
UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Matemática
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Modelos no-lineales para la teoŕıa de muestreo
(Resumen)

Un nuevo paradigma en la teorı́a de muestreo fue desarrollado recientemente. El clásico
modelo lineal es reemplazado por un modelo no-lineal pero estructurado, que consiste en
una unión de subespacios. Este es el enfoque natural para lanueva teorı́a de muestreo
comprimido, señales con representaciones ralas y con tasafinita de innovación.

En esta tesis estudiamos algunos problemas relacionados con el proceso de muestreo en
uniones de subespacios. Primero centramos nuestra atenci´on en el problema de hallar una
unión de subespacios que mejor aproxime a un conjunto finitode vectores. Utilizamos
técnicas de reducción dimensional para disminuir los costos de algoritmos diseñados para
hallar uniones de subespacios óptimos.

Luego estudiamos el problema de muestreo para señales que pertenecen a una unión
de espacios invariantes por traslaciones enteras. Mostramos que las condiciones para
la inyectividad y estabilidad del operador de muestreo son válidas en el caso general
de espacios invariantes por traslaciones enteras generados por marcos de traslaciones en
lugar de bases ortonormales.

A raı́z del estudio de los problemas mencionados anteriormente, surgen dos cuestiones
que están relacionadas con la estructura de los espacios invariantes por traslaciones en-
teras. La primera es si la suma de dos de estos espacios es un subespacio cerrado. Usando
el ángulo de Friedrichs entre subespacios, obtenemos condiciones necesarias y suficientes
para que la suma de dos espacios invariantes por traslaciones enteras sea cerrada.

En segundo lugar se estudian propiedades de invariancia de espacios invariantes por
traslaciones enteras en varias variables. Presentamos condiciones necesarias y suficientes
como para que un espacio invariante por traslaciones enteras sea invariante por un sub-
grupo cerrado deRd. Además probamos la existencia de espacios invariantes por trasla-
ciones enteras que son exactamente invariantes para un subgrupo cerrado dado. Como
aplicación, relacionamos la extra invariancia con el tamaño de los soportes de la transfor-
mada de Fourier de los generadores de los espacios.

Palabras Claves:muestreo; espacios invariantes por traslaciones enteras;marcos; bases
de Riesz; operador Gramiano; fibras; reducción dimensional; desigualdades de concen-
tración; ángulos entre subespacios.





Non-linear models in sampling theory
(Abstract)

A new paradigm in sampling theory has been developed recently. The classical linear
model is replaced by a non-linear, but structured model consisting of a union of subspaces.
This is the natural approach for the new theory of compressedsensing, representation of
sparse signals and signals with finite rate of innovation.

In this thesis we study some problems concerning the sampling process in a union of
subspaces. We first focus our attention in the problem of finding a union of subspaces
that best explains a finite data of vectors. We use techniquesof dimension reduction to
avoid the expensiveness of algorithms which were developedto find optimal union of
subspaces.

We then study the sampling problem for signals which belong to a union of shift-
invariant spaces. We show that, the one to one and stability conditions for the sampling
operator, are valid for the general case in which the subspaces are describe in terms of
frame generators instead of orthonormal bases.

As a result of the study of the problems mentioned above, two questions concerning the
structure of shift-invariant spaces arise. The first one is if the sum of two shift-invariant
spaces is a closed subspace. Using the Friedrichs angle between subspaces, we obtain
necessary and sufficient conditions for the closedness of the sum of two shift-invariant
spaces.

The second problem involves the study of invariance properties of shift-invariant spaces
in higher dimensions. We state and prove several necessary and sufficient conditions for
a shift-invariant space to be invariant under a given closedsubgroup ofRd, and prove the
existence of shift-invariant spaces that are exactly invariant for each given subgroup. As
an application we relate the extra invariance to the size of support of the Fourier transform
of the generators of the shift-invariant space.

Key words: sampling; shift-invariant spaces; frames; Riesz bases; Gramian operator;
fibers; dimensionality reduction; concentration inequalities; angle between subspaces.
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A los chicos de la ofi: Turco, Roman, Mazzi, Dani, Martin S. y Chris, por su buena onda,
por prestarnos yerba y por soportar nuestro cotorreo.
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Introduction

A classical assumption in sampling theory is that the signals to be sampled belong to a
single space of functions, for example the Paley-Wiener space of band-limited functions.
In this case, the Kotelnikov-Shannon-Whittaker (KSW) theorem states that any function
f ∈ L2(R) whose Fourier transform is supported within [−1

2,
1
2] can be completely recon-

structed from its samples{ f (k)}k∈Z. More specifically, ifPW denotes the Paley Wiener
space

PW=

{
f ∈ L2(R) : supp(̂f ) ⊆

[
−1

2
,
1
2

]}
,

then{sinc(· −k)}k∈N forms an orthonormal basis forPW, where sinc(t) = sin(πt)
πt . Moreover,

for all f ∈ PW we have thatf (k) = 〈 f , sinc(· − k)〉 and

f (t) =
∑

k∈Z
f (k)sinc(t − k), (0.1)

with the series on the right converging uniformly onR, as well as inL2(R).

