0, 1). Then, for every & Wé’p(l) we have that
X p p =i p-1 v
|fl(g(g) - gQuP| < Ellg = Gl ellull oy U llLeq).-

The case in which the space functioni&-P(Q) with Q@ ¢ RN andN > 1, the arguments of the
proof of Theorenb.4do not work. The fact that we enlarge the set of test functismsflected in
the need for more regularity of the doman In Theorenb.4test functions are ikNé’p(Q) and the
proof works in a domain with very little regularity, let usyshipschitz boundary or less. Instead,
when we want to prove a similar result for test functions bglng toWP(Q) it is necessary a
little bit more of regularity in the domain, for instance ana@in withC* boundary.

We have the following result:
Theorem 5.6. LetQ c R" be a bounded domain with!@®oundary. Then for every @ W-P(Q)
there exists a constant C independent stich that

‘fg(g()g() - @U‘ < C8||U||wl,p(g)-

Remark5.7. In fact, the regularity of the domains in Theoréind and Theorenb.6is given by
the regularity needed in Lemma&sl1and5.13 respectively.

We are not able to estimate the constant in Thedsegin N space dimension. However, in one
space dimension, by using another techniques, we can gstiarag for this constant.

Theorem 5.8. Let | := (0, 1). Then, for every & W%P(I) we have that

| f| (0(%) - Q)U| <119 = Jlee@elluliwee)B (4 + —(p—rl))np) :
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5.1 Proof of Theorem5.4

We first prove a couple of lemmas in order to prove Theobedn

We start with an easy Lemma that computes the Poincaréasurst the cube of sidein terms
of the Poincaré constant of the unit cube. Although thisltés well known and its proof follows
directly by a change of variables, we choose to include itHersake of completeness.

Lemma 5.9. Let Q be the unit cube iRN and let ¢ be the Poincaré constant in the unit cube in
L9, g>1,i.e.
llu — UgllLaq) < CqllVUllLa(q), for every ue W>9(Q),

whereug is the average of u over Q. Then, for everg w9(Q,) we have
U= Uq,lILa@,) < CqellVUllLaq,),

where Q = £Q.

Proof. Letu € WA9(Q,). We can assume that), = 0. Now, if we denotas®(y) = u(ey), we
have thau? e W-9(Q) and by the change of variables formula, we get

f 9 = f lu|9eN < cgeN f IVuf|? = cget f |vu.
. Q Q Q

The proof is now complete. ]

Remark5.1Q In [ADO4], Acosta and Duran show that for convex domdihsone has

d
lu—(Wulliry < EHVU”Ll(u)a

whered is the diameter o). When we apply this result to the unit cube, we get

VN

o< —- (5.1.1)

The next Lemma is the final ingredient in the estimate of Teeds.4.

Lemma 5.11. Let Q@ c RN be a bounded domain and denote by Q the unit cubNn Let
g e L*(RN) be a Q-periodic function such thgt= 0. Then the inequality

’ fg B!

holds for every v W,(Q2), where g is the Poincaré constant given in Lem&&@andQ; c Qis
given by

< 19l wny Crel VIl Ly

Q= U Qs Q. =e(z+ Q) cQ, ze ZN.
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Proof. Denote byl® the set of allz € ZN such thatQ,, N Q # 0, Q;. = &(z+ Q). Given
v e W, () we extended by 0 outside and consider the functiow, given by the formula

w09 = [ vy

for x € Qz.. We denote by21 = Uy -Q,. D Q. Then we have
f g:V = gs(v - \78) + 98\78
Q1 Q1 Q1

Now, by Lemab.9we get

IIV—\78||L1(91>=Zf IV — Veldx
QZI;‘

zel®

sclst [Vv(X)|dx

zel%¢

< Cls||VU|||_1(Q).

Finally, sinceg = 0 and sincey is Q—periodic, we get

98\78 = \75 |st f 0: = 0.
Q'1 Z st

zel®

Now, combining 6.1.3 and 6.1.4 we can boundd.1.2 by

|fglgsv

< 9l vy Crel VML)

This finishes the proof.

Now, we are ready to prove Theorém:

(5.1.2)

(5.1.3)

(5.1.4)

Proof of Theorenb.4. Lete > 0 be fixed. Now, denote bly = g — g and so, by Lemmé&.11we

obtain
[ [ luP] < Il ool V0P
Q

An easy computation shows that

IV (UP)lluxy < PIUIPs ey IVUlLP(@).

Finally, combining ©7?), (5.1.5 and 6.1.6 we obtain the desired result.

(5.1.5)

(5.1.6)
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5.2 Proof of Theorem5.5
In order to prove the rate of convergence, let us assumeHasgt= 0 and letR(x) = fox g(t) dt.
ThenRis 1-periodic and if we denotB.(x) = R(%), we get

eR(¥) = g(2).

Hence, ifv e W>'(1),

1 1 1
fog(g)v(x)dx:sfo R;(x)v(x)dx:—sf0 R.(X)V' (X) dx.

So
| fo g9 Y < £IRI fo V(I

It is easy to see that
IRl < [Imaxg, O}{l1 = %Ilglll,
sinceg = 0.
We have proved

Lemma 5.12. Let ve WX(1) and ge L(1) be such thag := [, g(x)dx = 0. Then

! 1
| f 9N dX < Sliglhaelv .
0
Then we get the Theore5as a corollary

Proof of Theorenb.5. It follows just by noticing that

1 1
fo I(ulP)'ldx = pfo ulP~Hu' dx < pliullf il

and applying Lemma.12 ]

5.3 Proof of Theorem5.6

The next lemma is a generalization fpr> 2 of Oleinik-Shamaev-Yosifian’s Lemm&§Y 97
and it is essential to prove Theorén®.

Lemma 5.13. LetQ c R" be a bounded domain with'toundary and, fos > 0, let Gs be a
tubular neighborhood 0Q, i.e. Gs = {x € Q: dist(x,0Q) < §}. Then there exist§; > 0 such
that for everys € (0, 6o) and every = W-P(Q) we have

1
IMILp(es) < €SP IMIwap(e)s

where c is a constant independentaind v.
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Proof. LetGs = {x € Q: dist(x, 0Q) < 6}, it follows thatS; = dG; are uniformly smooth surfaces.

By the Sobolev trace Theorem we have
IMIPs(s,) = fs VPAS < CalMIs ) < CalMIyogqy 9 € [0- G0,
5

wherecz is a constant independent &@fIntegrating this inequality with respect dove get

0
ML) = fo (L MPdS)dr < cadlMiapqg

and the Lemma is proved. m|

Now, we are able to prove the following key Theorem:

Theorem 5.14.LetQ c R" be a bounded domain with smooth boundary and denote by Q the un
cube inR". Let g be a Q-periodic function such thgi= 0 over Q and0 < @ < g < 8 < +oo for
a, B constants. Then the inequality

X
’f g(_) U\/{ = C8'|u”W1’p(Q)”V”WLp’ )
Q E

holds for every ie W-P(Q) and ve WP (Q), where c is a constant independentsolu, v and
p, P’ are conjugate exponents.

Proof. Denote byl® the set of allz € Z" such thatQ, . := &(z+ Q) c Q. SetQ; = Uz s Q2 and
G =Q\ Q. Asin Lemma?? let us consider the functionsandu given by the formulas

\7(x)=8—];]j(; v(X)dx, U(x):g—:hj; u(x)dx

for x € Q... Then we have

f98UV:fgsuv+ g:uv
Q G Q1

=fQSUV+ gs(U—lDV+f gsU(V—®+f g:VU.
G Q1 Qq Q

The sefG is as-neighborhood 06Q with 5§ = ce for ¢ = diamQ; = +/n, and therefore according
to Lemmab.11we have

(5.3.1)

1
ullLoie) < CellUllyanay.
1 (5.3.2)
||V|||_p/((3) < ce” [Mlwaw ©)-

Then we get

LQSUVS CllullLe@) ML ) < Cellullwepo) Miwar (o)- (5.3.3)
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Now, by Lema5.9we get

1

1
P

Ju~ Tl = [Z Jo. - Ulpdx] ) Cpg{z I 'VU(X)|de] 534

zele zelze

= CpellVUllLr(ay).-
Analogously
\ \7|||_p’(91) < Cp’<9||VV|||_p’ Q) (5.3.5)

By the definition ofu(x) we get

(DY fQ P =" &(e™ f u)”
e Ze

zele zel®

<om0 Y QuP” [ jup = e
Qze

zele

Zf JulP (5.3.6)

zel®

= P =1ulPyo
o LP(Q1)

Finally, sincefQl g = 0 and sincey is Q—periodic, we get

W= w| g=0 5.3.7
x > g (5.3.7)

zel® Qze

Now, combining §.3.3, (5.3.9, (5.3.5, (5.3.6 and 6.3.7) we can bound.3.1) by
fg g:uv < Cellullwpo) Miwe (@) -
This finishes the proof. ]
We are ready to proof Theoref6.

Proof of Theoren®.6: The result follows applying Theoref14to §. = g, — g and takingv =
1. O

5.4 Proof of Theorem5.8

First, we prove two auxiliary lemmas.

Lemma 5.15. Let ve WLP(1), where |= (0, 1). Then for each xe | we have that

IV(Xo)| < [IMlwzpq)-
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Proof. For each (< x5 < x < 1 we have that

IV(Xo)l < IV(X)| +

X
[ v
X0

Integrating between 0 and 1 and applying Holder’s inedyale get

1 1 X 1 1
IV(XO)Isf0 IV(X)I+f0 f I\/lsfo |v(x)|+f0 V| (5.4.1)
Xo
1 5 1 5
S( fo |v(x)|p) +( fo I\/Ip) = [Vlwze)- (5.4.2)

i
Lemma 5.16. Let ve W-P(1), | = (0,1) and fors > 0 small let G = (0, 5). We have that
1

IVILe(y) < 25° IMlweog)-

Proof. For each (< x < X9 < 1 we have that
%o
IV(X)| < IV(Xo)l + f V/I.
X
It follows that . 0
VO)IP < :zp—l(|v(xO)|p + ( f |\/|) )
0
Now, by Holder’s inequality we get
1
VI < 2P (IV(Xo)|p+ f I\/Ip).
0
Integrating between 0 antland applying Lemma&.15we obtain
5 1
INCEE 2[’-1<s(|v(xO)|p a |\/|p)
0 0
P siivl P
<2 6||v||W1’p(|).

It follows that .

IMILp(0.8)) < 20 [IMIwwo()-
Now, the proof is complete. m|

Now, we are able to prove the following Theorem which is eakto prove Theorens.8.

Theorem 5.17.Let | = (0,1) and g be al—periodic function such thag = 0 over (0,1) and
0< a £ g<B <+ fora,p constants. Then the inequality

‘f g(g)UV{ < Cellullw.p(yMlwze
Q

holds for every .t WXP(1) and ve WP (1), where

— P
C.—ﬁ(4+ m).
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Proof. Now the proof is similar to that of Theorem14 Let Ijs = ((j = L), je] and
m
F=Oml=[JI5, G =1\F=(-z0.
j=1

Forx e Ijs let u,, v, be defined as

& &

000 = = f| uy) dy, V(9 = = f| v(y) dy.

We have that

fgguv:f g:Uv+ | g.uv
| G Je

(5.4.3)
:f gguv+f gs(u—ug)v+f gsug(v—vg)+f 0:sVels.
Ge Je Je Je
By using Lemméeb.16we have
1
lullLrey < 2eP|Ullweq
0 == WO (5.4.4)
||V|||_p’(Gs) < 28V ||V||W1.p’(|)-
Then we get
gsuv < BllullLes) VIl G*) (5.4.5)
Gb‘
< 4Belullwreqy Miwer - (5.4.6)

Now, by Lema5.9we get

m 5 m 5
lu = ugllLp(zey = flu—u8|pdx < Cpe flu’(x)lpdx
(%) [; . P ; I (5.4.7)

= CpellUllLp(ae).

