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La mentira tiene patas cortas..., pero a veces usa zancos.
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nuncá se lo terminaré de agradecer. También mi primo Pablito me bancó un montón en esta
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Abstract

The A-hypergeometric systems of differential equations introduced by Gelfand, Kapranov
and Zelevinsky are a generalization of a broad class of differential equations in the complex
domain, incorporating analytical, algebro-geometrical and combinatorial tools. In this work,
we study two different types of special (holomorphic multivalued) A-hypergeometric func-
tions, that is, two types of special solutions of A-hypergeometric systems. On one hand, we
introduce a proper notion of Nilsson solutions for the space of formal solutions of irregular A-
hypergeometric systems, we explore the dimension of this space and convergence issues. The
second problem addressed in the thesis is the characterization of algebraic A-hypergeometric
functions admitting a Laurent series expansion, for regular configurations that are Cayley con-
figurations of two planar configurations, in terms of appropriate multidimensional residues.

Keywords: A-hypergeometric, irregular D-module, Nilsson series, multidimensional residue,
algebraic function.

Resumen

Los sistemas de ecuaciones diferenciales A-hipergeométricos introducidos por Gelfand,
Kapranov y Zelevinsky constituyen una generalización de una amplia clase de ecuaciones difer-
enciales en el campo complejo, incorporando herramientas analı́ticas, algebro-geométricas y
combinatorias. En este trabajo se estudian dos tipos distintos de funciones (holomorfas mul-
tivaluadas) A-hipergeométricas especiales, es decir dos tipos de soluciones especiales de sis-
temas A-hipergeométricos. Por un lado, se introduce una noción apropiada de soluciones de
Nilsson para el espacio de soluciones formales de sistemas A-hipergeométricos irregulares y
se estudia la dimensión de este espacio ası́ como la convergencia. El segundo problema abor-
dado en la tesis ha sido la caracterización de funciones A-hipergeométricas algebraicas que
admitan un desarrollo como series de Laurent, para configuraciones regulares A, que sean
configuraciones de Cayley de dos configuraciones planas, en términos de apropiados residuos
multidimensionales.

Palabras clave: A-hipergeométrico, D-módulo, series de Nilsson, residuo multidimensional,
función algebraica.
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Introduction

The solutions of the Gauss hypergeometric equation are described by means of the Gauss hy-
pergeometric series. Their formal study begun, precisely, with Gauss and it is still an active
area of research, involving many areas of mathematics such as complex analysis, number the-
ory, combinatorics, mathematical physics, etc.

In the early 90’s, Gel’fand, Kapranov and Zelevinsky studied several differential equations
of hypergeometric type (Gauss, Horn, Lauricella, etc.) and introduced a common framework
for all of them (see [GKZ89], [GKZ88],[GKZ90]), namely, the A-hypergeometric systems (or
GKZ-hypergeometric systems), whose solutions are called A-hypergeometric functions. Their
work involves D-modules, toric varieties, combinatorics and other tools. The information of the
system is codified in a integer matrix A (that can also be thought as a configuration of integer
points), and a complex vector β. The A-hypergeometric system with parameter β is denoted
by HA(β).

In this thesis we study two special kinds of solutions ofA-hypergeometric systems: Nilsson
solutions of irregular A-hypergeometric systems, in chapters 3 and 4, and algebraic Laurent
solutions of Cayley configurations, in chapters 5 and 6.

In 2000, Saito, Sturmfels and Takayama gave a Gröbner Basis reformulation of the GKZ
theory. Our way to deal with A-hypergeometric systems is based on their work. We overview
some of their ideas and results in chapter 1. In chapter 2 we explain two combinatorial tools
that we strongly use in the rest of the work: Gale dual and coherent mixed subdivisions. The
other fundamental tool from combinatorics is that of coherent triangulations that is treated in
Section 1.4.2.

In the first part of our work, we study solutions of irregular A-hypergeometric systems.
For an integer matrix A and a complex parameter β, the system HA(β) is a holonomic D-
ideal [Ado94, GKZ89]. It is also known that HA(β) is regular holonomic if and only if the
Q-rowspan of the matrix A contains the vector (1, . . . , 1). The if direction was proved by Hotta
in his work on equivariant D-modules [Hot91]; Saito, Sturmfels and Takayama gave a partial
converse in [SST00, Theorem 2.4.11], assuming that the parameter β is generic.

The Frobenius method is a symbolic procedure for solving a linear ordinary differential
equation in a neighborhood of a regular singular point. The solutions are represented as con-
vergent logarithmic Puiseux series that belong to the Nilsson class. In the multivariate case, the
Saito, Sturmfels and Takayama method, called the canonical series algorithm, applied to a reg-
ular holonomic left D-ideal, yields a basis of the solution space [SST00, Chapter 2]. The basis
elements belong to an explicitly described Nilsson ring, and are therefore called Nilsson series,
or Nilsson solutions. Each Nilsson ring is constructed using a weight vector; the choice of
weight vector is a way of determining the common domain of convergence of the correspond-
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ing solutions. The canonical series procedure requires a regular holonomic input; although one
can run this algorithm on holonomic left D-ideals that have irregular singularities, there is no
guarantee that the output series converge, or even that the correct number of basis elements will
be produced.

In Section 3.1, we extend the notion of Nilsson solution to general A-hypergeometric sys-
tems. For arbitrary A and β, we denote by Nw(HA(β)) the space of Nilsson solutions of the
system HA(β). In order to obtain the elements of Nw(HA(β)), we introduce, in section 3.2, an
application ρ of homogenization that goes from Nw(HA(β)) to an associated regular system.

For generic parameters, we calculate in Section 3.3 the dimension of Nw(HA(β)) in com-
binatorial terms, and construct an explicit basis. Ohara and Takayama [OT09] showed that the
method of canonical series for a weight vector which is a perturbation of (1, . . . , 1) produces a
basis for the solution space of HA(β) consisting of (convergent) Nilsson series that contain no
logarithms. We extend their results and give in section 4.2 a criteria to decide which elements
of the constructed basis of Nw(HA(β)) converge, for arbitrary weight vectors w.

In order to produce a basis of solutions for HA(β) when β is not generic, logarithmic series
cannot be avoided, even in the regular case. We study them in section 3.4. Dealing with
logarithmic solutions of HA(β) poses technical challenges that we resolve here, allowing us to
lift the genericity hypotheses from the results of Ohara and Takayama: running the canonical
series algorithm on HA(β) with weight vector (a perturbation of) (1, . . . , 1) always produces
a basis of (convergent) Nilsson solutions of HA(β), if the cone spanned by the columns of A
is strongly convex (i.e., the cone contains no lines). This is done in section 4.1. On the other
hand, formal solutions of irregular hypergeometric systems that are not Nilsson series need to
be considered, even in one variable (see, for instance, [Cop34].)

Finally, in section 3.5, we extend the proof of Saito, Sturmfels and Takayama of the con-
verse of Hotta’s regularity theorem mentioned above, assuming that the cone over the columns
ofA is strongly convex. This gives an alternative proof to a result given by Schulze and Walther.

In fact, a different strategy to show that a D-ideal is not regular holonomic is to prove that
it has slopes. The analytic slopes of a D-module were introduced in the work of Mebkhout
[Meb89], while an algebraic version was given by Laurent [Lau87]. These authors have shown
that the analytic and algebraic slopes of a D-module along a hypersurface agree [LM99]. From
a computational perspective, Assi, Castro–Jiménez and Granger gave a Gröbner basis algorithm
to find algebraic slopes [ACG96]. There has been an effort to compute the (algebraic) slopes of
HA(β) along a coordinate hypersurface. In the cases d = 1 and n − d = 1, these slopes were
determined by Castro–Jiménez and Takayama [CT03], and Hartillo–Hermoso [Har03, Har05].
More generally, Schulze and Walther [SW08] have calculated the slopes of HA(β) under the
strongly convex assumption. The fact that slopes of HA(β) always exist when the vector
(1, . . . , 1) does not belong to the rowspan of A, implies that HA(β) has irregular singularities.
Thus, [SW08, Corollary 3.16] gives a converse for Hotta’s regularity theorem in the strongly
convex case. Our proof is done by extending ideas of Saito, Sturmfels and Takayama, where the
main technical obstacle to overcome is the potential existence of logarithmic hypergeometric
series.

Further insight into the solutions of hypergeometric system comes from the analytic ap-
proach taken up by Castro–Jiménez and Fernández–Fernández [CF11, Fer10], who studied the
Gevrey filtration on the irregularity complex of an A-hypergeometric system. Since formal se-
ries solutions of irregular systems need not converge, a study of the Gevrey filtration provides
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information on how far such series are from convergence.
In the second part of our work, we study in chapters 5 and 6, Laurent solutions of a regular

A-hypergeometric system where the configuration A is a Cayley configuration of k configura-
tion in dimension k. A configuration A is Cayley if given A1, . . . , As configurations in Zr

A = {e1} × A1 ∪ · · · ∪ {es} × As.

If we consider polynomials with these supports

fi(t) =

|Ai|∑
j=1

xjt
aj , i = 1, . . . , r,

generically in the coefficients xj , the common zeros of fi i = 1, . . . , r are finite and simple.
Then the local Grothendieck residue

Resf1,...,fr,ξ(t
m) =

ξm

JTf (ξ)

is well-defined. If V is the set of common zeros of the polynomials fi, then the global residue

Resmf =
∑
ξ∈V

Resf1,...,fr,ξ(t
m)

is an algebraic A-hypergeometric function with homogeneity (−1, . . . ,−1,−m).
The study of univariate algebraic hypergeometric functions is a classical subject. Beukers

and Heckman [BH89] gave an explicit classification of all algebraic univariate hypergeometric
series (see also [Rod]). There exists a small number of general results on algebraicity of A-
hypergeometric functions in the multivariate case (that is, for configurations of codimension
greater than one). A recent work of Beukers ([Beu10]), characterizes those configurationsA for
which exists generic parameters such that all solutions are algebraic. Our study is based on the
determination and explicitation of algebraic A-hypergeometric functions for certain resonant
values of the parameters (for which there also exists logarithmic solutions and the monodromy
is not finite) in terms of multidimensional residues.

The existence of non-trivial rational A-hypergeometric functions imposes severe combi-
natorial constraints on the configuration A. In [CDS01] it was conjectured that A needs to
carry an essential Cayley structure. This was elucidated in several articles (see, eg., [CDS01],
[CDD99],[CDR11]), in connection with the structure of the fullA-determinant [GKZ94], which
defines the singular locus of HA(β) for any β.

It follows from those papers that in the case of the Cayley configurations of k configurations
in dimension k that we consider, there are no non-trivial rational solutions. Our results show
that the algebraicity of A-hypergeometric Laurent series is also imposed by purely combinato-
rial conditions. We next explain more in detail our statements.

As a generalization of [CDD99], we work with the case of two polynomials f1, f2 in the
variables t1, t2. We study the possible minimal regions, that is, subsets of {1, . . . , |A1|+ |A2|}
indexing the variables that appear in the denominators of the Laurent solutions associated to
the configuration A and to homogeneity parameters (−1,−1,−m) lying in the Euler-Jacobi
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cone of A (see Definition 5.15.) We establish in Section 5.2 a precise relation between infinite
minimal regions and interior points of the Minkowski sum of the convex hulls of A1 y A2.

The common roots of f1, f2 can be obtained from mixed cells of the coherent mixed sub-
division of the configuration, following work of Huber and Sturmfels [HS95]). To each mixed
cell σ in a coherent mixed subdivision of the Minkowski sum of the given configurations, one
can associate as many roots of f1, f2 as the normalized volume of σ. We define in Section 6.1
the residue Resσf relative to σ adding the local residues over the roots corresponding to σ.

Theorem 6.2.2, our main result in Section 6.2, gives an explicit way of writing each residue
Resσf as a linear combination of the canonical solutions associated to minimal regions cor-
responding to interior points of the Minkowski sum of the convex hulls of A1 y A2 that are
vertices of σ. The coefficients of this linear combination are combinatorially defined. In Theo-
rem 6.3.1 of Section 6.3, we give a complete description of algebraic LaurentA-hypergeometric
functions in terms of residues, in case |A1| + |A2| = 6 and no Ai has an interior point. In the
last section, we highlight the complications that arise in more general situations and we state
general conjectures which would extend our results.
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Chapter 1

Regular A-hypergeometric systems

A-hypergeometric systems are a generalization of classical hypergeometric equations and lead
us to consider partial differential equations in Cn instead of ordinary differential equations
in C. The theory of D-modules gives the appropriated tools to deal with them, because the
coefficients of these partial differential equations are polynomials in Cn. Saito, Sturmfels and
Takayama presented in [SST00] an algorithm to solve regular systems using Gröbner bases in
the Weyl algebra. Moreover, they showed that in the case of an hypergeometric D-module,
due to its combinatorial nature, their methods are more accurate. Our objective in Chapter
3 is to solve irregular hypergeometric systems, but inspired on the techniques in [SST00], so
we introduce in this chapter the basics on D-modules, the method of Saito, Sturmfels and
Takayama and the combinatorial aspects of the A-hypergeometric systems.

1.1 From the classical equation toA-hypergeometric systems

In this informal section, we present an overview of the “evolution” of hypergeometric functions.
After introducing the Gauss hypergeometric series we present the A-hypergeometric series
related to it and the A-hypergeometric system associated as well as some examples.

The Gauss hypergeometric equation

[x(x− 1)
d2

dx2
+ (c− x(a+ b+ 1))

d

dx
− ab] • f = 0 (1.1)

where a, b, c are complex parameters has been widely studied since Gauss. Note that the sin-
gular points of this equations are x = 0, x = 1 and x = ∞. Its importance in mathematics as
well as in physics relies in the fact that any equation with three regular singular points can be
written in this form. We will explain in Section 1.3 the notion of regularity in one and more
variables with more detail, but for the purpose of this introductory section we will describe the
manner to obtain the solutions of the equation (1.1) around its singular points.

1.1.1 Solving equation 1.1 via the Frobenius method

We will operate in a pure algebraic way to obtain formal solutions around the singular point
x = 0. The general procedure to obtain the solutions in this case will be discussed when we
deal with regularity in Chapter 1.
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16 CHAPTER 1. REGULAR A-HYPERGEOMETRIC SYSTEMS

Suppose we are looking for a (multivalued) solution of the shape:

f = xs ·
∞∑
k=0

ckx
k (1.2)

that is a power series around x = 0 times xs with s ∈ C (choose an appropriated branch of the
logarithm).

Regard the differential operator in (1.1) as and element P in the Weyl algebra D = k〈x, ∂〉.
Thus P can be written as

P = [x(x− 1)∂2 − (a+ b+ 1)x∂ + c∂ − ab]. (1.3)

Applying it to both sides of (1.2) we have

xP • f =
∞∑
k=0

ck(s+ k)(s+ k + c− 1)xs+k −
∞∑
k=0

ck(s+ k + a)(s+ k + b)xs+k+1 = 0

and we obtain the following recurrence relations for the coefficients ck:

s(s+ c− 1) = 0,

(s+ k + 1)(s+ k + c)ck+1 − (s+ k + a)(s+ k + b)ck = 0, k = 0, 1, 2, . . .

Assume c0 = 1. Once that the exponent s is chosen by means of the first equation, we can
obtain the coefficients ck through the second one. If s = 0 then

ck =
(a)k(bk)

(1)k(c)k

where

(a)k =
Γ(a+ k)

Γ(a)

is the Pochhammer symbol. If, on the other hand, s = 1− c then

ck =
(a+ 1− c)k(b+ 1− c)k

(1)k(2− c)k
.

Note that in both cases we need c /∈ Z to obtain ck for all k = 0, 1, 2, . . .. We have obtained
two formal solutions to (1.1) around x = 0:

F (a, b, c;x) :=
∞∑
k=0

(a)k(bk)

(1)k(c)k
xk (1.4)

and
x1−c.F (a+ 1− c, b+ a− c, 2− c;x). (1.5)

The function F (a, b, c;x) is also denoted by 2F1(a, b, c;x) and it is called Gauss Hypergeomet-
ric Function with parameters (a, b, c).
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1.1.2 Introducing homogeneities in the classical hypergeometric equation

The following proposition, which is straightforward (see [SST00, Proposition 1.3.7]), sum-
marizes the prominence of the change of the point of view about hypergeometric functions
introduced by Gel’fand, Kapranov and Zelevinsky.

Proposition 1.1.1. The function

xc−1
1 x−a2 x−b3 F

(
a, b, c;

x1x4

x2x3

)
is annihilated by the following operators in the Weyl algebra C〈x1, x2, x3, x4, ∂1, ∂2, ∂3, ∂4〉:

∂2∂3 − ∂1∂4, x1∂1 − x4∂4 + 1− c, x2∂2 + x4∂4 + a, x3∂3 + x4∂4 + b. (1.6)

This proposition states if one adds extra homogeneities to the Gauss hypergeometric se-
ries, one gets that the new function satisfies a PDE system which consists of three equations
expressing (an infinitesimal version of) homogeneities, and a equation of superior order.

The notable fact about this is its intimate relation with toric varieties in algebraic geometry.
Indeed, the equations (1.6) can be introduced in the following way:

Let

A =

 1 0 0 −1
0 1 0 1
0 0 1 1

 ∈ Z3×4 and β =

 c− 1
−a
−b

 ∈ C3.

Consider the following D-ideal

HA(β) = IA + 〈x1∂1 − x4∂4 + 1− c, x2∂1 − x4∂4 + a, x3∂3 − x4∂4 + b〉 (1.7)

where IA = 〈∂2∂3 − ∂1∂4〉 is the toric ideal associated to the matrix A. Note that the homo-
geneity equations correspond with the rows of A and β and that the series

xc−1
1 x−a2 x−b3

∞∑
k=0

(a)k(bk)

(1)k(c)k

(
x1x4

x2x3

)k
, (1.8)

which is a solution to this system, can also we written in terms of the “exponent” v = (c −
1,−a,−b, 0) and a weight vector w = (1, 0, 0, 1). Consider the set

Cw = {u ∈ kerZ(A)/u · w ≥ 0}
and now write the series in equation (1.8) in this way∑

u∈Cw
cux

v+u,

where

cu = c(k,−k,−k,k) =
(a)k(bk)

(1)k(c)k
.

As we will see, the combinatorics of the configuration A, the parameter β and a weight
vector w ∈ Rn determine the features of the equations of hypergeometric type, including the
number of solutions and its domain of convergence, regularity of the system, and so on.
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1.1.3 The GKZ hypergeometric systems

We introduce the Weyl algebra. As usual, ∂i stands for the partial derivative with respect to xi.

Definition 1.1.2. The Weyl algebra of dimension n is the free associative C-algebra

Dn = C〈x1, . . . , xn, ∂1, . . . , ∂n〉

modulo the commutation rules

xixj = xjxi, ∂i∂j = ∂j∂i, ∂ixj = ∂ixj for i 6= j, and ∂ixi = xi∂i + 1.

When no confusion arises, we simply write D for Dn.

The following definition is due to Gelfand, Kapranov and Zelevinsky.

Definition 1.1.3. Let A = [aij] ∈ Zd×n whose rows Z-span Zd, and let β ∈ Cd. The A-
hypergeometric (or GKZ-hypergeometric) system with parameter β is the left D-ideal

HA(β) = IA + 〈E1 − β1, . . . , Ed − βd〉 ⊂ D,

where Ei =
∑n

j=1 aijxj∂j , 1 ≤ i ≤ d, and IA denotes the toric ideal

IA = 〈∂u − ∂v | A · u = A · v〉 ⊆ C[∂].

The second “easiest” example after the Gauss system is the following.

Example 1.1.4. The matrix

A =

(
1 1 1
0 1 2

)
(1.9)

and a parameter β ∈ C2 define the A-hypergeometric system

HA(β) = D ·
{
∂0∂2 − ∂2

1 , x0∂0 + x1∂1 + x2∂2 − β1, x1∂1 + 2x2∂2 − β2

}
.

in the Weyl algebra D = C〈x0, x1, x2, ∂0, ∂1, ∂2〉. If β = (0,−1) we have the solutions

−x1 ± (x2
1 − 4x0x2)1/2

2x2

. (1.10)

These are the two roots of a quadratic polynomial f(t) = x2t
2 + x1t + x0 in terms of the

coefficients x0, x1, x2. Moreover, the roots of a polynomial of any degree are A-hypergeometric
functions of the coefficients of that polynomial for suitable A (see [May37], [Stu00].)

1.2 Holonomic systems

A system of linear differential equations with polynomial coefficients can be identified with
a left ideal in D (or a left D-ideal), considering the natural action of the Weyl algebra D as
follows:

∂i • f =
∂f

∂xi
, xi • f = xif, (1.11)
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where f may belong to many differentD-modules, such as formal power series C[[x1, . . . , xn]],
holomorphic functions O(U) on an open subset U of Cn, etc. Thus, we say that the element f
is a solution of the (left) ideal I of D if p • f = 0 for all p ∈ I .

Any element p of D has a unique expression of the form

p =
∑
u,v∈Nn

cuvx
u∂v

where cuv = 0 for all but finitely many pairs (u, v). Associated with D we consider the
commutative polynomial ring R = C[x1, . . . , xn, ξ1, . . . , ξn]. Given any non-zero p ∈ D let
ν(p) := max{|v| : cuv 6= 0 for some u ∈ Nn} be the order of p and set

σ(p) :=
∑

u∈Nn,|v|=ν(p)

cuvx
uξv ∈ R.

The polynomial σ(p) is called the (principal) symbol of the differential operator p.

Definition 1.2.1. Given a left ideal I ⊂ D, its characteristic variety is the affine variety in C2n

defined by the characteristic ideal ch(I) := 〈σ(p) : p ∈ I〉 ⊂ R.

Definition 1.2.2. A left ideal I ⊂ D is called holonomic if and only if its characteristic ideal
has (Krull) dimension n. The holonomic rank of I is the dimension of the following vector
space over the field of rational functions C(x):

rank(I) := dimC(x)

(
C(x)[ξ]

(C(x)[ξ] · ch(I))

)
.

Holonomic systems have the following nice property ([SST00, Proposition 1.4.9]).

Proposition 1.2.3. If I is a holonomic D-ideal, then rank(I) is finite.

Definition 1.2.4. Let I ⊂ D be a left ideal and V(ch(I)) ⊂ C2n its characteristic variety. The
singular locus Sing(I) is defined as the Zariski closure of the projection on Cn

x of

V(ch(I))− {ξ1 = · · · = ξn = 0}.

The following theorem ([SST00, Theorem 1.4.19]) is a result of Kashiwara that relates the
holonomic rank of a D-ideal I to its solution space.

Theorem 1.2.5. Let I be a holonomic ideal and U a simply connected domain in Cn−Sing(I).
Consider the system of differential equations I • f = 0. Then the dimension of the complex
vector space of holomorphic solutions is equal to rank(I).

Example 1.2.6. The prototypical example of a holonomic D-ideal is the principal D-ideal
defined by a linear ordinary (this is n = 1) differential equation of order m:

I = D · {am(x)∂m + am−1(x)∂m−1 + · · ·+ a0(x)},

where the ai’s are polynomials in x and am 6= 0. Here ch(I) = 〈am(x)ξm〉, hence I is
holonomic with rank(I) = m. The singular locus is the zero set {x ∈ C : am(x) = 0} of
the polynomial am. Theorem 1.2.5 reduces in this case to the classical theorem of existence of
solutions around non-singular points.
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1.3 Canonical solutions

In [SST00], Saito, Sturmfels and Takayama presented a method to obtain series solutions for
regular holonomic D-ideals. In this section we briefly describe this method.

The key idea is to obtain the “first part” of the solutions solving the “first part” of the
equations and then produce an actual solution, in an analogous way to the Frobenius method in
one variable. For this, we define the initial of a D-ideal.

Definition 1.3.1. For an element p =
∑

u,v cuvx
u∂v in the Weyl algebra D, and a vector w ∈

Rn, we define in(−w,w)(p) to be the sum of the terms of p in which the inner product (u, v) ·
(−w,w) achieves its maximum. If I is a left D-ideal, we define

in(−w,w)(I) = 〈in(−w,w)(p) | p ∈ I〉 ⊂ D.

For a holonomic ideal, we have the following result which is Theorem 2.2.1 in [SST00].

Theorem 1.3.2. Let I be a holonomic D-ideal and w ∈ Rn. The initial D-ideal in(−w,w)(I) is
also holonomic and

rank(in(−w,w)(I)) ≤ rank(I). (1.12)

Remark 1.3.3. The vector w ∈ Rn is called weight vector in [SST00]. We will ask stronger
conditions to w in Chapters 3 and 4 when the ideal is not regular, so we will reserve the term
weight vector for that case. See Definition 3.1.1.

The following step is to look at the shape of the solutions so that the expression “first part”
makes sense. This will be possible if we assume that the system is regular.

We first introduce the notion of regularity for an ordinary differential equation. Consider
the equation

am(x)
∂m

∂xm
f(x) + am−1(x)

∂m−1

∂xm−1
f(x) + · · ·+ a1(x)

∂

∂
xf(x) + a0(x) = 0 (1.13)

where the functions ai(x) are holomorphic in an open set U ⊂ C and let x0 ∈ U such that
am(x0) = 0. We say that x0 is a regular singular point of the equation (1.13) if the functions

bi(x) :=
ai(x)

am(x)

have at worst a pole of order m− i at x0.
The following theorem is classical and its proof can be found in [CL55].

Theorem 1.3.4. Let x0 be a regular singular point of (1.13). Then the following statements
hold:

1. The vector space of multivalued holomorphic functions in a sufficiently small punctured
disk {0 < |x−x0| < ε}, which are solutions of (1.13), has dimensionm and is generated
by functions of the form

(x− x0)λ(ln(x− x0)j)f(x),

where λ ∈ C, j ∈ Z, 0 ≤ j ≤ m − 1, f(x) is holomorphic in the disk {|x − x0| < ε}
and f(x0) 6= 0.
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2. If the series

g(x) = (x− x0)λ
k∑
j=0

( ∞∑
l=0

clx
l

)
ln(x− x0)j,

where λ, cl ∈ C and k ∈ N, formally satisfies the equation (1.13) then there exists a
punctured disk {0 < |x − x0| < ε} such that g(x) defines a multivalued holomorphic
function in there.

We now present a definition of regularity of an arbitrary D-module as given in [SST00].
The definition involves complicated tools which we not discuss in this thesis, and we include it
for the sake of completeness, being the properties of regular D-modules what is important for
us. Denote by DX the sheaf of algebraic differential operators on X = Cn.