The KSW theorem is fundamental in digital signal processingsince it provides a
method to convert an analog signalf to a digital signal{ f (k)}k∈Z and it also gives a recon-
struction formula.

The Paley-Wiener space is invariant under integer translations, i.e. if f ∈ PW then
f (· − k) ∈ PW for anyk ∈ Z. The closed subspaces ofL2(Rd) which are invariant under
integer translates are called shift-invariant spaces (SISs).

A shift-invariant spaceV is said to be generated by a set of functions{ϕ j} j∈J ⊆ L2(Rd)
if every function inV is a limit of linear combinations of integer shifts of the functions
ϕ j. That is,

V = span{ϕ j(· − k) : j ∈ J, k ∈ Zd},
where the closure is taken in theL2-norm. We will say that the SIS is finitely generated if
there exists a finite set of generators for the space. The Paley-Wiener space is an example
of a shift-invariant space which is generated byϕ(t) = sinc(t).

The function sinc(t) is well-localized in frequency but is poorly localized in time. This
makes the formula (0.1) unstable in the presence of noise. To avoid this disadvantage
other spaces of functions were considered as signal models.Mainly, shift-invariant spaces
(SISs) generated by functions with better joint time-frequency localization or with com-
pact support. One of the goals of the sampling problem in SISsis studying conditions
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on the generators of a SISV in order that every function ofV can be reconstructed from
its values in a discrete sequence of samples as in the band-limited case. The sampling
problem for SISs was thoroughly treated in [AG01, Sun05, Wal92, ZS99].

Assume now that we want to sample the signals in a finite setF = { f1, . . . , fm} ⊆
L2(Rd) and that they do not belong to a computationally tractable SIS. For example, if the
cardinality of the data setm is large, the SIS generated byF contains all the data, but
it is too large to be an appropriate model for use in applications. So, a space with less
generators would be more suitable. In order to model the setF by a manageable SIS we
consider the following problem: givenk << m, the goal is to find a SIS withk generators
that best models the data setF . That is, we would like to find a SISV0 generated by at
mostk functions that is closest to the setF = { f1, . . . , fm} ⊆ L2(Rd) in the sense that

V0 = argminV∈Lk

m∑

i=1

‖ fi − PV fi‖2L2, (0.2)

whereLk is the set of all the SISs generated by at mostk functions, andPV is the orthog-
onal projection fromL2(Rd) ontoV.

In [ACHM07] the authors proved the existence of an optimal space that satisfies (0.2),
they gave a way to construct the generators of such space and estimated the error between
the optimal space and the data setF . To obtain their results they reduced the problem
to the finite dimensional problem of finding a subspace of dimension at mostk that best
approximates a finite data set of vectors in the Hilbert spaceℓ2(Zd). This last problem can
be solved by an extension of the Eckart-Young’s Theorem. We will review some of these
results inChapter 2.

Recently, a new approach for the sampling theory has been developed. The classical
linear model is replaced by a non-linear, but structured model consisting of a union of sub-
spaces. More specifically, Lu and Do [LD08] extended the sampling problem assuming
that the signals to be sampled belong to a union of subspaces instead of a single subspace.
To understand the importance of this new approach let us introduce some examples.

i) Compressed sensing:In the compressed sensing setting ([CRT06], [CT06],
[Don06]) the signalx ∈ RN is assumed to be sparse in an orthonormal basis ofRN.
That is, givenΦ = {φ j}Nj=1 an orthonormal basis forRN, x has at mostk non-zero
coefficients inΦ, wherek << N. In other words, ifθ j(x) = 〈x, φ j〉, then

‖θ(x)‖0 := #{ j ∈ {1, . . . ,N} : θ j(x) , 0} ≤ k.

The sparse signals live in the union ofk-dimensional subspaces, given by
⋃

1≤ j1<...< jk≤N

V j1,..., jk, (0.3)

with V j1,..., jk = span{φ j1, . . . , φ jk}.
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ii) Blind Spectral Support:Let [ω0, ω0 + N] ⊆ R be an interval which is partitioned
into N equal intervalsC j = [ω0 + j, ω0+ j + 1] for 0 ≤ j ≤ N − 1. Assume we have
a function f ∈ L2(R) whose Fourier transform is supported in at mostk intervals
C j1, . . . ,C jk (with k << N), but we do not know the indicesj1, . . . , jk.

If we define

V j1,..., jk := {g ∈ L2(R) : supp(̂g) ⊆ C j1 ∪ . . . ∪C jk},

then the functionf belongs to the union of subspaces
⋃

1≤ j1<...< jk≤N

V j1,..., jk.