Analogously
”V_V.9|||_p’(Ql) < Cp’gll\/lle’(Je)~ (548)
By the definition ofu, we get
m m P
iy = Y [ 1P =3 el [ u)
=1Vl j=1 ot
m m
< gl—pz ||«J_9|p/p’ lulP = gl-PHP/P Z ujP (5.4.9)
=1 Iy [

=kawmm.
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Finally, sinceg is 1-periodic withg = 0, we get

f UcgVe =
¥ j

Now, combining $.4.5, (5.4.7, (5.4.8, (5.4.9 and 6.4.10 we can bound.4.3 by

m

UVe | g =0. (5.4.10)
1 17

f g:-uv < ,3(4 +Cp+ Cp’)3||U||W1,P(|)”V”W1,p’(|),
Q

By using the relation4.2.2 it follows thatry = (p — 1)rp and this finishes the proof. m|
We are ready to proof Theore:8:

Proof of Theorens.8 The result follows applying Theore®17to §. = g. — g and takingv =
1. O
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Eigenvalue homogenization for quasilinear elliptic
operators

In this Chapter we study the asymptotic behavior{as 0) of the eigenvalues of the following
problem

—div(as(x, VU?)) = 1%p|uf|P2ue inQ

w=0 onoQ,

(6.0.1)

whereQ c RN is a bounded domaim,is a positive real number, and is the eigenvalue parameter.

The weight functiong,(x) are assumed to be positive and uniformly bounded away frenm z
and infinity and the family of operatom.(x, £) satisfies hypothesis (HO)—(H8) of Secti@r,
Chapter§2, but the prototypical example is

— div(as(x, Vu?)) = —div(A?(X)|VU|P-2VLE), (6.0.2)

with 1 < p < +00, andA?(x) is a family of uniformly elliptic matrices (both ir € Q and ine > 0).

The study of this type of problems have a long history duedadtevance in dierent fields
of applications. The problem of finding the asymptotic bétawef the eigenvalues of6(0.]) is
an important part of what is callddomogenization TheoryHomogenization Theory is applied
in composite materials in which the physical parameters stiscconductivity and elasticity are
oscillating. Homogenization Theory try to get a good appr@tion of the macroscopic behavior
of the heterogeneous material by letting the parameter0. The main references for the homog-
enization theory of periodic structures are the books bysBassan-Lions-PapanicoladdlL[P 7],
Sanchez—Palenci&P7(Q, Oleinik-Shamaev-YosifiandSY94 among others.

In the linear setting (i.ea.(x, &) as in .0.2 with p = 2) this problem is well understood. It is
known that, up to a subsequence, there exists a limit opeaigta &) = A"(x)¢ and a limit function
p such that the spectrum 06.0.1) converges to that of the limit problem (see SectoR 1)

—div(an(x, Vu)) = ApJulP~2u inQ
u=0 onoQ,

(6.0.3)
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In the important case of periodic homogenization, i.e. wh&€r) = p(x/e) andA?(X) = A(X/e)
wherep(X) andA(x) areQ—periodic functionsQ being the unit cube i, the limit problem can
be fully characterized and so the entire sequenee0 is convergent. See SectidiP.1

In the general nonlinear setting, recentlyfidan, Conca and Donatd@[CR04, relying on the
G-convergence results of Chiadd Piat, Dal Maso and Defrahcg¢€VD90] for monotone op-
erators, study the convergence problem of the principareigiue of 6.0.1). The concept of
G-convergence of linear elliptic second order operators wasduced by Spagnolo ir5p69.
See Sectiod.3for the precise definitions.

Up to our knowledge, no further investigation was made irginesilinear non-uniformly elliptic
case. One of the reasons why BGRO4 only the principal eigenvalue was studied is that, as long
as we know, no results are available for higher order eigaasaof 6.0.J).

The principal eigenvalue 0f6(0.1) was studied by Kawohl, Lucia and PrashanthKi[P07]
where, among other things, they prove its existence togeittie the simplicity and positivity of
the associated eigenfunction.

In Section2.5, we have continued with this investigation. We have extdr&tame results for
higher eigenvalues that are well known in gheLaplacian case, t6(0.1). Namely, the isolation
of the principal eigenvalue, the existence of a sequenceaagfional) eigenvalues growing teo
and a variational characterization of the second eigeavalu

Using the results of Sectidh5, in Section6.2we give a new simpler proof of the convergence
of the principal eigenvalues 06(0.]) to the principal eigenvalue of the limit problers.0.3.
Moreover we can prove the convergence of the second eigess/af 6.0.1) to the second eigen-
value of 6.0.3. These two results rely on a more general one that sayshbdtnit of any
sequence of eigenvalues @.0.1) is an eigenvalue of6§(0.3. Although this result was already
proved in BCROg, we provide here a simplified proof of this fact.

Convergence of eigenvalues in the multidimensional lireeee was studied in 1976 by Boc-
cardo and MarcelliniBM76] for general bounded matrices. KesavirT9 studied the problem
in a periodic setting.

Now, we turn our attention to the order of convergence of therealues. Clearly, the question
of order of convergence cannot be treated with the previememlity. To this end, we restrict
ourselves to the problems

(6.0.4)

—div(a(x, VU?)VU?) = 1°p,|uf|P2ue inQ
w=0 onoQ,

where the family of weight functions, are given in terms of a single bound@d-periodic func-
tion p in the formp.(X) := p(x/€), Q being the unit cube dkN.

The limit problem is then given by

(6.0.5)

—div(a(x, Vu)Vu) = ApJulP2u in Q
u=0 onoQ,
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wherep is the average gf in Q.

The first result in this problem, for the linear case, can heaébin Chapter Ill, section 2 of
[OSY9]. By estimating the eigenvalues of the inverse operatolichvis compact, and using
tools from functional analysis in Hilbert spaces, they dedthat

CAE ()2
9”3 kst

NI

g — A <
1- B

Here,C is a positive constan€y is a constant depending érandgX satisfies
0< B <t
and
i =0
for eachk > 1.
Again, in linear case witle dependence in the operatii, £), Santonsa and VogeliuSaVo93
by using eigenvalues expansion proved that

[} — Al < Ce

whereC depends otk.

More recently, Kenig, Lin and SherkK[S11]] studied the linear problem in any dimension
(allowing ane dependance in the fllusion matrix of the elliptic operator) and proved that for
Lipschitz domain£2 one has

;A < Cellog(e) 2+

for anyo > 0, C depending ok ando.

Moreover, the authors show that if the dom&iris more regular@™! is enough) they can get
rid of the logarithmic term in the above estimate. Howevererplicit dependance @& onk is
obtained in that work.

In Section6.3, we analyze the order of convergence of eigenvalue8.06f4 (either with Dirich-
let or Neumann boundary conditions) to the ones of the cporedent limit problem, and prove
that when Neumann boundary conditions are considered

2
A — A4l < CKN &

with C independent ok ande. In this result, byt andAx we refer to the variational eigenvalues
of problems 6.0.4 and 6.0.5 respectively with the correspondent boundary data. Ircése of
Dirichlet conditions the result is enhanced obtaining

E - A < CK'V &
and an explicit expression of the constant is obtained.

Some remarks are in order:



86 Homogenization inRN

1. Classical estimates on the eigenvalues of second dtedimensional problems, show that
A and4; behaves Iike:k%, with ¢ depending only on the céiecients of the operator arid.
Hence, the order of growth of the right-hand side in the estiinof [OSY97 is

1
B’ ket e
T-aB  1-a8

Moreover, the constant involved in their bound are unknown.

Nl

2. Inour result very low regularity on the domanis assumed in this work. We only required
the validity of the Hardy inequality (se®a89)

ulP
lSCJ‘|VU||O,
o dp Q

whered(x) = dist(x, 0Q) andu € Wé’p(Q). For instance, Lipschitz regularity will do. So we
get an improvement of the result iIK[LS11]. However, we recall that the result iIK[LS11]
allows for a dependence wion the operator. Nevertheless, our result includes naaline
eigenvalue problems, such as theLaplacian eigenvalues.

6.1 About the convergence of the spectrum

In this section we analyze the convergence of the speciuai (6.0.]) to the spectrunk;, of the
homogenized limit problems(0.3

In the linear case, it is known (se&lD2]) that theG—-convergence of the operators implies the
convergence of their spectra in the sense thakthevariational eigenvalug; converges to the
kth—variational eigenvalue of the limit problem.

We want to study the convergence of the spectrum in the maadi case. We begin with a
general result for bounded sequences of eigenvalues. d$ust was already proved iBCR0O4G
but we present here a simpler proof.

Here, and in all this Chapter we will assume tpats a Q—periodic function defined over a
bounded domaif2 c RN, beingQ the unit cube irRN, such that for some constants < p*,

O<p <p(X)<p'<+c0 a.eQ.

We will assume that the family of operat@sg, &) satisfies properties (HO)—(H8) defined in Section
2.4and the associated potentBl(x, £) satisfies 2.4.2.

Theorem 6.1. LetQ c RN be bounded. Let? € X, be a sequence of eigenvalues of the problems
(6.0.1) with {u*}..o associated normalized eigenfunctions.

Assume that the sequence of eigenvalues is convergent

lim 2° = A.

-0t
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Then,1 € Xy and there exists a sequengg— 0" such that
U — uweakly in WP(Q2)
with u a normalized eigenfunction associatedito

Remark6.2 In most applications, we take the sequenteto be the sequence of thdh—
variational eigenvalue o0f6(0.]). In this case, it is not dicult to check that the sequentg}..o
is bounded and so, up to a subsequence, convergent.

In fact, by using the variational characterizatiomff(2.4.2 and our assumptions grnwe have
that

gfngﬂ’ 3 Jo, @(x. V) 3 ﬁfgwwp
PrOMP T e T e VP

therefore

a B
—pk < A < —pk
P p

whereuy is thekth variational eigenvalue of the-Laplacian.

Proof. As A, is bounded andF is normalized, by (H2) it follows that the sequen@é}..q is
bounded ifW; P(Q).

Therefore, up to some sequenge— 0, we have that

ui —u  weakly inW>-P(Q)

' _ (6.1.1)
U’ — u  strongly inLP(Q).

with u also normalized.

We define the sequence of functiofis= 1%p,|u¢|P~2u¢. By using the fact thas, — p *-weakly
in L*(Q) together with 6.1.)) it follows that

T2 -
fe, = f:=20uP“u  weakly inLP(Q)

and therefore
f,, > f  strongly inW P (Q).

By Propositiond4.24we deduce that®i converges weakly iI\Né’p(Q) to the unique solutiow
of the homogenized problem

—div(an(x, VV)) = Ap[u|P2u inQ
v=0 onoQ.

By uniqueness of the limiy = uis a normalized eigenfunction of the homogenized problem.
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Remark6.3. In the case where the sequengds the sequence of tHeh—variational eigenvalues
of (6.0.]) it would be desirable to prove that it converges to ktte-variational eigenvalue of the
homogenized problen6(0.3 (see Remark.2).

Unfortunately, we are able to prove this fact only for thetfinsd second variational eigenvalues
in the general setting.

In the one dimensional case, one can be more precise andthisdids true. See Chaptr.

In section6.3, we address this problem (even with Neumann boundary gond)tin the more
specific situation ob.(x, &) = a(x, &) andp.(X) = p(x/e) and prove that this fact also holds true
and, moreover, we provide with an estimate for the error {afr Ay/.

6.2 Convergence of the first and second eigenvalue

The first eigenvalue 0f6(0.]) is the infimum of the Rayleigh quotient (see Sectkf

D (X, VV)
2= inf Jo @:0¢¥V)
VeWLP@)  fy peMP
In the following result we prove the convergenceigfivhene tends to zero.