Definition 1.3.5. Let I be a holonomic ideal in the Weyl algebraD. Let C be a smooth curve in
X = Cn and j : C → Cn an embedding. A holonomic DX-module DX/DXI is called regular
holonomic when Lkj∗(DX/DXI) is regular holonomic on a smooth compactificationC for any
such curve C and for all k = 0,−1, . . . ,−n+1. WhenDX/DXI is regular holonomic, we call
I regular holonomic. Here Lkj∗ is the k-th derived functor of j∗.

The following result is known and appears in [SST00] as Theorem 2.4.12 and Corollary
2.4.14.

Theorem 1.3.6. Let I be a regular holonomic D-ideal. Assume that the singular locus of I is
contained in an algebraic hypersurface that is a normal crossing divisor locally at the origin.
Then there exist vectors α1, . . . , αm in Cn such that any multivalued holomorphic solution of I
on {∏n

i=1 xi 6= 0} near the origin has a series expression in the ring

C[[x1, . . . , xn]][xα1 , . . . , xαm , log(x1), . . . , log(xn)].

These series converge around the origin, and they are polynomials in log(xi) of degree at most
rank(I)− 1.

The hypotheses of Theorem 1.3.6 mean that if s(x) is the polynomial defining Sing(I), then
it can be written as

s(x) = xa ·
(

1 +
∑
u∈B

cux
u

)
(1.14)

where cu ∈ C∗, B ⊂ Nn and a ∈ Zn. In a general case, we can always find a change of
variables that leads to a expression like (1.14) and it turns out that the shape of the solutions
provided by Theorem 1.3.6 is governed by the convex geometry of the singular locus.

In fact, assume that I is a regular holonomic D-ideal and suppose that

s(x) =
l∑

k=1

cmkx
mk

with mk ∈ Nn, k = 1, . . . , l is the defining polynomial of a hypersurface that contains Sing(I).
Applying a multiplicative change of coordinates:

xj = y
v1j

1 y
v2j

2 . . . yvnjn for j = 1, . . . , n (1.15)
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we obtain

s(x1, . . . , xn) = yV ·m1

(
1 +

l∑
k=2

cmky
V ·(mk−m1)

)
(1.16)

where V is the matrix whose rows are the vectors (vi1, . . . , vin). How do we choose V so that
the condition (1.14) is satisfied, that is V · (mk −m1) ≥ 0 for all k = 2, . . . , l?

Suppose that the monomial xq occurs in s. Consider the Newton polytope New(s) of s.
Then q is a vertex of New(s). Take a cone C which has its vertex at q and contains New(s)
with generators γ1, . . . , γn ∈ Zn. We can assume that the determinant of (γ1, . . . , γn) = ±1.
The n× n matrix U = (γ1, . . . , γn) is invertible over Z and let V = (vij) be its inverse matrix.
This implies that the row vectors of V span the polar cone C∗, that is, the cone of all vector
w ∈ Rn such that 〈w, γi〉 ≥ 0 for i = 1, . . . , n.

Then m1 = q and mk = q +
∑n

i=1 λikγ
i with λik non-negative integers and the conditions

required are satisfied, because

V · (mk −m1) =
n∑
i=1

λikV · γi = (u1, . . . , un)

is a non-negative integer vector, for k = 2, . . . , l.
Then we have the following result, [SST00, Corollary 2.4.16].

Theorem 1.3.7. The regular holonomic D-ideal I has a fundamental set of solutions on 0 <
|xui | � 1 each of which is represented by a series in

N = C[[xu
1

, . . . , xu
n

]][xα1 , . . . , xαm , log(x1), . . . , log(xn)]. (1.17)

where α1, . . . , αm are suitable vectors in Cn

The ring N gives the appropriated context to work with initial of series solutions. In fact, a
vector w ∈ Rn defines a partial term order ≤ on N as follows:

xa log(x)b ≤ xc log(x)d ⇔ Re(a · w) ≤ Re(c · w). (1.18)

If g =
∑

a,b cabx
a log(x)b is a non zero element of N , then the set of real parts {Re(a · w) |

cab 6= 0 for some b} achieves a (finite) minimum, denoted by µ(g). Moreover, the subseries of
g consisting of terms cabxa log(x)b such cab 6= 0 and Re(a · w) = µ(g) is finite by [SST00,
Proposition 2.5.2]. We call this finite initial sum the initial series of g with respect to w and we
denote it by inw(g).

Remark 1.3.8. The ring N is not closed under differentiation in general. These and other
technical reasons are dealt carefully in [SST00, Section 2.5]. Here we just explain the basics
to reach to a general understanding of the Saito, Sturmfels and Takayama method.

By means of the following theorem ([SST00, Theorem 2.5.5]) it is possible to identify what
we called the “first part” of a series solution.

Theorem 1.3.9. If f ∈ N is a solution to I then inw(f) is a solution to in(−w,w)(I).
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The term order (1.18) can be refined by the lexicographic term order. We denote this refine-
ment by ≺w. Every element g of N has a unique initial monomial in≺w(g) with respect to ≺w.
The following lemma is Lemma 2.5.6 and Proposition 2.5.7 in [SST00].

Lemma 1.3.10. Let g1, . . . , gk ∈ N .

1. If the initial monomials in≺w(g1), . . . , in≺w(gk) are distinct, then the initial series defined
by inw(g1), . . . , inw(gk) are C-linearly independent.

2. If the initial series inw(g1), . . . , inw(gk) are C-linearly independent, then g1, . . . , gk are C-
linearly independent.

3. If g1, . . . , gk are C-linearly independent, there exists a k× k complex matrix (λij) such that
the initial series of ψi =

∑k
j=1 λijgj for i = 1, . . . , k are C-linearly independent.

The following theorem (Theorem 2.5.1 in [SST00]) states a notable fact about regular holo-
nomic systems.

Theorem 1.3.11. Let I be a regular holonomic D-ideal and w ∈ Rn. Then

rank(I) = rank(in(−w,w)(I)). (1.19)

Remark 1.3.12. The proof of Theorem 1.3.11 is not difficult. First, note that by Theorem 1.3.2
we just need to prove that rank(I) ≤ rank(in(−w,w)(I)). The crucial fact is that a fundamental
set of solutions to I (with rank(I) many elements) on an open ball U ⊂ Cn can be represented
by series in N , by Theorem 1.3.7. Then apply Theorem 1.3.9 and Lemma 1.3.10 to obtain the
desired result. We want to emphasize that this argument cannot be replicated in the non-regular
case, because we do not have that nice description of the solutions.

The shape of the solutions of a regular holonomic ideal can be more accurate than Theorem
1.3.7. We first introduce the important notion of exponent.

Definition 1.3.13. A vector v ∈ C is an exponent of a D-ideal I with respect to w ∈ Rn if xv

is a solution of in(−w,w)(I).

Remark 1.3.14. For a holonomic ideal, the set of exponents is finite because of Proposition
1.2.3 and Theorem 1.3.2.

The vectors ui in Theorem 1.3.7 can also be better understood by means of the convex
geometry of the ideal I .

Definition 1.3.15. Let I be a regular holonomic D-ideal and w ∈ Rn generic. The Gröbner
cone of I containing the vector w is defined by

Cw(I) =
{
w′ ∈ Rn : in(−w,w)(I) = in(−w′,w′)(I)

}
(1.20)

Cw(I) is a union of open convex polyhedral cones in Rn, since I is a regular holonomic
D-ideal and w is generic. The polar cone of Cw(I) is, by definition, the set Cw(I)∗ of vectors
u ∈ Rn such that in(−w,w)(I) = in(−w′,w′)(I) implies u ·w′ ≥ 0. Since Cw(I) is n-dimensional,
Cw(I)∗ is strongly convex, i.e., Cw(I)∗ contains no non-zero linear subpaces.
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Consider the monoid consisting of all integer vectors

Cw(I)∗Z := Cw(I)∗ ∩ Zn

Write C[[Cw(I)∗Z]] for the ring of formal power series f =
∑

u cux
u where u ∈ Cw(I)∗Z and

cu ∈ C∗. Since every non-constant term cux
u appearing in f satisfies w · u > 0, inw(f) is

well-defined for all f ∈ C[[Cw(I)∗Z]].
Finally, we get to a full description of the solutions to a regular holonomic ideal (see Theo-

rems 2.5.12, 2.5.14 and 2.5.16 of [SST00]).

Theorem 1.3.16. Let I be a regular holonomicD-ideal andw ∈ Rn generic. Put r := rank(I).
Then there exist a set C = {f1, . . . , fr} such that for i = 1, . . . , r:

1. fi is a solution to I .

2. in≺w(fi) = xai log(x)bi and in≺w(fi) 6= in≺w(fj) for i 6= j.

3. fi have the form xai · pi where ai is and exponent and pi is an element of the ring

C[[Cw(I)∗Z]][log(x1), . . . , log(xn)].

4. The degree of the logarithmic series pi of the previous item with respect to log(xk) is at
most rank(I)− 1 for every k = 1, . . . , n.

5. There exists a point x0 ∈ Cw(I) such that fi converges for x = (x1, . . . , xn) ∈ Cn

satisfying
(− log |x1|, . . . ,− log |xn|) ∈ x0 + Cw(I).

The series fi, i = 1, . . . , r, of Theorem 1.3.16 are called the canonical (series) solutions for
I with respect to ≺w. In Section 3.4 we will deal with logarithm free canonical series solutions
and in Section 5.1 with the particular case of canonical series which are Laurent (i.e., with
integer exponents).

Let {a1, . . . , ar} ⊂ Cn is the set of exponents of I . The ring

Nw(I) := C[[Cw(I)∗Z]][xa1 , . . . , xar , log(x1), . . . , log(xn)] (1.21)

is called the Nilsson ring with respect to w.
Of course, we can consider an open set U ⊂ Cn and a (multivalued) holomorphic func-

tion in U that is a solution of the system HA(β) without regarding at any weight vector w,
or consider the weight vector afterwards the holomorphic solution is defined. The following
definition clarifies this.

Definition 1.3.17. We say that a series

φ =
∑

u∈supp(φ)

xupu(log(x)) (1.22)

that defines a (multivalued) holomorphic solution of the system HA(β) is a series solution of
HA(β) in the direction of w if the following conditions holds:

1. The pu are polynomials.

2. supp(φ) is contained in a strongly convex cone.

3. For every u ∈ supp(φ), 〈w, u〉 ≥ 0.
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1.4 Hypergeometric regular ideals

In this section we show how the techniques explained in Section 1.3 can be applied to the system
HA(β) in Definition 1.1.3. We analyze the combinatorial properties of the system HA(β) that
allow us to obtain the canonical series described in Theorem 1.3.16.

We first observe that A-hypergeometric systems are holonomic, which was proved first by
Gel’fand, Kapranov and Zelevinsky under hypothesis a) and b) below ([GKZ89]) and then by
Adolphson (see [Ado94]) without assumptions on the configuration A.

Theorem 1.4.1. The D-ideal HA(β) is holonomic.

Hotta proved (see [Hot91]) that the A-hypergeometric systems are regular, provided that
the associated toric variety is projective.

Theorem 1.4.2. If the vector (1, 1, . . . , 1) is in the Q-span of the row vectors of A, then HA(β)
is regular holonomic for all β ∈ C.

We think of A, not just as a matrix, but also as the point configuration {a1, . . . , an} ⊂ Zd.
We will assume the following conditions:

a) The vector (1, 1, . . . , 1) is in the Q-span of A.

b) The elements of A span the lattice Zd over Z.

Important combinatorial features were developed in [GKZ94] from A-hypergeometric sys-
tems, such as Principal Determinants, Secondary Polytopes, Regular (coherent) triangulations,
Secondary Fan, and more. Moreover, in [SST00] these structures are reviewed from a Commu-
tative Algebra and Gröbner Theory point of view. We discuss this and show that more accurate
results can be obtained if we assume that the parameter β is generic.

1.4.1 Invariants of the configuration A

The configuration A determines important properties of the system HA(β). Let conv(A) be the
convex hull of the columns a1, . . . , an of A. We consider a particular notion of volume (see
[GKZ89]).

Definition 1.4.3. The normalized volume vol(A) is the Euclidean volume of conv(A) nor-
malized so that the unit simplex in the lattice ZA has volume one. As we have assumed that
ZA = Zd, the normalization is achieved by multiplying the Euclidean volume of conv(A) by
d!.

The singularities of HA(β) are also made explicit by the structure of A.

Definition 1.4.4. Consider a generic polynomial with exponents in A:

f(t1, . . . , td) =
n∑
i=1

xit
ai .

The principal A-determinant is defined as the resultant

EA(f) = RA

(
t1
∂f

∂t1
, . . . , td

∂f

∂td
, f

)
. (1.23)
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The following theorem summarizes the known results about the singularities and the calcu-
lation of the holonomic rank of HA(β). The two first statements are due to Gel’fand, Kapranov
and Zelevinsky [GKZ89] under assumptions a) and b) and to Adolphson [Ado94] in the gen-
eral case. The third one is Theorem 3.5.1 in [SST00]. The if part of the last statement is due to
Gel’fand, Kapranov and Zelevinsky [GKZ89] and to Adolphson [Ado94]. The only if part was
proved by Matusevich, Miller and Walther [MMW05].

Theorem 1.4.5. Let HA(β) be an A-hypergeometric system.

1. The singular locus of the system is the zero set of the principal A-determinant:

Sing(A) = {EA = 0}.

2. For arbitrary A and generic β, rank(HA(β)) = vol(A).

3. For arbitrary A and β, rank(HA(β)) ≥ vol(A).

4. Given A, rank(HA(β)) = vol(A) for all β ∈ Cd if and only if the ideal IA is Cohen-
Macaulay.

1.4.2 The fake initial ideal of HA(β)

In order to describe the series solutions with respect to w ∈ Rn of a regular holonomic D-ideal
I , we must first calculate the exponents, that is, the vectors v ∈ Cn such that xv is a solution
of in(−w,w)(I). In the case I = HA(β), an easy manipulable description of in(−w,w)(HA(β)) is
known when the parameters β are generic (see Theorem 3.1.3 in [SST00]).

Lemma 1.4.6. For β generic,

in(−w,w)(HA(β)) = inw(IA) + 〈E − β〉.

Definition 1.4.7. The ideal
inw(IA) + 〈E − β〉 (1.24)

is called the fake initial ideal of HA(β) and if xv is a solution to it, the vector v ∈ Cn is called
a fake exponent of HA(β) with respect to w.

Corollary 1.4.8. For the ideal HA(β), the set of exponents is included in the set of fake expo-
nents.

Proof. This is clear because IA and E − β are both contained in HA(β).

Fake exponents are easier to manipulate than exponents (in the generic case they are the
same) and in general, they are useful to obtain the solutions of the system, as we will show.

Note that for v ∈ Cn to be an fake exponent it has to satisfy that xv is a solution of the
monomial ideal inw(IA) ⊂ C[∂1, . . . , ∂n] and that for each row (ai1, . . . , ain) of A it holds:

n∑
j=1

aijxj∂j(x
v) = βix

v
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which turns into the following linear equations for v:

n∑
j=1

aijvj = βi for i = 1, . . . , d.

That isA·v = β. So now we pay attention to the solutions of the ideal inw(IA) ⊂ C[∂1, . . . , ∂n].
Note that if w is generic then inw(IA) is a monomial ideal.

A useful tool to find the solutions of a monomial ideal in C[∂] := C[∂1, . . . , ∂n] is that of
standard pairs.

Definition 1.4.9. The set S(M) of standard pairs of the monomial ideal M ⊂ C[∂] is the set of
pairs (∂a, σ) where a ∈ Nn and σ is a subset of the index set {1, . . . , n} such that

1. ai = 0 if i ∈ σ.

2. {xv : v ∈ a+ Nσ} ∩M = ∅, where Nσ := {γ ∈ Nn : γl = 0, l /∈ σ}.

3. For each l /∈ σ, {xv : v ∈ a+ Nσ∪{l}} ∩M 6= ∅.

If the dimension ofM in C[∂] is d we call top-dimensional to an element (∂a, σ) ∈ S (M) such
that |σ| = d. We denote T (M) the set of top-dimensional standard pairs of M .

Top-dimensional standard pairs are useful to describe the set top(M) of top-dimensional
components of a monomial ideal M in C[∂], as Lemma 3.2.4 of [SST00] shows:

Lemma 1.4.10. Let M be a monomial ideal in C[∂].

top(M) =
⋂

(∂a,σ)∈T (M)

〈∂ai+1
i : i /∈ σ〉. (1.25)

As mentioned, we can describe the solutions of a monomial ideal in C[∂] by means of its
standard pairs.

Proposition 1.4.11. For a monomial ideal M ⊂ C[∂], the solutions of the system of partial
differential equations

∂uF = 0; ∂u ∈M
are functions of the form:

F (x) =
∑

(∂a,σ)∈S(M)

xa · Fσ(x)

where the function Fσ(x) depends only on the variables xi, i ∈ σ.

For a better understanding of the fake initial ideal of HA(β), we introduce the notion of
simplicial complex and subsequently, the notion of coherent triangulation of a convex polytope.

Definition 1.4.12. A family ∆ of subsets of {1, . . . , n} is called a simplicial complex when the
following two conditions are satisfied:

1. if σ ∈ ∆, then any subset of σ belongs to ∆.
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2. if σ, τ ∈ ∆, then σ ∩ τ ∈ ∆.

Each subset in ∆ is called a face of the simplicial complex ∆.

There is a connection between simplicial complexes and monomial ideals.

Definition 1.4.13. The Stanley-Reisner ideal of ∆ is the ideal in C[∂1, . . . , ∂n] generated by
monomials

∏
i∈σ ∂i where σ runs over all the subsets of {1, . . . , n} such that σ /∈ ∆.

Example 1.4.14.

∆ = {{1, 2, 3}, {2, 3, 4}, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {1}, {2}, {3}, {4}, ∅}
is a simplicial complex on {1, 2, 3, 4} and its Stanley-Riesner ideal is 〈∂1∂4〉. Note that only list-
ing top-dimensional faces (facets) is enough to determine a simplicial complex. For instance,
in the above example we can write ∆ = {{1, 2, 3}, {2, 3, 4}}.
Definition 1.4.15. A triangulation of a configurations of points A = {a1, . . . , an} in Rm is a
decomposition of its convex hull conv(A) into simplices with vertices in A which are the (top)
faces of a simplicial complex ∆.

A vector w ∈ Rn
>0 induces a subdivision ∆w of the configuration A, by projecting the lower

hull of conv({(wi, ai) : i = 1, . . . , n}) onto conv(A) (see [Stu96, Chapter 8] for details). If w
is generic, ∆w is a triangulation of A. Such subdivisions are usually called regular, but we use
the alternative term coherent.

We always write triangulations of A as simplicial complexes on {1, . . . , n}, but think of
them geometrically: a simplex σ in such a triangulation corresponds to the geometric simplex
conv({ai : i ∈ σ}). Example 1.4.14 gives a possible triangulation of the convex hull of four
affinely independent points in R3.

There is a deep connection between initials of toric ideals, coherent triangulations and stan-
dard pairs, explained in the following theorem due to Sturmfels (see [Stu96, Chapter 8]), that
will help to understand the solutions of the A-hypergeometric systems.

Theorem 1.4.16. Let A be a homogeneous integer matrix and w ∈ Rn generic. Let M =
inw(IA). The radical ideal

√
M is the Stanley-Reisner ideal of the regular triangulation ∆w of

A defined by w and it can be described using the top-dimensional standard pairs of M in the
following way:

∆w = {σ : (∂a, σ) ∈ T (M) for some a}. (1.26)

Example 1.4.17. Let IA be the toric ideal associated to the matrix

A =

 1 0 0 −1
0 1 0 1
0 0 1 1

 .

For w ∈ R4 generic there are two possible initial ideals of IA. Take, for instance, w1 =
(0, 1, 1, 0) and w2 = (1, 0, 0, 1). Then inw1 = 〈∂2∂3〉 and inw2 = 〈∂1∂4〉. The standard pairs
of 〈∂1∂4〉 are (1, {1, 2, 4}) and (1, {1, 3, 4}) and the standard pairs of 〈∂2∂3〉 are (1, {1, 2, 3})
and (1, {2, 3, 4}). In Figure 1.1 we depicted the corresponding associated coherent triangu-
lations. The configuration A lives in R2, but by the assumption of regularity the points lie in
a hyperplane off the origin (in this case, the hyperplane x1 + x2 + x3 = 1) and then we can
actually consider the points in the plane).
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∆w1 = {{1, 2, 4}, {1, 3, 4}} ∆w2 = {{1, 2, 3}, {2, 3, 4}}

Figure 1.1: The coherent triangulations of A for Example 1.4.17.

Example 1.4.18. Consider the configuration A defined by the matrix (1.9) in Example 1.1.4.
The convex hull of A is the segment {1} × [0, 2] w [0, 2] and the toric ideal is given by IA =
〈∂0∂2 − ∂2

1〉. The initial ideal 〈∂0∂2〉 gives the standard pairs (1, {0, 1}) and (1, {1, 2}) that is,
the triangulation consisting in the simplices [0, 1] and [1, 2]. On the other hand, the initial ideal
〈∂2

1〉 gives the standard pairs (1, {0, 2}) and (∂1, {0, 2}) and the corresponding triangulation
is the whole segment [0, 2].

There is a better description of the fake initial ideal for β generic ([SST00, Theorem
3.2.11]):

Theorem 1.4.19. Let w a generic vector in Rn. For generic parameters β, we have

in(−w,w)(HA(β)) = top(inw(IA)) + 〈E − β〉. (1.27)

Suppose that v is a fake exponent of HA(β) with respect to a generic vector w ∈ Rn, then
Theorem 1.4.19 together with Lemma 1.4.10 and Proposition 1.4.11 allow us to easily calculate
it: pick (∂a, σ) ∈ T (inw(IA)) and set vi = ai for i /∈ σ. Then solve the system A · v which
is now a d × d invertible system, because σ is actually a simplex in the triangulation ∆w. We
denote v = β(∂α,σ) the fake exponent thus obtained. In the generic case, we can obtain vol(A)
(fake) exponents by this procedure and consequently a basis of the space of solutions with
respect to w, as we explain in the following section. In the non-generic case the picture is a
bit more complicated, and we show in Section 3.4 how to obtain the exponents and the series
solutions.

1.4.3 Hypergeometric canonical series

The following step for a better understanding of the solutions of the system is to describe its
canonical solutions.

Lemma 1.4.20. Let w ∈ Rn generic. The canonical solutions of the D-ideal HA(β) have the
shape

φ = xv
∑
u∈C

xupu(log(x)) (1.28)
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where

1. v ∈ Cn is an exponent of HA(β),

2. the cone C is contained in kerZ(A) := ker(A) ∩ Zn, with the property that

3. 〈w, u〉 ≥ 0 for every u ∈ C and

4. the polynomials pu belong to the symmetric algebra of kerZ(A).

Proof. See [Sai02].

The regions of convergence of the canonical solutions of A-hypergeometric solutions with
respect to a generic weight w can be described in a more manageable manner than Theorem
1.3.16.5.

Let w be a weight vector for HA(β) and let {γ1, . . . , γn−d} ⊂ Zn be a Z-basis for kerZ(A)
such that γi · w > 0 for i = 1, . . . , n − d. For any ε = (ε1, . . . , εn−d) ∈ Rn−d

>0 , we define the
(non empty) open set

Uw,ε = {x ∈ Cn | |xγi | < εi for i = 1, . . . , n− d} . (1.29)

If we take ε such that εi � 1 for i = 1, . . . , n− d, then the canonical A-hypergeometric series
clearly converge in the open set Uw,ε.

1.4.4 Gamma series for generic parameters

When the parameters β are generic, it is easier to get a full picture of the solutions.
The following result is restatement of Proposition 3.4.1, Theorem 3.4.2 and Lemma 3.4.6

in [SST00], which do not need homogeneity for IA.

Proposition 1.4.21. For any v ∈ (Cr Z<0)n such that A · v = β, the formal series

φv =
∑

u∈kerZ(A)

[v]u−
[u+ v]u+

xu+v (1.30)

where

[v]u− =
∏
ui<0

−ui∏
j=1

(vi − j + 1); [u+ v]u+ =
∏
ui>0

ui∏
j=1

(vi + j) (1.31)

is well defined and is annihilated by the hypergeometric D-ideal HA(β).

If moreover β is a generic parameter vector, the support of φv is the set supp(φv) = {u ∈
kerZ(A) | ui + vi ≥ 0 ∀i /∈ σ}. Thus,

φv =
∑

{u∈kerZ(A)|ui+vi≥0 ∀i/∈σ}

[v]u−
[u+ v]u+

xu+v. (1.32)
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Theorem 1.4.22. For a generic vector w ∈ Rn and a generic parameter β, the set

{φβ(∂α,σ) | (∂α, σ) ∈ T (inw(IA))} (1.33)

is a basis for the (multivalued) holomorphic solutions of HA(β) in an open set of the form
(1.29) for some ε ∈ Rn−d

>0 .

Corollary 1.4.23. For a generic vector w ∈ Rn and a generic parameter β it holds

rank(HA(β)) = rank(inw(HA(β))) = |T (inw(HA(β)))| = vol(A) (1.34)

The following example summarizes how to obtain the solutions of an A-hypergeometric
system with respect to w ∈ Rn for generic parameters.

Example 1.4.24. Take A as in Example 1.4.17 and β ∈ C3 a generic parameter. Consider the
A-hypergeometric system associated to this data:

HA(β) = IA + 〈x1∂1 − x4∂4 + 1− β1, x2∂1 − x4∂4 − β2, x3∂3 − x4∂4 − β3〉 (1.35)

and w = (1, 0, 0, 1). The fake exponents of HA(β) with respect to w are v = (β1, β2, β3, 0) and
v′ = (0, β2 + β1, β3 + β1,−β1); they correspond to the initial ideal 〈∂1∂4〉 . The genericity on
β consists in that none of the coordinates of v nor v′ is a negative integer. Since kerZ(A) =
{(n,−n,−n, n), n ∈ Z}, it follows that for u = (n,−n,−n, n) with n ≥ 1, the expression
[v]u− vanishes since v4 = 0. Hence

φv = xv ·
∞∑
n=0

[v](0,n,n,0)

[v + (n,−n,−n, n)](n,0,0,n)

(
x1x4

x2x3

)n
= xβ1

1 x
β2

2 x
β3

3 ·
∞∑
n=0

(−1n)(−β2)n(−1n)(−β3)n
(β1 + 1)nn!