This class of signals are called multiband signals with unknown spectral support
(see [FB96]).

iii) Stream of Diracs:Givenk ∈ N consider the stream ofk Diracs

x(t) =
k∑

j=1

cjδ(t − t j),

where{t j}kj=1 are unknown locations and{cj}kj=1 are unknown weights.

If the k locations are fixed, then the signals live in ak-dimensional subspace. Thus,
they live in an infinite union ofk-dimensional subspaces.

These signals have 2k degrees of freedom:k for the weights andk for the locations
of the Diracs. Sampling theorems for this class of signals have been studied in the
framework of signals withfinite rate of innovation. They receive this name since
they have a finite number of degrees of freedom per unit of time. In [VMB02] it
was proved that only 2k samples are sufficient to reconstruct these signals .

Note that if we considered the signals from a union of subspaces as elements of the
subspace generated by the union of these spaces, we would be able to apply the linear
sampling techniques for signals lying in only one subspace.But the problem is that we
would not be having into account an additional information about the signals. For exam-
ple, in the case ofk-sparse signals (see Example i) from above) we only need 2k samples
to reconstruct a signalx ∈ RN, k for the support of the coefficientsθ(x) andk for the
value of the non-zero coefficients. On the other side, if we considered the signalx as an
element of the subspace generated by the union (0.3) (i.e.RN) we would needN samples
to reconstruct it.

The model proposed by Lu y Do [LD08] in which the signals live in a union of sub-
spaces instead of a single vector space represented a new paradigm for signal sampling
and reconstruction. Since for each class of signals the starting point of this new theory
is the knowledge of the signal space, the first step for implementing the theory is to find
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an appropriate signal model from a set of observed data. In [ACM08] the authors stud-
ied the problem of finding a union of subspaces∪iVi ⊆ H that best explains the data
F = { f1, . . . , fm} in a Hilbert spaceH (finite or infinite dimensional). They proved that
if the subspacesVi belong to a family of closed subspacesC which satisfies the so called
Minimum Subspace Approximation Property (MSAP), an optimal solution to the non-
linear subspace modeling problem that best fit the data exists, and algorithms to find these
subspaces were developed.

In some applications the model is a finite union of subspaces andH is finite dimen-
sional. Once the model is found, the given data points can be clustered and classified
according to their distances from the subspaces, giving rise to the so calledsubspace
clustering problem(see e.g., [CL09] and the references therein). Thus a dual problem is
to first find a “best partition” of the data. Once this partition is obtained, the associated
optimal subspaces can be easily found. In any case, the search for an optimal partition or
optimal subspaces usually involves heavy computations that dramatically increases with
the dimensionality ofH . Thus, one important feature is to map the data into a lower
dimensional space, and solve the transformed problem in this lower dimensional space.
If the mapping is chosen appropriately, the original problem can be solved exactly or
approximately using the solution of the transformed data.

In Chapter 2, we concentrate on the non-linear subspace modeling problem when the
model is a finite union of subspaces ofRN of dimensionk << N. Our goal is to find
transformations from a high dimensional space to lower dimensional spaces with the aim
of solving the subspace modeling problem using the low dimensional transformed data.
We find the optimal data partition for the transformed data and use this partition for the
original data to obtain the subspace model associated to this partition. We then estimate
the error between the model thus found and the optimal subspaces model for the original
data.

Once the union of subspaces that best explains a data set is found, it is interesting to
study the sampling process for signals which belong to this kind of models. The sampling
results which are applied for signals lying in a single subspace are not longer valid for
signals in a union of subspaces since the linear structure islost. The approach of Lu and
Do [LD08] had a great impact in many applications in signal processing, in particular in
the emerging theory of compressed sensing [CT06], [CRT06], [Don06] and signals with
finite rate of innovations [VMB02].

To understand the problem, let us now describe the process ofsampling in a union of
subspaces. Assume thatX is a union of subspaces from some Hilbert spaceH and a
signals is extracted fromX. We take some measurements of that signal. These measure-
ments can be thought of as the result of the application of a series of functionals{ϕα}α to
our signals. The problem is then to reconstruct the signal using only the measurements
{ϕα(s)}α and some description of the subspaces inX. The series of functionals define an
operator,the sampling operator, acting on the ambient spaceH and taking values in a
suitable sequence space. Under some hypothesis on the structure of the subspaces, Lu
and Do [LD08] found necessary and sufficient conditions on these functionals in order
for the sampling operator to be stable and one-to-one when restricted to the union of the
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subspaces. These conditions were obtained in two settings.In the euclidean space and in
L2(Rd). In this latter case the subspaces considered were finitelygenerated shift-invariant
spaces.

Blumensath and Davies [BD09] studied the problem of sampling in union of subspaces
in the finite dimensional case, extending some of the resultsin Lu and Do [LD08]. They
applied their results to compressed sensing models and sparse signals. In [EM09], Eldar
developed a general framework for robust and efficient recovery of a signal from a given
set of samples. The signal is a finite length vector that is sparse in some given basis and
is assumed to lie in a union of subspaces.