Theorem 6.4. Let be 4] the first eigenvalue 0{6.0.1) and 4 the first eigenvalue of the limit
problem(6.0.3, then

(|€an0 /li = A1.
Moreover, if j and u are the (normalized) nonnegative eigenfunctions(@D.) and (6.0.3
associated tol] and 1, respectively, then

W —up weakly in WP(Q).

Remarlk6.5. In [BCRO( using the theory of convergence of monotone operatorsttimes obtain
the conclusions of Theore4. We propose here a simple proof of this result which explbits
fact that the first eigenfunction has constant sign.

Proof. Letu] be the nonnegative normalized eigenfunction associatef} the uniqueness af;
follows from Theoren.23

By Theorem6.1, up to some sequence;; converges weakly iNVé’p(Q) to u, an eigenfunction
of the homogenized eigenvalue problem associateld=tdim,_,o A7

But then,u is a nonnegative normalized eigenfunction of the homogehproblem §.0.3 and
sou = u;. Therefored = 1; and the uniqueness imply that the whole sequengesndu; are
convergent. i

Now we turn our attention to the second eigenvalue. For thipgse we use the fact that
eigenfunctions associated to the second variational eéde® of problemsg.0.1) and 6.0.3
have, at least, two nodal domains (cf. Proposi®az).
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Theorem 6.6. Let A5 be the second eigenvalue (#.0.1) and 1, be the second eigenvalue of the
homogenized problei{6.0.3. Then
lim /1‘; = Ap.

-0

Proof. Let up, be a normalized eigenfunction associatedd@nd letQ* be the positivity and the
negativity sets ot respectively.

We denote by the first eigenfunction ofg.0.1) in Q* respectively. Extendings to Q by 0,
those functions have disjoint supports and therefore thelirgearly independent iWé’p(Q).

Let S be the unit sphere iWé’p(Q) and we define the s€l as

C5 = sparui,u®}nS.
ClearlyC$ is compact, symmetric angC%) = 2. Hence,

X = inf su Jo @6 V) < Jo @ V)
5= Pp——— < sup——
Celavec [ peMP ~ vec; [, pelMP

As C? is compact, the supremum is achieved for safne C5 which can be written as
V' = a Ul + bu®

with a., b, € R such thata.|P + |b;|P = 1. Since the functions? andu® have disjoint supports,
we obtain, using th@—homogeneity ofd, (see Propositio2.19,

e Jo @06 V) faelP [y, De(x VUE) + b IP [, Do(x, V%)
SR JopelvelP

Using the definition otit, the above inequality can be rewritten as

. 12l Jo PMEIP +1D[PAE _ [ peluf|P
2 —_
JoypelvelP

whereA] , is the first eigenvalue 0#6(0.]) in the nodal domai®2* respectively.

<maxAj,, A7 _} (6.2.1)

1+

Now, using Theoren®.4, we have thall; , — 1. respectively, where; . are the first eigen-
values of 6.0.3 in the domaing2* respectively. Moreover, we observe that these eigenvalues
are both equal to the second eigenvalgén Q, therefore from§.2.1), we get

B<A+6
for ¢ arbitrarily small and: tending to zero. So,

limsupAa; < A». (6.2.2)

-0

On the other hand, suppose thatdigg 15 = 1 whered € X,. We claim thatl > A;.
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In fact, we have that — uin Wé’p(Q) whereu is a normalized eigenfunction associatedito
As the measure of the positivity and negativity setsipare bounded below uniformly ia > 0
(see PropositioR.24), we have that eitharchanges sign dfu = 0}| > 0. In any case, this implies
our claim.

Then, ast > A7 it must bed > A,. Then
A<= Iimo/lg. (6.2.3)
E—

Combining 6.2.2 and 6.2.3 we obtain the desired result. m|

6.3 Rate of convergence

In this section we consider the eigenvalue problem in whiehdperator is independent erand
the dependance anonly appears in the oscillating weights. We consider theagqa

— div(a(x, VU?)) + V. JulP~2u = 22pJU°IP2¢  inQ (6.3.1)

either with Dirichlet or Neumann boundary conditions. Wsuase that the weights and V
satisfies

O<p <p(X)<p"<oo ae. inQ

. 6.3.2
0<V <sV(X)<VF <o a.e.inQ. ( )

Whene — 0 we obtain the following limit problem
—div(a(x, VU¥)) + V[uP2u = 20 P28 inQ (6.3.3)

with Dirichlet or Neumann boundary conditions, respedyivéVe will prove that in this case the
kth—variational eigenvalue of problers.8.1) converges to th&th—variational eigenvalue of the
limit problem 6.3.3.

Our goal is to estimate the rate of convergence between ¢em&lues. That is, we want to
find explicit bounds for the errdn; — A

Using the results of Sectidhconcerning to oscillating integrals, we prove our main itesi
this section.

Theorem 6.7. Let A be the kth-variational eigenvalue associated to equaf®B8.1) and let
be Ax be the kth—variational eigenvalue associated to the limrobjem (6.3.3. When Neumann
conditions are considered, there exists a constant O independent of the parametersand k
such that

A - AZ] < CKW .

In the Dirichlet case the bound is enhanced and the constambe computed explicitely

+1
g — A5 < Cek'T
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where the constant C is given by

+1 1 +.1
c:£p||p plloo(ﬁp )"(pl)z(p )PrBINT maxN'Z, 1)

Proof of Theoren®.7. Let us observe that variational eigenvalues&8(l) and 6.3.3, according
to Section2.5, are characterized as

&

B Joy @(X, V) + VP Jo, @(x, Vv) + V|vP
k= inf sup , Ak = inf sup —
Cel'k veC e, pelVIP Cel'c veC J;, pIVIP

(6.3.4)

where, in the case of Dirichlet boundary conditions

I = {C c W, P(Q) : C compactC = ~C, ¥(C) > k)
however, when Neumann boundary conditions are considered

I« = {C c WHP(Q) : C compactC = —C, y(C) > k}.

The proofs in both cases are very similar. We prove the Neanmage and then we note the main
differences in the proof of the Dirichlet case.

Lets > 0and IetG§ c WEP(Q) be a compact, symmetric set of gerkusuch that

(X, VU) + V|ulP
Ak = supfQ ( )

N AT (). (6.3.5)

We use now the se@(‘;, which is admissible in the variational characterizatidnttee kth—
eigenvalue §.3.7) in order to found a bound for it as follows,

/ﬁ<&mg®mvw+wwpﬁgww
k ) — .
4eGk P, lulP JoypelulP

(6.3.6)

To bound4; we look for bounds of the two quotients i6.8.9. For every functioru € G'g -
WLP(Q) we can apply Theorer.6 and we obtain that

gémvm+wwp<g®mvm+ﬁw o, MUP w0
plouP T p P P Jo ulP

By using Young’s inequality

(6.3.7)

UlPlhwzagay = NUPliygy + PIUP V(W) g)
= [lUllPp gy + PIIUP~ VU1

<mwmm+wwwm
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Now, by 2.5.2 and @.4.2, we have for each € GX

lJull?

IulPllweq) < o wee©)
pfyuP " o[ IuP
_pVpluP+ ¥ ot vy
Vv P JoylulP
. \7fg|u|p+ Jo, @(x. Vu)
- P Jo lulP

wherec; = gmax{g, 1.
Then, by 6.3.8 and 6.3.5
Pl o su V [, MP + [, ®(x, V)
S VL — P foIvIP
= C1(Ak + O(9)).

Moreover, by 6.3.5 we get
5, ®(x, Vu) + V]ulP 3 Jo, @(x, Vv) + V|vP B
P Joy IulP Tk P fo VP

Again, sinceu € G'g c WLP(Q), by applying Theorens.6we obtain that

p o luP UlPlhwa
Jo <1+Cem @
JypelulP JoypeluP

>

and by 6.3.9, o p
Pl o UlPlhwe o
MUz < p_ ”H”w < ﬁ_cl(/lk +0(5)).
JopslulP ~ o= [ plulP P

Then combining §.3.69, (6.3.9, (6.3.10 and 6.3.12 we find that
A < (A + O(9) + Ce(Ak + O(6))) (1 + Ce(Ak + O(6))) -
Lettings — 0 we get
28 — A < Ce(AZ + A) + Ce2a2.
In a similar way, interchanging the roles.af andAZ, we obtain
A= AL < Ce((A9)? + 2E) + Ce?(15)>.
So, from 6.3.13 and 6.3.19, we arrive at

1A — Al < Cemax{AZ + Ay, (1))% + A5}

= Ak + O5).

(6.3.8)

(6.3.9)

(6.3.10)

(6.3.11)

(6.3.12)

(6.3.13)

(6.3.14)
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In order to complete the proof of the Theorem, we need an e&tion, and A;. But this
follows by comparison with thkth—variational eigenvalue of the-Laplacian,ux and the bound
for uy proved in GAP8].

In fact, from @.4.2 we have

mina, V) Jo [VUP + U [, (x VW) +VlulP _ max(g, V) Jo [V + 1uP

P Jolur 7 J;,pIulP TP Jolup
min{a, V-} Jo IVUlP + Ul 3 i, ©(x. VU) + VglulP _ Mmaxg, V) o, IVUlP + [ulP
p* JoluP T fpelup T T Jolup

from where it follows that
min{a, V} maxs, V} min{a, V=
———uk < A < Lﬁuk, 5 MKk = _—
P P P P

whereuy is thek—th eigenvalue of

—ApU + [U[P2u = g|ulP-2u in Q
(6.3.15)
=0 onoQ.
on
Observe thati € W-P(Q) is solution of 6.3.19 if and only if u is solution of
—Apu = fi|ulP-2u inQ
=0 onoqQ,
n
whereu = u — 1, which satisfies thatjAP89
fuc < CKPIN, (6.3.16)

and so the proof is complete in the Neumann boundary conditise.

The main diference in the Dirichlet case is the fact that in the variaicharacterizationg( 3.4
of the eigenvalues, functions are takenNé’p(Q) instead ofW-P(Q). This leads to use Theorem
(5.6) instead Theorerb.4to estimate the oscillating integrals.

Being functions belonging wvg’p(g) we can apply Theorerb.4 and obtain an analogous
equation t0§.3.7)
L®mvm+wwp<k®uﬂm+VMp

Ul 5oy 1V UllLp(
p o luP ~ P fylur '

P JoluP

+ PV = Vo gnye

(6.3.17)

Now, the only diference appears in how to estimate the quotignfs |/ [, p:IulP and
Ul pey IV UlLogey / J, A1UIP.
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Let us observe that the first quotient can be reduced to tfwndeme

_ -1
pluP _ Ul 5 IV UllLp ()
fﬂ—p < 1+ pcillp — pllL anye—sd —. (6.3.18)
Jo pelul Joy Pl
Now, by (2.5.2), (2.4.2 together with 6.3.7), we have
Ul 50y 1V UllLp() < gi/p(fg [VulP olx)l/p
Joypelup P~ N [, plulP
< )1/p (fgq’(x VU))l/p (6.3.19)
J;,PIulP
<272 L 1y + ()P
a’ p
and
UllP e IV UllLR d(x, Vu
Iyl _ (fQ ( ))1/ P < (A + OE)YP. (6.3.20)

JoP1ulP Jo PIUP

Changing equations6(3.7, (6.3.1), (6.3.89 and 6.3.129 by (6.3.17%, (6.3.19, (6.3.19 and
(6.3.20 we find that

= (e 00 oIV Vil (2P o @) P) L capllo ()P (i O@) )
Lettings — 0 we get
A2 = A < c1pllp = Plleo(5 )” "p AP 4 capllV - V(2 )1/ "p el +O().  (63.21)
In a similar way, interchanging the roles.af andAZ, we obtain
145 = Al < capllo = Al (& ) ppl emax i, LM F + CupllV — Viiee maxd 47 (6.3.22)
From the previous computations we have
max{ g, A} < ;’uk'

Now, in [FR8Y, it is shown that

N
pk < ﬂl( )p/

whereyi; is the first Dirichlet eigenvalue for thp—laplauan in the unit cube. Finally, irFBP0J
an estimate fou; by comparing with the first eigenvalue of tpseudo plaplacian is obtained,
namely

fir < maxN®2/2 1}Nrp,

and the result in the Dirichlet case follows. O
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Remark6.8. Observe that the result holds even f6r= 0. Actually, in this casel is solution of
equation 6.3.]) (either with Dirichlet or Neumann boundary conditionsauifd only ifu is solution
of

—div(a(x, Vu?)) + pJulP?u = 1%pJuf|P?u®  inQ

with the corresponding boundary condition, whafe= ¢ + 1.