(
x1x4

x2x3

)n
= xβ1

1 x
β2

2 x
β3

3 · F
(
−β2,−β3, β1 + 1;

x1x4

x2x3

)
,

i.e., we recover the series hypergeometric series (1.4), with c = β1 + 1, b = −β2 and a = −β3

multiplied by a appropriated monomial to adjust the homogeneity. Similarly, if we consider v′,
we recover the hypergeometric series (1.5).
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Chapter 2

Tools from combinatorics

This chapter summarizes the tools from combinatorics that we need in the rest of the thesis.
Coherent triangulations were treated in section 1.4.2 in the context of initial of toric ideals,
but they are intimately related with the topics seen here. The Secondary Fan is the object that
describes all coherent triangulations for a given configuration. Coherent mixed subdivision
will be used to define algebraic Laurent solutions of particular A-hypergeometric systems in
Chapter 6.

2.1 Secondary Fan

We now present the object that parametrizes all coherent triangulations of the configuration A
and, consequently, it also describes the regions of convergence of A-hypergeometric canonical
series. This object is called the secondary fan of A, and was introduced by Gelfand, Kapranov
and Zelevinsky (see [GKZ94, Chapter 7]). We summarize the construction of the secondary
fan and give some examples related with the ones previously given.

To construct the secondary fan of A, we need the following notion

Definition 2.1.1. A Gale dual for A is a matrix B ∈ Zn×(n−d) whose columns form a Z-basis
for kerZ(A).

Denote by b1, . . . , bn the rows of B, a Gale dual for A, and let ∆ be a coherent triangulation
of A. For each maximal simplex σ ∈ ∆, we define a cone

Kσ =

{∑
i/∈σ

λibi

∣∣∣∣ λi ≥ 0

}
.

The set {bi | i /∈ σ} is linearly independent [GKZ94, Lemma 7.1.16], and therefore Kσ is
full-dimensional.

Define K∆ = ∩σ∈∆Kσ. Then w ∈ Rn is such that ∆w = ∆ if and only if w · B belongs to
the interior of K∆. The cones K∆ for all coherent triangulations ∆ of A are the maximal cones
in a polyhedral fan, called the secondary fan of A (see also [GKZ94, Theorem 7.1.17]). It is in
this sense in which we say that the secondary fan parametrizes the coherent triangulations of
A.

33
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Example 2.1.2. Consider A as in Example 1.1.4. We describe its coherent triangulations in
Example 1.4.18. A Gale dual for the configuration A is given by

B =

 1
−2

1

 .

Consider the coherent triangulation ∆1 = {{0, 1}, {1, 2}}. The one-dimensional cone K∆1

is the intersection of the cones K{0,1} and K{1,2} both equal to {λ ∈ R≥0} = R≥0, that
is K∆1 = R≥0. The vectors w ∈ R3 that induce this triangulation are the ones such that
w1 − 2w2 + w3 > 0.

On the other hand, the triangulation ∆2 = {{0, 2}} corresponds to the cone K∆2 =
K{0,2} = {−2 · λ ∈ R≥0} = R≤0. The vectors w ∈ R3 that induce this triangulation are
the ones such that w1 − 2w2 + w3 < 0.

Next we consider an example where the secondary fan is two-dimensional.

Example 2.1.3. Let

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 1 1 2 3
0 4 1 1 1 0

 , B =


−1 2

0 1
1 −3
1 0
−2 −1

1 1

 .

Being the configuration A a subset of R4 we cannot present the triangulations graphically. To
obtain the secondary fan, we simply draw the vectors bi, i = 1, . . . , 6 in a plane and consider
the positive cones generated pairwise by the row vectors bi. These are the intersections of the
cones Kσ as σ runs over a coherent triangulation. Then the coherent triangulations of conv(A)
are:

∆1 ={{1, 2, 3, 5}, {1, 3, 5, 6}, {1, 2, 4, 5}, {2, 3, 5, 6}, {1, 4, 5, 6}}
∆2 ={{1, 3, 4, 5}, {2, 3, 4, 5}, {1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 5, 6}, {1, 2, 3, 4}}
∆3 ={{3, 4, 5, 6}, {2, 3, 4, 5}, {1, 3, 4, 6}, {2, 3, 5, 6}, {1, 2, 3, 4}}
∆4 ={{2, 3, 4, 6}, {2, 4, 5, 6}, {1, 3, 4, 6}, {1, 2, 3, 4}}
∆5 ={{1, 2, 4, 6}, {2, 4, 5, 6}, {1, 2, 3, 6}}
∆6 ={{1, 2, 5, 6}, {1, 2, 4, 5}, {1, 2, 3, 6}, {1, 4, 5, 6}}

For instance, the triangulation ∆1 is associated to any vector w ∈ R6 such that the planar vec-
tor bw =

∑6
i=1wibi lies in the positive cone R>0b4 + R>0b6. This implies that the complemen-

tary indices {1, 2, 3, 5} form a maximal cell of ∆. Indeed, maximal cells correspond precisely
to the complementary indices of those pairs of vectors bi, bj such that bw ∈ R>0bi + R>0bj .

In Figure 2.1 we depict the secondary fan and indicate, in the interior of each cone, the
corresponding coherent triangulation.
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b1

b2

b3

b4

b5

b6

{1, 2, 3, 5}
{1, 3, 5, 6}
{1, 2, 4, 5}
{2, 3, 5, 6}
{1, 4, 5, 6}

{1, 3, 4, 5}
{2, 3, 4, 5}
{1, 3, 5, 6}
{1, 4, 5, 6}
{2, 3, 5, 6}
{1, 2, 3, 4}

{3, 4, 5, 6}
{2, 3, 4, 5}
{1, 3, 4, 6}
{2, 3, 5, 6}
{1, 2, 3, 4}

{2, 3, 4, 6}
{2, 4, 5, 6}
{1, 3, 4, 6}
{1, 2, 3, 4}

{1, 2, 4, 6}
{2, 4, 5, 6}
{1, 2, 3, 6}

{1, 2, 5, 6}
{1, 2, 4, 5}
{1, 2, 3, 6}
{1, 4, 5, 6}

Figure 2.1: The secondary fan parametrizes the coherent triangulations

2.2 Coherent mixed subdivisions

In this section we describe the combinatorial objects that play the role of the triangulations
in the description of the common roots of the polynomials (5.24), by the work of Huber and
Sturmfels [HS95]. These are the coherent mixed subdivisions of the Minkowski sum of the
corresponding supports. Their relation with polynomial systems will be explained in section
6.1 in order to define algebraic solutions of Cayley configurations. Here we define them and
give some properties.

We begin with the definition of Cayley configurations.
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Definition 2.2.1. Let A1, . . . , Ak ⊂ Zk be k lattice configurations in k-th dimensional space.
Set n = |A1|+· · ·+|Ak| and d = 2k. We call Cayley configuration associated withA1, . . . , Ak,
denoted by A = Cayley(A1, . . . , Ak), the configuration in Zd defined by

A = {e1}× A1 ∪ · · · ∪ {ek}×Ak. (2.1)

Our goal in Chapter 6 will be to describe the Laurent algebraic solutions for the A-hy-
pergeometric systems associated to Cayley configurations (see Definition 2.2.1) (and integer
homogeneities). Based on Example 5.3.4, we will show that the common roots of the polyno-
mials (5.24) play a special role in the description of such solutions.

In the univariate case, there is an intimate relation between the combinatorics of the con-
figuration A and the regions where the roots ρ1(x), . . . , ρd(x) define holomorphic functions.
Examples 5.1.6 and 1.4.18 show this relation: for w ∈ R3 such that the coherent triangulation
of the configuration A is {{0, 1}, {1, 2}}, the roots can be written as Laurent series (see (5.8))
converging in the open set ∣∣∣∣x0x2

x2
1

∣∣∣∣ << 1.

On the other hand, for w ∈ R3 such that the coherent triangulation of the configuration A is
{{0, 2}}, there are no Laurent series in the direction of w, but the roots are still solutions of
HA(β) in the open set ∣∣∣∣ x2

1

x0x2

∣∣∣∣ << 1

and therefore, they can be written as Puiseaux series there with exponents in 1
2
· Z. The roots

of any degree univariate polynomial behave in a similar way.
Although the definitions can be given for an arbitrary k ∈ N we assume k = 2 for simplicity

of the exposition.
Suppose that A1 = {α1, . . . , αr} and A2 = {β1, . . . , βs} are planar lattice configurations.

Set n = r + s.

Definition 2.2.2. Given w ∈ Rn a generic weight we denote by ∆w the corresponding coherent
triangulation of A = Cayley(A1, A2). The corresponding mixed coherent subdivision Πw of
A1 + A2 is defined as follows. The top dimensional cells of Πw are in bijection with the top
dimensional cells in ∆w. Given any top dimensional cell τ in ∆w, must contain an index in
each of A1, A2. Note that dim(τ) = 3 and so |τ | = 4. The vertices of the corresponding cell
στ in Πw are the points αi + βj , for each pair i, r + j ∈ τ with 1 ≤ i ≤ r and 1 ≤ j ≤ s.

We indicate the cell στ in Πw by the cell τ ⊂ {1, . . . , n} of ∆w. We say that στ is mixed if
|τ ∩ Ai| = 2, i = 1, 2, and unmixed otherwise.

Remark 2.2.3. Mixed subdivisions can be defined in terms of liftings of A1 +A2 as in [HS95];
see [DRS10, Section 9.2] for the equivalence of both definitions.

Let w ∈ Rn generic. The following proposition is an easy consequence of the definiton of
coherent mixed subdivision, and Theorem 1.4.16.

Proposition 2.2.4. Let w be a generic weight in Rn and call Πw the associated mixed coherent
subdivision of A1 + A2. Let σ ∈ Πw. The following statements are equivalent:
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1. σ is a cell in Πw.

2. For all σ′ ⊆ σ call Γσ′ = {u ∈ kerA : ui < 0 ⇔ i ∈ σ′}. Then 〈w, u〉 > 0 for all
u ∈ Γσ′ , u 6= 0.

3. No initial monomial in inw(IA) has support (contained) in σ.

Remark 2.2.5. Note that Γσ′ could be empty. For instance, if αi + βj is a vertex of A1 + A2

and σ′ = {i, r + j}, then Γσ′ = ∅. This implies that all vertices automatically satisfy 2. and
then, they belong to any Πw, which is obvious.

Before giving examples of coherent mixed subdivisions, we prove a technical lemma that
will be used in section 6.2.

Lemma 2.2.6. Let w ∈ Rn generic and σ ⊂ Πw a mixed cell. Let I ( σ and rI 6= ∅. Then
there exists w′ ∈ Rn such that σ ⊂ Πw′ and I * Πw′ .

Proof. Suppose I = {i1, . . . , ik}. Given that rI 6= ∅, there exists a binomial of the form

bI = ∂u1
i1
. . . ∂ukik − ∂

v(I) ∈ IA,

where ui ∈ N, i = 1, . . . , k and v(I)j = 0 for all j ∈ I . As I ( σ there exists 1 ≤ j ≤ k such
that ij ∈ I−σ. Set w′ = w+λeij with λ sufficiently large so that inw′(bI) = ∂u1

i1
. . . ∂ukik . Then

I * Πw′ .
To see that σ ⊂ Πw′ , note that by hypothesis and Proposition 2.2.4, no initial monomial in

inw(IA) has support contained in σ. Given that ij /∈ σ, it is clear that no initial monomial with
respect to w′ will have support contained in σ.

Example 2.2.7. Consider A1 = {α1 = (1, 0), α2 = (0, 4), α3 = (1, 1)} and A2 = {β1 =
(1, 1), β2 = (2, 1), β3 = (3, 0)}. In Example 2.1.3 we considered the coherent triangulations
of A = Cayley(A1, A2) and showed how the secondary fan of A can be used to parametrize
them. In order to understand the mixed subdivisions of A1 +A2, we depict the Minkowski sum
in Figure 2.2.

In Figure 2.2.7 we depict the coherent mixed subdivisions of the configuration A, also
parametrized by the secondary fan of A, as in Figure 2.1. Recall that a weight w ∈ Rn induces
the subdivision of A1 +A2 (equivalently, triangulation of A) corresponding to a cone in a Gale
dual of A, if and only if w · B belongs to the interior of such cone. In this sense, the cone
generated by b3 and b5 corresponds to the subdivision {{1, 2, 4, 6}, {2, 4, 5, 6}, {1, 2, 3, 6}}.
Here, the index set {1, 2, 4, 6} indicates the appearance in the subdivision of the cell with
vertices α1 + β1, α1 + β3, α2 + β1, α2 + β3.

Example 2.2.8. Consider A1 = {α1 = (0, 1), α2 = (2, 0), α3 = (1, 2)} and A2 = {β1 =
(1, 0), β2 = (0, 1), β3 = (0, 0)}. Note that the inner normal directions corresponding to A1,
A2 do not alternate. Their Minkowski sum is Figure 2.4 and the coherent mixed subdivisions in
Figure 2.5.
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b
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b α3 + β3

Figure 2.2: The Minkowski sum of A1 + A2 for Example 2.2.7

Example 2.2.9. ForA1 = {α1 = (1, 0), α2 = (0, 1), α3 = (0, 0)} andA2 = {β1 = (2, 0), β2 =
(0, 2), β3 = (0, 0)} we depict the Minkowski sum in Figure 2.6. In this case the convex hulls
of A1 and A2 have the same inner normals, and so this is an example of two non-developed
polytopes (cf. Section 5.4.1). Notice that the Minkowski sum does not have any interior points
of the form αi + βj . Also notice that the six possible coherent mixed subdivisions, depicted in
Figure 2.7, consist of one mixed cell and two unmixed cells.

The following two examples concern the case |A1| = 2 and |A2| = 4, to be discussed in
Chapter 6.

Example 2.2.10. Let A1 = {α1 = (0, 0), α2 = (1, 1)} and A2 = {β1 = (0, 0), β2 =
(1, 0), β3 = (0, 1), β4 = (1, 1)}. The Minkowski sum of the segment and the square is de-
picted in Figure 2.8. In this case the two interior point coincide, that is α1 +β4 = α2 +β1. The
coherent mixed subdivisions are depicted in Figure 2.9.

Example 2.2.11. Let A1 = {α1 = (0, 0), α2 = (1, 1)} and A2 = {β1 = (0, 0), β2 =
(3, 0), β3 = (0, 3), β4 = (1, 1)}, which has an interior point. Their Minkowski sum is de-
picted in Figure 2.10. In this case, there are two interior points: (1, 1) = α1 + β4 = α2 + β1

and (2, 2) = α2 + β4. The coherent mixed subdivisions are depicted in Figure 2.11.
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Figure 2.3: The mixed subdivisions of A for Example 2.2.7.
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Figure 2.7: The mixed subdivisions of A for Example 2.2.9
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Chapter 3

Formal Nilsson solutions of irregular
A-hypergeometric systems

One of the main properties of regular systems, based on important results by Malgrange in the
unidimensional case and Mebkhout in the general case, resides in that one does not need to
prove that a formal solution converges; as we saw in Chapter 1, this happens “automatically”.
We recalled in Theorem 1.4.2 that if the row span of A contains the vector (1, . . . , 1), then the
system HA(β) is regular. If this is not the case, Schulze and Walther [SW08] proved that the
system is not regular. In this chapter we will not assume that the row span of A contains the
vector (1, . . . , 1) and we will reprove in Theorem 3.5.6 their result. Our proof will deal with
formal solutions of general A-hypergeometric systems, so that, in Section 3.1 we introduce the
notion of formal Nilsson solutions, which is an extension of the regular case. To that end, we
introduce a suitable notion of weight vector w ∈ Rn

≥0. The space of formal Nilsson solutions
is then established and we prove its relation with an associated regular system in Section 3.2,
using the operation of homogenization. When the parameters are generic, the action of the
homogenization becomes more clear and we will be able, in Section 3.3, to calculate in com-
binatorial terms the dimension of the space of formal Nilsson solutions as well as to give an
explicit basis of it. For general parameters, we study homogenization of logarithm-free formal
Nilsson solutions in Section 3.4. Finally, in Section 3.5 we use the developed tools to give the
mentioned alternative proof of the result of Schulze and Walther.

3.1 Initial ideals and formal Nilsson series

The following definition characterizes the weight vectors we consider in this and in the follow-
ing chapter. Recall that a cone is strongly convex if it contains no lines.

Definition 3.1.1. A vector w ∈ Rn
>0 is a weight vector for HA(β) if there exists a strongly

convex open rational polyhedral cone C , C \ {0} ⊂ Rn
>0, with w ∈ C , such that, for all

w′ ∈ C , we have

inw(IA) = inw′(IA) and in(−w,w)(HA(β)) = in(−w′,w′)(HA(β)).

In particular, inw(IA) is a monomial ideal.

47
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It follows from the existence of the Gröbner fan (see [MR88] for the commutative version,
and [ACG00] for the situation in the Weyl algebra) that weight vectors form an open dense
subset of Rn

>0. For an introduction to the theory of Gröbner bases in the Weyl algebra, we refer
to Chapters 1 and 2 of [SST00].

Remark 3.1.2. In the case when the cone spanned by the columns of A is strongly convex, the
assumption that weight vectors have positive coordinates is not necessary. To see this, select
h ∈ Rd such that the vector h · A has all positive entries. (This is the definition of strong
convexity for the cone over the columns of A.) If w ∈ Rn, choose a positive number λ such
that w′ = w+λh ·A is coordinatewise positive. We claim that w and w′ define the same initial
ideal for HA(β) (and in particular, for IA).

The reason our claim is true is that the ideal HA(β) is homogeneous with respect to the
Zd-grading in the Weyl algebra defined by deg(xu∂v) = A · (v − u).

We need to verify that, if f ∈ D is A-homogeneous, then in(−w,w)(f) = in(−w′,w′)(f). Write
f =

∑
cuvx

u∂v. Being A-homogeneous means that the vectors A · (v − u) for cuv 6= 0 are all
the same. But

−w′ · u+ w′ · v = −w · u+ w · v + λ [h · A · (−u+ v) ].

Since f is A-homogeneous, using w′ instead of w simply adds a constant to the weights of the
terms in f , from which it follows that the initial forms with respect to w and w′ coincide.

A special case of this phenomenon occurs when (1, . . . , 1) belongs to the rowspan of A,
which happens if and only if the toric ideal IA is homogeneous with respect to the usual Z-
grading of the polynomial ring C[∂].

Our aim is to define a notion of formal solutions to the system HA(β) which includes the
space of canonical solutions described in Theorem 1.3.16. We have set in Definition 3.1.1
stronger conditions for the weight vector w with respect to which the solutions are considered.
Now we define the space of formal Nilsson series solutions of HA(β) associated to a weight
vector w, which we denote Nw(HA(β)).

Recall that if w is a weight vector for HA(β), and C is an open cone as in Definition 3.1.1,
the polar cone C ∗ consisting of elements u ∈ Rn such that u ·w′ ≥ 0 for all w′ ∈ C is strongly
convex. Moreover, for any nonzero u ∈ C ∗ and any w′ ∈ C , we have u · w′ > 0.

Definition 3.1.3. Let w be a weight vector for HA(β). A formal solution φ of HA(β) that has
the form

φ =
∑
u∈C

xv+upu(log(x)), where v ∈ C, (3.1)

and satisfies

1. C is contained in C ∗ ∩ kerZ(A), where C is an open cone as in Definition 3.1.1,

2. The pu are polynomials, and there exists K ∈ Z such that deg(pu) ≤ K for all u ∈ C,

3. p0 6= 0,

is called a basic Nilsson solution of HA(β) with respect to w. The set

supp(φ) = {u ∈ C | pu 6= 0} ⊂ kerZ(A)
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is called the support of φ.
The C-span of the basic Nilsson solutions of HA(β) with respect to w is called the space of

formal Nilsson series solutions of HA(β) with respect to w and is denoted by Nw(HA(β)).

Remark 3.1.4. Given a weight vector w, we may replace the first requirement in Defini-
tion 3.1.3 by either of the following equivalent conditions:

i) C ⊂ kerZ(A) and there exists an open neighborhood U of w such that, for all w′ ∈ U and
all u ∈ C r {0}, we have w′ · u > 0.

ii) There exist R-linearly independent γ1, . . . , γn ∈ Qn with w · γi > 0 for all i = 1, . . . , n,
such that C ⊂

(
R≥0γ1 + · · ·+ R≥0γn

)
∩ kerZ(A).

Remark 3.1.5. If w is a weight vector for HA(β) and C is a strongly convex open cone as
in Definition 3.1.1, then for any w′ ∈ C , the exponents of HA(β) with respect to w and w′

coincide. Moreover, the basic Nilsson solutions of HA(β) with respect to w and w′ are the
same, and therefore Nw(HA(β)) = Nw′(HA(β)).

Lemma 3.1.6. If φ is a basic Nilsson solution of HA(β) with respect to w as in (3.1), then v is
an exponent of HA(β) with respect to w.

Proof. Since w is a weight vector, w · u > 0 for all u ∈ C ∗. This implies that inw(φ) =
xvp0(log(x)). Thus, xvp0(log(x)) is a solution of in(−w,w)(HA(β)) by Theorem 1.3.9. But then
xv is a solution of the initial ideal in(−w,w)(HA(β)) by [SST00, Theorems 2.3.3(2) and 2.3.11].

Compare the following definition with Definition 1.3.17.

Definition 3.1.7. Solutions of HA(β) of the form (3.1) that satisfy the first two conditions in
Definition 3.1.3 are called series solution of HA(β) in the direction of w. The C-span of all
such series is called the space of series solutions of HA(β) in the direction of w.

Most of the considerations about the ring Nw can be made also on Nw(HA(β)). We can
consider the term order (1.18) and manipulate the series in the same way. This is a version of
Lemma 1.3.10 that clearly holds for Nw(HA(β)):

Lemma 3.1.8. Let φ1, . . . , φk ∈ Nw(HA(β)).

1. If the initial series inw(φ1), . . . , inw(φk) are C-linearly independent, then φ1, . . . , φk are
C-linearly independent.

2. If φ1, . . . , φk are C-linearly independent, there exists a k×k complex matrix (λij) such that
the initial series of ψi =

∑k
j=1 λijφj for i = 1, . . . , k are C-linearly independent.

We can compare the dimension of the space of formal Nilsson solutions of HA(β) with
respect to w with the holonomic rank of the associated initial ideal.

Proposition 3.1.9. Let w be a weight vector for HA(β). Then

dimC(Nw(HA(β))) ≤ rank(in(−w,w)(HA(β))). (3.2)
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Proof. Choose ψ1, . . . , ψk linearly independent elements of Nw(HA(β)). The second part of
Lemma 3.1.8 allows us to assume that the series inw(ψ1), . . . , inw(ψk) are linearly indepen-
dent solutions of the initial system in(−w,w)(HA(β)). These initial series have a non empty
common open domain of convergence since they have a finite number of terms. Therefore
dimC(Nw(HA(β))) cannot exceed the holonomic rank of in(−w,w)(HA(β)).

We show in Corollary 3.3.12 that this inequality is, in fact, an equality for generic β. If
IA is a homogeneous ideal, dimC Nw(HA(β)), rank(in(−w,w)(HA(β))), and rank(HA(β)) are
the same (see Proposition 3.1.10 below). However, if IA is not homogeneous, we will prove in
Corollary 3.3.13 that rank(in(−w,w)(HA(β))) does not always equal rank(HA(β)).

Finally, we show that this notion of formal solution coincide with the known space of solu-
tions for the regular case.

Proposition 3.1.10. If the row span of A contains the vector (1, . . . , 1) and w ∈ Rn is a
weight vector then the space generated by the canonical series coincides with Nw(HA(β)). In
particular

dimC(Nw(HA(β))) = rank(HA(β)). (3.3)

Proof. By Theorem 1.4.2 we know that HA(β) is regular holonomic. Then, by Proposition
3.1.9 and Theorem 1.3.11 we have that

dimC(Nw(HA(β))) ≤ rank(HA(β)). (3.4)

On the other hand, any canonical solution ofHA(β) is, by definition, a basic solution ofHA(β).
This means that the space spanned by the canonical series solutions ofHA(β), whose dimension
is rank(HA(β)), is less or equal that dimC(Nw(HA(β))). This concludes the proof.

3.2 Homogenization of formal Nilsson solutions of HA(β)

The goal of this section is to obtain the solutions of the system HA(β) by solving a related
hypergeometric system that is regular holonomic. For generic parameters, this idea was used in
other works, such as [OT09]; here, we require no genericity hypotheses on β. The key concept
is that of homogenization.

Notation 3.2.1. Throughout this and the following chapter, the letter ρ is used to indicate the
homogenization of various objects: polynomials, ideals, and later on, Nilsson series.

If f ∈ C[∂1, . . . , ∂n] is a polynomial, we denote by ρ(f) ∈ C[∂0, ∂1, . . . , ∂n] its homoge-
nization, that is,

f =
∑
u∈Nn

cu∂
u =⇒ ρ(f) =

∑
u∈Nn

cu∂
deg(f)−|u|
0 ∂u, |u| = u1 + · · ·+ un.

If I ⊆ C[∂1, . . . , ∂n] is an ideal, then

ρ(I) = 〈ρ(f) | f ∈ I〉 ⊆ C[∂0, ∂1, . . . , ∂n].
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If A = [aij] is a d × n integer matrix, then ρ(A) ∈ Z(d+1)×(n+1) is obtained by attaching
a column of zeros to the left of A, and then attaching a row of ones to the resulting matrix,
namely

ρ(A) =


1 1 . . . 1
0 a11 . . . a1n
...

...
...

0 ad1 . . . adn

 .

Note that
ρ(IA) = Iρ(A).

Let w be a weight vector for HA(β) and fix β0 ∈ C. Let Hρ(A)(β0, β) be the (regular
holonomic) hypergeometric system associated to the matrix ρ(A) from Notation 3.2.1 and the
vector (β0, β) ∈ Cn+1. Since the set of weight vectors for Hρ(A)(β0, β) is an open dense subset
of Rn+1

>0 , there exists α = (α0, . . . , αn) ∈ Rn+1 and ε0 > 0 such that (0, w) + εα is a weight
vector for Hρ(A)(β0, β) for all 0 < ε < ε0. But then (0, w) + εα − εα0(1, . . . , 1) is also
a weight vector for Hρ(A)(β0, β), because Iρ(A) is homogeneous (see Remark 3.1.2). If ε is
sufficiently small, then w′ = w + ε((α1, . . . , αn) − α0(1, . . . , 1)) belongs to the open cone C
from Definition 3.1.1. This means that we can use w′ instead of w as weight vector for HA(β),
with the same open cone, initial ideals, and basic Nilsson solutions as w, and guarantee that
(0, w′) is a weight vector for Hρ(A)(β0, β).