There are two technical aspects in the approach of Lu and Do that restrict the applica-
bility of their results in the shift-invariant space case. The first one is due to the fact that
the conditions are obtained in terms of Riesz bases of translates of the SISs involved, and
it is well known that not every SIS has a Riesz basis of translates (see Example1.5.11).
The second one is that the approach is based upon the sum of every two of the SISs in
the union. The conditions on the sampling operator are then obtained using fiberization
techniques on that sum. This requires that the sum of each of two subspaces is a closed
subspace, which is not true in general.

In Chapter 3we obtain the conditions for the sampling operator to be one-to-one and
stable in terms of frames of translates of the SISs instead oforthonormal bases. This
extends the previous results to arbitrary SISs and in particular removes the first restriction
mentioned above. It is very important to have conditions based on frames, specially for
applications, since frames are more flexible and simpler to construct. Frames of translates
for shift-invariant spaces with generators that are smoothand with good decay can be
easily obtained.

In Chapter 3, we give necessary and sufficient conditions for the stability of the sam-
pling operator in a union of arbitrary SISs. We also show that, without the assumption
of the closedness of the sum of every two of the SISs in the union, we can only obtain
sufficient conditions for the injectivity of the sampling operator.

Using known results from the theory of SISs, inChapter 4we obtain necessary and
sufficient conditions for the closedness of the sum of two shift-invariant spaces. As a con-
sequence, we determine families of subspaces on which the conditions for the injectivity
of the sampling operator are necessary and sufficient.

An important and interesting question in the study of SISs iswhether they have the
property to be invariant under translations other than integers. A limit case is when the
space is invariant under translations by all real numbers. In this case the space is called
translation invariant. However there exist shift-invariant spaces with someextra invari-
ance that are not necessarily translation invariant. That is, there are some intermediate
cases between shift-invariance and translation invariance. The question is then, how can
we identify them?

Recently, Hogan and Lakey defined thediscrepancyof a shift-invariant space as a way
to quantify thenon-translation invarianceof the subspace, (see [HL05]). The discrepancy
measures how far a unitary norm function of the subspace, canmove away from it, when
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translated by non integers. A translation invariant space has discrepancy zero.

In another direction, Aldroubi et al, (see [ACHKM10]) studied shift-invariant spaces
of L2(R) that have some extra invariance. They show that ifV is a shift-invariant space,
then itsinvariance set, is a closed additive subgroup ofR containingZ. The invariance set
associated to a shift-invariant space is the setM of real numbers satisfying that for each
p ∈ M the translations byp of every function inV, belongs toV. As a consequence, since
every additive subgroup ofR is either discrete or dense, there are only two possibilities
left for the extra invariance. That is, eitherV is invariant under translations by the group
(1/n)Z, for some positive integern (and not invariant under any bigger subgroup) or it
is translation invariant. They found different characterizations, in terms of the Fourier
transform, of when a shift invariant space is (1/n)Z-invariant.

A natural question arises in this context. Are the characterizations of extra invariance
that hold on the line, still valid in several variables?

The invariance setM ⊆ Rd associated to a shift-invariant spaceV, that is, the set
of vectors that leaveV invariant when translated by its elements, is again, as in the 1-
dimensional case, a closed subgroup ofRd (see Proposition5.2.1). The problem of the
extra invariance can then be reformulated as finding necessary and sufficient conditions
for a shift-invariant space to be invariant under a closed additive subgroupM ⊆ Rd con-
tainingZd.

The main difference here with the one dimensional case, is that the structure of the
subgroups ofRd whend is bigger than one, is not as simple.

The results obtained for the 1-dimensional case translate very well in the case in which
the invariance setM is a lattice, (i.e. a discrete group) or whenM is dense, that isM = Rd.
However, there are subgroups ofRd that are neither discrete nor dense. So, can there exist
shift-invariant spaces which areM-invariant for such a subgroupM and are not translation
invariant?

In Chapter 5we study the extra invariance of shift-invariant spaces in higher dimen-
sions. We obtain several characterizations paralleling the 1-dimensional results. In addi-
tion our results show the existence of shift-invariant spaces that areexactly M-invariant
for every closed subgroupM ⊆ Rd containingZd. By ‘exactly M-invariant’ we mean that
they are not invariant under any other subgroup containingM. We apply our results to
obtain estimates on the size of the support of the Fourier transform of the generators of
the space.

At the end ofChapter 5we also give a brief description of the generalization of the
extra invariance results to the context of locally compact abelian (LCA) groups.

Thesis outline

Chapter 1contains the notation and some preliminary tools used throughout this the-
sis. We present basic definitions and results regarding frames and Riesz bases in Hilbert
spaces. We give some characterizations and properties of shift-invariant spaces. We also
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define the range function and the notion of fibers for shift-invariant spaces.