In relation to equation§.3.1) with Dirichlet boundary condition we make the following-re
marks.

Remark6.9. As we mentioned in the introduction, in the linear case anghi& space dimension
Castro and Zuazuaz004 prove that, fork < Ce™,

A — Al < CKe.

If we specialize our result to this case, we get the same botlihd advantage of our method is
that very low regularity o is needed (onh*). However, the method inJZ004, making use
of the linearity of the problem, gives precise informatidioat the behavior of the eigenfunctions
Up.-

Remark6.1Q In [KLS11], Kenig, Lin and Shen studied the linear case in any spacerkion
(allowing a periodic oscillation diusion matrix) and prove the bound

IAf — Al < Cellog el

for someo > 0 andC depending o andk. The authors can get ridfothe logarithmic term
assuming more regularity of2). If we specialize our result to this case, we cannot treat an
dependance on the operator, but we get an explicit depeadaricon the estimate and assuming
very low regularity onQ2 (Lipschitz is more than enough) we get a better dependanee on
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Eigenvalue homogenization for quasilinear elliptic
operators in one space dimension

7.1 Introduction

In this Chapter we study the asymptotic behaviordas 0) of the eigenvalues of the following
problem

{—(a(§)|(u€)'|p-2(u€)')' = Ep()WPAF  inl = (0,1) i

u?(0) = (1) =0,

where the ditusion codicienta(x) and the weight functiop(x) are -periodic functions, bounded
away from zero and infinity and > 0O is a real parameter. In this Chapter we will denotd Iy
the unit interval (01).

This type of problems have been considered extensivelyeititdérature due to its many appli-
cations in diterent fields.

Homogenization of one-dimensional periodic linear proidewas studied in the late 60's by
Spagnolo §p69 and De Giorgi PS73 and generalized to the linear multi-dimensional case in
the mid-70's by Sanchez-PalenciaH7(, Bensoussan, Lions and PapanicolaBuLP78 among
others. Likewise, the study of eigenvalue problems withllasitng codficients started with the
works of Boccardo and MarcellinBM76], and KesavanHe79h Ke79. See Chapteg4.

Problem 7.1.1) has a natural limit problem as— 0 given by

(7.1.2)

—(@plu[P2u) = AplulP2u in |
uO)=u1)=0

wherep is the average gf in the intervall andaj, is given by

.. 1 -(p-1)
ap = (fla(s)l/(p—l) ds) ’
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see Propositiod.27.

Now, what we are interested in is on the convergence of thenegjues of problem7(1.]) to
the ones of problem7(1.2); more specifically, on the order of convergence of the eiglees, i.e.
we find explicit bounds oa andk for the diference

1A} = Al

wheredy and ik are thek—th eigenvalue of problenv7(1.1) and (7.1.2 respectively.

In the Chapte§6 we have dealt of thé&l—dimensional case for the quasilinear problem with
diffusion codicients independent a&f, and we obtain the bound

E - 4 < CK¥ &

with C independent ok ande and it is obtained explicitly.

It is expected that in the one dimensional case a simplerfgrembtained. In fact, Castro
and Zuazua in@CZ00, CZ00H, for the linear problem using the so-called WKB method viahic
relays on asymptotic expansions of the solutions of thelpropand the explicit knowledge of the
eigenfunctions and eigenvalues of the constanffi@ent limit problem, proved fok < Ce™1,

1A - Al < CKe

and they also presented a variety of results on correctotbdceigenfunction approximation. Let
us mention that their method needs higher regularity on gighto and on the dtusiona, which
must belong at least 162 and that the bound holds fér~ £~1. Also, the value of the consta@t
entering in the estimate is unknown.

If we specialize our result to this case, we get the same botlihd advantage of our method
is that very low regularity o is needed (only-*°). However, the method inJZ00, making use
of the linearity of the problem, gives precise informatidoat the behavior of the eigenfunctions
Ug-

The main result of this Chapter is the following Theorem:

Theorem 7.1. There exists a constant C depending only on p, a@sdch that
A — Al < CKP* e,

Moreover, C can be estimated explicitly in terms of the fionsta ando, and p.

A useful tool used in the proof of Theoreml is the variational characterization of the eigen-
values of {.1.1) and (7.1.2. Also, it will be essential that theariational eigenvalues, for the one
dimensional problem, exhaust the whole spectrun¥df.() and (7.1.2. These facts are collected
in Section2.5.
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In the course of our arguments, a general result on the ogewee of eigenvalues is used.
Namely, we prove that the eigenvalues of

_ eV 1P-2(y €YY — )€ E1P-2) & H
{ @MY P2 = 2o (P2 in | 713
w(0)=u(1)=0,
converges to the ones of the limit problem
{—(ah(x»(usyw-z(us)')' = 2pn(YEP2E i 710
w(0) = (1) =0,

wherepy, is the weak* limit ofp, anday, is theG-limit of a,.

In the linear cased = 2), and inN—-dimensional space, Kesavan Keg79h Ke79 proved that
if a, G—converges t@, andp, — pn weakly* in L* then the sequence of tiketh eigenvalues of
(7.1.1) converges to thk—th eigenvalue of{.1.2.

In the general quasilinear setting, fdrdimensional space, the first result we are aware of is
by Bafico, Conca and RajestBCR04, where the authors prove that the limit of any convergent
sequence of eigenvalues af.1.]) is an eigenvalue of7(1.2 and, moreover, that the sequence of
the first eigenvalues of7(1.1) converges to the first eigenvalue @t1.2.

In Chapter§6 we studied the same problem, agairNirdimensional space, and prove that the
first and second eigenvalues @%.1.1) converges to those of the limit operata:1.2. Moreover,
when the difusion codicient a, is independent o, we prove that the sequence of tketh
variational eigenvalues of{.1.1) converges to thk-th variational eigenvalue of 7.1.2.

In one space dimension one can be more precise and we cantpediadlowing
Theorem 7.2. Assume that.aG—converges to@and thato, — pn, weakly* in L(1).
For each k> 1 let 4; be the k-th eigenvalue ¢¥7.1.1). Then we have that
L@oﬁk = A
wherey the k-th eigenvalue o{7.1.2.

Moreover, up to a subsequence, an eigenfunctiprassociated tal; converges weakly in
Wé’p(l) to U, an eigenfunction associated Q.

7.2 Convergence of eigenvalues

In order to prove Theorem.2we need some preliminaries.

From Chapteg?2, according to Theorer.28 we denote by, := {4} }ken the full sequence of
eigenvalues of problenv (1.3 and byZX;, := {Ak}key those of its limit problem7.1.4. They can
be written as ) )

a:(XIU| an(XIU|
2= inf suph 2O g suph O
CelkueC [{ pe(X)IUlP CelkueC [ p(X)IUlP
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We assume thad andp are I-periodic functions defined oh such that for some constants
a<B,p-<ps,

O<a<a(X) <B <+ a.e.l

7.2.1
O<p  <p(X)<p'<+c0 a.e.l. ( )

We begin by stating a general result for bounded sequencageaivalues that can be found in
[BCROG (see also Theorem.3 where a simplified proof of this result is given).

Theorem 7.3. Let A% € X, be a sequence of eigenvalues of the prolférh.3 with {u®},.o asso-
ciated normalized eigenfunctions. Assume that the seguefreigenvalues is convergent

lim 2% = A
&—0+
Then,A € Xy and there exists a sequeneg— 0 such that
¥ — u weakly in W*(1)

with u a normalized eigenfunction associatedito

Assume now that we take the family of tketh eigenvalue of{.1.1) {A}.-o- It is not difficult
to see that this family is bounded, in fact as

@ f VP favE g VP
P fIMP T L osOOMP P [P

we have 8
a
—pk < Ay < —pk (7.2.2)
P+ P-

whereuy = ngkp is the k—th eigenvalue of the one dimensionatLaplacian (see Chapté?,

Theorem2.10).

Therefore, up to a subsequengg converges tal € . The main tool that allows us to prove
that1 = A is Theorem2.27that says that any eigenfunction associated tdtha eigenvalue of
(7.1.1) has exactlyk nodal domains.

Moreover, we need a refinement of this result, namely an astion the measure of each nodal
domain independent an This is the content of the next Lemma.

Lemma 7.4. Let A; be a eigenvalue o{7.1.3 with corresponding eigenfunctiorfulLet N' =
N(k, £) be a nodal domain ofiu We have that

IN|>C

where C= C(K) is a positive constant independentsof
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Proof. We can Writelﬁ as
_ a:(¥|u[P
S1) = B(N) = inf —fN ,
weW2P) [y Pe(X)IUlP
by our assumption£2(5.2 we get

p
a Tp

a
() > —mN) = ———
k() p+u1( ) oL INIP

whereu1(N) is the first eigenvalue of the—Laplacian on\. Moreover,

() < E,uk(l) = Eﬂ'gkp.
p- P

Combining both inequalities we get

a nB >cxp_l
P+ AE(Q) " B+ kP

and the result follows. O

INIP >

Now we are ready to establish the main result of this section:

Proof of Theoren?.2 Let ux be a normalized eigenfunction associatedifcand according to
Theorem2.27, letl;,i = 1,...,k be the nodal domains of.

We denote byu® the first eigenfunction of 4.1.3 in I; respectively. Extendings to | by 0,
these function have disjoint supports and therefore theyirearly independent iWé’p(I).

Let S be the unit sphere i/,"?(1) and we define the s€¥f as

Ci = spanuy,...,u} NS,

ClearlyCy is compact, symmetric ang(Cy) = k. Hence,

o [ (v |P Jac()v1P
Ag = inf sup=——— < sup—7———-.
Celicvee  [[psMP ~ vec; [ pslVIP

As C{ is compact, the supremum is achieved for safne C; which can be written as

i=1

with & € R such thatZ!‘:l [a°|P = 1. Since the functions® have non-overlapping supports, we

obtain
P T 18P [ ae(xuP

S PAVTE [ pelvelP
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Using the definition ofi?, the above inequality can be rewritten as

S lalPA; [ pelurl?
A<

| pelvelP < Maxidy) (7.2.3)

whered{ ; is the first eigenvalue of7(1.]) in the nodal domai; respectively.