This justifies assuming, as we do from now on, that any time we choose a weight vector w
for HA(β), the vector (0, w) is a weight vector for Hρ(A)(β0, β).

We have chosen a weight vector w, and we wish to use the auxiliary system Hρ(A)(β0, β)
to study the solutions of HA(β). The matrix ρ(A) is fixed, but we have freedom in the choice
of the parameter β0 ∈ C, and it is convenient to assume that β0 is generic. The correct notion
of genericity for β0 can be found in Definition 3.2.4. Under that hypothesis, our objective is to
construct an injective linear map

ρ : Nw(HA(β)) −→ N(0,w)(Hρ(A)(β0, β)), (3.5)

whose image is described in Theorem 3.2.12. For some weight vectors, ρ is guaranteed to be
surjective (Proposition 3.5.1). However, if the cone over the columns of A is strongly convex
and IA is not homogeneous, there always exist weights for which surjectivity fails (Proposi-
tion 3.5.4).

Let φ =
∑

u∈C x
v+upu(log(x)) be a basic Nilsson solution of HA(β) with respect to w as

in (3.1). Since φ is annihilated by the Euler operators E1 − β1, . . . , Ed − βd, the polynomials
pu appearing in φ belong to the symmetric algebra of the lattice kerZ(A) by [Sai02, Proposition
5.2]. More explicitly, let {γ1, . . . , γn−d} ⊂ Zn be a Z-basis of kerZ(A). Then we can write

pu(t1, . . . , tn) =
∑

α∈Nn−d
cα

n−d∏
j=1

(γj · (t1, . . . , tn))αj .

For such a pu, define

p̂u(t0, t1, . . . , tn) =
∑

α∈Nn−d
cα

n−d∏
j=1

((−|γj|) t0 + γj · (t1, . . . , tn))αj , (3.6)
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where, for any vector v = (v1, . . . , vn) ∈ Cn, |v| =
∑n

i=1 vi. Note that p̂u specializes to pu
when x0 = 1, or equivalently, when log(x0) = 0.

The formal definition of the homogenization of the series φ =
∑

u∈C x
v+upu(log(x)) is

ρ(φ) =
∑
u∈C

∂
|u|
0 x

β0−|v|
0 xv+up̂u(log(x0), . . . , log(xn)). (3.7)

If |u| ≥ 0 for all u ∈ C, the above formula makes sense, and it easily checked that ρ(φ) is
a basic Nilsson solution of Hρ(A)(β0, β) with respect to (0, w). The bulk of the work in this
section concerns the definition and properties of the operator ∂k0 when k ∈ Z<0.

We point out that there is one case when the elements of the supports of all basic Nilsson
solutions of HA(β) with respect to w are guaranteed to have non negative coordinate sum,
namely when the weight vector w is close to (1, . . . , 1). We make this notion precise in the
following definition.

Definition 3.2.2. Let w be weight vector for HA(β). We say that w is a perturbation of w0 ∈
Rn
>0 if there exists an open cone C as in Definition 3.1.1 with w ∈ C , such that w0 lies in the

closure of C .

Suppose that φ = xv
∑

u∈C x
upu(log(x)) is a basic Nilsson solution of HA(β) with respect

to a weight vectorw which is a perturbation of (1, . . . , 1). Since u ∈ C implies u ∈ C ∗ = (C )∗,
we have u · w ≥ 0 for all u ∈ C. But then, as C ⊂ Zn and w is a perturbation of (1, . . . , 1), it
follows that |u| = u · (1, . . . , 1) ≥ 0 for all u ∈ C. Thus, the operator ∂|u|0 is defined, and so
is (3.7).

As we mentioned before, in order to work with other weight vectors, we need to define the
operator ∂k0 when k is negative.

Recall that in(0,w)(Iρ(A)) is a monomial ideal, as (0, w) is a weight vector for Hρ(A)(β0, β).
A standard pair of in(0,w)(Iρ(A)) is said to pass through zero if 0 ∈ σ.

Definition 3.2.3. We say that a basic Nilsson solution of HA(β) as in (3.1) is associated to the
standard pair (∂α, σ) if v is the (fake) exponent corresponding to this standard pair.

The following definition gives the correct notion of genericity for β0 ∈ C so that we can
study the solutions of HA(β) using those of Hρ(A)(β0, β).

Definition 3.2.4. Let w be a weight vector for HA(β). We say that β0 is a homogenizing value
for A, β, and w if β0 /∈ Z and for any fake exponent v of HA(β) with respect to w, we have
v0 = β0 −

∑n
j=1 vj /∈ Z.

Given a weight vector w for HA(β), we fix a homogenizing value β0 for A, β, and w. Let
φ as in (3.1) be a basic Nilsson solution of HA(β) with respect to w. We want to construct a
basic Nilsson solution ρ(φ) of Hρ(A)(β0, β) with respect to (0, w).

The following lemma tells us how to differentiate logarithmic terms.

Lemma 3.2.5. [Sai02, Lemma 5.3] Let h be a polynomial in r variables, ν ∈ Nr and s ∈ Cr.
Then

∂νxsh(log(x)) = xs−ν
( ∑

0≤ν′≤ν
λν′

[
∂ν−ν

′
h

]
(log(x))

)
,
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where the sum is over nonnegative integer vectors ν ′ that are coordinatewise smaller than ν,
and the λν′ are complex numbers.

Lemma 3.2.6. Let p̂ be a polynomial in n + 1 variables, and s ∈ Cn. If s0 ∈ C and s0 6= −1,
there exists a unique polynomial q̂ with deg(q̂) = deg(p̂) such that

∂0

[
xs0+1

0 xsq̂(log(x0), . . . , log(xn))
]

= xs00 x
sp̂(log(x0), . . . , log(xn)). (3.8)

Proof. Writing

p̂(log(x)) =
k∑
i=0

pi(log(x1), . . . , log(xn)) log(x0)i

and

q̂(log(x)) =
k∑
i=0

qi(log(x1), . . . , log(xn)) log(x0)i,

we can equate coefficients in (3.8) to obtain

pk = (s0 + 1)qk ; pi = (s0 + 1)qi + (i+ 1)qi+1 0 ≤ i ≤ k − 1.

Therefore

qi =
k−i∑
`=0

(−1)`
∏`

j=1(i+ j)

(s0 + 1)`
pi+` 0 ≤ ` ≤ k,

where the empty product is defined to be 1.

Definition 3.2.7. With the notation of Lemma 3.2.6, define

∂−1
0

[
xs00 x

sp̂(log(x0), . . . , log(xn))
]

= xs0+1
0 xsq̂(log(x0), . . . , log(xn)).

Note that if s0 6= −2, . . . ,−k, the construction of ∂−1
0 can be iterated (k− 1) times. We denote

by ∂−k0

[
xs00 x

sp̂(log(x0), . . . , log(xn))
]

the outcome of this procedure.

Lemma 3.2.8. Use the same notation and hypotheses as in Lemma 3.2.6, and assume further-
more that xs00 x

sp̂(log(x)) is a solution of 〈E0 − β0, E − β〉. Then ∂−1
0 [xs00 x

sp̂(log(x))] is a
solution of 〈E0− (β0 + 1), E− β〉. If s0 6= −2, . . . ,−k, then ∂−k0 [xs00 x

sp̂(log(x))] is a solution
of the system 〈E0 − (β0 + k), E − β〉.

Proof. If i > 0, ∂0(Ei − βi) = (Ei − βi)∂0, so that

∂0(Ei − βi)(∂−1
0 xs00 x

sp̂(log(x))) = (Ei − βi)∂0(∂−1
0 xs00 x

sp̂(log(x)))

= (Ei − βi)xs00 x
sp̂(log(x))

= 0.

This means that (Ei − βi)(∂
−1
0 xs00 x

sp̂(log(x))) is constant with respect to x0. On the other
hand, s0 + 1 6= 0 and (Ei− βi)(∂−1

0 xs00 x
sp̂(log(x))) is a multiple of xs0+1. Thus, in order to be

constant with respect to x0, (Ei−βi)(∂−1
0 xs00 x

sp̂(log(x))) must vanish. For i = 0, the argument
is similar since ∂0(E0 − (β0 + 1)) = (E0 − β0)∂0. The last assertion follows by induction on
k.
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Lemma 3.2.9. Let ν ∈ Nn, k ∈ Z, and assume that s0 /∈ Z. Then

∂ν
[
∂k0
[
xs00 x

sp(log(x0), . . . , log(xn))
]]

= ∂k0
[
∂ν
[
xs00 x

sp(log(x0), . . . , log(xn))
]]
.

Proof. This is clear if k ≥ 0. For k < 0, the result follows by induction from the uniqueness
part of Lemma 3.2.6.

We are now ready to define the homogenization of a basic Nilsson solution of HA(β).

Definition 3.2.10. Let φ = xv
∑

u∈C x
upu(log(x)) be a basic Nilsson solution of HA(β) with

respect to a weight vector w, and let β0 ∈ C a homogenizing value for A, β and w, so that
v0 = β0 −

∑n
i=1 vi is not an integer. Thus, we may define

ρ(φ) =
∑
u∈C

∂
|u|
0

[
xv0

0 x
v+up̂u(log(x0), log(x1), . . . , log(xn))

]
,

where p̂u is obtained from pu as in (3.6).

Proposition 3.2.11. Let w be a weight vector with respect to HA(β) (which, by assumption
implies that (0, w) is a weight vector for Hρ(A)(β0, β), where β0 is our fixed homogenizing
value for A, β and w). For any basic Nilsson solution φ = xv

∑
xupu(log(x)) of HA(β)

with respect to w, the (formal) series ρ(φ) from Definition 3.2.10 is a basic Nilsson solution of
Hρ(A)(β0, β) with respect to (0, w). We extend ρ linearly to obtain a map

ρ : Nw(HA(β))→ N(0,w)(Hρ(A)(β0, β)).

Proof. We first show that the series ρ(φ) has the shape required in Definition 3.1.3. Condi-
tions 2 and 3 are clearly satisfied by the construction of the polynomials p̂u and Lemma 3.2.5.
Thus, we need to verify that ρ(φ) satisfies condition (i) from Remark 3.1.4. The support of φ is
in bijection with the support of ρ(φ) via u 7→ (−|u|, u), which sends kerZ(A) into kerZ(ρ(A)).
We can assume that C is the intersection of kerZ(A) with the dual C ∗ of an open cone C such
that its closure C is a strongly convex rational polyhedral cone of maximal dimension. Let
{γ1, . . . , γm} be a Hilbert basis of C ∗ ∩ kerZ(A) = (C )∗ ∩ kerZ(A). Then w′ · γi > 0 for all
w′ ∈ C and all i = 1, . . . ,m. Let δ > 0 such that, for all ε ∈ Rn+1

>0 whose Euclidean distance
to the origin is ||ε|| < δ, and all i = 1, . . . ,m, we have

[
(0, w) + ε

]
· (−|γi|, γi) > 0. It follows

that for any non zero u ∈ C and any w̃ in the ball centered at (0, w) with radius δ, we have
w̃ · (−|u|, u) > 0, which proves our claim.

Now we prove that ρ(φ) is a formal solution of Hρ(A)(β0, β). Since p̂u belongs to the
symmetric algebra of kerZ(ρ(A)), and

ρ(A) · (v0, v + u) = (β0 − |v|+ |v|+ |u|, A · (v + u)) = (β0 + |u|, β),

the term xv0
0 x

v+up̂u(log(x0), log(x1), . . . , log(xn)) is a solution of the system of Euler operators
〈E0−(β0+|u|), E1−β1, . . . , Ed−βd〉. By Lemma 3.2.8 with (s0, s) = (v0, v+u) and k = −|u|,
each term of ρ(φ) is therefore a solution of 〈E − (β0 + |u| − |u|), E1 − β1, . . . , Ed − βd〉.

To verify that the elements of Iρ(A) annihilate ρ(φ), first note that Lemma 3.2.5 implies that
for any µ ∈ kerZ(A)

∂µ+xv+upu(log(x)) = ∂µ−xv+u−µpu−µ(log(x)),
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because φ is a solution of HA(β).
We claim that

∂µ+xv0
0 x

v+up̂u(log(x)) = ∂µ−xv0
0 x

v+u−µp̂u−µ(log(x)).

To see this, use Lemma 3.2.5 and the fact that, if i > 0 and p is an element of the symmetric
algebra of kerZ(A), then ∂ip is also in the symmetric algebra of kerZ(A), and ∂ip̂ = ∂̂ip.

Now, using Lemma 3.2.9 with (s0, s) = (v0, v + u) and k = |u|, and the fact that v0 =
β0 − |v| /∈ Z, we obtain from

∂
|u|
0 ∂µ+xv0

0 x
v+up̂u(log(x)) = ∂

|µ|
0 ∂

|u|−|µ|
0 ∂µ−xv0

0 x
v+u−µp̂u−µ(log(x)),

that
∂µ+

[
∂
|u|
0 xv0

0 x
v+up̂u(log(x))

]
= ∂

|µ|
0 ∂µ−

[
∂
|u|−|µ|
0 xv0

0 x
v+u−µp̂u−µ(log(x))

]
.

Assuming |µ| > 0, we conclude

∂(−|µ|,µ)+

[
∂
|u|
0 xv0

0 x
v+up̂u(log(x))

]
= ∂(−|µ|,µ)−

[
∂
|u|−|µ|
0 xv0

0 x
v+u−µp̂u−µ(log(x))

]
.

We linearly extend ρ to Nw(HA(β)), and show that this map identifies Nw(HA(β)) with a
subspace of N(0,w)(Hρ(A)(β0, β)). Therefore, the inverse map ρ−1 allows us to obtain Nilsson
solutions of HA(β) from Nilsson solutions of the regular holonomic system Hρ(A)(β0, β).

Theorem 3.2.12. Let w be a weight vector for HA(β) and β0 a homogenizing value for A, β
and w. The linear map

ρ : Nw(HA(β))→ N(0,w)(Hρ(A)(β0, β))

is injective and its image is spanned by basic Nilsson solutions of Hρ(A)(β0, β) with respect to
(0, w) associated to standard pairs of in(0,w)(Iρ(A)) that pass through zero.

Proof. If φ =
∑

u∈C x
v+upu(log(x)) is a basic Nilsson solution of HA(β) with respect to w,

then we have in(0,w)(ρ(φ)) = xv0
0 x

vp̂0(log(x0), . . . , log(xn)). Choose a basis of Nw(HA(β))
consisting of basic Nilsson series whose initial terms are linearly independent (use the second
part of Lemma 3.1.8). Then the initial series of their images are also linearly independent, as
p̂(1, log(x)) = p(log(x)). Now apply the first part of Lemma 3.1.8 to complete the proof that ρ
is injective.

Observe that, by construction, ρ(Nw(HA(β))) is contained in the span of the basic Nilsson
solutions of Hρ(A)(β0, β) corresponding to standard pairs that pass through zero, because the
powers of x0 appearing in ρ(φ) are non integer for any basic Nilsson solution φ of HA(β).

To show the other inclusion, let ψ be a basic Nilsson solution of Hρ(A)(β0, β) with respect
to (0, w) corresponding to a standard pair that passes through zero, with starting exponent
(β0 − |v|, v). We wish to prove that ψ can be dehomogenized. We can write

ψ = x
β0−|v|
0 xv

∑
(−|u|,u)∈kerZ(ρ(A))

x
−|u|
0 xuhu(log(x)),
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where β0 − |v| is not an integer because β0 is a homogenizing value for A, β and w. Then we
can perform

∂
|u|
0

(
x
β0−|v|−|u|
0 xv+uhu(log(x))

)
= x

β0−|v|
0 xv+up̂u(log(x))

and use this to define φ =
∑
xv+upu(log(x)) (with the same relation between p and p̂ as

in (3.6)). We claim that φ is a basic Nilsson solution of HA(β) and ψ = ρ(φ). The proof of this
claim is a reversal of the arguments in Proposition 3.2.11.

Definition 3.2.13. For a series ψ ∈ N(0,w)(Hρ(A)(β0, β)) with φ ∈ Nw(HA(β)) such that
ρ(φ) = ψ, we call φ a dehomogenized Nilsson series, or say that φ is the dehomogenization
of ψ.

3.3 Hypergeometric Nilsson series for generic parameters

When the parameter vector β is sufficiently generic (see Convention 3.3.2), the Nilsson solu-
tions of HA(β) are completely determined by the combinatorics of the initial ideals of IA. The
goal of this section is to study this case in detail.

In order to precisely describe the genericity condition used in this section, we restate the
description of in(−w,w)(HA(β)) made in Section 1.4.2 for generic parameter vectors.

Lemma 3.3.1. For β generic,

in(−w,w)(HA(β)) = inw(IA) + 〈E − β〉.

Therefore, all the fake exponents of HA(β) with respect to w are actual exponents.
Moreover, under suitable genericity conditions for β, a better description of the initial ideal

in(−w,w)(HA(β)) is available, namely

in(−w,w)(HA(β)) = top(inw(IA)) + 〈E − β〉.

Proof. This is a version of [SST00, Theorem 3.1.3 and Theorem 3.2.11] for non homogeneous
toric ideals, which holds with the same proof, since IA is always A-graded.

Convention 3.3.2. In this section, we assume that β is generic enough that the second displayed
formula in Lemma 3.3.1 is satisfied, so that all exponents ofHA(β) with respect to w come from
top-dimensional standard pairs of inw(IA).

Moreover, we require that the only integer coordinates of these exponents are the ones
imposed by the corresponding standard pairs. In particular, the exponents of HA(β) with
respect to w have no negative integer coordinates.

Finally, we ask that no two exponents differ by an integer vector. Note that these integrality
conditions force us to avoid an infinite (but locally finite) collection of affine spaces.

The series φv from Proposition 1.4.21 (which is proved without assumptions on A) is our
“model” of solution in the generic case.

Proposition 3.3.3. If v is a fake exponent with respect to a weight vector w of HA(β), then φv
is a basic Nilsson solution of HA(β).
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Proof. Note that u ∈ supp(φv) implies u · w ≥ 0 as is shown in the proof of [SST00, Theo-
rem 3.4.2]. Since v is a fake exponent ofHA(β) with respect to anyw′ in an open neighborhood
of w, we have in fact that u · w > 0 for any nonzero u in the support of φv. This argument
shows that φv satisfies the first requirement from Definition 3.1.3. The remaining conditions
are readily verified.

In this section, we describe the space Nw(HA(β)) using the homogenization map ρ defined
in Section 3.2. An explicit basis for Nw(HA(β)) is constructed using the exponents of the ideal
HA(β). Our first step is to relate the exponents of HA(β) with respect to w to the exponents of
Hρ(A)(β0, β) with respect to (0, w).

The following is a well known result, whose proof we include for the sake of completeness.

Lemma 3.3.4. Let I ⊂ C[∂1, . . . , ∂n] be an ideal and let ρ(I) ⊂ C[∂0, ∂1, . . . , ∂n] be its
homogenization. Let w ∈ Rn

≥0 sufficiently generic so that inw(I) and in(0,w)(ρ(I)) are both
monomial ideals. Suppose that

in(0,w)(ρ(I)) =
⋂

Qi

is a primary decomposition of the monomial ideal in(0,w)(ρ(I)). Then

inw(I) =
⋂

∂0 /∈
√
Qi

〈f(1, ∂1, . . . , ∂n) | f ∈ Qi〉

is a primary decomposition of the monomial ideal inw(I).

Proof. Let f ∈ I such that inw(f) is a monomial. Then in(0,w)(ρ(f)) = ∂h0 inw(f) for some
h ∈ N, with h = 0 if f is homogeneous. Therefore inw(I) is obtained by setting ∂0 7→ 1
in the generators of in(0,w)(ρ(I)). Now the result follows by observing that if Q is primary
monomial ideal one of whose generators is divisible by ∂0, then Q must contain a power of ∂0

as a minimal generator.

Notation 3.3.5. Given β0 ∈ C and v ∈ Cn, we set

ρβ0(v) = (β0 −
n∑
i=1

vi, v) = (β0 − |v|, v).

In particular, ρ0 = ρ maps kerZ(A) to kerZ(ρ(A)).

Lemma 3.3.6. Let β0, β generic and w a weight vector forHA(β). Then the map v 7→ ρβ0(v) is
a bijection between the exponents ofHA(β) with respect tow and the exponents ofHρ(A)(β0, β)
with respect to (0, w) associated to standard pairs that pass through zero.

Proof. By Lemma 3.3.4, v is the exponent of HA(β) with respect to w corresponding to a
standard pair (∂α, σ), if and only if ρβ0(v) is the exponent of Hρ(A)(β0, β) with respect to
(0, w) corresponding to the standard pair (∂α, {0} ∪ σ).

The following result is immediate.
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Lemma 3.3.7. Let β generic, w a weight vector for HA(β) and β0 a homogenizing value for
A, β and w. Let v be an exponent of HA(β) with respect to w and consider the map ρ from
Proposition 3.2.11. Then

ρ(φv) = φ(ρβ0
(v),v),

where φv, φ(ρβ0
(v),v) are as in Proposition 1.4.21.

We now come to the main result in this section.

Theorem 3.3.8. Let β generic and w a weight vector for HA(β). Then

{φv | v is an exponent of HA(β) with respect to w}

is a basis for Nw(HA(β)).

Proof. Fix a homogenizing value β0 for A, β and w, and let ψ ∈ Nw(HA(β)). Then, by
Theorem 3.2.12, Then ρ(ψ) ∈ N(0,w)(Hρ(A)(β0, β)). Since Iρ(A) is homogeneous, Hρ(A)(β0, β)
is regular holonomic, and we can use Lemma 3.3.7 and the results from the previous subsection
to write

ρ(ψ) =
∑

cvφ(ρβ0
(v),v) =

∑
cvρ(φv) (3.9)

where the sum is over the exponents of Hρ(A)(β0, β) with respect to (0, w) corresponding to
standard pairs that pass through zero, and the cv are complex numbers. By Lemma 3.3.6, the
sum is over the exponents of HA(β) with respect to w. But ρ is injective, so (3.9) implies

ψ =
∑

cvφv.

Thus Nw(HA(β)) is contained in the C-span of the series φv associated to the exponents of
HA(β) with respect to w. Since the series φv are basic Nilsson solutions of HA(β) with respect
to w (Proposition 1.4.21), the reverse inclusion follows. Linear independence is proved using
Lemma 3.1.8.

Recall that we have assumed that, if w is a weight vector for HA(β), then (0, w) is a weight
vector for Hρ(A)(β0, β). In particular, this implies that the subdivision of ρ(A) induced by
(0, w) is in fact a triangulation [Stu96, Chapter 8].

Corollary 3.3.9. Assume β ∈ Cd is generic and let w be a weight vector for HA(β). The
dimension of the space of Nilsson solutions of HA(β) with respect to w is

dimC(Nw(HA(β))) =
∑

σ facet of ∆(0,w)
such that 0 ∈ σ

vol(σ).

Proof. By Theorem 3.3.8, dimC(Nw(HA(β))) is the number of exponents of HA(β) with re-
spect to w, which is the number of top dimensional standard pairs of inw(IA), because β
is generic. Using the bijection from Lemma 3.3.6, we conclude that dimC(Nw(HA(β))) is
the number of top dimensional standard pairs of in(0,w)(Iρ(A)) that pass through zero. Given
σ ⊂ {0, 1, . . . , n} of cardinality d+ 1 such that 0 ∈ σ, the number of top dimensional standard
pairs of in(0,w)(Iρ(A)) of the form (∂α, σ) is the multiplicity of 〈∂i | i /∈ σ〉 as an associated
prime of in(0,w)(Iρ(A)) by [STV95, Lemma 3.3]. This number equals the normalized volume of
the simplex {0} ∪ σ by [Stu96, Theorem 8.8], and the result follows.
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Proposition 3.3.10. Suppose that β is generic, and let w be a weight vector for HA(β). Then

rank(in(−w,w)(HA(β)) = deg(inw(IA)).

Proof. By Lemma 3.3.1, in(−w,w)(HA(β)) = top(inw(IA)) + 〈E − β〉. Since top(inw(IA)) is
a monomial ideal, in(−w,w)(HA(β)) and 〈xu∂u | ∂u ∈ top(inw(IA))〉+ 〈E − β〉 have the same
holomorphic solutions.

We denote xi∂i = θi, and observe that C[θ1, . . . , θn] is a commutative polynomial subring of
D. Also recall that the Euler operators Ei− βi belong to C[θ]. Since xu∂u =

∏n
i=1

∏ui−1
j=0 (θi−

j), [SST00, Proposition 2.3.6] can be applied to conclude that

rank(in(−w,w)(HA(β))) = dimC

(
C[θ]

〈∏n
i=1

∏ui−1
j=0 (θi − j) | ∂u ∈ top(inw(IA))〉+ 〈E − β〉

)
.

(3.10)
Considered as a system of polynomial equations in n variables, the zero set of 〈∏n

i=1

∏ui−1
j=0 (θi−

j) | ∂u ∈ top(inw(IA))〉 is a subvariety of Cn consisting of deg(inw(IA)) irreducible compo-
nents, each of which is a translate of a d-dimensional coordinate subspace of Cn. By [SST00,
Corollary 3.2.9], each of these components meets the zero set of 〈E − β〉 in exactly one point.
Therefore the dimension in the right hand side of (3.10) equals deg(inw(IA)), and the proof is
complete.

Corollary 3.3.11. Let β generic and w a weight vector for HA(β). Then

rank(in(−w,w)(HA(β))) =
∑

σ facet of ∆(0,w)
such that 0 ∈ σ

vol(σ), (3.11)

Proof. We need to show that the sum on the right hand side of (3.11) equals deg(inw(IA)).
This degree equals the number of top dimensional standard pairs of inw(IA) by [STV95,
Lemma 3.3], which equals the number of top dimensional standard pairs of in(0,w)(Iρ(A)) pass-
ing through zero by Lemma 3.3.6. As in the proof of Corollary 3.3.9, the number of such
standard pairs is the desired sum.

Corollary 3.3.12. Suppose that β is generic and w is a weight vector for HA(β). Then

dimC(Nw(HA(β))) = rank(in(−w,w)(HA(β))).