In Chapter 2we study the problem of finding models which best explain a finite data
set of signals. We first review some results about finding a subspace that is closest to a
given finite data set. We then study the general case of unionsof subspaces which best
approximate a set of signals. The results are proved in a general setting and then applied
to the case of low dimensional subspaces ofRN and to infinite dimensional shift-invariant
spaces ofL2(Rd).

For the euclidean caseRN, the problem of optimal union of subspaces increases dra-
matically with the dimensionN. In Chapter 2, we study a class of transformations that
map the problem into another one in lower dimension. We use the best model in the
low dimensional space to approximate the best solution in the original high dimensional
space. We then estimate the error produced between this solution and the optimal solution
in the high dimensional space.

The purpose ofChapter 3is the extension of the results of [LD08] for sampling in a
union of subspaces for the case that the subspaces in the union are arbitrary shift-invariant
spaces. We describe the subspaces by means of frame generators instead of orthonor-
mal bases. We give necessary and sufficient conditions for the stability of the sampling
operator in a union of arbitrary SISs. We also show that, without the assumption of the
closedness of the sum of every two of the SISs in the union, we can only obtain sufficient
conditions for the injectivity of the sampling operator.

In Chapter 4we obtain necessary and sufficient conditions for the closedness of the
sum of two shift-invariant spaces in terms of the Friedrichsangle between subspaces. As
a consequence of this, we determine families of subspaces onwhich the conditions for
injectivity of the sampling operator are necessary and sufficient.

Finally, in Chapter 5we study invariance properties of shift-invariant spaces in higher
dimensions. We state and prove several necessary and sufficient conditions for a shift-
invariant space to be invariant under a given closed subgroup of Rd, and prove the exis-
tence of shift-invariant spaces that are exactly invariantfor each given subgroup. As an
application we relate the extra invariance to the size of support of the Fourier transform
of the generators of the shift-invariant space. We extend recent results obtained for the
case of one variable to several variables. We also give in this chapter a brief description of
the extra invariance results obtained in [ACP10a] for the general case of locally compact
abelian (LCA) groups.
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The new results inChapter 2, 3, 4, and5 have originated the following publications:

• A. Aldroubi, M. Anastasio, C. Cabrelli and U. M. Molter,A dimension reduction
scheme for the computation of optimal unions of subspaces, Sampl. Theory Signal
Image Process.,10(1-2), 2011, 135–150. (Chapter 2)
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1050. (Chapter 5)
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Preliminaries

In this chapter we introduce the notation and some basic concepts used throughout this
thesis. Some of the results presented below are well known, but we include them here
for the sake of completeness. We will not go into details, referring the reader to the
corresponding literature.

In Section 1.1we establish some notation.Section 1.2gives basic definitions and re-
sults regarding frames and Riesz bases in Hilbert spaces.Section 1.3studies the Gramian
operator. InSection 1.4we present the definition and some properties of shift-invariant
spaces. Finally,Section 1.5introduces the range function and the notion of fibers which
is a very useful tool in the theory of shift-invariant spaces.

1.1 Notation

Throughout this thesis,H stands for a separable Hilbert space over the real or complex
field.

The inner product inH will be denoted by〈·, ·〉. We will use the notation‖ · ‖ for the
norm induced by the inner product, that is‖h‖2 = 〈h, h〉 for h ∈ H .

Given a subspaceV of a Hilbert spaceH , we denote byV its closure and byV⊥ its
orthogonal complement.

We will write W = U ⊕̇V to denote theorthogonaldirect sum of closed subspaces of
H , i.e., the subspacesU, V must be closed and orthogonal, andW is their direct sum.

If V is a closed subspace ofH , we writePV for the orthogonal projection ontoV.

Here and subsequentlyJ stands for a countable index set. For a given sequence{xj} j∈J
inH let span{xj} j∈J denote the vector space consisting of all finite linear combinations of
vectorsxj.

A sequence{xj} j∈J is said to be complete inH if span{xj} j∈J = H .
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We writeℓ2(J) for the space of square summable scalar sequences

ℓ2(J) := {{xj} j∈J ⊆ C :
∑

j∈J
|xj |2 < +∞}.

The cardinality of a finite setF will be denoted by #F.

If T : H → H is a bounded linear operator, the operator norm is defined by

‖T‖op = sup
x,0

‖T x‖
‖x‖ .

For eachi, j ∈ J, let δi, j be the Kronecker’s delta defined by

δi, j :=


1 if i = j

0 if i , j.

Throughout this thesis we will use the Fourier transform given by

f̂ (ω) =
∫

Rd

f (x) e−2πiωx dx

for f ∈ L1(Rd), and extended to be a unitary operator onL2(Rd).

The translation byα ∈ Rd will be denoted bytα f := f (· − α).