Now, using thatif; — A1 respectively , wherd; ; are the first eigenvalues o7.(.9 in the do-
mainsl; respectively (see Theorem 4.£8PS17). Moreover, we observe that these eigenvalues
A1 are all equal to th&—th eigenvaluely in |, therefore from7.2.3, we get

/lﬁ <A+0
for ¢ arbitrarily small and: tending to zero. So

limsupAg < Ak. (7.2.4)

-0
On the other hand, suppose thatJigg 4y = 4. By Lemma7.4 the k nodal domains otii have
positive measure independentsofThen it must bel > Ay. It follows that

Ay < A= lim 4. (7.2.5)

Combining 7.2.4 and (7.2.5 we obtain the desired result. m|

7.3 Rates of convergence. The periodic case

In this section, we focus on the limit behavior of eigenvaloé
= @)WY PAUY) = ApGIFPAE in (7.3.)
either with Dirichlet or Neumann boundary conditions, wharandp are tperiodic functions

satisfying .2.1. In fact, from the results of Sectionz, it follows that thek—th eigenvalue of
(7.3.]) converges to thk—th eigenvalue of the limit problem

— @5l [P2(u)’) = ApuP?u i | (7.3.2)
with the corresponding boundary condition.
The main results of this Section are the following Theorems:

Theorem 7.5. Let 4y, be the k-th eigenvalue of probleify.3.1) with Dirichlet boundary conditions
and letiy be the k-th eigenvalue of its limit probler{v.3.2.

Then, ife = 1/j for some je N,

— 1
g — ad < = P19 g”l(gi)pe(npk)ml

and ife # 1/,

_ 1
Epllg g||1(g_+)p 1fg(n.pk)p+1 + :%pr(l + 8)p_18(ﬂ'pk)p'
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Remark7.6. As a consequence of Theoreftb we obtain the rate of convergence of the nodal
domains of the eigenfunctions of problemh3.]) to those of the limit problem, c.f. TheoremlQ

We obtain similar results for the Neumann problem.

Theorem 7.7. Let A; be the k-th eigenvalue of problerv.3.1) with Neumann boundary condi-
tions and letik be the k-th eigenvalue of its limit problerfv.3.2. Then we have

g

and ife # 1/,
B

I - Al < 4cli pmax g, wglPraP(k — 1P + 2 pLP(L + )P Le(mpk)P.
—-& o

and

p
csﬂ(4+ —(p— l);rp)'

7.3.1 Proof of Theorem7.5. The casea=1

In order to deal with Theorem.5we first analyze the case where th&ulion codicient is equal
to 1 and then show how the general case can be reduced to &is on

Theorem 7.8. Let ge L*(R) be al—periodic function such that
0<g <g<g"<oo. (7.3.3)

Consider the eigenvalue problem

—(UP2uy = g(2)A° P2 in (7.3.4)
uO)=u1)=0
and its limit problem
—(U|P2uY =gAuP2u  inl (7.3.5)
u(0) =u(1l) = 0.

Let{A =1 and{Ak}k-1 be the eigenvalues ¢¥.3.4 and (7.3.9 respectively.

Then, we have

p”P_/;”l P+\# +1
|8 — A < = — )P e(mpk)P.
k 2 2 (p ) P
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Proof. The proof follows from Theorerf.5. In fact, lets > 0 and letGX ¢ W,"P(1) be a compact,
symmetric set of genussuch that

| vl
A = Inf sup= fg = fg -
Gelk yeG @ j;) |U|p ueGk P L} |ulP

0(9).

We use now the se(E(‘g, which is admissible in the variational characterizatidnthe kth—
eigenvalue of 7.3.9, in order to found a bound for it as follows,

i Jo vl Jot g [ uP
xk < sup = sup= .
weGk Jo GelUP ek G fy IUIP [, GelulP

(7.3.6)

To bound; we look for bounds of the two quotients i@.8.9. For every functioru € G'g we
have that

e, I Cw J, 1]

g, lulP ‘vee'?ﬁfg VP

= A + O(0). (7.3.7)

Sinceu € GX c W;""(1), by Theorermb.5we obtain that

— -1
g J, lulP _ g I leeqy
b ), %’gng — il ——— (7.3.8)
Jo, GelurP J;, GelulP
Now, by (2.5.2 together with 7.3.7, we have
oy I lieqy — G&P, [ I PdX p  GHP
oo _ g Jo P dxp T (he+ 0 (7.39)
Jo, GelurP pm N f, P
Then combining7.3.9, (7.3.7, (7.3.8 and (7.3.9 we find that
p — g'/P 1/
< Qi 00) 1+ Sl - Gy Seti + 0@ ).
Lettings — 0 we get
_ gt/P 141
28— 4y < Pjg- g||L1(|,%—_ezk+p. (7.3.10)
In a similar way, interchanging the roles af and A2, we obtain
g—l/p l+
A=A < 2||9 g|||_1(|)—s(/l ) (7.3.11)
So, from ¢.3.10 and (7.3.1), we arrive at
al/P

1
g - ad < Plg- g||u<|>gg—emaxuk, R
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The bound foriy, A follows directly from Theoren2.1Q In fact,
1 1
A, A < —pe = — (mpk)P.
p- p-

and so the proof is complete. m|

Remark7.9. If we replace the unitintervdl = (0, 1) by, = (0, £) by a simple change of variables,
the estimates of Theorem8are modified as

() = Ale)l = P = (D) (7.3.12)

7.3.2 Proof of Theorem7.5. The general case

Now we are ready to prove the main result of the section, naiftetorem?7.5

Proof of Theoren?.5. The proof of the Theorem follows by converting problemf1(1) into
(7.3.9 by a change of variables.

In fact, if we define

X 1 X/ e 1 <
PS(X) = j; st: b‘fo st= GP(E)

and perform the change of variables
(X u) — (y,V) (7.3.13)

where
y=P(x) = eP(Z), v(y) = u(x).

By simple computations we get

—(MP~2V) = 2°Qa(Y)MP2v, ye[O,L,]
v(0) =v(Ly) =0

where
.= d/dy,
with
o [l dsoL—am
and

Q:(Y) =a-(x) P p (%)
=a(P~ (L)Y P-Dp(P1(Y))
=Q(%).
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Observe thaQ is anL—periodic function.

Moreover, it is easy to see that
L — Ll <eL (7.3.14)

andthatL, = L if e = 1/ for somej € N.

In order to apply Theorem.8we need to rescale to the unit interval. So we define
w(2) = v(L.2), zel
and get
—(WP2W) = LPA"Qe(LeDMWP 2w in |
w(0) =w(1) = 0.

So if we denotes = ¢L/L,, 1° = LP2® andg(z) = Q(L2), we get thag is a 1-periodic function
and thatw verifies

~(WP2W) = wg(HIWP?w in |

w(0) =w(1) = 0.

Now we can apply Theorem.8to the eigenvalueg’ to get

llg - gl 5
Ik — pud < ‘—2) ggzg 1(g—i)p5(npk)'“+1. (7.3.15)

In the case where = 1/j with j € N we directly obtain

. 1 pllg—dlli 9\ pil
M- W<~ 2 (g_) e(mpk) L.

In the general case, one has to measure the defect belvwasatL .. So,
. 1.5 e Py < Lo B oo P_qp
| — Al < E(Iuk =l + Al — L) < E(Iuk — Ml + p—ﬂpk ILe — LFI).
From (7.3.19 it is easy to see that
(52)P - 1] < p(1 + )P e

SO
ILP — LP| = LPI(5)P - 1] < pLP(1 + &)PLe. (7.3.16)

Finally, using 7.3.15, (??) and (??) we obtain the desired result. m|

7.3.3 Convergence of nodal domains

To finish with this section, as a consequence of Thedfeinwe prove a result about the conver-
gence of the nodal sets and of the zeroes of the eigenfusction



106 Homogenization inR

Theorem 7.10. Let (4}, u;) and (A, Ux) be eigenpairs associated to equatidiisl.]) and (7.1.2
respectively. We denote By and Nk to a nodal domains ofiuand i respectively. Then

IVl = INil  ase — 0

and we have the estimate
IVEITP = IMdP| < ce(k? + 1).

Proof. By using Theoren¥.l, together with 7.3.19 and the explicit form of the eigenvalues of
the limit problem we obtain that

p

T
o(1) = BND) < (VD) + aNEIP e < —|Tp|p + Ce. (7.3.17)
PUNK
Also,
kPP
£(1) = A1) — ckPe = —L2 — ciéPe. (7.3.18)
P

As w(x) = siny(krpx) (see Chapteg2, Theorem2.10 hask nodal domain inl we must have
INWl = kL. Then by 7.3.17 and (7.3.19 we get
p p
Tp Tp
= - ckPe < — +cCe
PINIP INKIP b

it follows that
INKP = INEI™P < ce(k®P + 1). (7.3.19)
Similarly we obtain that
p

Tp
PINKIP

= 11(M) = (1) = 25(1) — cek®P > 25(NE) — cek?P

and using again Theorerl we get

p

T
ENE) > 1 (NE) —ce = —— —cs
1( k) l( k) ,0|N|‘(9|p

it follows that
INEI™P = INKI™P < ce(k®P + 1). (7.3.20)

Combining 7.3.19 and (7.3.2Q the result follows. ]

Finally, as a corollary of Theorem.10we are able to prove the individual convergence of the
zeroes of the eigenfunctions df.(.1) to those of the limit problem7(1.2.
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Corollary 7.11. Let (4, uy) and (4, Ux) be eigenpairs associated to equatidisl.]) and(7.1.9
respectively. Denotej?xand %, 0 < j < kits respective zeroes. Then for edck j <k

X‘J? — X; wheng -0

and
X = x| < jee(k?P + 1).

In particular x; = X = 0 and X = X = 1 by the boundary condition.

Proof. With the notation of Theoreriz.10we have thatNVy| — |Nil. For the first pair of nodal
domains we get

X, = Xal = %€ — x§ = X1 + Xol = |INE 4| — [Nical| < ce(k® + 1)
for the second couple
106 = %2) = 06 — xa)| = [INEol = INkal| < ca(k?® + 1)

then
X5 — %ol < Ce(K?P + 1) + X — xq| < 2ce(K*P + 1).

Inductively, forj < k
X = x| < jee(k?P + 1)

and the proof is complete. ]

7.3.4 Proof of Theorem?.7.

In order to deal with Theorem.7 we first analyze the case where th&ulion codicient is equal
to 1. The general case follows by using the same change afblesi before given byr(3.13

Theorem 7.12.Let ge L*(R) be al-periodic function such that
0<g <g=<g" <. (7.3.21)

Consider the eigenvalue problem

—(r P27y — Xy 28 p-2 in |
(U P==u) = g($)A°uP~=u in (7.3.22)
uv@0)=u@1)=0
and its limit problem
—(IUIP-2Y = gAjulP-2 inl
(U[P~2u)” = gAuP=u in (7.3.23)
uvO)=u()=0.

Let{4;}k=1 and {A}k=1 be the eigenvalues ¢7.3.22 and (7.3.23 respectively.
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Then, we have
4 — Al < dcspmax g, wg) SaeP(k — 1)2P,

wherewg = g*/g~ and

=B (4 * 1 )
is the constant given in TheorenB.

Remark7.13 Let us observe that € W%P(1) is a solution of {.3.29 if and only if uis a solution
of the following equation

(7.3.24)

—(U[P20Y + gelulP?u = g.A°uP2u inl
U@ =u(@)=0

whereg,(x) = g(%) and® = A° + 1. For convenience, we will work with equation.8.24 instead
(7.3.22.