Proof. Immediate from Corollary 3.3.9 and Corollary 3.3.11.

The following corollary states that, for certain weight vectors, the dimension of Nw(HA(β))
equals rank(HA(β)). However, this fails in general, as Example 3.3.14 shows. This means
that, as expected, formal Nilsson series are not enough to understand the solutions of irregular
hypergeometric systems.

Corollary 3.3.13. Suppose that β is generic, and w is a weight vector for HA(β). The equality

dimC(Nw(HA(β))) = vol(A) = rank(HA(β))

holds if and only if 0 belongs to every maximal simplex in the triangulation ∆(0,w) of ρ(A).
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Proof. Note that vol(A) = vol(ρ(A)), which is the sum of the volumes of all the maximal
simplices in ∆(0,w). Therefore dimC(Nw(HA(β))) = vol(A) if and only if all maximal sim-
plices in ∆(0,w) pass through zero. Now use a result of Adolphson [Ado94] that, for generic β,
rank(HA(β)) = vol(A).

Example 3.3.14. Let

A =

(
1 0 1
0 1 1

)
, so that IA = 〈∂3 − ∂1∂2〉 .

Then vol(ρ(A)) = vol(A) = 2 is the generic rank of both HA(β) and Hρ(A)(β0, β).
If w is a perturbation of (1, 1, 1), we have inw(IA) = 〈∂1∂2〉 and the corresponding trian-

gulation is ∆(0,w) = {{0, 1, 3}, {0, 2, 3}}. In this case

dimC(Nw(HA(β))) = vol({0, 1, 3}) + vol({0, 2, 3}) = 2 = rank(HA(β)).

On the other hand, if w is a perturbation of (1, 1, 3), then we have inw(IA) = 〈∂3〉 and the
corresponding triangulation is ∆(0,w) = {{0, 1, 2}, {1, 2, 3}}. In this case

dimC(Nw(HA(β))) = vol({0, 1, 2}) = 1 < rank(HA(β)).

3.4 Logarithm-free Nilsson series

If we assume that β is generic, then all of the Nilsson solutions of HA(β) are automatically
logarithm-free. We now turn our attention to the logarithm-free Nilsson solutions of HA(β)
without any assumptions on the parameter β.

Definition 3.4.1. For a vector v ∈ Cn, its negative support is the set of indices

nsupp(v) =
{
i ∈ {1, . . . , n} | vi ∈ Z<0

}
.

A vector v ∈ Cn has minimal negative support if nsupp(v) does not properly contain the set
nsupp(v + u) for any nonzero u ∈ kerZ(A). We denote

Nv = {u ∈ kerZ(A) | nsupp(u+ v) = nsupp(v)}. (3.12)

When β is arbitrary, the fake exponents ofHA(β) with respect to a weight vectorw can have
negative integer coordinates. For such a v, we wish to construct an associated basic Nilsson
solution of HA(β), in the same way as we did in Proposition 1.4.21.

Proposition 3.4.2. Let w be a weight vector for HA(β) and let v ∈ Cn be a fake exponent of
HA(β) with respect to w. The series

φv =
∑
u∈Nv

[v]u−
[u+ v]u+

xu+v , (3.13)

where [v]u− and [u + v]u+ are as in (1.30), is well defined. This series is a formal solution of
HA(β) if and only if v has minimal negative support, and in that case, φv is a basic Nilsson
solution of HA(β) with respect to w. Consequently, v is an exponent of HA(β) with respect to
w.
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Proof. The series is well defined because, as the summation is over Nv, there cannot be any
zeros in the denominators of the summands. The second assertion holds with the same proof
as Proposition 3.4.13 of [SST00]. To see that φv is a basic Nilsson solution of HA(β), we can
argue in the same way as in the proof of Proposition 1.4.21.

Lemma 3.4.12 of [SST00] shows that if the negative support of v is empty, then equations
(3.13) and (1.32) coincide.

We now consider Nilsson series in the direction of a weight vector (see Definition 3.1.7).
The C-vector space of logarithm-free formal A-hypergeometric series with parameter β in the
direction of w is denoted by Sw(HA(β)).

Theorem 3.4.3. Let w be a weight vector for HA(β). The set

{φv | v is an exponent of HA(β) with minimal negative support} (3.14)

is a basis for Sw(HA(β)).

The previous result was stated in [Sai02, Display (7)], in the special case when IA is ho-
mogeneous. Its proof for the case when β ∈ Zd appeared in [CDR11, Proposition 4.2]; we
generalize that argument here.

Proof. Linear independence of the proposed basis elements follows from Lemma 3.1.8, so we
need only show that these series span Sw(HA(β)).

Let G(x) ∈ Sw(HA(β)), and suppose that xν appears in G with nonzero coefficient λν ∈
C. We claim that ν has minimal negative support. By contradiction, let u ∈ kerZ(A) such that
nsupp(ν + u) is strictly contained in nsupp(ν). This means that there is 1 ≤ i ≤ n such that
νi ∈ Z<0 and νi + ui ∈ N. In particular, ui > 0.

Since G is a solution of HA(β), the operator ∂u+ − ∂u− ∈ IA annihilates G. Note that
nsupp(ν+u) ⊂ nsupp(ν) implies that ∂u−xν 6= 0. Then some term from ∂u+G needs to equal
λv∂

u−xν , which is a nonzero multiple of xν−u− . But any function f such that ∂u+f = xν−u−

must involve log(xi). This produces the desired contradiction.
Fix ν such that xν appears with nonzero coefficient λν in G, and let ψ be the subseries

of G consisting of terms of the form λν+ux
ν+u with u ∈ kerZ(A) and λν+u ∈ C, such that

nsupp(ν + u) = nsupp(ν). Our goal is to show that ψ is a multiple of one of the series
from (3.14). This will conclude the proof.

We claim that ψ is a solution of HA(β). That the Euler operators 〈E − β〉 annihilate ψ
follows since they annihilate every term of G. To deal with the toric operators, recall that
∂u+G = ∂u−G for all u ∈ kerZ(A). But terms in ∂u+G that come from ψ can only be matched
by terms in ∂u−G that also come from ψ, so ∂u+ − ∂u− must annihilate ψ, for all u ∈ kerZ(A).

Since G is a solution of HA(β) in the direction of w, so is ψ. This implies that inw(ψ)
is a logarithm-free solution of in(−w,w)(HA(β)), and therefore, by [SST00, Theorems 2.3.9
and 2.3.11], inw(ψ) is a linear combination of (finitely many) monomial functions arising from
exponents ofHA(β) with respect tow. By construction of ψ, these exponents differ by elements
of kerZ(A). Arguing as in the proof of [SST00, Theorem 3.4.14], we see that inw(ψ) can only
have one term, that is, inw(ψ) = λvx

v where v is an exponent of HA(β) with respect to w and
λv 6= 0. Since λvxv is a term in G, v has minimal negative support. Thus, v is an exponent of
HA(β) with respect to w that has minimal negative support.
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To finish the proof, we show that ψ = λvφv. Suppose that u ∈ Nv, which means that u ∈
kerZ(A) and nsupp(v+u) = nsupp(v). The equality of negative supports implies that ∂u−xv =
[v]u−x

v−u− is nonzero. Since ∂u−ψ = ∂u+ψ, ∂u+ψ must contain the term λv[v]u−x
v−u− , which

can only come from ∂u+λv+ux
v+u. Thus

λv[v]u−x
v−u− = ∂u+λv+ux

v+u = λv+u[v + u]u+x
v+u−u+ .

Consequently λv+u = λv
[v]u−

[v+u]u+
, that is, the coefficient of xv+u in ψ equals λv times the coef-

ficient of xv+u in φv. Therefore ψ = λvφv, as we wanted.

The next theorem gives a bijective map between the space of logarithm-free series solutions
of HA(β) in the direction of w and a subspace of the logarithm-free solutions of Hρ(A)(β0, β)
in the direction of (0, w).

Theorem 3.4.4. Let w be a weight vector for HA(β) and let β0 be a homogenizing value for A,
β, and w. Then ρ(Sw(HA(β))) equals the C-linear span of the logarithm-free basic Nilsson
solutions ofHρ(A)(β0, β) which are associated to standard pairs with respect to (0, w) that pass
through zero.

Proof. Since ρ is linear, we only need to consider the image of the elements of a basis for the
space Sw(HA(β)), such as the one given in Theorem 3.4.3.

We claim that if v is a fake exponent of HA(β) with respect to w that has minimal negative
support, then ρβ0(v) = (β0 − |v|, v) is a fake exponent of Hρ(A)(β0, β) with respect to (0, w)
corresponding to a standard pair that passes though zero, and moreover, ρβ0(v) has minimal
negative support. The first part is proved using Lemma 3.3.4. To see that ρβ0(v) has minimal
negative support, first recall that β0− |v| /∈ Z because β0 is a homogenizing value for A, β and
w. This implies that 0 is not in the negative support of ρβ0(v) + µ, for any µ ∈ kerZ(ρ(A)).
Now use the bijection u 7→ (−|u|, u) between kerZ(A) and kerZ(ρ(A)) and the fact that v has
minimal negative support, to conclude that ρβ0(v) has minimal negative support.

To complete the proof, we show that ρ(φv) = φρβ0
(v). Lemma 3.3.7 is this statement in the

case when nsupp(v) = ∅, but now we have to pay attention to the supports of these series.
The same argument we used to check that ρβ0(v) has minimal negative support yields Nv =

π(Nρβ0
(v)), where π is the projection onto the last n coordinates, and therefore ρ(φv) and φρβ0

(v)

have the same support. The verification that the corresponding coefficients are the same is
straightforward.

3.5 The irregularity of HA(β) via its Nilsson solutions

In this section, we give an alternative proof of [SW08, Corollary 3.16] using our study of
Nilsson solutions of HA(β). We assume as in [SW08] that the columns of A span a strongly
convex cone.

In Theorem 3.2.12 we computed the image of ρ. There is one case in which this map is
guaranteed to be onto.

Proposition 3.5.1. Suppose that w is a perturbation of (1, . . . , 1). Then the map ρ is surjective.
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Proof. First note that none of the minimal generators of the monomial ideal in(0,w)(Iρ(A)) have
∂0 as a factor. This implies that, if u ∈ Nn+1 and ∂u /∈ in(0,w)(Iρ(A)), then ∂k0∂

u /∈ in(0,w)(Iρ(A))
for all k ∈ N. We conclude that all the standard pairs of in(0,w)(Iρ(A)) pass through zero.
Theorem 3.2.12 completes the proof.

We wish to find weight a vector w for HA(β) for which ρ is not surjective. We require the
following statement.

Lemma 3.5.2. Let A ∈ Zd×n of full rank d whose columns span a strongly convex cone. If
the row span of A does not contain the vector (1, . . . , 1), there exists w ∈ Rn

>0 such that the
coherent triangulation ∆(0,w) of ρ(A) has a maximal simplex that does not pass through zero.
Given β ∈ Cd, the vector w can be chosen to be a weight vector for HA(β).

Proof. We use the description of the secondary fan of ρ(A) from Section.
Let B be a Gale dual matrix of ρ(A) with rows b0, . . . , bn. Since (1, . . . , 1) is not in the

rowspan of A, the zeroth row of B is nonzero. Because B has full rank n − d, we can choose
σ ⊂ {1, . . . n} of cardinality d+ 1 such that {bi | i 6∈ σ} is linearly independent.

The assumption that the columns a1, . . . , an of A span a strongly convex cone means that
there exists a vector h ∈ Rd such that h · A is coordinatewise positive. As ρ(A) · B = 0,∑n

i=1(h · ai)bi = 0.
Choose w ∈ Rn

>0 and positive real λi for i /∈ σ, such that

wi + λ0 = h · ai for i ∈ σ , and wi + λ0 − λi = h · ai for i /∈ σ ∪ {0}.

There is enough freedom in the choice of w that we may assume that (0, w) induces a triangu-
lation ∆(0,w) of ρ(A) and not merely a subdivision. This also implies that w can be chosen a
weight vector for HA(β), if β ∈ Cd is given.

We claim that (0, w) · B ∈ Kσ. This implies that σ is a maximal simplex in ∆(0,w) which
does not pass through zero.

To prove the claim, note that

∑
i∈σ

(wi + λ0)bi +
∑

i/∈σ∪{0}
(wi + λ0 − λi)bi =

n∑
i=1

(h · ai)bi = 0.

Then

n∑
i=1

wibi =
∑

i/∈σ∪{0}
(λi − λ0)bi − λ0

∑
i∈σ

bi =
∑

i/∈σ∪{0}
λibi − λ0

n∑
i=1

bi =
∑
i/∈σ

λibi,

where the last equality follows from −b0 =
∑n

i=1 bi. But then, λi > 0 for i /∈ σ implies that
(0, w) ·B ∈ Kσ, which is what we wanted.

The hypothesis that the columns of A span a strongly convex cone cannot be removed from
Lemma 3.5.2, as the following example shows.
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Example 3.5.3. Let A = (−1 1). Then

ρ(A) =

(
1 1 1
0 −1 1

)
, and choose B =

 −2
1
1

 .

There are only two coherent triangulations of ρ(A), namely

∆1 = {{−1, 1}} and ∆2 = {{−1, 0}, {0, 1}}.

Their corresponding cones in the secondary fan are K∆1 = R≤0 and K∆2 = R≥0. For any
vector w = (w−1, w1) ∈ R2

>0, the number 0 · b0 + w−1 · b−1 + w1 · b1 = w−1 + w1 belongs to
the cone K∆2 = R≥0 and consequently w always induces a triangulation of ρ(A) all of whose
maximal simplices pass through zero.

Proposition 3.5.4. Assume that the columns of A span a strongly convex cone. If the row span
of A does not contain the vector (1, . . . , 1), there exists a weight vector w such that, the linear
map

ρ : Nw(HA(β))→ N(0,w)(Hρ(A)(β0, β)),

where β0 is a homogenizing value for A, β and w, is not surjective.

Proof. Use Lemma 3.5.2 to pick w so that the triangulation ∆(0,w) of ρ(A) has a maximal
simplex that does not pass through zero. Then in(0,w)(Iρ(A)) has top dimensional standard
pairs that do not pass through zero. Choose a homogenizing value β0 for A, β and w, and let
(v0, v) be a fake exponent ofHρ(A)(β0, β) corresponding to such a standard pair (fake exponents
associated to top-dimensional standard pairs always exist). In particular, v0 ∈ N. If (v0, v) has
minimal negative support, it is an exponent ofHρ(A)(β0, β) corresponding to a standard pair that
does not pass through zero, and the associated logarithm-free solution φ(v0,v) of Hρ(A)(β0, β)
cannot belong to the image of ρ by Theorem 3.2.12.

If (v0, v) does not have minimal negative support, the argument given in [SST00, Proposi-
tion 3.4.16] produces an element (v′0, v

′) ∈ ((v0, v) + kerZ(A)) ∩Minexρ(A),(β0,β),(0,w) whose
negative support is strictly contained in that of (v0, v), so that v′0 is still a non negative integer.
Thus, the standard pair corresponding to (v′0, v0) cannot pass through zero, and φ(v′0,v

′) is not in
the image of ρ.

The following result is due to Berkesch [Ber10, Theorem 7.3].

Theorem 3.5.5. If the cone over the columns of A is strongly convex and β0 is generic,

rank(HA(β)) = rank(Hρ(A)(β0, β)).

We are finally ready to show that, in the case when the columns of A span a strongly
convex cone, non homogeneous A-hypergeometric systems are irregular for all β, thus gener-
alizing the argument in [SST00, Theorem 2.4.11], and providing an alternative proof of [SW08,
Corollary 3.16].

Theorem 3.5.6. Assume that the columns of A span a strongly convex cone and IA is not
homogeneous. Then HA(β) is not regular holonomic for any β ∈ Cd.
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Proof. Choose w a weight vector for HA(β) as in Proposition 3.5.4 and β0 a homogenizing
value for A, β and w. Assume that HA(β) is regular holonomic. Then, by Proposition 3.1.10 it
holds that

dimC(Nw(HA(β))) = rank(HA(β)).

We have

dimC(Nw(HA(β))) < dimC(N(0,w)(Hρ(A)(β0, β)))

= rank(Hρ(A)(β0, β))

= rank(HA(β)).

The equality in the second line follows again from Proposition 3.1.10 because the system
Hρ(A)(β0, β) is regular holonomic, as Iρ(A) is homogeneous. The last equality is by Theo-
rem 3.5.5 (we may have to make β0 more generic for this result to hold, but this does not affect
Proposition 3.5.4). We obtain dimC(Nw(HA(β))) < rank(HA(β)), a contradiction. Then
HA(β) is not regular holonomic.
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Chapter 4

Convergence of hypergeometric Nilsson
series in the irregular case

Until now, we have made no convergence considerations in our study of Nw(HA(β)). The pur-
pose of this chapter is to investigate convergence issues in detail. In particular, Theorem 4.1.2
states that, if w is a perturbation of (1, . . . , 1), the elements of Nw(HA(β)) have a common
domain of convergence. Moreover, assuming that the cone spanned by the columns of A is
strongly convex, results from Section 3.5 imply that dimC(Nw(HA(β))) = rank(HA(β)). This
provides an explicit construction for the space of (multivalued) holomorphic solutions ofHA(β)
in a particular open subset of Cn.

When the parameter β is generic and w is a perturbation of (1, . . . , 1), the convergence of
the elements of Nw(HA(β)) was shown in [OT09]. In Subsection 4.2 we complete this study
by considering other weight vectors.

Notation 4.0.7. We have already used the notation | · | to mean the coordinate sum of a vector.
When applied to a monomial, such as xu, | · | means complex absolute value. Let w be a weight
vector for HA(β) and let {γ1, . . . , γn−d} ⊂ Zn be a Z-basis for kerZ(A) such that γi · w > 0
for i = 1, . . . , n− d. For any ε = (ε1, . . . , εn−d) ∈ Rn−d

>0 , we have defined in Subsection 1.4.3
the (non empty) open set

Uw,ε = {x ∈ Cn | |xγi| < εi for i = 1, . . . , n− d} . (4.1)

4.1 General parameters

The following result is the main technical tool in this section.

Theorem 4.1.1. Let w be a weight vector for HA(β) and let {γ1, . . . , γn−d} be a basis for
kerZ(A) such that w · γi > 0 for i = 1, . . . , n − d. Let φ =

∑
xv+upu(log(x)) be a basic

Nilsson solution of HA(β) as in (3.1), such that |u| ≥ 0 for almost all u ∈ supp(φ), meaning
that the set {u ∈ supp(φ) | |u| < 0} is finite. Then there exists ε ∈ Rn−d

>0 such that φ converges
in the open set Uw,ε.

Proof. We may assume without loss of generality that |u| ≥ 0 for all u ∈ supp(φ). Choose β0 a
homogenizing value for A, β and w, and recall from Definition 3.2.10 that the homogenization

67
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of φ is
ρ(φ) =

∑
u∈supp(φ)

∂
|u|
0

[
x
β0−|v|
0 xv+up̂u(log(x0), log(x1), . . . , log(xn))

]
,

where pu and p̂u are related by (3.6). By Theorem 3.2.11, ρ(φ) is a basic Nilsson solution
of Hρ(A)(β0, β) with respect to (0, w). Since Hρ(A)(β0, β) has regular singularities, [SST00,
Theorem 2.5.16] implies that there exists ε ∈ Rn−d

>0 such that ρ(φ) converges (absolutely) in
the open set

U(0,w),ε = {(x0, x) ∈ Cn+1 | |x−|γi|0 xγi | < εi, i = 1, . . . , n− d}.
We make use of the convergence of ρ(φ) to prove convergence for φ.

As ρ(φ) converges absolutely in U(0,w),ε, convergence is preserved when we reorder terms.
Use the fact that |u| ≥ 0 for all u ∈ supp(φ) to rewrite

ρ(φ) =
∞∑
m=0

∂m0

[
x
β0−|v|
0 fm

]
where

fm(x0, . . . , xn) =
∑
|u|=m

xv+up̂u(log(x0), log(x1), . . . , log(xn))

is a polynomial in log(x0) whose coefficients are (multivalued) holomorphic functions of the n
variables x1, . . . , xn. Recall that, by Definition 3.1.3, there exists a positive integer K such that
the degree of fm in log(x0) is less than or equal to K for all m ∈ N. A key observation is that

∞∑
m=0

(
x
β0−|v|−m
0 fm(x0, x1, . . . , xn)

)∣∣∣
x0=1

= φ(x1, . . . , xn). (4.2)

Since {1} × Uw,ε ⊂ U(0,w),ε, if we show that
∑∞

m=0 x
β0−|v|−m
0 fm converges absolutely on

U(0,w),ε, the convergence of φ on Uw,ε will follow.
For λ ∈ C and m ∈ N, we denote the m-th descending factorial by

[λ]m = λ(λ− 1) . . . (λ−m+ 1).

Set λ = β0 − |v|. Since β0 is a homogenizing value for A, β and w, we have λ /∈ Z. We claim
that the domain of convergence of

∑∞
m=0[λ]mx

λ−m
0 fm contains U(0,w),ε. But if this is true, the

convergence of
∑∞

m=0 x
λ−m
0 fm on U(0,w),ε follows by comparison, since the absolute value of

[λ]m grows like (m−1)! as m goes to∞. Thus, all we need to show in order to finish our proof
is that

∑∞
m=0[λ]mx

λ−m
0 fm converges absolutely on U(0,w),ε.

Consider fm as a polynomial in log(x0). By construction, the coefficients of fm are constant
with respect to x0. Denote by f

(r)
m the r-th derivative of fm with respect to log(x0). Then

f
(K+1)
m = 0 since the degree of fm in log(x0) is at most K. We compute ∂m0 (xλ0fm) for m ≥ K,

using the fact that f (r)
m = 0 if r > K.

∂m0 (xλ0fm) = ∂m−1
0 ∂0(xλ0fm) = ∂m−1

0 (xλ−1
0 (αfm + f ′m))

= ∂m−2
0 (xλ−2

0 (λ(λ− 1)fm + (λ+ (λ− 1))f ′m + f ′′m))

= · · ·
= xλ−m0 (c0(λ,m)fm + c1(λ,m)f ′m + . . .+ cK(λ,m)f (K)

m ),
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where

cj(λ,m) =
∑

1≤i1<···<im−j≤m

j∏
k=1

(λ− ik + 1).

Note that, as m goes to∞, the dominant term in absolute value in cj(λ,m) is
∏m−1

r=j (λ −
r + 1), which grows like

∏m−1
r=j r = (m−1)!

(j−1)!
. But then, if j > 0, [λ − j]m grows faster than

cj(α,m) as m goes to∞, because [λ− j]m grows like (m+j−1)!
(j−1)!

. In other words,

lim
m→∞

cj(λ,m)

[λ− j]m
= 0 for j ≥ 1. (4.3)

Since ρ(φ) converges absolutely on the open set U(0,w),ε, ∂0ρ(φ) is also absolutely convergent
on U(0,w),ε, and

∂0ρ(φ) = ∂0

∞∑
m=0

∂m0
[
xλ0fm

]
=

∞∑
m=0

∂m0
[
∂0x

λ
0fm

]
=

∞∑
m=0

∂m0
[
λxλ−1

0 fm + xλ0f
′
m

]
x−1

0

= λ
∞∑
m=0

∂m0
[
xλ−1

0 fm
]

+
∞∑
m=0

∂m0
[
xλ−1

0 f ′m
]
.

The series
∑∞

m=0 ∂
m
0

[
xλ−1

0 fm
]

converges in U(0,w),ε because it is a basic Nilsson solution of
the regular hypergeometric system Hρ(A)(β0 − 1, β) with respect to (0, w). (We may need
to decrease ε coordinatewise for the previous assertion to hold.) This, and the convergence
of ∂0(ρ(φ)), imply that

∑∞
m=0 ∂

m
0

[
xλ−1

0 f ′m
]

converges absolutely on U(0,w),ε. Proceeding by
induction, we conclude that

∞∑
m=0

∂m0 x
λ−j
0 f (j)

m converges absolutely on U(0,w),ε for j = 1, . . . , K. (4.4)

Now we induct on K − ` to show that
∞∑
m=0

xλ−m−`0 [λ− `]mf (`)
m converges absolutely on U(0,w),ε for ` = 0, 1, . . . , K. (4.5)

The ` = 0 case of this assertion is exactly what we needed to verify in order to finish the proof.
If K − ` = 0, then f (`)

m = f
(K)
m is a (maybe zero) constant with respect to x0, and there-

fore (4.5) is the j = K case of (4.4). For the inductive step, compute the m-th derivative inside
the series:
∞∑
m=0

∂m0 x
λ−`
0 f (`)

m =

∞∑
m=0

xλ−`−m0 ([λ− `]mf (`)
m + c1(λ− `,m)f (`+1)

m + · · ·+ cK−`(λ− `,m)f (K)
m )

=
∞∑
m=0

xλ−`−m0 [λ− `]mf (`)
m

+

∞∑
m=0

xλ−`−m0 c1(λ− `,m)f (`+1)
m + · · ·+

∞∑
m=0

xλ−`−m0 cK−`(λ− `,m)f (K)
m .
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We want to show that
∑∞

m=0 x
λ−`−m
0 [λ − `]mf

(`)
m converges absolutely on U(0,w),ε. We

know that
∑∞

m=0 ∂
m
0 x

λ−`
0 f

(`)
m converges absolutely on U(0,w),ε by (4.4), so we need to control

the other summands. But the inductive hypothesis tells us that (4.5) is true for ` + 1, . . . , K.
By comparison using (4.3), and harmlessly multiplying by xj0, we conclude that the series∑∞

m=0 x
λ−`−m
0 cj(λ− `,m)f

(`+j)
m converges absolutely on U(0,w),ε for 1 ≤ j < K − `.

The following result gives the construction of a basis of series solutions of HA(β) that have
a common domain of convergence, without any assumptions on β. While such constructions
are well known in the regular case, when IA is inhomogeneous, important theoretical tools
become unavailable. A way of bypassing this difficulty is to assume that the parameters are
generic and w is a perturbation of (1, . . . , 1) as in [OT09].

Theorem 4.1.2. Assume that the cone over the columns of A is strongly convex, and let w be a
weight vector for HA(β) that is a perturbation of (1, . . . , 1). Then

dimC(Nw(HA(β))) = rank(HA(β))

and there exists ε ∈ Rn−d
>0 such that every element of Nw(HA(β)) converges in the open set

Uw,ε.