Let B be a subset ofRd, we will say that a functionf defined inRd is B-periodic if
tx f = f for all x ∈ B, wheretx is the translation operator. A subsetE ⊆ Rd is B-periodic
if its indicator function (denoted byχE) is B-periodic.

The Lebesgue measure of a setE ⊆ Rd will be denoted by|E|.

1.2 Frames and Riesz bases in Hilbert spaces

In this section we will review the concept of Schauder bases,Riesz bases and frames in
Hilbert spaces. For more details see [Hei11, Chr03] and the references therein.

We will say that a sequence{xj} j∈J inH is a(Schauder) basisforH if, for eachh ∈ H ,
there exist unique scalar coefficients{cj(h)} j∈J such that

h =
∑

j∈J
cj(h)xj .

The basis isorthonormal if 〈xi , xj〉 = δi, j for all i, j ∈ J. In this case, the unique
representation ofh ∈ H in this basis ish =

∑
j∈J〈h, xj〉xj . Orthonormal bases satisfy the

so calledParseval’s identity:
∑

j∈J
|〈h, xj〉|2 = ‖h‖2 ∀h ∈ H . (1.1)
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Theorem 1.2.1.Every separable Hilbert spaceH has an orthonormal basis.

Example 1.2.2.Let {ej} j∈J be the sequence inℓ2(J) defined by (ej)i = δi, j for every
i, j ∈ J. Then{ej} j∈J is an orthonormal basis forℓ2(J) and it is called thecanonical basis.

We will now introduce the definition of Riesz bases. We will see later that they can be
considered as a generalization of orthonormal bases.

Definition 1.2.3. A sequence{xj} j∈J in H is a Riesz basisfor H if it is complete inH
and there exist constants 0< α ≤ β < +∞ such that

α
∑

j∈J
|cj |2 ≤

∥∥∥∥
∑

j∈J
cj xj

∥∥∥∥
2
≤ β

∑

j∈J
|cj |2 ∀ {cj} j∈J ∈ ℓ2(J). (1.2)

The following proposition states a relationship between Riesz bases, bases and or-
thonormal bases.

Proposition 1.2.4.Let {xj} j∈J be a sequence inH . The following statements are equiva-
lent.

i) {xj} j∈J is a Riesz basis forH .

ii) {xj} j∈J is a basis forH , and
∑

j∈J
cj xj converges if and only if {cj} j∈J ∈ ℓ2(J).

iii) There exist a bounded linear operator T: H → H and an orthonormal basis
{ej} j∈J forH such that T(ej) = xj for all j ∈ J.

Taking T as the identity operator in item iii), we have that all orthonormal bases are
Riesz bases. The following proposition states that the converse is true when the constants
of the inequality (1.2) are equal to one.

Proposition 1.2.5.Let {xj} j∈J be a sequence inH . Then,{xj} j∈J is a an orthonormal basis
if and only if it is a Riesz basis with constantsα = β = 1.

We will now introduce the concept of frames which can be seen as a generalization of
Riesz bases.

Definition 1.2.6. A sequence{xj} j∈J in H is a framefor H if there exist constants 0<
α ≤ β < +∞ such that

α ‖h‖2 ≤
∑

j∈J
|〈h, xj〉|2 ≤ β ‖h‖2 ∀h ∈ H . (1.3)

The constantsα, β are calledframe bounds. If {xj} j∈J satisfies the right inequality from
(1.3) we will call it a Bessel sequence.
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The frame istight if α = β. A Parseval frameis a tight frame with constantsα = β = 1.

The frame isexactif it ceases to be a frame whenever any single element is deleted
from the sequence.

We will say that{xj} j∈J is aframe sequenceif it is a frame for the subspacespan{xj} j∈J.
Remark1.2.7. Although a Parseval frame satisfy the Parseval’s identity (1.1), it might not
be an orthogonal system. In fact, it is orthogonal if and onlyif every element of the set
has unitary norm. A simple example is the familyX = { 1√

2
e1,

1√
2
e1, en}n≥2 where{en}n∈N is

an orthonormal basis for an infinite dimensional Hilbert spaceH . X is a Parseval frame
that is not orthogonal and it is not even a basis.

As we have mentioned above, frames can be considered as a generalization of Riesz
bases. The next proposition gives necessary and sufficient conditions in order for a frame
to be a Riesz basis.

Proposition 1.2.8. Let {xj} j∈J be a sequence inH . Then{xj} j∈J is a Riesz basis if and
only if it is an exact frame forH .

We will now introduce some operators which play a crucial role in the theory of sam-
pling.

Definition 1.2.9. If X = {xj} j∈J is a Bessel sequence inH , we define theanalysis operator
as

BX : H → ℓ2(J), BXh = {〈h, xj〉} j∈J.
The adjoint ofB is thesynthesis operator, given by

B∗X : ℓ2(J)→ H , B∗Xc =
∑

j∈J
cj xj .

The Bessel condition guarantees the boundedness ofBX and as a consequence, that ofB∗X.