Proof of Theoren?.12 The proof follows the same lines of Theoredry. The kth variational
eigenvalue of 7.3.29 and its limit problem can be written as

WP + geulP - WP + glulP
A‘ﬁ = inf supf—g, A = inf su f—g (7.3.25)
Gelkuec [ GelUlP Gelkue g f [ulP
wherely = {C c W-P(1) : C compactC = —-C, ¥(C) > k.
Lets > 0 and IetG'g c WLP(1) be a compact, symmetric set of getkusuch that
< S+ g
Ak = sup=———— + O(9). (7.3.26)
weck 9 IuP

Being the seG'g admissible in the variational characterization of Kie—eigenvalue of the limit
problem of 7.3.29, we have

UIP+gelulP g |ulP
k_supﬁ|| gelulP g i lul

— . (7.3.27)
ek Gf P [ geluP

To bound;l‘li we look for bounds of the two quotients ii.8.27. For every functioru € G('g c
W2LP(1) we can apply Theorerb.8and we obtain that

JIWP+golulP  JICP G Pl
p— S p— + p—
g ulp g JluP g ulp

wherec is given explicitly in Theorenb.8. By using Young’s inequality,

(7.3.28)

Pl < PHUIRLpy-
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Now, by (7.3.20) we have for each € GX,

HMWWM)<|MMWU< g fi P+ fiur|P

— =p <C = (7.3.29)
g J luP g lulP g lup
wherec; = pmax1, é_}. Then, by 7.3.29 and (7.3.26
11UlPlwe g MP+ f VP -
_—WM(I) <c Supfl_—fI = C1(Ak + O(9)). (7.3.30)
gJlup vk G MP
Again, sinceu € G'g c WP(1), by applying Theorens.8we obtain that
g J luP Pl
9 < 14 e lhweiy (7.3.31)
J; Gelulp Jj gelup
and by {.3.30, . )
u , g lllu , g -~
ey G M wey G 5 ) o)), (7.3.32)
J; gelulP fgur g
Then combining 7.3.27%, (7.3.30, (7.3.32 and lettings — 0 we find that
B = A < cora(EE + M) + P Le22. (7.3.33)
In a similar way, interchanging the roles & and.iZ, we obtain
A=A < ccls(g (A£)? + A5) + c*8 9_ 2(1E)? (7.3.34)
with €, = gﬂ max1,g*}. So, from ¢.3.33 and (7.3.39, we arrive at
|2 — Al < cepmax ks 9y max1, £ = D max(i2 + A, (19)% + 2. (7.3.35)

In order to complete the proof of the Theorem, we need an aesioni, andi?. In fact, from
(7.3.2) it follows that

min(L, S < A < maxl, Huk,  minfL, g < A7 < max(l, &k (7.3.36)
wherepy is thek—th eigenvalue of

—U|P2U + |ulP2u = plulP2u inl

(7.3.37)

uv@)=u()=0.

Observe thati € W2P(1) is solution of 7.3.3% if and only if u is solution of
—(WP2wy = guP2u inl
uv@O)=u@1)=0

whereu = u — 1, and its explicit form is

fix = mh(k = 1)P. (7.3.38)

From (7.3.39,(7.3.39 and (7.3.39 and using thatif — A = |22 — A we arrive to the desired
result. m|
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Now we are ready to prove Theoref.

Proof of Theoren?.7. The proof follows in the same way of the proof of Theor&rB.2for the
Dirichlet case. The only dierence is that we use bounds obtained in Theofetinstead of the
ones from Theoreri.8. ]

7.4 Some examples and numerical results

We consider equatior?(1.1) with weightr anda = 1, i.e.,

(7.4.1)

—(UIP2u) = ar(uP2u  inl:=(0,1)
u(@) =u(1)=0.

In this section we present some numerical experiments ihaéhgogenization of the eigenvalues
of (7.1.]) in the casea.(X) = 1. Using the Prifer transformation method introduced HyeEl
[EI82] for the p—Laplacian we design an algorithm in order to estimate therdighctions and
eigenvalues of {.1.1.

We define the following Priifer transformation:

(7.4.2)

(£2)P U = p()Spe).
v = p(9Cp((9).

As in [Pi07], we can see show thatx) ande(X) are continuously dierentiable functions satisfy-
ing

{90’(X) - (59)" + SN 2Cole(0)Sp(6(0) .
P/ =2 p()ISp(e ()P

and we obtain that
Akr (X)
p-1

-1/p
) = (B) T p9Sata), ez 1
is a eigenfunction of problen¥(4.1) corresponding tdy with zero Dirichlet boundary conditions.
We propose the following algorithm to compute the eigereslaf problem 7.4.1) based in the
fact that the eigenfunction associatetiohask nodal domain i, so the phase functiop must
vary between 0 anllrp,. It consists in a shooting method combined with a bisectigorahm (a
Newton-Raphson version can be implemented too).
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Let a<A<b and let 7 be the tolerance
Solve the ODE 7.4.3 and obtain ¢, and p,
Let wW(x) = (p— 1)YP (Ar(x) /P p(x)Sp(ea(x)
Let a =w(1)
while (| = 1)
A=(a+h)/2
Solve the ODE 7.4.3 and obtain ¢, and p,
Let w(x) = (p— 1)"P (Ar(x) /P p(x)Sp(pa(x)
Let B =w(1)
If (B <0)
b=(a+h)/2
else
a=(a+bh)/2
end while

Then A is the aproximation of eigenvalue with error <t

For example, let us conside(x) = 2 + sin(2rx). In this case we obtain that = flz +
sin(2rx)dx = 2, and the eigenvalues of the limit problem are given/lw = % Whene

tends to zero the value df tends to the limit valua displaying oscillations.

When p = 2 the first limit eigenvalue isyA; = 7/ V2 ~ 2.221441469. We see the oscillating
behavior when plot,/A5 as function ofs in Figure7.1

222145

22214
222135

2213
222125

2212

222115

22211 T T T T T T T T T i
0 0002 0004 0006 0008 0.01 0012 0014 0018 0018 0.02

Figure 7.1: The square root of the first eigenvalue as a fondf .

A more complex behavior can be found in Figat&, where we considered the weighfk) =
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1

s e observe that the sequence tends to

1
A =n°] | ———dx= V3r ~ 17.09465627
! ﬂ/f,2+sm2nxx Van

Figure 7.2: The square root of the first eigenvalue as a fondfe.

Itis not clear why the convergence of the first eigenvalupldisthe oscillations and the mono-
tonicity observed (although the monotonicity is reversedtiie weightr(x) = 2 — sin 2rx). We
believe that some Sturmian type comparison theorem wittgiat inequalities for the weights
(instead of point-wise inequalities as usual) is involveldwever, we are not able to prove it, and
for higher eigenvalues it is not clear what happens.

Turning now to the eigenfunctions, with the weiglix) = 2 + sin(2rx), the normalized eigen-
function associated to the first eigenvalue of the limit peabis given byu;(X) = 771 sin(rx).
Applying the numerical algorithm we obtain that the graptanfeigenfunction associated to the
first eigenvaluel] intertwine with the graph afi;(x). Whene decreases, the number of crosses in-
creases, and the amplitude of thé&elience between them decreases. In Figudgve can observe
this behavior and the fierence betweew, anduj for different values of.

To our knowledge, it is not known any result about the numlbéreoscillations as decreases,
nor it is known if those oscillations disappear fosuficiently small.

The same behavior seems to hold for the higher eigenfurs;tiee in Figurd.4the behavior
of the fourth eigenfunctionf; when the parameterdecrease.

Here, the convergence of the nodal domains and the factt@aestriction of an eigenfunction
to one of its nodal domain& coincides with the first eigenfunction of the problermNf together
with the continuous dependence of the eigenfunctions ow#ight and the length of the domain,
suggest that the presence or not of oscillations for thednigigenfunctions must be the same as
for the first one. However, the computations show very cormpégterns in the oscillations.
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Homogenization of the FICik spectrum

8.1 The FWEik spectrum

Given a bounded domaif2 in RN, N > 1 we study the asymptotic behavior as— 0 of the
spectrum of the following asymmetric elliptic problem

~ApUs = a:mg(U)P - Bon(u)Pt inQ (8.1.1)
either with homogeneous Dirichlet or Neumann boundary itiamd.

Here,Apu = div(|Vu[P~2Vu) is the p-Laplacian with 1< p < oo andu* := max=u,0}. The
parametersr, andg, are reals and depending en> 0. We assume that the family of weight
functionsm, andn, are positive and uniformly bounded away from zero.

For a moment let us focus proble®.1.]) for fixed & > 0 with positive weightsn(x), n(x):
—Apu = am(X)(u")P - gn(x)u )Pt inQ (8.1.2)
with Dirichlet or Neumann boundary conditions.
Consider the Futik spectrum defined as the set

(M, n) := {(a, B) € R?: (8.1.2 has a nontrivial solution

Let us observe that whan= n = mandA = a = 8, equation 8.1.2 becomes
~Apu=ArjuP?u  inQ (8.1.3)

with Dirichlet or Neumann boundary conditions, which is thgenvalue problem for the
p-Laplacian. These has been widely studied. See for instaDE&P9 ETO6 DGT1( and
Chapter§2 of this thesis for more information.

It follows immediately tha& contain the linesl;(m) x R andR x A1(n). For this reason, we
denote byE* = £*(m, n) the se without these trivial lines. Observe that if,(3) € 2* with @ > 0
andp > 0 thenA;(m) < a andA4(n) < .
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The study of problem8.1.2 with Dirichlet boundary conditions have a long history tthae
briefly describe below. The one-dimensional case with pesitonstant caicients (i.e.mn €
R* and p = 2) was studied in the 1970s by Fucik7q and DancerDa77 in connection with
jumping nonlinearities. Properties and descriptions effitst non-trivial curve on the spectrum of
(8.1.2 onRN for the general casep(# 2) without weights can be found in Cuesta, de Figueiredo
and GossezJFG99, Dancer and PererdP0]], Drabek and RobinsorbjRo04, Perera Pe04.

The case with positive weighta(x) andn(x) was recently studied, see for instance Rynne and
Walter [RWO0(Q, Arias and CamposAC9€], Drabek Pr92], Reichel and WalterW99]. For
indefinite weightsn(x) andn(x) see Alif and GosseG01], Leadi and MarcosL[M0O7].

The main problem one address is to obtain a description asatecas possible of the sgt. In
the one—dimensional cage= 2, without weights this description is obtained in a precsaner:
the spectrum is made of a sequence of hyperbolic like cuni@$ k R*, see for instanceHH8(.
Whenm(x) andn(x) are non-constants weights, iAG01] it is proved a characterization of the
spectrum in terms of the so-called zeroes-functions.

8.1.1 Dirichlet boundary conditions

GivenQ c RN with N > 1 let us consider§.1.9 with Dirichlet boundary conditions, i.e.

—Apu = am(x)(u")P - gn(x)(u~)P? inQ

(8.1.4)
u=0 onoQ.

Here, only a full description of the first nontrivial curve bfis known, which we will denote by
C1 = C1(m, n). Assuming thatn, n € L"(Q) with

r>% if p<N and r=1 ifp>N, (8.1.5)
in [ACCGO0Z (see Theorem 33) is proved th@t can be characterized by
C1 = {(a(9),5(9),s€ R"} (8.1.6)
wherea(s) andg(s) are continuous functions defined by
a(s) = c(m,sn), B(s) = sa(9) (8.1.7)

andc(., -) is given by
. A(u)
c(mn) = ;rg; L@y%( BU) (8.1.8)

wherel :=[-1, +1]. Here, the functionalé andB are given by

A) = fg IVuPdx,  Bmn = fg m(X)(u*)P + n(x)(u™)Pdx, (8.1.9)

with
I = {y € C(I-1, +1, W, P(Q)) : ¥(~1) = 0 andy(1) < O}.

The functionsz(s) anda(s) defined in 8.1.7) satisfy some important properties.
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Proposition 8.1. The functions(s) andg(s) are continuous. Moreovet(s) is strictly decreasing
andp(s) is strictly increasing. One also has thafs) — + if s » 0andp(s) — +co0 IS S— +oo.

Proof. See ACCGO04, Proposition 34. ]

If we denoter,, := limg, . a(S) andp., = lims_,0B(S), we have the following characterization.

Proposition 8.2. The asymptotic values, andg., are equal taa andﬁ_ respectively, where

a = inf {f IVulp:ue Wé’p(Q),f m(u*)P = 1and f n(u™)P > 0},
Q Q Q

B = inf {f IVuilp:uce Wé’p(Q),f n(u)? =1and f m(u*)P > 0}.
Q Q Q
Moreover if p< N, thena = A1(m) and = A1(n).