Proof. Given β0 a homogenizing value for A, β and w, Proposition 3.5.1 states that the spaces
Nw(HA(β))) and N(0,w)(Hρ(A)(β0, β))) are isomorphic. We may further assume that β0 is
sufficiently generic that Theorem 3.5.5 holds.

As Iρ(A) is homogeneous,Hρ(A)(β0, β) is regular holonomic, and [SST00, Corollary 2.4.16]
implies that dimC(N(0,w)(Hρ(A)(β0, β))) = rank(Hρ(A)(β0, β)). Then

dimC(Nw(HA(β)))) = dimC(N(0,w)(Hρ(A)(β0, β))))

= rank(Hρ(A)(β0, β)) = rank(HA(β)),

where the last equality is by Theorem 3.5.5.
Sincew is a perturbation of (1, . . . , 1), if φ is a basic Nilsson solution ofHA(β) with respect

to w, then |u| ≥ 0 for all u ∈ supp(φ). Therefore we can use Theorem 4.1.1 to find ε ∈ Rn−d
>0

such that all basic Nilsson solutions of HA(β) with respect to w converge on Uw,ε.

4.2 Generic parameters

In this subsection, we assume that β is generic as in Convention 3.3.2. In this case, by Theo-
rem 3.3.8, the set

Bw = {φv | v is an exponent of HA(β) with respect to w} (4.6)

is a basis for Nw(HA(β)), and we can write the series φv is as in (1.32), by the genericity of
the parameters.

We wish to determine which elements of Bw converge. This depends on the choice of the
weight vector w.
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Theorem 4.2.1. Let β generic, w a weight vector for HA(β), and φv ∈ Bw. There exists
ε ∈ Rn−d

>0 such that φv converges in Uw,ε if and only if |u| ≥ 0 for almost all u ∈ supp(φv).

Proof. If |u| ≥ 0 for almost all u ∈ supp(φv), then φv converges on an open set Uw,ε by
Theorem 4.1.1.

Now assume that there exist an infinite number of elements u ∈ supp(φv) such that |u| < 0.
Using the description of supp(φv) from (1.32), which applies when β is generic, we can find
ν ∈ supp(φv) such that |ν| < 0 and {mν | m ≥ m0 ∈ N} ⊂ supp(φv) for some m0 ∈ N.

Let ψ be the subseries of φv whose terms are indexed by the set {mν | m ≥ m0 ∈ N}. The
coefficient of xv+mν in ψ is ∏

νi<0

∏−mνi
j=1 (vi − j + 1)∏

νi≥0

∏mνi
j=1(vi + j)

,

which grows like λm =
∏

νi<0(−νim)!/
∏

νi>0(νim)! as m goes to ∞. Since |ν| < 0,
limm→∞ λm = ∞. Therefore ψ cannot absolutely converge unless xi = 0 for some i such
that νi > 0, and consequently φv does not have an open domain of convergence.

Remark 4.2.2. In this section we study convergence of Nilsson solutions ofHA(β) with respect
to a weight vector w. We can change the point of view and fix a basis {γ1, . . . , γn−d} ⊂ Zn of
kerZ(A); then our results apply to any weight vector w such that γi ·w > 0 for i = 1, . . . , n−d.

Since β is generic, all the information necessary to compute the Nilsson solutions ofHA(β)
associated to a weight vector w can be extracted from the top-dimensional standard pairs of
in(0,w)(Iρ(A)); the simplices appearing in these standard pairs are the maximal simplices of the
coherent triangulation ∆(0,w) of ρ(A). These triangulations also control the possible regions of
convergence of basic Nilsson solutions ofHA(β) with respect to w, as a change in triangulation
changes Uw,ε. Recall from Section 2.1 that the Gale dual of a configuration parametrizes its
coherent triangulations.

Given β generic, fix w a weight vector for HA(β). Then the supports of the basic Nilsson
solutions of HA(β) with respect to w can be described by means of the cones associated to
maximal simplices of the triangulation ∆(0,w) of ρ(A). Indeed, if (v0, v) is the exponent asso-
ciated to a standard pair (∂α, σ) of the monomial ideal in(0,w)(Iρ(A)), so that σ ∈ ∆(0,w) and
0 ∈ σ, we know that the support of the dehomogenized series φv is

supp(φv) = {u ∈ kerZ(A) | ui + vi ≥ 0 ∀i /∈ σ}.

Note that, as 0 ∈ σ, the zeroth row of the Gale dual B of ρ(A) is not present in this description.
Since the columns of B span kerZ(ρ(A)), the support of φv is naturally identified with

supp(φv) =
{

(b1 · ν, . . . , bn · ν) | ν ∈ Zn−d and ν · bi ≥ −vi, i /∈ σ
}
. (4.7)

The following statement gives a necessary and sufficient condition for a series φv associated
to a cone Kσ (that is, to a standard pair (∂α, σ)) to have an open domain of convergence. Note
that several series may be associated with a single cone.

Theorem 4.2.3. For β generic, let w be a weight vector for HA(β). Let

{(−|γ1|, γ1), . . . , (−|γn−d|, γn−d)}
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be a Z-basis of kerZ(ρ(A)) such that for any i = 1, . . . , n−d, we have γi ·w > 0. The vectors in
this basis are the columns of a Gale dual matrix of ρ(A), whose rows we denote by b0, . . . , bn.
Let (v0, v) be an exponent of ρ(A) corresponding to a standard pair (∂α, σ) of in(0,w)(Iρ(A))
that passes through zero, so that σ is a maximal simplex in the triangulation ∆(0,w), and 0 ∈ σ.
The dehomogenized basic Nilsson series φv has an open domain of convergence if and only if
−b0 ∈ Kσ. In this case, there exists ε ∈ Rn−d

>0 such that φv converges in Uw,ε.

Proof. Suppose that −b0 ∈ Kσ, so that −b0 =
∑

i/∈σ λibi with λi ≥ 0. Let u ∈ supp(φv), and
choose ν using (4.7). Then

|u| =
n∑
i=1

bi · ν = −b0 · ν =
∑
i/∈σ

λibi · ν ≥ −
∑
i 6=σ

λivi.

This means that the set {|u| | u ∈ supp(v)} is bounded below, and therefore |u| must be non
negative for almost all u ∈ supp(φv). Now apply Theorem 4.1.2 to conclude that φv has an
open domain of convergence.

Let us now prove the converse. As {bi | i /∈ σ} is a basis of Rn−d, we can write −b0 =∑
i/∈σ λibi. Suppose that λi0 < 0 for some i0 /∈ σ, and consider the infinite set

{ν ∈ Zn−d | ν · bi = 0 for i /∈ σ ∪ {i0} and ν · bi0 > 0}.

For each element ν of this set, (ν · b1, . . . , ν · bn) is an element of supp(φv), and the sum of its
coordinates is

n∑
i=1

ν · bi = ν ·
( n∑
i=1

bi
)

= ν · (−b0) = ν · (
∑
i/∈σ

λibi) = λi0(ν · bi0).

Thus, supp(φv) has an infinite subset consisting of vectors whose coordinate sum is negative,
and by Theorem 4.2.1, φv does not have an open domain of convergence.

We now give a combinatorial formula for the dimension of the space of convergent Nilsson
solutions of HA(β) with respect to w, for generic parameters β.

Corollary 4.2.4. Let β be generic, and w a weight vector for HA(β). Then

dimC({φ ∈ Nw(HA(β)) convergent }) =
∑
σ∈T

vol(σ) ,

where T = {σ facet of ∆(0,w) | 0 ∈ σ and − b0 ∈ Kσ}.

The following is essentially a restatement of Theorem 4.2.3.

Corollary 4.2.5. Let β be generic, and w a weight vector for HA(β). An element of the set Bw

from (4.6) has an open domain of convergence if and only if its associated maximal simplex in
the triangulation ∆(0,w) of ρ(A) also belongs to a coherent triangulation of ρ(A) defined by a
perturbation of (0, 1, . . . , 1).

Proof. Using Theorem 4.2.3 and its notation, −b0 = (0, 1, . . . , 1) · B ∈ Kσ if and only if
σ is a maximal simplex in the coherent triangulation of ρ(A) defined by a perturbation of
(0, 1, . . . , 1).
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Figure 4.1: The coherent triangulations of ρ(A) corresponding to perturbations of the vector
(0, 1 . . . , 1) for Example 4.2.6.

Example 4.2.6. Corollary 4.2.5 allows us to decide whether HA(β) has Nilsson solutions with
respect to a weight vector that do not converge by inspecting the triangulations of ρ(A). Take
for instance

A =

[
2 0 1 2 2
0 2 2 1 2

]
and consider the coherent triangulations of ρ(A), or, equivalently, the coherent triangulations
of A ∪ {0}. Note that the triangulations ∆i, i = 1, . . . , 4 appearing in Figure 4.1 are all the
triangulations induced by perturbations of (0, 1, . . . , 1), in particular, if β is generic, all the
Nilsson solutions of HA(β) associated to maximal simplices in these triangulations have open
domains of convergence.

Now consider the triangulation ∆5 drawn in Figure 4.2. The simplex {0, 3, 4} belongs to
∆5 and passes through zero, but does not appear in any triangulation of ρ(A) induced by a
perturbation of (0, 1, . . . , 1); therefore, Corollary 4.2.5 ensures that the corresponding Nilsson
solutions of HA(β) (for generic β) do not have open domains of convergence.
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Figure 4.2: A coherent triangulation of ρ(A) from Example 4.2.6.



Chapter 5

Laurent A-hypergeometric solutions and
residues

In this chapter we study Laurent A-hypergeometric series when A is a Cayley configuration
A = Cayley(A1, A2) with A1 and A2 subsets of Z2 (see Definition 2.2.1). This configuration
is associated to two polynomials f1 and f2 in two variables. This generalizes Example 5.3.4, in
which we had only one configuration in {1} × Z. We also give several definitions and results
which will lead us to the definition and properties of special Laurent A-hypergeometric series
in terms of combinatorially defined residues. These residues will be the main characters in
Chapter 6.

Section 5.1 summarizes the basics of A-hypergeometric Laurent series. These are a spe-
cial case of logarithm-free hypergeometric series, treated in Section 3.4, but assuming that the
parameters β are integer. We study in Section 5.2 the minimal regions that may appear in the
case A = Cayley(A1, A2) and a parameter γ = (−1,−1,−m) with m ∈ Z2. In Section 5.3
we introduce local residues associated to Cayley configurations and show that they are special
solutions for these configurations. The Gel’fond-Khovanskii’s method for the computation of
global residues on the torus is presented in Section 5.4. This method will be useful to prove
Theorem 6.2.2. Theorem 5.5.2 in Section 5.5 imposes a necessary condition for the algebraicity
of A-hypergeometric Laurent series.

5.1 A-hypergeometric Laurent series

Let A = {a1, . . . , an} ⊆ Zd be a regular configuration. As before, we assume, without loss of
generality, that the points of A are all distinct and that they span Zd.

We consider the C-vector space:

S =

{∑
v∈Zn

cvx
v ; cv ∈ C

}

of formal Laurent series in the variables x1, . . . , xn. The matrix A defines a Zd-valued grading
in S by

deg(xv) := A · v ; v ∈ Zn . (5.1)

75
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We will say that Φ ∈ S is an A-hypergeometric Laurent series of degree β (or Laurent solution
of HA(β)) if it is annihilated by HA(β).

Remark 5.1.1. By [PST05, Proposition 5], if a hypergeometric Laurent series has a non trivial
domain of convergence, then its exponents must lie in a strictly convex cone.

Given β ∈ Zd, consider the fiber

Mβ := {v ∈ Zn : A · v = β}.
Recall that for any vector v ∈ Zn we define its negative support as:

nsupp(v) := {i ∈ {1, . . . , n} : vi < 0}, (5.2)

and given I ⊂ {1, . . . , n}, we let r(I,β) = {v ∈Mβ : nsupp(v) = I}. We call r(I,β) a region in
Mβ .

Definition 5.1.2. We say that r(I,β) is a minimal region if r(I,β) 6= ∅ and r(J,β) = ∅ for J ( I .
We write rI instead of r(I,β) is it is clear by the context.

Given a minimal region rI = r(I,β) we let

Φβ
rI

(x) :=
∑

u∈r(I,β)

(−1)
∑
i∈I ui

∏
i∈I(−ui − 1)!∏

j 6∈I(uj)!
xu . (5.3)

Given a weight w ∈ Rn, ε > 0 and ν1, . . . , νn−d a Z-basis of the lattice M = {v ∈ Zn :
A · v = 0} satisfying 〈w, νi〉 > 0 for all i = 1, . . . , n− d, we recall from Subsection 1.4.3, the
definition of the open set:

Uw,ε = {x ∈ Cn | |xνi | < εi for i = 1, . . . , n− d} . (5.4)

Definition 5.1.3. We will denote by rw the collection of minimal regions r(I,β) for which the
inner product with w is bounded below and the minimum is attained at a unique point.

The following theorem shows the importance of the Laurent series defined in (5.3).

Theorem 5.1.4. Let A ⊂ Zd and β ∈ Zd as before and w ∈ Rn such that rw is non-empty.
Then:

(i) For ε sufficiently small, the open set Uw,ε of the form (5.4) is a common domain of con-
vergence of all Φβ

rI
with rI = r(I,β) ∈ rw and

(ii) These Φβ
rI

are a basis of the vector space of A-hypergeometric Laurent series of degree β
convergent in Uw,ε.

Proof. First note that the series Φβ
rI

is a constant multiple of the Gamma series φv from (3.13).
Here v is the element of rI where the inner product 〈w, ·〉 reaches its minimum. In fact,

Φβ
rI

= (−1)
∑
i∈I vi

∏
i∈I(−vi − 1)!∏

j 6∈I(vj)!
· φv. (5.5)

Considering that in the regular case formal solutions coincide with holomorphic solutions,
the proof of the theorem follows from Proposition 3.4.2 and Theorem 3.4.3. Theorem 1.3.16
and Subsection 1.4.3 clarify convergence issues.
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We can deduce from Theorem 5.1.4 and Remark 5.1.1 an equivalent characterization of rw:
it is the collection of those regions r(I,β) which are contained in the intersection of a half-space
{v ∈ Rn : 〈w, v〉 ≥ λ, λ ∈ R} with a strictly convex cone.

Definition 5.1.5. We call the series Φβ
rI

, for rI ∈ rw minimal, canonical Laurent A-hypergeo-
metric series in the direction of w (see Section 3.4 and Definition 1.3.17).

Example 5.1.6. Recall from Example 1.1.4 that the roots of the generic polynomial x2t
2 +

x1t+x0 are solutions of an A-hypergeometric system with integer parameters. We can express
these roots as Laurent series in the variables x0, x1, x2. In fact, developing the square root we
obtain:

ρ1 =
−x1 + (x2

1 − 4x0x2)1/2

2x2

= − x1

2x2

+

(
x1

2x2

−
∞∑
k=0

1

k + 1

(
2k

k

)
xk2x

k+1
0

x2k+1
1

)
, (5.6)

ρ2 =
−x1 − (x2

1 − 4x0x2)1/2

2x2

= − x1

2x2

−
(
x1

2x2

−
∞∑
k=0

1

k + 1

(
2k

k

)
xk2x

k+1
0

x2k+1
1

)
. (5.7)

For A and β as in Example 1.1.4, the only subsets of {0, 1, 2} such that the corresponding
regions are minimal are {1} and {2} with r{1} = {(1 + k,−2(k + 1), k), k ∈ N0} and r{2} =
{(0, 1,−1)}. Note that

ρ1 = −Φβ
r{1}

and ρ2 = −Φβ
r{2}
− Φβ

r{1}
. (5.8)

and that both r{1} and r{2} belong to rw for any w = (w0, w1, w2) ∈ R3 such that w0 + w2 >
2w1. Moreover, there are no Laurent series in the direction of w for w not satisfying this
condition.

Remark 5.1.7. Let Φ a Laurent solution of HA(β) in the direction of w. This implies, by
Theorem 5.1.4 that

Φ =
∑
rI∈rw

kIΦ
β
rI

(5.9)

with kI ∈ C and the series Φ converges in Uw,ε. In particular 〈w, u〉 ≥ 0 for all u ∈ rI ∈ rw.
If we consider another weight vector w′ such that 〈w′, u〉 ≥ 0 for all u ∈ rI ∈ rw′ ,

according to 5.1.4(ii), we obtain another expansion of Φ converging in an open set Uw′,ε′ .
These two expansions have to coincide. In fact, the minimal regions appearing in both have
to belong to rw and rw′ simultaneously, otherwise there would be elements in the support of Φ
with negative inner product either with w or w′, contradicting the assumptions. Therefore we
obtain a unique expansion converging in Uw,ε ∩Uw′,ε′ .

The following Proposition is an easy calculation.

Proposition 5.1.8. If α ∈ Nn then the derivative ∂α of a canonical Laurent A-hypergeometric
series with homogeneity β is a canonical Laurent A-hypergeometric series with homogeneity
β − A · α.

Since anA-hypergeometric series of degree β satisfies d independent homogeneity relations
it may be viewed as a function of n − d variables. To make this more precise we use a Gale
dual {b1, . . . , bn} ⊂ Zn−d of the configuration A (see Definition 2.1.1).
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Remark 5.1.9. (i) Our definition of Gale dual depends on the choice of a basis of M0 =
kerZ(A); this amounts to an action of GL(n− d,Z) on the configuration B.

(ii) B is primitive, i.e., if δ ∈ Zn−d has relatively prime entries then so does Bδ. This
follows from the fact that if rv ∈ M0 for r ∈ Z and v ∈ Zn then v ∈ M0. Equivalently, the
rows of B span Zn−d.

(iii) The regularity condition on A is equivalent to the requirement that
n∑
j=1

bj = 0. (5.10)

(iv) A is not a pyramid if and only if none of the vectors bj vanishes.

As we saw in previous chapters, given v ∈ Mβ , and the choice of a Gale dual B we may
identify Mβ

∼= Zn−d by u ∈Mβ 7→ µ ∈ Zn−d with

u = v + µ1ν1 + · · ·+ µn−dνn−d.

In particular, ui < 0 if and only if `i(µ) < 0, where

`i(µ) := 〈bi, µ〉+ vi. (5.11)

The linear forms in (5.11) define a hyperplane arrangement oriented by the normals bi and each
minimal region r(I,β) corresponds to the closure of a certain connected components cI in the
complement of this arrangement.

Let Φβ
rI

(x) as in (5.3). We can also write for v ∈Mβ

Φβ
rI

(x) = xv
∑

µ∈cI∩Zn−d

∏
i∈I(−1)`i(µ)(−`i(µ)− 1)!∏

j 6∈I `j(µ)!
xBµ . (5.12)

Setting
yj = xνj , j = 1, . . . , n− d, (5.13)

we can now rewrite, the series (5.3) in the coordinates y as Φβ
rI

(x) = xvϕcI (y), where

ϕcI (y) :=
∑

µ∈cI∩Zn−d

∏
`i(µ)<0(−1)`i(µ)(−`i(µ)− 1)!∏

`j(µ)>0 `j(µ)!
ym . (5.14)

Moreover, since changing v ∈ Mβ only changes (5.3) by a constant, we can assume that in
order to write (5.14) we have chosen v ∈ r(I,β) and this guarantees that −vi − 1 > 0 for i ∈ I
and vj ≥ 0 for j 6∈ I .

If F (x) is an A-hypergeometric function of degree β, then ∂j(F ) = ∂F/∂xj is A-hyper-
geometric of degree β − aj . In terms of the hyperplane arrangement in Rn−d this has the effect
of changing the hyperplane {〈bj, ·〉+ vj} to the hyperplane {〈bj, ·〉+ vj − 1}.

The cone of parameters

E = EA :=

{
d+2∑
i=1

λiai : λi ∈ R, λi < 0

}
(5.15)

is called the Euler-Jacobi cone ofA. We note that if β ∈ E then β−aj ∈ E for all j = 1, . . . , n.
We also recall the following result of Saito, Sturmfels and Takayama [SST00, Corollary

4.5.13], which we will use in the following sections:
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Theorem 5.1.10. If F is an A-hypergeometric function of degree β ∈ E then, for any j =
1, . . . , n, ∂j(F ) = 0 if and only if F = 0.

In particular, all non-zero A-hypergeometric functions F whose degree lies in the Euler-
Jacobi cone are stable; that is, no partial derivative ∂αF vanishes.

5.2 Minimal regions and Minkowski sum

We consider the Cayley configuration A = Cayley(A1, A2) given by the lattice points

A1 = {α1, . . . , αr} ⊂ Z2

A2 = {β1, . . . , βs} ⊂ Z2

with r, s > 1, that is, corresponding to the bivariate polynomials

f1(t1, t2) = x1t
α1 + . . .+ xrt

αr (5.16)

and
f2(t1, t2) = xr+1t

β1 + . . .+ xr+st
βs . (5.17)

We set n = r + s. The corresponding integer matrix is

A =

 1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1
α1 . . . αr β1 . . . βs

 ∈ Z4×n. (5.18)

As always, we assume that ZA = Z4, or equivalently that ZA1 + ZA2 = Z2. Denote by P1 the
convex hull of A1, P2 the convex hull of A2 and by P1 +P2 the Minkowski sum of both, which
has dimension two.

In this section we study the Laurent solutions of the A-hypergeometric system HA(γ) with
parameter

γ = (−1,−1,−m), m ∈ Z2. (5.19)

To that end, in this section we inspect which are the minimal regions rI = r(I,γ) (cf. Definition
5.1.2). Let A be as in (5.18) and γ as in (5.19). Our first observation is the following lemma.

Lemma 5.2.1. There are no minimal regions rI with I ⊂ {1, . . . , r} or I ⊂ {r+ 1, . . . , r+ s}.

Proof. This is clear since for any u ∈ Rn such that A · u = γ we have that

r∑
i=1

ui =
s∑
j=1

ur+j = −1

Hence the first case to study possible minimal regions rI is when I = {i0, j0} with i0 ∈
{1, . . . , r} and j0 ∈ {r + 1, . . . , r + s}. These regions are related with the points αi0 + βj0 ∈
P1 + P2 and their occurrence will depend on m ∈ Z2. We need the following definition:
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Definition 5.2.2. We say that a point v ∈ P1 + P2 may be seen from m ∈ Z2 if there exists
non-negative integers λij such that

−m+ v =
r∑
i=1

s∑
j=1

λij(αi + βj − v)

In Figure 5.1 we look at the geometric interpretation of Definition 5.2.2: the vertex v of
P1 + P2 may be seen from any m ∈ Z2 in the cone with apex at v and edge directions v − v′
and v − v′′.

bv′
b
v

b v′′

m

P1 + P2

Figure 5.1: v may be seen from m

Remark 5.2.3. If we take v = αi0 + βj0 , Definition 5.2.2 is equivalent to saying that there
exists non-negative integers λi, µj such that

−m+ v =
r∑

i 6=i0
λi(αi − αi0) +

s∑
j 6=j0

µj(βj − βj0)

In fact,

−m+ αi0 + βj0 =
r∑
i=1

s∑
j=1

λij(αi + βj − (αi0 + βj0)) =

=
r∑

i 6=i0

(
r∑

k=1

λik

)
(αi − αi0) +

s∑
j 6=j0

(
r∑

k=1

λkj

)
(βj − βj0),

and
∑r

k=1 λik and
∑r

k=1 λkj also are non-negative integers. For the converse, just note that
r∑

i 6=i0
λi(αi − αi0) +

s∑
j 6=j0

µj(βj − βj0) =

=
r∑

i 6=i0
λi(αi + βj0 − (αi0 + βj0)) +

s∑
j 6=j0

µj(αi0 + βj − (αi0 + βj0)).
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Remark 5.2.4. From Definition 5.2.2 and Figure 5.1 it is clear that no vertex of P1 +P2 is seen
from a different vertex of P1 + P2.

Now we can express how this geometric-arithmetic property ofm seeing a point determines
the occurrence of the regions r{i0,j0}.

Lemma 5.2.5. Let m ∈ Z2. Then the region r{i0,j0} is non-empty if and only if the point
αi0 + βj0 ∈ P1 + P2 may be seen from m.

Proof. For simplicity we assume i0 = j0 = 1. Suppose that there exists a point u ∈ Zr+s such
that A · u = γ and u1 < 0, ur+1 < 0 and uj ≥ 0 for other j. Then we have

u1 + . . .+ ur = −1,

ur+1 + . . .+ rr+s = −1 and

−m =
r∑
i=1

uiαi +
s∑
j=1

ur+jβj.

Combining these three equations we obtain

−m+ α1 + β1 =
r∑
i=1

ui(αi − α1) +
s∑
j=1

ur+j(βj − β1) (5.20)

with u2, . . . , ur, ur+2, . . . , ur+s ≥ 0, then by Remark 5.2.3 we obtain that α1 + β1 ∈ P1 + P2

may be seen from m. For the converse just step backwards.

According to Lemma 5.2.5, we can consider different cases of m ∈ Z2 in order to establish
which minimal regions occur for A and γ. Note that if v = αi0 + βj0 ∈ (P1 + P2)◦, then it is
geometrically clear that any m ∈ Z2 sees the point v and only arithmetic issues may imply that
v be not seen from m, but this never happen, see Corollary 5.2.9.

To study regions corresponding to vertices, we state the following lemma.

Lemma 5.2.6. Let m ∈ Z2 and αi0 + βj0 ∈ P1 + P2 such that αi0 + βj0 is seen from m. If
αi0 + βj0 is a vertex of P1 + P2 then the region r{i0,r+j0} is finite.

Proof. Assume again i0 = 1, j0 = 1. Note that, being α1 + β1 a vertex, there exists a linear
functional ξ such that

ξ(α1 + β1) < ξ(αi + βj) for i 6= 1 or j 6= 1.

Hence, if

−m+ α1 + β1 =
r∑
i=2

ui(αi − α1) +
s∑
j=2

ur+j(βj − β1) =

=
r∑
i=2

ui[(αi + β1)− (α1 + β1)] +
s∑
j=2

ur+j[(α1 + βj)− (α1 + β1)],
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where ui, ur+j ≥ 0 for all i, j, we have

r∑
i=2

uihi +
s∑
j=2

ur+jkj = ξ(−m+ α1 + β1)

where hi and ki are positive real numbers. Since ui, ur+j are non-negative integers, their
possible values are bounded and the region with support {1, r + 1} is a bounded minimal
region.

Remark 5.2.7. It can be easily seen that

m ∈ (P1 + P2)◦ if and only if γ = (−1,−1,−m) ∈ E ,

where E is the Euler-Jacobi cone defined in (5.15).