By composingB∗X andBX, we obtain theframe operator

S : H → H , S h:= B∗XBXh =
∑

j∈J
〈h, xj〉xj .

Frame sequences can be characterized through its synthesisoperators as it is stated in
the following proposition.

Proposition 1.2.10.A sequence X= {xj} j∈J in H is a frame sequence if and only if the
synthesis operator B∗X is well-defined onℓ2(J) and has closed range.

As a consequence of the previous proposition, if{xj} j∈J is a frame for the subspace
V := span{xj} j∈J, then

V =


∑

j∈J
cj xj : {cj} ∈ ℓ2(J)

 . (1.4)

Using this, it is possible to construct for any infinite dimensional separable Hilbert
space a Bessel sequence which is complete inH and it is not a frame sequence.
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Example 1.2.11.Let {en}n∈N be an orthonormal basis for an infinite dimensional separable
Hilbert spaceH and definefn = en + en+1 for n ∈ N. This is a Bessel sequence since, for
h ∈ H ,

∑

k∈N
|〈h, en + en+1〉|2 =

∑

n∈N
|〈h, en〉 + 〈h, en+1〉|2

≤ 2
∑

n∈N
|〈h, en〉|2 + 2

∑

n∈N
|〈h, en+1〉|2

≤ 4‖h‖2.

We also have that{ fn}n∈N is complete inH because if there existsh ∈ H such that〈h, en+

en+1〉 = 0 for all n ∈ N, then〈h, en〉 = −〈h, en+1〉 for all n. Thus|〈h, en〉| is constant. Using
the Parseval’s identity (1.1), we conclude that〈h, en〉 = 0 for all n, soh = 0. Therefore,
{ fn}n∈N is complete inH .

Observe that forh = e1 ∈ H there exists no{cn} ∈ ℓ2(N) such thath =
∑

n∈N cn fn. By
(1.4) this proves that{ fn}n∈N is a Bessel sequence which is not a frame sequence.

Remark1.2.12. Note that from Proposition1.2.10, any finite sequence{x1, . . . , xm} in a
Hilbert spaceH is a frame for the closed subspaceV = span{x1, . . . , xm}.

The next proposition announces important properties aboutthe frame operator. It also
states one of the most important results about frames which is that every element inH
has a representation as an infinite linear combination of theelements of the frame.

Recall that a series
∑

j∈J xj is unconditionally convergent if
∑

j∈J xσ( j) converges for
every permutationσ of J.

Proposition 1.2.13. If X = {xj} j∈J is a frame forH with frame boundsα, β, then the
following statements hold.

i) The frame operator S is bounded, invertible, self-adjoint, positive, and satisfies

α||h||2 ≤ 〈S h, h〉 ≤ β||h||2 ∀h ∈ H .

ii) {S−1xj} j∈J is a frame forH , with frame bounds0 < β−1 ≤ α−1.

iii) The following series converge unconditionally for each h ∈ H

h =
∑

j∈J
〈h,S−1xj〉xj =

∑

j∈J
〈h, xj〉S−1xj .

iv) If the frame is tight, then S= αI and S−1 = α−1I.

Let {xj} j∈J be a frame forH , a Bessel sequence{yj} j∈J is said to be adual frameof
{xj} j∈J if

h =
∑

j∈J
〈h, yj〉xj =

∑

j∈J
〈h, xj〉yj ∀h ∈ H .
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By Proposition1.2.13, we have that{S−1xj} j∈J is a dual frame of{xj} j∈J which is called
thecanonical dual. When{xj} j∈J is a Riesz basis, the unique dual is the canonical dual.

A frame which is not a Riesz basis is said to beovercomplete. When the frame is
overcomplete there exist dual frames which are different from the canonical dual.

As a consequence of item iii) of Proposition1.2.13every elementh ∈ H has a rep-
resentation of the formh =

∑
j∈J cj xj with coefficientscj = 〈h,S−1xj〉. If {xj} j∈J is an

overcomplete frame, the representation given before is notunique, that is, there are other
coefficients{c′j} j∈J ∈ ℓ2(J) for which h =

∑
j∈J c′j xj.

Note that by Theorem1.2.1, every closed subspace of a separable Hilbert space has an
orthonormal basis. A question that arises then is why studying frames if in every closed
subspace there exists an orthonormal basis. One of the advantages of frames is their
redundancy. If the frame is overcomplete there are several choices for the coefficientscj

in the representation of an elementh ∈ H ash =
∑

j∈J cj xj. Thus, due to this redundancy,
if some of the coefficients are missing or unknown it is still possible to recoverthe signal
from the incomplete data.

Another application which shows the importance of working with frames will be shown
in future sections. We will study in this chapter the structure of closed subspaces ofL2(Rd)
which are invariant under integer translations (shift-invariant spaces). We will show that
every shift-invariant subspace has a frame formed by integer translates of functions. We
will also prove that there exist shift-invariant subspacesthat do no have Riesz bases of
translates. Thus, for these spaces is essential to work withframes instead of bases.