Proof. See ACCGO04, Proposition 35. ]

8.1.2 Neumann boundary conditions

Let Q be a bounded domain iRN, N > 1 with Lipschitz boundary and leh, n be two weights
satisfying 8.1.5 and bounded uniformly away from zero. We also assumentied andn£ O in
Q. We consider&.1.2 with Neumann boundary conditions

~Apu = am(x)(U")PL - ()Pt inQ (8.1.10)
w g onaQ. h

wheredu/dn = Vu - n denotes the unit exterior normal.

The Futik spectrux = Z(m, n) clearly contains the line®} x R andR x {0} and we denote by
¥* = X*(m, n) the se(m, n) without these two lines.

In this case, whel > 1 only a full description of the first nontrivial curve Bfis known, which
we will denote byC; = C1(m, n). Moreover, in ACCGO0g (see Theorem 6.1) a characterization
similar to the Dirichlet case is given:

C1 = {(a(9),5(9), se R} (8.1.11)

wherea(s) andg(s) are continuous functions defined bys) = c(m, sn), 8(S) = sa(s) andc(-, ') is
given by

c(m,n) = inf maxﬂ

8.1.12
yel uey(J) B(U) ( )

whereld := [0, 1], the functionalsA andB are given by 8.1.9 and

I = {y € C(J, W-P(QQ)) : ¥(0) > 0 andy(1) < O}.
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In this case, for a weight functior(x) satisfying 8.1.9 and uniformly bounded away from zero
and infinity, clearly O is a principal eigenvalue of

—Apu = Ar(X)|ulP2u inQ
{ P (lu (8.1.13)

ou _

S=0 onoQ
with the constants as eigenfunctions. Moreover, the cmmdit> 0 guaranties that O is the unique
nonnegative principal eigenvalue, s€&3P03.

Remark8.3. In the Neumann case Propositi8ri still being valid.

8.2 Homogenization of the spectrum

Up to our knowledge, no investigation was made in the homiagéion and rates of convergence
of the FuCik Spectrum. We are interested in studying theabieh ase — 0 of problem 8.1.])
whenm,(x) andn,(x) are general functions depending &rand in the special case of rapidly os-
cillating periodic functions, i.em.(X) = m(x/g) andn.(x) = n(x/&) for two Q—periodic functions
m, n uniformly bounded away from zero (see assumpti@z2.()), Q being the unit cube dtN.

Let Q c RN be a bounded domain amda real positive number. We consider functiaons n,
such that for constants_ < m*,n” < n*

O<m <m(X)<m, <+o0 and 0<n_<ng(X)<n, <+co. (8.2.1)
Also, we assume that there exist function&) andn(x) satisfying 8.2.1) such that, ag — 0,

m.(X) — m(x) weakly* in L*(Q)

8.2.2
Ng(X) — n(x) weakly* in L*(Q). ( )
First we address the problem with Dirichlet boundary caods.
Whene — 0 the natural limit problem forg.1.J) is the following
—ApUp = aogm(X)(ut)P~t — Bon(x)(u7)PL inQ
pUo = aomO)(Ug)P~" ~ fon(x)(up) 6.23)
U =0 onoQ

wheremandn are given in 8.2.2.

Our main aim is to study the limit as — 0 of the first nontrivial curve in the spectrum
Lo = X(me,n,), sayCi = {(as(9),B:(9),s € RT}. We wonder: there exists a limit curve
C1 = {(ao(9), Bo(9)), s € R*} such that

C;—>Ci. ase—07?

Can this limit curve be characterized like a curve of a limmalidem? We will see that the answer
is positive.
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Therefore, a natural question arises: can the rate of cgemee ofC; be estimated? l.e., can
we give an estimate of the remainders

las(s) —ao(s)) and [B.(S) — Bo(9)I?

We give positive answers to these questions in the periadiing . In fact, in Theorem8.7 and
8.11we obtain bounds:

lag(S) — ao(9)] < C(L+ 971(8)e, |B:(S) —Po(9) < CHLL+ 97(8)e, seR”

whereC is a constant independent ®&nde, andr is a explicit function depending only af(see

(8.2.9).

Particularly, for the limit values of the coordinates, wé ge
00 00 0 0
lay —ay| < Ce, B, — gl < Ce
whereay® = lim ax(s), ag = lim ao(s), B2 = lim B(9), B = lim Bo(s)- The constanC is
independent o§ ande.
The main result is the following:

Theorem 8.4. Let m,, n, satisfying(8.2.1),(8.2.2 and (8.1.5. Then the first non-trivial curve of
problem(8.1.7)

Ce = Cl(ms, ns) = {a’g(S),,Bg(S), Se R+}

converges to the first non-trivial curve of the limit problésn2.3

C := C1(mo, o) = {ao(9).Bo(9), s€ R*}
ase — 0in the sense that,(s) — ag(s) andB.(s) — Bo(s) Yse R™.

Remark8.5. Let us consider the weightga-Laplacian problem

—ApU = Ar(X)|ulP-2u in Q

(8.2.4)
u=0 onoQ

wherer, is a function such that,(x) — r(x) weakly* in L*(Q) ase tends to zero. It is well-known
that the first eigenvalue 0B(2.4 converges to the first eigenvalue of theLaplacian equation
with weightr(x), see for instanceBCR0{g. The fact that the trivial lines of are defined by
A1(m.) x R andR x A1(n,) it allows us to &irm the convergence of the trivial lines to those of the
limit problem.

Remark8.6. Using the variational characterization of the second tianal eigenvalue given in
Theorem?2.8 TheorenB.4implies the convergence of the second variational eigervat @.2.4
to those of the limit problem which recover Theorémb as a particular case.
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In the important case of periodic homogenization, i.e.,ig(x) = m(x/e) andn,(x) = n(x/e)
wherem andn are Q—periodic functionsQ being the unit cube i\, problem 8.2.3 becomes
—Aplp = ut)Pt — Bono(up)Pt inQ
pUo aoo( 0) Bono( 0) (8.2.5)

=0 onoQ

where the real numbersg, ng are the averages ofi andn over Q. In this case besides the con-
vergence of the first nontrivial curve of the spectrum give heoremB.4, we obtain the rate of
convergence:

Theorem 8.7. Under the same considerations of Theoi@# if the weights mand n, are given
in terms of Q-periodic functions mm in the form m(x) = m(%) and n.(x) = n(%), for each s= R*
we have the following estimates

() — ao(9)| < c(1 + 91(g)e,  |B:(S) — Bo(9 < cH1 + (e
where c= ¢(Q, p, m, n) is a constant independent @&ind s andr is defined by

() = {1 , =1 (8.2.6)
S s< 1

Particularly, with the same arguments uses in the proof ebfém6.6we are able to compute
the rate convergence of the trivial linesxf

Theorem 8.8. The trivial curves converges. Moreover, if the poipt=p(a,,8:) € R? belongs to
a trivial curve of (8.1.7) then

IPs — Pol < Ce

where p = (@0, 80) € R? is the limit point belonging to the trivial curve ¢8.2.5 and c= ¢(p, Q)
in a constant independent of

Remark8.9. Whens >> 1 is areal fixed number, Theoredn/ reads

() — ao(I ~ Cse,  1Be(S) — Bo(9)] ~ cSe

and whens << 1 is fixed,
las(S) — 2o(9)| ~ ce/S%,  |B(S) — Bo(9)] ~ ce/s.

According to Propositior8.1 and PropositiorB.2, whenp < N the limits of a.(S), @g(S) as
s — oo andpB.(9), Bo(s) ass — 0 can be characterized in terms of the first eigenvalues afjhted
p—Laplacian problems. Following the same argument for thienasé of the diference of eigen-
values used in the proof of Theore®u/, we are able to compute the rate of convergence in the
limit cases, namely:

sl,'_>n20 las(s) — ao(9)] = [11(M:) — A1(Mo)| < ce
ggno 1B(S) — Bo(9)| = [A1(ng) — A1(no)| < ce

wherec is a constant independent af
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Now we focus our attention on the Neumann boundary condittase.

As we made with the Dirichlet problen8.(L.1), we want to study the behavior of the first non-
trivial curve in the spectrum of8(1.1) with Neumann boundary conditions as— 0. Whene
tends to zero the natural limit problem is the following

(8.2.7)

U
‘a—VO =0 onoQ.

{—Apuo = aom(¥)(Uy)* ! - fon(¥)(U)P L InQ
Analogously to TheorerB.4, we obtain the following result of convergence:

Theorem 8.10. Let m,, n, satisfying(8.2.1) and (8.2.2 such that n& 0 and n£0. Then the first
non-trivial curve of problen{8.1.1)

= Cu(me, ng) = {@x(9), Bs(9), sSe R}
converges to the first non-trivial curve of the limit problésn2.7)
C1 = C1(mo, No) = {ao(S), fo(9), s€ R™}

ase — 0in the sense that,(s) — ag(9), B:(S) — Bo(s) Vse R .

When the case of periodic homogenization is considered,itikhe Dirichlet case, in addition
to the convergence of the first non-trivial curve in the speatenunciated in Theore®10 we
obtain the order of convergence:

Theorem 8.11. Under the same considerations of Theor8rh(Q if the weights mand n, are
given in terms of Qperiodic functions nm in the form m(x) = m(%) and n.(x) = n(%), for each
se R* we have the following estimates

|ae(S) — ao(9)l < c(1 + 91(g)e,  |B:(S) — Bo(9) < cH1 + (e
where c= ¢(Q, p, m, n) is a constant independent ©&nd s, andr is given by(8.2.9.

To prove Theoren8.11the arguments of the proof of Theoreh fail. This is due to the fact
that now the functions space W-P(Q) but Theoremb.4 holds only for functions in\Né’p(Q).
Then, we use TheoreB6which allow us to consider functions W-P(Q). Observe that the fact
of enlarge the set of test functions is reflected in the neethtwe regularity of the domai€.

8.3 Proof of the Dirichlet results

We begin with the proof of the Theore&8which is analogous to the proof of Theordn?.
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Proof of Theoren8.8 The trivial lines of the spectrurk, are given by
Ch1={(1(my).). teR} and Cf, = {(t A1(n,).t € R}.
The first limit eigenvaluel; (mp) can be characterized variationally as

g = inf JovuP ) 1VugP
1 = =

= +o(1) (8.3.1)
UeWtP©@) Jo, MolulP [, moluy|P

for someu; € W, P(€2). We can bound

JovuP VU molug|P

A1(m;) = inf < . (8.3.2)
UeW2P(@) o, MelUlP [, molulP [, melugP
By using Theorenb.6it follows that
Mol [P IVl
Jo molus” <1+cem—@ (8.3.3)
Jo, Melug P Je, melug [P
Now, by 8.2.1) and 8.3.1) we have
V|
— PO o (mo) + o(1)). (8.3.4)
Jo, melug [P
By replacing 8.3.4 and 8.3.1), in (8.3.2 we get
Az(me) — A2(mo) < ce. (8.3.5)
In a similar way, interchanging the roles of(m.) and1(my) we obtain
A1(mp) — Az(Me) < ce. (8.3.6)

From equationsd.3.5 and @.3.6 it follows that

|Ps — Pol < Ce

for p, € Co1r Po € Coa with ¢ = ¢(p, Q) a constant independent of Analogously is obtained a
bound for the points odi‘g’z. This implies the convergence of the trivial lines of thectpem. O

In the next Lemma we obtain upper bounds for the coordindtdgedirst curve ofz*(m, n).