The following results relates supports of vectors in the kernel of the Cayley configuration
A with interior lattice points in the Minkowski sum A1 + A2.

Proposition 5.2.8. Fix i ∈ {1, . . . , r}, j ∈ {1, . . . , s}. The following conditions are equivalent:

1. There exists ` = n − 4 linearly independent vectors u(1), . . . , u(`) ∈ kerZ(A) with
nsupp(u(i)) = {i, r + j}.

2. αi + βj ∈ (P1 + P2)◦.

3. The minimal region r({i,r+j},(−1,−1,−(αi+βj)) has a recession cone of maximal dimension.

4. There exists m ∈ Z2 such that r({i,r+j},γ) with γ as in (5.19) has a recession cone of
maximal dimension.

Proof. Assume that 1. holds and let m = αi + βj . Then, γ = A.(−ei − er+j) and so the
region r({i,r+j},(−1,−1,−(αi+βj)) is non empty. Since (−ei − er+j) + u(k) ∈ r({i,r+j},γ) for any
k = 1, . . . , `, it follows that the recession cone is of maximal dimension, proving 3. Item 3.
clearly implies 4., which in turns implies 1., as the difference of any two vectors in r({i,r+j},γ)

lies in the kernel of A.
We now see the equivalence of items 2 and 3. Let αi + βj ∈ (P1 + P2). If the point lies in

(P1+P2)◦, then γ = (−1,−1, (αi+βj)) lies in the Euler-Jacobi cone and so any minimal region
has maximal dimension recession cone If instead αi+βj lies in the boundary of P1+P2, let η be
an inner normal vector such that 〈η, αi+βj〉 = cη is minimal and 〈η, v〉 ≥ cη for all v ∈ P1+P2.
We denote by F the corresponding face and F1, F2 the faces of P1, P2 such that F = F1 + F2,
Any vector in rI , is a Z-linear combination of the vectors (1, 0, αk), k = 1, . . . , r and (0, 1, β`)
with coefficients (u1, . . . , ur+s) which non negative coefficients except from Ui, ur+j ∈ Z<0.
Moreover, the sum of the first r and last s coordinates equal to −1. We then have

αi + βj =
∑
k 6=1

uk((αk + βj)− (αi + βj) +
∑
`6=j

u`+r((αi + β`)− (αi + βj)).

As,
∑

k 6=i ui = 0,
∑

` 6=j u`+r = 0, we can argue as in Lemma 5.2.6. We take the inner product
on both sides with η and using the positivity, we deduce that uk = 0 if αk 6∈ F1, u` = 0 if
βell 6∈ F2. Therefore, rI cannot be full dimensional.
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Corollary 5.2.9. If αi0 + βj0 is an interior point of P1 + P2 then it may be seen from any
m ∈ Z2.

Proof. Given m ∈ Z2, our assumption that ZA = Z4 ensures that we can always take v ∈ Zn
such thatA ·v = (−1,−1,−m). By the first item in Proposition 5.2.8, there exists u ∈ kerZ(A)
with nsupp(u(i)) = {i, r + j} and all coordinates ui are non zero. Then, for any sufficiently
big λ ∈ N it holds that A · (λu + v) = (−1,−1,−m) and nsupp(λu + v) = {i0, r + j0}. We
deduce from Lemma 5.2.5 that v may be seen from m.

5.3 Residues and Cayley configurations

In this section we introduce local and global residues and show that they satisfy a particular A-
hypergeometric system. The local Grothendieck residue associated with a family of k-variate
Laurent polynomials f1, . . . , fk with an isolated zero at a point ξ, is defined by

Resf,ξ(h) =
1

(2πi)k

∫
Γξ(ε)

h(t)

f1(t) . . . fk(t)

dt1
t1
∧ . . . ∧ dtk

tk
(5.21)

where Γξ(ε) is the real k-cycle Γξ(ε) = {|fi(t)| = εi} oriented by the k-form d(arg(f1)) ∧
. . . ∧ d(arg(fk)). For almost every ε = (ε1, . . . , εk) in a neighborhood of the origin, Γξ(ε) is
smooth and by Stokes’ Theorem the integral (5.21) is independent of ε. Note that this definition
makes sense as long as h is holomorphic in a neighborhood of ξ. If ξ is a simple zero then the
toric Jacobian

JTf (ξ) = det

(
tj∂fi
∂tj

(ξ)

)
is non-zero and

Resf,ξ(h) =
h(ξ)

JTf (ξ)
. (5.22)

This identity follows from the change of coordinates yi = fi(t) and iterated integration.
Assuming that the set V of common zeros of f1, . . . , fk in the torus T = (C∗)k is finite, we

can define the global residue as the sum of local residues:

Resf1,...,fk(h) =
∑
ξ∈V

Resf,ξ(h). (5.23)

where h is holomorphic around each ξ ∈ V (for instance h = h1

h2
with h1, h2 polynomials with

h2(ξ) 6= 0 for each ξ ∈ V ).
Residues are solutions of certainA-hypergeometric systems. Fix k configurations of integer

points, Ai = {αi1, . . . , αi|Ai|} ⊂ Zk for i = 1, . . . , k and denote

x = (xα1
1
, . . . , xα1

|A1|
, . . . , xαk1 , . . . , xαk|Ak|

), t = (t1, . . . , tk).
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Let f1(x; t), . . . , fk(x; t) be k-variate polynomials with these exponents and |A1| + · · · + |Ak|
indeterminate coefficients

fi(x; t) =

|Ai|∑
l=1

xαilt
αil ; i = 1, . . . , k. (5.24)

Then, for generic values of the coefficients x, f1, . . . , fk will have a finite set V of common
zeros in the torus.

Let n = |A1| + · · · + |Ak| and d = 2k. Recall that the Cayley configuration A =
Cayley(A1, . . . , Ak) associated with A1, . . . , Ak is the configuration in Zd defined by

A = {e1}× A1 ∪ · · · ∪ {ek}×Ak. (5.25)

We have the following proposition, whose proof can be found in [Dic04, Proposition 3.4].

Proposition 5.3.1. For any m ∈ Zk, the local residue

Resmf,ξ := Resf,ξ(t
m) (5.26)

where tm = tm1
1 . . . tmkk and ξ ∈ V is anA-hypergeometric algebraic function of the coefficients

x of f1, . . . , fk with homogeneity

γ = (−1, . . . ,−1,−m1, . . . ,−mk) ∈ Zd.

Consequently, the global residue (5.23) is a rational A-hypergeometric function with the same
homogeneity.

For q ∈ Nn and i = 1, . . . , k denote by qi = (0, . . . , 0, q|Ai−1|+1, . . . , q|Ai−1|+|Ai|, 0, . . . , 0).
The following proposition follows easily by differentiating under the integral sign.

Proposition 5.3.2. Let q ∈ Nn then

∂q (Resf,ξ(t
m)) = (−1)|q|

n∏
i=1

(|qi| − 1)!Resf̄ ,ξ(t
m̄) (5.27)

where f̄ denotes the collection of polynomials f |q
1|, . . . , f |q

n| and

m̄ = m+
n∑
i=1

|Ai|∑
j=1

q|Ai−1|+jα
i
j,

where |A0| is understood as 0.

Let A1, . . . , Ak be k configurations in Zk. As usual, we denote by A1 + · · · + Ak their
Minkowski sum {αij1 + · · ·+ αijk, α

i
jl ∈ Ai}.

The following result about vanishing of global residues, due to A. Khovanskii [Kho78], is
the sparse version of the classical Euler-Jacobi Theorem.

Theorem 5.3.3. Let f1, . . . , fk be generic polynomials with coefficients in A1, . . . , Ak. For any
Laurent polynomial h with support contained in the interior of the convex hull ofA1 + · · ·+Ak,
the global residue Resf1,...,fk(h) is equal to 0.
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Example 5.3.4. Consider the 1-dimensional Cayley configuration

A =

(
1 1 . . . 1 1
0 k1 . . . km `

)
and let

f(x; t) := x0 + xk1t
k1 + · · ·+ xkmt

km + x`t
`

denote the polynomial with exponents 0, k1, . . . , km, ` and indeterminate coefficients. The pow-
ers ρs(x), s ∈ Z of the roots of f(x; t), viewed as functions of the coefficients, are algebraic
solutions of the A-hypergeometric system with exponent (0,−s) and the total sum

ps(x) := ρs1(x) + · · ·+ ρsd(x)

is then a rational solution with the same exponent. Similarly, one can show that the local
residues

Resρ(x)

(
tb

fa(x; t)

dt

t

)
, a, b ∈ Z; a ≥ 1

give algebraic solutions with exponent (−a,−b) and, again, the total sum of residues is a
rational solution. In [CDD99] a family of algebraic A-hypergeometric functions is defined in
terms of the roots of the polynomial f(x; t). These functions are used to construct a basis of
the space of solutions for any integer parameter.

5.4 A-hypergeometric solutions associated to a vertex

In this section we show that canonicalA-hypergeometric series with homogeneity γ as in (5.19)
corresponding to minimal regions associated with a vertex αi0 + βj0 of P1 + P2, are residues
associated to f1 and f2 as defined in (5.16),(5.17).

5.4.1 The Gelfond-Khovanskii method for calculating residues

We say that two lattice polygones Q1 and Q2 are developed if no edge of Q1 is allowed to be
parallel to an edge of Q2. This implies that each edge E of Q1 + Q2 is either a translate of an
edge of Q1 (“a 1–edge”) or a translate of an edge of Q2 (“a 2–edge”). Along this section we
suppose that Q1 and Q2 are developed.

Given h ∈ C[t1, t
−1
1 , t2, t

−1
2 ], let Resg1,g2(h) as in (5.23), for k = 2. In [GK96], the follow-

ing method to calculate Resg1,g2(h) is introduced, assuming that Qi := New(gi), i = 1, 2, are
developed.

To each vertex v = (v1, v2) of Q1 + Q2 we assign a combinatorial coefficient kv ∈
{−1, 0,+1} according to the following rule:

Let E1, E2 be the two edges of Q1 +Q2 adjacent to v in counterclockwise order. We set

kv :=


−1 if E1 is a 1 -edge and E2 is a Q2-edge,
+1 if E1 is a 2-edge and E2 is a Q1 -edge,
0 if E1 and E2 are both Q1 -edges or both Q2-edges.

(5.28)

We call the coefficient kv, combinatorial Khovanskii coefficient of v.
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Let av · tv1
1 t

v2
2 be the extreme term of g1 · g2 corresponding to v. We define L(v) to be the

formal Laurent series

L(v) =
1

av · tv1
1 t

v2
2

·
∞∑
n=0

(
1− g1(t1, t2) · g2(t1, t2)

av · tv1
1 t

v2
2

)n
. (5.29)

Denote by Rv,g1,g2(h) the constant term of h · L(v). Then, the theorem of Gel’fond and Kho-
vanskii states:

Theorem 5.4.1. With the previous notation,

Resg1,g2(h) =
∑

v a vertex of Q1+Q2

kv ·Rv,g1,g2(h). (5.30)

5.4.2 Laurent polynomial solutions

Now, we can combine the Gelfond-Khovanskii method with the notion of m “seeing” v from
Definition 5.2.2. Take f1, f2, P1 and P2 as in the beginning of Section 5.2, with P1 and P2

developed.

Proposition 5.4.2. Let m ∈ Z2 and v a vertex of P1 +P2, then Rv,f1,f2(tm) = 0 if v is not seen
from m.

Proof. It is clear from Definition 5.2.2 and Equation (5.29) that if v is not seen from m, no
constant term appears in the product tm · L(v).

Theorem 5.4.3. Let m ∈ Z2 and v = αi0 + βj0 ∈ P1 + P2 a vertex such that v is seen
from m. Then Resv,f1,f2(tm) agrees with the canonical hypergeometric Laurent polynomial
corresponding to the minimal region r{i0,j0}.

Proof. Suppose that v = α1 +β1 so that avtv = x1xr+1t
α1+β1 . Let xu be a monomial appearing

in Rv(t
m) with coefficient Cu. Then, we have that all exponents uk are non-negative except

u1, ur+1 which are strictly negative and

u1 = −1− u2 − · · · − ur and ur+1 = −1− ur+2 − · · · − ur+s.

As usual, let us denote by u+, the non-negative entries of u and consider the derivative

∂u+ ·Rv(t
m)

We claim that
∂u+ ·Rv(t

m) = Cu (
∏
uj>0

uj!) x
u1
1 · xur+1

r+1 .

Indeed, suppose ũ ∈ Zr+s is such that A · ũ = γ and nsupp(ũ) = {1, r + 1}. Then ∂u+xũ = 0
unless ũ+ ≥ u+, in the sense that the entries of ũ+ are greater than or equal than those of u+.
Suppose then that there exists such ũ with ũ+ ≥ u+. It follows that

ũ1 ≤ u1 ; ũr+1 ≤ ur+1.
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But then the vector ũ − u ∈ kerZA has negative support contained in {1, r + 1}. It follows
that, since the region is bounded by Lemma 5.2.6, we must have ũ = u and there is only one
term left.

On the other hand, we have that ∂u+ · Rv(t
m) is the zero order coefficient in the expansion

of

∂u+

(
tm

x1xr+1tα1tβ1(f1/x1tα1)(f2/xr+1tβ1)

)
=

(−1)a+b a! b! tm̃

x1xr+1tα1tβ1(f1/x1tα1)a(f2/xr+1tβ1)b
,

where a = u2 + · · ·+ ur = −u1 − 1, b = ur+2 + · · ·+ ur+s = −ur+1 − 1 and

m̃ = m+
r∑
i=2

ui αi +
s∑
j=2

ur+j βj.

Now, note that since xu was a term in Rv(t
m) we have

−m+ α1 + β1 =
r∑
i=2

ui (αi − α1) +
s∑
j=2

ur+j (βj − β1)

and therefore
−m̃+ (a+ 1)α1 + (b+ 1)β1 = 0.

Hence, the zero order coefficient in the expansion is simply:

(−1)a+b a! b!

xa+1
1 xb+1

a+1

.

Comparing the two expressions we get:

Cu =
(−1)a+b a! b!∏

uj>0 uj!
.

This implies that Rv(t
m) is the canonical hypergeometric Laurent polynomial (cf. (5.3)) with

homogeneity γ corresponding to the bounded minimal region r{1,r+1}.

5.5 A necessary condition for the algebraicity of A-hyper-
geometric Laurent series

In this section we give a necessary condition for the algebraicity of the canonical Laurent A-
hypergeometric series Φγ

rI
(cf. (5.3)). We will need the following result proved in [CDR11].

Theorem 5.5.1. The hypergeometric series

u(z) :=
∞∑
n=0

∏r
i=1(pin+ ki)!∏s

j+i(qjn)!
zn , ki ∈ N (5.31)
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is algebraic if and only if s− r = 1 and the factorial ratios

An :=

∏r
i=1(pin)!∏s
j+i(qjn)!

are integral for every n ∈ N.

Let A ∈ Zn×d and β ∈ Zd and B ∈ Zn×n−d a Gale dual of A with rows b1, . . . , bn. We say
that a canonical series φ(I,β) with unbounded r(I,β) has regular support if there exists an infinite
extremal ray of r(I,β) defined by the vanishing of the linear forms associated to indices K in the
complement of I , such that for any J ∈ K with cardinality n− d− 1 such that {bi, i ∈ J} are
linearly independent, and any i ∈ I , bi is not in the linear span of those vectors. Any such ray
will be called regular.

We then have:

Theorem 5.5.2. Given r(I,β) ∈ rw, if the canonical Laurent A-hypergeometric series Φβ
rI

is
algebraic and has regular support, then |I| ≤ d

2
.

Proof. By the discussion in Section 5.1 (cf. (5.13) and (5.14) for the notations), it is enough to
show that if the series

ϕcI (y) :=
∑

µ∈cI∩Zn−d

∏
`i(µ)<0(−1)`i(µ)(−`i(µ)− 1)!∏

`j(µ)>0 `j(µ)!
yµ .

is algebraic, then |I| ≤ d
2
. Note that the number of factorials in the numerator is |I| and the num-

ber of factorials in the denominator is n− |I|. Suppose then that ϕcI (y) is algebraic. Consider
the restriction of ϕcI (y) to an (infinite) regular ray of cI given by `j1(µ) = 0, . . . , `j`(µ) = 0,
` ≥ n−d−1. Then this restriction must also be algebraic. But this is a univariate hypergeomet-
ric series of the form (5.31) with integral ratios and |I| factorials in the numerator (which are
all non trivial by the hypothesis of regular support) and n−|I|−` factorials in the denominator.
Then, by Theorem 5.5.1, we have that n− |I| − ` = |I|+ 1 and we conclude that |I| ≤ d

2
.

The following example explains the inclusion of the hypothesis of regular support.

Remark 5.5.3. Let A1 = {α1 = (0, 0), α2 = (1, 1)} and A2 = {β1 = (0, 0), β2 = (1, 0), β3 =
(0, 1), β4 = (0, 2)}. Note that β3 is an interior point of the edge with vertices β1, β4. The
dimension of a Gale dual configuration to A is two. Take any integer homogeneity in E . There
is an unbounded minimal region with negative support {1, 4, 5}. Note that b1 and b4 are linearly
dependent with b2, and one of the infinite rays of its recession cones is defined by `2 = 0. The
restriction of the associated canonical series Φ to this ray is an algebraic hypergeometric
function. However, the other infinite ray allows to preclude the algebraicity of Φ.

In the case of Cayley configurations, we obtain the following corollary.

Corollary 5.5.4. Let A be the Cayley configuration in Z2k associated to k configurations in
Zk. Let γ = (u,−m), with u ∈ Zk<0,m ∈ Zk a homogeneity in the Euler-Jacobi cone E . Let
ΦI be an algebraic canonical A-hypergeometric Laurent series of homogeneity γ with negative
support I . If φI has regular support then |I| = k.
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Proof. As γ ∈ E , no minimal region is bounded. We deduce from Theorem 5.5.2 that |I| ≤
2k
2

= k. On the other side, as the k first entries of γ are negative I needs to “intersect” the index
set of each of the k configurations and so also |I| ≥ k.
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Chapter 6

Algebraic A-hypergeometric solutions and
residues

We now turn our attention to algebraic solutions of regular A-hypergeometric systems HA(β),
with β an integer (resonant) parameter. Rational solutions (which are, in particular, algebraic
solutions) of A-hypergeometric systems have been studied in, e.g., [CDS01, CDR11, CDD99,
PST05]. A characterization of A-hypergeometric systems having a full set of algebraic solu-
tions is given in [Beu10], using tools from number theory.

In this final chapter we study the algebraic A-hypergeometric Laurent solutions of the Cay-
ley configuration A = Cayley(A1, A2) with A1 and A2 subsets of Z2. This configuration is
associated to two polynomials f1 and f2 in two variables. In the case of one univariate poly-
nomial with fix monomial support, the algebraic solutions of the associated configuration were
described by means of residues in Example 5.3.4. Those residues are defined in terms of the
roots of the polynomial, which can in turn be explicitly described in terms of the coherent tri-
angulations of the convex hull of the configuration. Here, the coherent mixed subdivisions of
the Minkowski sum of A1 and A2, studied in Chapter 2, will help us to describe the roots of
f1 and f2 over which we will add the local residues, to produce algebraic A-hypergeometric
Laurent series convergent in explicit open sets.

In section 6.1 we introduce this notion of residues associated to a mixed cell of a coherent
mixed subdivision of the Minkowski sum of A1 and A2. In section 6.2, we show how these
residues can be written in terms of canonical Laurent A-hypergeometric series. This is the
content of Theorem 6.2.2, a main result in this chapter. We prove in Theorem 6.3.1 of section
6.3 that all algebraic solutions for these configurations can be described in terms of residues in
case the Cayley configuration associated to A1, A2 has codimension two. Finally, we present
in the last section general conjectures for further study.

6.1 Coherent mixed subdivisions and residues

In [HS95], an algorithm based on coherent mixed subdivision to find the solutions of a polyno-
mial system is introduced. We explain it briefly:

Let w ∈ Rn be a generic weight and Πw the coherent mixed subdivision associated to it.

91
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Let σ = {i0, i1, j0, j1} ∈ Πw a mixed cell and

fσ1 = xi0t
αi0 + xi1t

αi1 , (6.1)

fσ2 = xr+j0t
βj0 + xr+j1t

βj1 . (6.2)

Denote Aσ1 = {i0, i1}, Aσ2 = {j0, j1}, so that σ = Aσ1 + Aσ2 . Let

ξσ1 , . . . , ξ
σ
vol(σ)

be the roots of fσ1 , fσ2 . Then we can “extend” them to ξ1, . . . , ξvol(σ) roots of f1, f2 such that
their coordinates are Puiseaux series in x = (x1, . . . , xn). More explicitly, for each i, ξi = ξi(x)
is an algebraic function of x such that ξi converges in Uw,ε for ε sufficiently small. Moreover

Lemma 6.1.1. There exists w̃ ∈ w + rowspan(A) such that w̃t = 0 for t = i, j, k or l and
w̃t > 0 otherwise. Consequently

inw̃ (ξih(x)) = ξσih(x) h = 1, 2, (6.3)

i.e. ξih(x) = ξσih(x) + h.o.t.(x).

Now we use this information to define algebraic solutions to our A-hypergeometric system
HA(γ). Since the functions defining the roots are clearly algebraic, it follows that the local
residue of tm with respect of f1, f2 is also an algebraic function, because generically in x we
can write

Resmf1,f2,ξi(x) := Resf1,f2,ξi(x)(t
m) =

ξm1
i1 ξ

m2
i2

JTf (ξi)
, (6.4)

and the right-hand side of this equality is clearly algebraic. Thus

Resmσ (x) :=

vol(σ)∑
i=1

Resmf1,f2,ξi(x) (6.5)

is an algebraic Laurent A-hypergeometric function in Uw,ε with homogeneity (−1,−1,−m).
We call it the local residue relative to the cell σ.

It follows from Theorem 5.3.3 that for anym ∈ (P1 +P2)◦ and any generic weight w ∈ Rn,
the residues {Resmσ , σ maximal cell in Πw} satisfy the linear relation∑

σ

Resmσ = 0. (6.6)

Given w ∈ Rn generic and γ ∈ Z4, we denote by Algγ,w the subspace of A-hypergeometric
Laurent algebraic series with homogeneity γ that converge in the direction of w.

We then obtain the following Corollary:

Corollary 6.1.2. For generic w ∈ Rn, m ∈ (P1 + P2)◦ and γ = (−1,−1,−m) it holds

Rγ,w := 〈Resmσ , σ a mixed cell in Πw〉 ⊆ Algγ,w. (6.7)

Moreover
dim(Rγ,w) ≤ #(mixed cell in Πw)− 1. (6.8)
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6.2 Algebraic solutions as residues

In this section we present one of our fundamental result in this chapter: Theorem 6.2.2. where
we find the expression of the residues associated to cells in a mixed subdivision in terms of
canonical series solutions.

Notation 6.2.1. Let w ∈ Rn be a generic weight and consider a cell σ ∈ Πw. We will denote
by kσ,v ∈ {1,−1, 0} the combinatorial Khovanskii coefficient of the vertex v ∈ σ (cf. (5.28))
associated to fσ1 and fσ2 (cf. (6.1) and (6.2)). HereQ1 = Aσ1 andQ2 = Aσ2 which are developed
since dim(σ) = 2.

Being a Laurent A-hypergeometric series converging in Uw,ε, Theorem 5.1.4 says that the
local residue relative to the cell σ can be written in terms of the canonical Laurent series Φγ

rI
in

the direction of w. The next theorem shows that, for m ∈ (P1 +P2)◦∩Z2, in the corresponding
expansion of Resmσ the only Φγ

rI
that appear are those such that I = {i, j} and rI is a infinite

region corresponding to a point αi + βj ∈ σ ∩ (P1 + P2)◦. Moreover, the coefficients are
determined.

Theorem 6.2.2. Let w ∈ Rn, m ∈ (P1 + P2)◦ ∩ Z2 and σ a mixed cell in a subdivision Πw

of P1 + P2. Assume that all non empty r(I,(−1,−1,−m) with I{1, . . . , n} ⊂ σ with |I| = 3 are
regular supports with regular ray extremal for some weight. Then

Resmσ (x) =
∑

kσ,vΦ
γ
r{i,j}

(x) (6.9)

where v runs over the points αi + βj ∈ σ ∩ (P1 + P2)◦.

In order to prove Theorem 6.2.2 we will need the following Lemmas.

Lemma 6.2.3. Let w ∈ Rn generic such that σ is mixed cell with σ ⊂ Πw and m ∈ Z2,
γ = (−1,−1,−m). In the expansion:

Resmσ =
∑
rI∈rw

kIΦ
γ
rI
, (6.10)

the coefficients kI are independent of the choice of m.

Proof. Take m,m′ ∈ Z2. Then there exists q, q′ ∈ Nn such that

∂q(Resmσ ) = ∂q
′
(Resm

′

σ ).

In fact, by Proposition 5.3.2 it is enough to take q, q′ such that q1 + · · · + qr = q′1 + · · · + q′r,
qr+1 + · · ·+ qr+s = q′r+1 + · · ·+ q′r+s and m+

∑r
i=1 qiαi +

∑s
j=1 qr+jβj = m′ +

∑r
i=1 q

′
iαi +∑s

j=1 q
′
r+jβj . This can always be done, because of our hypothesis ZA = Z4.

Taking into account the respective expansions of both functions (cf. Theorem 5.1.4(ii))
and interchanging infinite sum with derivative (which is allowed by uniform convergence) we
obtain: ∑

rI∈rw
kI(m)∂q

(
Φγ
rI

)
=
∑
rI∈rw

kI(m
′)∂q

′
(

Φγ′

rI

)
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where γ′ = (−1,−1,−m). By Proposition 5.1.8 we obtain the identity:∑
rI∈rw

kI(m)
(
Φγ−Aq
rI

)
=
∑
rI∈rw

kI(m
′)
(

Φγ′−Aq′
rI

)
. (6.11)

Let δ = m − Aq = m′ − Aq′. Since the series (Φδ
rI

)I are a basis of the space of Laurent A-
hypergeometric functions with homogeneity δ, and that, by Theorem 5.1.10 and Remark 5.2.7,
all the coefficients kI(m) and kI(m′) appearing in the expansions of Resmσ and Resm′σ respec-
tively also appear in (6.11), we conclude that the coefficients kI(m) coincide with kI(m′).

Lemma 6.2.4. Let w ∈ Rn generic such that σ is mixed cell with σ ⊂ Πw. Suppose that
m = αi0 + βj0 ∈ σ ∩ (P1 + P2)◦. Then there exists w̃ such that Πw = Πw̃ and

inw̃(Resmσ (x)) = Resmfσ1 ,fσ2 = kσ,mx
−1
i0
x−1
r+j0

. (6.12)

Proof. Let w̃ as in 6.1.1. Putting fσ1 and fσ1 instead of f1 and f2 as in (6.1) and (6.2) respec-
tively, and Aσ1 and Aσ2 instead of P1 and P2 in Theorem 5.4.3 we have that Resmfσ1 ,fσ2 6= 0.
Then

inw̃(Resmσ (x)) =

vol(σ)∑
i=1

inw̃
(
Resmf1,f2,ξi(x)

)
=

vol(σ)∑
i=1

inw̃

(
ξmi

JTf (ξi)

)
=

vol(σ)∑
i=1

inw̃(ξmi )

inw̃(JTf (ξi))
=

=

vol(σ)∑
i=1

(ξσi )m

JTfσ(ξσi )
= Resmfσ1 ,fσ2 (6.13)

To see that the last equality in (6.12) holds, we use Theorem 5.4.1 for fσ1 , f
σ
2 . Name

vhl = αih + βjl , h, l = 0, 1 (note that m = v00). Then we obtain:

Resfσ1 ,fσ2 (tm) =
1∑

h,l=0

kσ.vhl(vhl) ·Rvkl(t
m). (6.14)

From Remark 5.2.4 and Proposition 5.4.2 we obtain that Rvkl(t
m) = 0 if vhl 6= v00 = m. On

the other hand, Rm(tm) = kσ,mx
−1
i0
x−1
r+j0

is an easy calculation.

Now we are ready to prove Theorem 6.2.2.

Proof (of Theorem 6.2.2). By Lemma 6.2.3 we write

Resmσ =
∑
rI∈rw

kIΦrI . (6.15)

We will prove that all the coefficients kI in (6.10) are zero except for those corresponding
to I = {i, j} with v = αi + βj ∈ (P1 + P2)◦ ∩ σ, which will be equal to the Khovanskii
combinatorial coefficients kσ,m (see Notation 6.2.1).

First consider a minimal region rI 6= ∅ such that I ( σ. By Lemma 2.2.6 there exists
w′ ∈ Rn weight vector such that σ ∈ Πw′ and I * Πw′ . Then ΦrI does not appear in the
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expansion in the direction of w′, that is, the corresponding coefficient is zero. As Resmσ is also
a Laurent solution with respect to w, both expansions coincide (see Remark 5.1.7). So

Resmσ =
∑
I ⊂ σ
rI 6= ∅

kIΦrI . (6.16)

Now we are left with minimal regions rI 6= ∅ such that I ⊆ σ. It is easy to see that if kI 6= 0,
then I cannot be the whole of σ, since in this case I is not contained in any other mixed cell and
the correspoding summand cannot be canceled as the Euler Jacobi theorem 5.3.3 asserts. We
discard all regions rI with |I| = 3 using Corollary 5.5.4 by our hypothesis on these supports.

So we see that the only coefficients that may be distinct to zero are those corresponding to
regions rI 6= ∅ with I = {i, j}, with αi + βj ∈ (P1 + P2)◦ ∩ σ. As γ ∈ E , we deduce from
Proposition 5.2.8 that αi + βj lies in the interior (P1 + P2)◦ of the Minkowski sum.

Finally we compute the coefficient corresponding to I = {i, j}with αi+βj ∈ (P1+P2)◦∩σ.
Assume, by Lemma 6.2.3, thatm = αi+βj . Then Lemma 6.2.4 shows that kσ,mx−1

i x−1
r+j appear

in the expansion of Resmσ . But this is a term in the canonical Laurent series Φγ
r{i,j}

and then the
whole series must appear multiplied by the coefficient kσ,m.

We will show in the next Section that the hypotheses of regularity and extremality of nega-
tive supports with cardinality three hold in codimension two if all points αi, βj are vertices.

We obtain the following variant of Theorem 5.3.3.

Corollary 6.2.5. If σ has no vertices in (P1 + P2)◦ and m ∈ (P1 + P2)◦ then Resmσ = 0.

Example 6.2.6. Assume that we have two configurations of dimension one, for instance let
A1 = {αi+1 = (i, 0), 0 ≤ i ≤ r − 1} and A2 = {βj+1 = (0, j), 0 ≤ j ≤ s − 1}, r, s ≥ 2.
Then, a possible coherent mixed subdivision of A1 +A2 consists of the following s− 1 cells σj ,
j = 1, . . . , s − 1, which are all mixed and rectangular, with the four vertices in the boundary
of A1 + A2:

σj = {1, r, j, j + 1}.
Then, by Corollary 6.2.5, the sum of the residues Rm

σj
over each one of these cells is 0, which

gives new linear relations among them, different from the Euler-Jacobi vanishing condition.
As before, denote by f1 = f1(x), f2 = f2(y) polynomials with variable coefficients associated
to A1, A2. These zero residues Rm

σj
correspond to the sum of the residues over all the points

(a, yj), j = 1, . . . , s− 1, here a is a fixed zero of f1 and yj ranges over all the zeros of f2.

6.3 The case n = 6

In this section we will make a detailed description of algebraic Laurent series solutions of the
system HA(γ) in terms of residues, in case n = r + s = 6, r, s ≥ 2, which corresponds to
non pyramidal codimension two Cayley configurations. As before γ = (−1,−1,−m) with
m ∈ (P1 + P2)◦. In view of Example 6.2.6, we will deal with the following cases: A1, A2 are
two trinomials with dim(A1) = dim(A2) = 2 or A1 is a binomial and A2 quatrinomial with
dim(A2) = 2 and all αi, βj are vertices.
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Under these hypotheses, we have the following precise version of Corollary 6.1.2. Recall
that given w ∈ Rn generic and γ ∈ Z4, we denote by Algγ,w the subspace of A-hypergeometric
Laurent algebraic series with homogeneity γ that converge in the direction of w.

Theorem 6.3.1. Let w be a generic weight in Rn, n = 6 and A1, A2 satisfying the hypotheses
at the beginning of section 6.3. Then, for any γ = (−1,−1,−m) with m ∈ (A1 + A2)◦ ∩ Z2,

Algγ,w = Rγ,w (6.17)

and
dim(Rγ,w) = #(mixed cell in Πw)− 1 = #interior vertices of Πw. (6.18)

In particular, the only non-trivial linear relation (up to multiplicative constant) among the
residues Rm

σ , where σ runs over the mixed cells of Πw, is the Euler-Jacobi vanishing condition
in Theorem 5.3.3.

Proof. We list the following facts that follow by inspecting all possible cases, which we do in
the following subsections 6.3.1 and 6.3.2.

(a) Let I = {i, j}. By Proposition 2.2.4, the minimal region rI,γ lies in the direction of w if
and only if αi + βj is an interior vertex of Πw. In the n = 6 case, all these vertices lie in
a mixed cell σ.

(b) The number of mixed cells in Πw equals the number of interior vertices of Πw plus one.

To prove equality in (6.17), we need to show that all canonical series Φij := Φγ
r{i,j}

corre-
sponding to interior vertices of Πw can be written in terms of residues. Theorem 6.2.2 gives the
explicit expressions:

Resmσ (x) =
∑

kσ,vΦ
γ
r{i,j}

(x),

that we need to invert. If αi + βj ∈ (P1 + P2)◦ is the only interior vertex of a mixed cell
σ ∈ Πw, then the canonical series coincides with the residue associated to this cell up to sign.
Otherwise, it is not so immediate but it is still straightforward in all cases we are considering.
For instance, let r = s = 3 and A1, A2 as in example 2.2.7. Take w ∈ R6 with

∑6
i=1 wibi in

the positive cone generated by b2 and b6. The corresponding subdivision has four mixed cells
σ1 = {2, 3, 5, 6}, σ2 = {2, 3, 4, 5}, σ3 = {1, 3, 4, 5}, and σ4 = {1, 3, 5, 6}, and three interior
vertices corresponding to the indices {3, 5}, {3, 4} and {1, 5}. Then,

Φ3,5 = Resmσ1
,Φ3,4 = Resmσ1

+Resmσ2
,Φ1,5 = Resmσ1

+Resmσ4
.

Then, the residues Resmσ1
, Resmσ2

, Resmσ4
are linearly independent and there cannot be any linear

relations other than the Euler-Jacobi relation.

6.3.1 The case r = s = 3

We study in detail the developed case. In the non-developed case, we only present the “ex-
treme” Example 6.3.8.

In this case we notice the following situation peculiar to the Minkowski sum P1 + P2,
assuming that P1 and P2 are developed: it is known that the facets of the Minkowski sum of
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two polygons are parallel to a facet (edge) of one of them. Note that there are two possible
configurations of the edges of P1 + P2 with respect to their alternation, that is, the way they
concatenate. In the alternate case, either no facet parallel to a facet of P1 is adjacent to any other
facet of P1 (and consequently, the same phenomenon occurs with P2). The other possibility,
which we call non-alternate, corresponds to the occurrence of two consecutive facets parallel to
facets of P1 (and then also two consecutive facets parallel to facets of P2). Call, by simplicity,
Case 1 to the alternate case and Case 2 to the non-alternate case.

Before giving precise statements and proofs. we show the two different patters of coherent
mixed subdivisions and minimal regions corresponding to homogeneities (−1,−1,−m) with
m in the interior of the Minkowski sum P1 + P2. These examples feature the general patterns.

Example 6.3.2 (Case 1: alternate polygons). In Figure 2.4 we drew the Minkowski sum of
the polytopes from Example 2.2.8. In this case, the Minkowski sum is alternate (Case 1). In
Figure 6.1(a) we depicted again P1 + P2. Consider the corresponding Cayley configuration A

bα1 + β3

bα1 + β2

b

α3 + β2

b α3 + β1

b

α2 + β1

b

α2 + β3

b

α2 + β2
b

α1 + β1

b

α3 + β3

b

α1 + β1
b

α1 + β2

b α1 + β3

b

α2 + β1
b

α2 + β2

b
α2 + β3

b

α3 + β1
b

α3 + β2

b α3 + β3

(a) Case 1 (b) Case 2

Figure 6.1: The two possible cases for P1 + P2

and a choice B of Gale dual:

A =


1 1 1 0 0 0
0 0 0 1 1 1
0 2 1 1 0 0
1 0 2 0 1 0

 , B =


−1 0

0 −1
1 1
−1 1
−1 −2

2 1

 .

The recession cones of the minimal regions in the hyperplane arrangement defined by B (cf.
(5.11)) are depicted in Figure 6.2. There are only three minimal regions, with negative support
of cardinality two, corresponding to the three interior points αi + βj of P1 + P2.
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l4

l5

l3

l1

l2

l6

{2, 5}

{1, 4}

{3, 6}

Figure 6.2: Minimal regions for an alternate case

Example 6.3.3 (Case 2: non-alternate polygons). In Figure 2.2 we drew the Minkowski sum of
the polytopes from Example 2.2.7. In this case, the Minkowski sum is non-alternate (Case 2).
In Figure 6.1(b) we depicted again P1 + P2. Consider the corresponding Cayley configuration
A and a choice B of Gale dual:

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 1 1 2 3
0 4 1 1 1 0

 , B =


−1 2

0 1
1 −3
1 0
−2 −1

1 1

 .

The corresponding Minkowski sum is depicted in Figure 6.1(b). In Figure 6.3 we illustrate the
recession cones of the minimal regions that appear. Note that the consecutive edges coming
from each polygons give rise to minimal regions with negative support of cardinality three,
besides the three minimal regions coming from the interior points αi + βj .

The following lemma is a reformulation of Lemma 5.2.1.

Lemma 6.3.4. The possible negative supports for u ∈ Z6 and A · u = γ = (−1,−1,−m) are
of the shape {i1, i2, j1, j2} (possibly i1 = i2 or j1 = j2).
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l3

l5 l6

l4

l2

l1
{2, 4, 6}

{1, 5}

{1, 2, 6}

{3, 5}

{3, 4}

Figure 6.3: Minimal regions for a non-alternate case

Proof. If u ∈ Z6 andA·u = (−1,−1,−m) then u1+u2+u3 = −1 and u4+u5+u6 = −1.

Lemma 6.3.5. In Case 2 the regions r{2,4,6} and r{1,2,6} are non empty and infinite.

Proof. To show that the region r{2,4,6} is non empty and infinite (the other case is similar) we
will find u ∈ kerZ(A) with u2, u4, u6 < 0 and all other coordinates strictly positive. The lemma
follows because by our assumptions on A we can always find ν ∈ Z6 with A · ν = γ and then
λu+ ν ∈ r{2,4,6} for infinite λ ∈ N.

It is clear from Figure6.1(b) that the segment between α2 +β1 and α2 +β3 and the segment
between α2 + β2 and α3 + β3 intersect at a point that we can write in two different ways, i.e.,
there exists with q1, q2, p1, p2 ∈ N with q1 + q2 = Q and p1 + p2 = P

Pq1(α2 + β1) + Pq2(α2 + β3) = Qp1(α2 + β2) +Qp2(α3 + β3)

from which

0 = 0 · α1 +Q(p1 − P )α2 +Qp2α3 + (−Pq1)β1 +Qp1β2 + (Qp2 − Pq2)β3

Then the element v = (0, Q(p1 − P ), Qp2,−Pq1, Qp1, Qp2 − Pq2) belongs to kerZ(A). Note
that v2, v4 < 0, v3, v5 > 0 and v1 = 0. Similarly, but using α1 + β1 instead of α3 + β3 we
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obtain an element v̂ ∈ kerZ(A) with v̂2, v̂6 < 0, v̂1, v̂5 > 0 and v̂3 = 0. If v6 ≤ 0 or v̂4 ≤ 0 it is
possible to find a suitable linear combination to obtain u ∈ kerZ(A) with u2, u4, u6 < 0 and all
other coordinates strictly positive and we are done. Otherwise, that is, if v6 > 0 and v̂4 > 0 we
have a Gale dual B for A with the following configuration of signs:

B =


= 0 > 0
< 0 < 0
> 0 = 0
< 0 > 0
> 0 > 0
> 0 < 0

 . (6.19)

Denote bi, i = 1, . . . , 6 the rows of B. Then, we have that

det(A{1,2,3,4})

det

(
b5

b6

) = −det(A{1,2,3,5})

det

(
b4

b6

)
where AI is the square matrix obtained from A after subtracting the columns not in I . Here

det(A{1,2,3,5}) = det(A{1,2,3,4}) = det(α2 − α1, α3 − α2).

Thus, being det

(
b5

b6

)
< 0 it must hold that det

(
b4

b6

)
> 0, which implies,together with

the sign configuration in 6.19, the existence of λ, µ ∈ Z>0 such that(
b4

b6

)
·
(
λ
µ

)
=

(
< 0
< 0

)
.

Consequently u = λv + µv̂ ∈ kerZ(A) with u2, u4, u6 < 0 and all other coordinates strictly
positive and we are done.

Proposition 6.3.6. The following regions for γ = (−1,−1,−m) ∈ E are non empty and
minimal:

i) r{1,4}, r{3,6} and r{2,5} in Case 1, and

ii) r{3,4}, r{3,5} and r{1,5} in Case 2.

Proof. By Corollary 5.2.9 and Lemma 5.2.5 regions {i, 3 + j} with αi + βj an interior point
of P1 + P2 are non empty. Moreover, they are infinite, by Proposition 5.2.8. By Lemma 6.3.4
they are minimal.

Theorem 6.3.7. The only minimal regions for γ = (−1,−1,−m) ∈ E are

i) r{1,4}, r{3,6} and r{2,5} in Case 1, and

ii) r{3,4}, r{3,5} and r{1,5}, r{1,2,6} and r{2,4,6} in Case 2.
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Proof. The proof is similar for both Case 1 and Case 2. We show that all others possible regions
either are empty or cannot be minimal. For instance, in Case 1, all possible negative supports
with four distinct elements contain either {1, 4}, {3, 6} or {2, 5} (respectively {3, 4}, {3, 5} or
{1, 5} in Case 2), that is, they do not give minimal regions. Regions of the shape r{i,3+j} with
αi + βj a vertex of P1 + P2 are finite by Lemma 5.2.6, and finite regions cannot occur if the
homogeneity belongs to Euler-Jacobi cone of A, as in this case (cf. Remark 5.2.7). In fact,
finite regions are clearly annihilated by some partial derivative (cf. Theorem 5.1.10).

By inspecting the Case 1 in Figure 6.1 we see that if {i, 3 + j, 3 + j′} or {i, i′, 3 + j} do
not contain neither {1, 4}, {3, 6} nor {2, 5} (which means that the corresponding region could
be minimal) then αi + βj and αi + βj′ are necessarily vertices of an edge of P1 + P2. With
arguments similar to those in the proof of Lemma 5.2.6, we can show that if the corresponding
minimal region is non empty, it has to be finite, which is again impossible. The same occurs
in Case 2, except for the regions r{1,2,6} and r{2,4,6}, which thus turn out to be minimal (and
infinite).

In the non-developed case the study is similar, but we only present the following example
of two polygons with the same inner normal directions.

Example 6.3.8. Take the following matrix A

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 2 0 0
0 1 0 0 2 0


with Gale dual

B =


2 0
0 2
−2 −2
−1 0

0 −1
1 1

 .

We consider the homogeneity γ = (−1,−1,−m), with (1, 1) = α1 − α2 + α3 + β2 an interior
point of P1 +P2. Let v = (−1, 1,−1, 0,−1, 0). We draw in Figure 6.4 the hyperplane arrange-
ment and the corresponding minimal regions. Note that all support indices have cardinality
three. So, by Corollary 5.5.4, there are no (nonzero) algebraic LaurentA-hypergeometric func-
tions. This is in concordance with the description of all possible coherent mixed subdivisions
in Figure 2.7 of Example 2.2.9. As there is always a single mixed cell, by the Euler-Jacobi con-
dition we have that the associated residue is 0. Then, both items in Theorem 6.3.1 are verified.

6.3.2 The case r = 2, s = 4

The remaining case to study for two polynomials in two variables is the one of a binomial
and a quatrinomial, that is P1 is the convex hull of the points α1, α2 ∈ Z2 and P2 is the (two
dimensional) convex hull of four points β1, β2, β3, β4 ∈ Z2. There are two possibilities: either
P2 has four facets or it is a triangle with β4 as an interior point (see Figure 6.5).
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l1

l2

l3
l4

l5

l6

{3, 4, 5}

{1, 3, 5}

{1, 5, 6}

{1, 2, 6}

{2, 4, 6}

{2, 3, 4}

Figure 6.4: Minimal regions for a non developed case

bα1 + β1 b

α1 + β2

bα1 + β3 b

α1 + β4

b

α2 + β1
b α2 + β2

b

α2 + β3
b α2 + β4

bα1 + β1 b

α1 + β2

bα1 + β3

b

α1 + β4

b

α2 + β1
b α2 + β2

b

α2 + β3

b

α2 + β4

(a) Case 1 (b) Case 2

Figure 6.5: The two possible cases for P1 + P2 for r = 2, s = 4

We will describe the minimal regions that appear in these two cases, in the developed case,
that is when the segment P1 is not parallel to any of the edges of P2. The remaining cases are
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also straightforward. We proceed in a similar fashion than in the the case r = s = 3. Note that
Lemma 6.3.4 holds in the case as well, since it only depends on the fact that γ1 = γ2 = −1 are
negative.

Lemma 6.3.9. The regions r{1,4,5} and r{2,4,5} in Case 1 and the region r{1,4,5} in Case 2 are
non empty and infinite.

Proof. For the region r{1,4,5} in Case 1, take q1, q2, p1, p2 ∈ N with q1+q2 = Q and p1+p2 = P
to write

Pq1(α1 + β2) + Pq2(α1 + β3) = Qp1(α1 + β1) +Qp2(α2 + β4).

Then, the vector (Q(p1 − P ), Qp2, Qp1,−Pq1,−Pq2, Qp2) ∈ kerZ(A). For the region r{2,4,5}
in Case 1 proceed similarly.

For the region r{1,4,5} in Case 2 we can proceed in a similar fashion as in Lemma 6.3.5.

Finally, we can argue as in the case r = s = 3 to give a complete picture of the minimal
regions in this case. We have the following analog results and similar conclusions than in the
previous case.

Proposition 6.3.10. Let m ∈ (P1 + P2)◦ then the only minimal regions for γ = (−1,−1,−m)
are

i) r{1,6}, r{2,3}, r{1,4,5} and r{2,4,5} in the Case 1 and

ii) r{1,6}, r{2,6}, r{2,3} and r{1,4,5} in the Case 2.

In Case 1, the six different mixed coherent subdivisions Πw, depicted in Figure 2.9, have
two possible different shapes. Either there is one interior vertex (α1 + β4 = α2 + β1) and two
mixed cells σ1, σ2 which contain it, or there is a single mixed cell and the only minimal regions
in the direction ofw have negative support r{1,4,5} and r{2,4,5}, which cannot give rise to Laurent
algebraic solutions. Thus, we check the validity of the facts in the proof of Theorem 6.3.1. In
Case 2, however, the situation is not covered exactly by this result and we detail it in the next
section.

6.4 General conjectures

We end this chapter with natural general conjectures for future work. We expect that under
very general conditions, Conjecture 6.4.3 below holds true.

Note that for configurations with interior points, there might be vertices of coherent mixed
subdivisions which need not be vertices of a mixed cell. Our next example shows this behaviour
and some new associated features.

Example 6.4.1. Let A be as in Example 2.2.11, corresponding to a configuration termed as
Case 2 at the end of the previous section. Note that the two interior points (1, 1) = α1 + β4 =
α2 + β1 and (2, 2) = α2 + β4 of A1 + A2 show the following “new” behaviour:

• Both occur as vertices of a coherent mixed subdivision, but not as vertices of a mixed cell
of this subdivision.
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• The point (2, 2) never occurs as a vertex of a mixed cell without (1, 1) being another such
vertex. They “share” the same mixed cells.

Let γ = (−1,−1,−1,−1). The corresponding central arrangement is depicted in Figure 6.6,
using the Gale dual configuration given by {(−1, 1), (0, 1), (0, 1), (1,−3), (1, 0), (−1, 0)}.

l3l1l2

l4 = l5

l6

{2, 3}

{2, 6}

{1, 6}

{1, 4, 5}

Figure 6.6: Minimal regions for Example 6.4.1

There are three minimal regions with negative support of cardinality three (one correspond-
ing to (2, 2) and the two others corresponding to the two expressions for (1, 1).) Let w with
bw :=

∑6
i=1wibi lying in the positive cone spanned by b1 and b4, b5. We see that the point (2, 2)

is a vertex of Πw which is not in a mixed cell. The corresponding region (with minimal support
I = {2, 6}) gives rise to a non-algebraic canonical Laurent series ΦI . This can be seen by
restricting ΦI to the vertical boundary ray.

The canonical series ΦJ , J = {2, 3} corresponding to the decomposition (1, 1) = α2 + β2

is algebraic since this point is a vertex of a mixed cell in Πw, for any w with bw in the positive
cone spanned by b6 and b4, b5. On the other side, the canonical series ΦK , K = {1, 6},
corresponding to the decomposition (1, 1) = α1 +β4 is again not algebraic (seen by restriction
to its vertical boundary ray). In this case the point does not occur as a vertex of a mixed cell
(but it is a vertex of Piw for any bw in the positive cone spanned by b2 and b3.).

Indeed, let any w with bw in the positive cone spanned by b3 and b4, b5. The corresponding
coherent mixed decomposition has two mixed cells σ1, σ2 and the dimension of the space of
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residues is one. However, there are two interior vertices (2, 2) and (1, 1) = α1 + β4; choosing
m equal to any of them, Theorem 6.2.2 gives us the decomposition

Resmσi = ΦK − ΦJ .

Thus, the linear combination ΦK−ΦJ is algebraic and the dimension of the space of algebraic
A-hypergeometric functions in the direction of w is one, that is, it is equal to the number of
mixed cells minus one, but it does not equal the number of interior vertices of these cells, which
is two.

We now state our first conjecture:

Conjecture 6.4.2. Let w ∈ Rn generic and v = αi + βj ∈ Πw an interior point of P1 + P2

which does not belong to any mixed cell. Then the canonical Laurent series with negative
support {i, j} is not algebraic. Here it is assumed that if v can also be written as α` +αk, with
i 6= `, j 6= k then wi + wj < w` + wk.

We now state our main conjecture:

Conjecture 6.4.3. Let w be a generic weight in Rn, and A1, A2 two general planar configura-
tions. Then, for any γ = (−1,−1,−m) with m ∈ (A1 + A2)◦ ∩ Z2,

Algγ,w = Rγ,w (6.20)

It would be interesting to find combinatorial conditions that ensure that all canonical series
Φij := Φγ

r{i,j}
corresponding to interior vertices of Πw which lie in mixed cells, can be written

in terms of residues. We would need to invert the explicit expressions given in Theorem 6.2.2:

Resmσ (x) =
∑

kσ,vΦ
γ
r{i,j}

(x).

This seems to be easy in the case all the points of the configurations are vertices but rather
difficult in general. The understanding of this question would lead to an explicit combinatorial
formula for the dimension of Algγ,w.
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[May37] K. Mayr. Über die Lösung algebraischer Gleichungssysteme durch hyperge-
ometrische Funktionen. Monatsh Math. Phys., 45:280–313, 1937.
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[MR88] T. Mora and L. Robbiano. The Gröbner fan of an ideal. J. Symbolic Comput.,
6(2-3):183–208, 1988. Computational aspects of commutative algebra.

[OT09] K. Ohara and N. Takayama. Holonomic rank of A -hypergeometric differential-
difference equations. J. Pure Appl. Algebra, 213(8):1536–1544, 2009.

[PST05] M. Passare, T. Sadykov, and A. Tsikh. Singularities of hypergeometric functions
in several variables. Compositio Matth, 141(3):787–810, 2005.

[Rod] F. Rodrı́guez Villegas. Integral ratios of factorials and algebraic hypergeometric
functions. arXiv:math.NT/0701362.

[Sai02] M. Saito. Logarithm-free A-hypergeometric series. Duke Math. J., 115(1):53–73,
2002.

[SST00] M. Saito, B. Sturmfels, and N. Takayama. Gröbner deformations of hypergeomet-
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