Lemma 8.12. Let m n satisfying(8.2.7) and let(a(s),3(s)) € C1(m, n). Then for each & R*,

a(s) < min{m=L, nYuor(s),  B(S) < min{mt, nmhuose(s)

with 7 defined by
(9=t st (8.3.7)
st s<1
where m, n_ are given by(8.2.1) and u» is the second eigenvalue of thelaplacian equation
without weights o2 with Dirichlet boundary conditions.
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Proof. Let se R*. When the parameter> 1 we can bound
A1(m) < a(s) < (1) = c(m, n).

Let 12(m) be the second eigenvalue of the probledril(3 with weight m(x). It satisfies that
a(1l) < min{iy(m), 22(n)}. By using the assumption$.@.l) over m(x), we can boundiy(m)
by uom~1, wherep; is the second eigenvalue of tipe-Laplacian equation without weights with
Dirichlet boundary conditions of2. Analogously fori,(n). We get

a(s) < a(l) < minmt Ny, s>1 (8.3.8)

Whens < 1 the following bound holds for the second coordinat& of

7 s >1 /

s=1

/ s<1
-

(e, 5e)
Al(nc)

A1 (me ) /\3 (me)

Figure 8.1: The first curve of the spectrum.

A1(n) < B(s) < B(1). (8.3.9)
By multiplying (8.3.9 by s™* and by using thg8(s) = sa(s) we have

s1y(n) < a(9) < s71B(1).

Beinga(1) = B(1), it follows that

a(9) < sta(l) < s tminfmzt N, s< 1. (8.3.10)

By using 8.3.8, (8.3.10 and the relatio(s) = sa(s) the conclusions of the lemma follows.

O

The following Proposition gives the monotonicity «ff, -):
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Proposition 8.13. If m < fh and n< f a.e., then
c(f, f) < c(m,n),

where ¢, -) is defined by8.1.8.
Proof. See ACCGO04, Proposition 23. m|

In the next Lemma we obtain lower bounds for the coordinatéleofirst curve of=*(m, n).

Lemma 8.14. Let m n satisfying(8.2.1 and let(a(s),8(s)) € C(m,n). Then for each & R*,
a(s) = 1Cuw(s), B(s) = Cw(s)
with w defined by
1 s>1

w(s) = (8.3.11)
S s<1

where C is a positive constant depending only of the bounashgn(8.2.1).
Proof. Let se R*. When the parameter> 1 we can bound bellow
B(s) > B(1) = c(mn), s>1
Using the relatiorB(s) = sa(s) we obtain
a(s) > ste(mn), s>1
Similarly, whens < 1 we have
a(s) > a(l)=c(mn), s<1,
and again, by the relation betwee(s) andgs(s) we get
B(s) > sdmn), s<1
Using the bounds8;2.1) of mn and Propositior8.13we can bound bellow
c(m,n) > c(m,, n,).

and the result follows. O

Now we are able to prove Theordsy.
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Proof of Theoren8.7. For each fixed value of > 0, by 8.2.]) together with the monotonicity
of ¢(-,-) provided by Propositio8.13we can assert that there exist two cur@gm,,n,) and
C1(m_,n_) such that delimit above and below to the cutgm,n.). It follows that for each
fixed value ofs, a.(s) andg.(s) are bounded.

Let (a.,B:) be a point belonging to the cune(mg, n;) and let (o, o) be the point obtained
whene — 0. Let us see that it belongs @ (mg, no).

Fixed a value ot > 0 and by using&.1.8 the inverse ot(m,, n,;) can be written as

C(m89 ng) - ?,lejrpue'yfr—]:[+l] Bl’T\g,I’]E (u) (8312)

where
I'={yeC(l,H) :y(-1) > 0 andy(1) < 0}

forl :=[-1,+1] and
H={ueW,P(Q): Au) = 1)

A andB being the functionals defined i8.(L.9.

By (8.1.7 and 8.3.19 we have the following characterization for the inversexgfs)

1
= =sup inf B u). 8.3.13
als(s) C(mg, Sn;) yerU€7(|) mg,Sl’},( ) ( )

Similarly, we can consider an equation analog8a@(13 for the representation of the inverse of
ap(9). Letd > 0 andyy(5) € T such that

—— = inf B u) + O(6). 8.3.14
oS = wlMhy Brosm (W) + O(0) (8.3.14)
In order to find a bound foa, we usey; € I'1, which is admissible in its variational characteriza-
tion,

> inf B . 8.3.15
(1’8(5) _IJEIDl(I) ms,Srb(u) ( )

Asue Wé’p(Q) it follows that )P and ()P belong toWé’l(Q). This allows us to estimate the
error by replacing the oscillating weights by their avesagg using Theorerb.6. For each fixed
functionu € y1(1) we bound

Bm..sn.(U) = By.sn(U) — C<9||VU+||EP(Q) - c8s4|Vu—||fp(Q) (8.3.16)

wherec the constant given in Theoret4. Asu € H we have

VU] Lo VU Py < L (8.3.17)

p
Lr@Q) =

So, from 8.3.17 and 8.3.16 we get

Bm..sn.(U) 2 By smy(U) — Ce(1 + 9). (8.3.18)
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Taking the infimum over the functionsin v, (l) together with 8.3.14 and 8.3.19 we obtain
a;1(9) — ap(9) = —cs(1 + 9) + O().
Lettings — 0 we get
a;}(9) — apgi(9) = —ce(1 + 9. (8.3.19)
In a similar way, interchanging the roles@f andag we obtain the inequality
a;}(9) - apt(s9) < cs(1 +9). (8.3.20)
From equationsd.3.19 and 8.3.20 it follows that
las(S) — ao(s)] < ce(1 + a(S)ao(9). (8.3.21)
By using LemmaB.12we can bound the expressidii§.2]) as
las(9) — ao(9)] < c(minfm*, n21)u0)?(1 + 97(9)%,
wherer(s) is given by 8.3.7).

From the convergence af, it follows the convergence ¢, and of the whole curve. m|

The proof of Theoren8.4is similar to that of TheorerB.7 but now we need a result analogous
to Theorenb.4that works without assuming periodicity. This is the contfithe next theorem.

Theorem 8.15.LetQ c R" be a bounded domain with Lipschitz boundary. Lebg a function
such thatD < g~ < g, < g" < +o for g* constants and g— g weakly* in L°(Q2). Then for every

ue WHP(Q),
im | (@~ g =0
wherel < p < +oo.
Proof. The weak* convergence af in L*(Q) says that[, d.¢ — [, e for all ¢ € LY(Q).
Particularly,u ¢ W-P(Q) implies thatjul® € W-1(Q), it follows that|u|P € L1(Q) and the result is

proved. m|

Proof of Theoren8.4. The argument follows exactly as in the proof of Theor8mi using the
Theorem8.15instead of the Theore®.4. ]

8.4 Proof of the Neumann results

Let us start with a simple remark.
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Remark8.16 Let us observe that € W-P(Q) is solution of equation8.1.1Q if and only if u is
solution of equation

— Apu+mut)P L+ nu)Pt = amut)Pt - Bnu)P Tt inQ. (8.4.1)

with Neumann boundary conditions, where="o — 1 and3 = 8+ 1. The main advantage between
consider equation8(1.10 and 8.4.]) is the fact that in the second one the functiof@l) defined
in (8.1.9 becomes in

Amn(u) = L VUl + m(u™)P + n(u™)Pdx, (8.4.2)

which involves bothiVu and the functioru.

Having in mind the remark8(16), the proof of Theoren®.11is similar to that of Theorer.7
for the Dirichlet case.

Proof of Theoren8.11 The proof is similar to that of Theoreg7for the Dirichlet case. Accord-
ing to Remark8.16we consider equatiorB(4.1). Let (@.,5.) be a point belonging to the curve
C:(m,n,) and let (7. Bo) be the point obtained when— 0. It follows that (o, Bo) belongs to
the spectrum of the limit equation. Let us see that it beldog@¥mg, ng). The main diference is
that in the characterizatio8.(1.19 of c(m., n.), now we are considering

I = {y € C(J W*P(Q)) : (0) > 0 andy(1) < O}.

with J := [0, 1]. Fixed a value of > 0 we write

Am, n,(U)

c(mg, n.) = inf su . 8.4.3
(Mg, ) inf uEylo B (U) (8.4.3)

By (8.1.7 and 8.4.3 we have the following characterization @§(3)
&.(9) = c(m,, sn) = inf SupM (8.4.4)

el uey Bm.sn(U)

Similarly, we can consider an equation analog&al (9 for the representation @fy{s). Letd > 0
andyi = y1(6) € T such that
Aﬂb,no(u)

In order to find a bound faa, We usey; € I', which is admissible in its variational characterization,

&.(9) < SupArm»,srb(U) Bmo,Sfb(u).
uey; Bmp.snp(U) Bm,.sn, (U)

(8.4.6)

To bounde’;, we look for bounds of the two quotients i8.4.6. Sinceu € W-P(Q), by Theorem
5.6 we obtain that

Am,n,(U) - Ampno(U)  Celllu™Pliway gy + celllu™[Pliwirg)
Bmg.sno(U) ~ Brmg.sny(U) Brry,sm (U) '
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For every functioru € v, we have that

A _ (o Any()

Bro.sno(U) ~ ueyr Brmg,sm (W)

By using Young inequality

IMPlwagay = IVIPllLy gy + PIIVIP VVIlL2q
= IMIp(qy + PIMP ™ ¥VllLy(q)
p p
< PIMILs) + 1VVIEn -
From @.4.8 it follows that

Ut Pl PIUT I pigy + VU ey
Bmg,sm(U) Brmo.sm(U)

Ao, (U)

"~ Bmysn(U)

Ao, (U)

< csup—>"——
ueys Brmy.sm(U)

= c(@o(s) + O(9)),

and similarly

U™ Plweae) ~
m < c(ao(s) + O(9)).

To bound the second quotient i8.4.9, let us observe that

JomolutPf mutP Pl

Bm.sn.(U) ~ Bm,sn.(U) Brm.,sn.(U)
3 Jomelut P Ut Pl
~ Bm.sn.(U) Brmy.sn (U)

and similarly

J;, srolu [P 3 I, snelut P

U= 1Plwe )
Bm.sn(U) — Bm,.sn(U)

Brp.sm(U)

Now, from equations§.4.11),(8.4.19 together with 8.4.9 and 8.4.10 we get

Bro.sno(U) _ Jo molut P+ [, sroluT|P
Brm..sn.(U) Bm,.sn.(U)

<1+ (1+ g)ce(ao(s) + O(5)).
Then combining§.4.6,(8.4.9,(8.4.10 and ,8.4.13 we find that

@(9) < ((@o(s) + O(9)) + ce(@o(s) + O(6))) (1 + (1 + s)ce(ao(s) + O(6))) -

= &o(9) + O(6).

(8.4.7)

(8.4.8)

(8.4.9)

(8.4.10)

(8.4.11)

(8.4.12)

(8.4.13)
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Lettings — 0 we get
@:(9) — @o(9) < ca(@3(1 + 9) + o). (8.4.14)

In a similar way, interchanging the roles @f anda,, we obtain
ao(9) — @s(9) < ce(@?(1+ 9) + ). (8.4.15)
From @.4.14 and 8.4.15 we arrive at
do(8) ~ @(9)] < ce(L + ) max(@o(9)%, @x(9)°)-
Now, using Lemma.12
le(S) — ao(9)] < (1 + 9)(s)%,

wherec is a constant independentofnds, andr(s) is given by 8.3.7. Here, Lemma.12holds
in the Neumann case, but now we have

a(s) < min{mZt, nYuor(s),  B(s) < min{mzt, nTYuest(s)

with u» the second eigenvalue of tipe-Laplacian equation o2 with Neumann boundary condi-
tions. From the convergence @f it follows the convergence ¢, and of the whole curve. 0O

Proof of Theoren8.1Q The proof is analogous to the proof of Theor8m. ]
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