1.3 The Gramian operator

In this section we will introduce the Gramian operator associated to a Bessel sequence.
We will see that there exists a relationship between the spectrum of this operator and the
fact that the sequence is a frame.

Definition 1.3.1. SupposeX = {xj} j∈J is a Bessel sequence inH andBX is the analysis
operator. The Gramian of the systemX is defined by

GX : ℓ2(J)→ ℓ2(J), GX := BXB∗X.

We identifyGX with its matrix representation.

(GX) j,k = 〈xk, xj〉 ∀ j, k ∈ J.

Given a Hilbert spaceK and a bounded linear operatorT : K → K , we will denote by
σ(T) the spectrum ofT, that is

σ(T) = {λ ∈ C : λI − T is not invertible},
whereI denotes the identity operator ofK .

The following lemmas will be useful to prove a property whichrelates a frame sequence
with the spectrum of its Gramian.
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Lemma 1.3.2. Let T : K → K be a positive semi-definite self-adjoint operator and
T̃ : ker(T)⊥ → ker(T)⊥ the restriction of T toker(T)⊥. Assume0 < α ≤ β < +∞. The
following conditions are equivalent:

i) σ(T) ⊆ {0} ∪ [α, β]

ii) σ(T̃) ⊆ [α, β].

iii) α||x||2 ≤ 〈T x, x〉 ≤ β||x||2 ∀x ∈ ker(T)⊥

Proof. We will first prove that i) implies ii). Assume thatσ(T) ⊆ {0} ∪ [α, β]. Given
λ ∈ σ(T̃), sinceσ(T̃) ⊆ σ(T), it follows thatλ ∈ {0} ∪ [α, β]. If λ = 0, thenλ is an
isolated point ofσ(T̃). Using thatT is self-adjoint, we have that̃T is self-adjoint. Thus,
λ must be an eigenvalue of̃T (see [Con90]). Hence, ker(̃T) , 0, which is a contradiction.

The deduction of i) from ii) is left to the reader.

As T̃ : ker(T)⊥ → ker(T)⊥ is self-adjoint, we have thatσ(T̃) ⊆ [α, β] if and only if

α||x||2 ≤ 〈T̃ x, x〉 ≤ β||x||2 ∀x ∈ ker(T)⊥.

Thus, the equivalence between ii) and iii) is straightforward.

�

The next lemma is proved in [Chr03, Lemma 5.5.4].

Lemma 1.3.3.Let X := {xj} j∈J ⊆ H be a Bessel sequence, then X is a frame sequence
with constantsα andβ if and only if the synthesis operator B∗X satisfies

α||c||2 ≤ ‖B∗Xc‖2 ≤ β||c||2 ∀c ∈ ker(B∗X)⊥.

The following is a well known property, its proof can be deduced from Lemma1.3.2
and Lemma1.3.3.

Theorem 1.3.4.Let X := {xj} j∈J ⊆ H be a Bessel sequence, then X is a frame sequence
with constantsα andβ if and only if

σ(GX) ⊆ {0} ∪ [α, β].

We also have the property from below which relates the dimension of the subspace
spanned by a finite set of vectors with the rank of the Gramian matrix.

Proposition 1.3.5.Let X= {x1, . . . , xm} be a finite set of vectors inH . Then

rank[GX] = dim(span{x1, . . . , xm}).

Proof. SinceGX = BXB∗X ∈ Cm×m, we have that

rank[GX] = dim(range(B∗X)) = dim(span{x1, . . . , xm}).

�
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1.4 Shift-invariant spaces

In this section we introduce some definitions and basic properties of shift-invariant spaces.
For a detailed treatment of the subject see [dBDR94, dBDVR94, Bow00, Hel64, RS95]
and the references therein.

Definition 1.4.1. A closed subspaceV ⊆ L2(Rd) is ashift-invariant space(SIS) if f ∈ V
impliestk f ∈ V for anyk ∈ Zd, wheretk is the translation byk.

GivenΦ a set of functions inL2(Rd), we denote byE(Φ) the set,

E(Φ) := {tkϕ : k ∈ Zd, ϕ ∈ Φ}.

WhenΦ = {ϕ}, we will write E(ϕ).

The SIS generated byΦ is

V(Φ) := span(E(Φ)) = span{tkϕ : ϕ ∈ Φ, k ∈ Zd}.

We callΦ a set of generatorsfor V(Φ). WhenΦ = {ϕ}, we simply writeV(ϕ).

The lengthof a shift-invariant spaceV is the cardinality of a smallest generating set for
V, that is

len(V) := min{#Φ : V = V(Φ)}.
A SIS of length one is called aprincipal shift-invariant space(PSIS). A SIS of finite
length is afinitely generated shift-invariant space(FSIS).

Remark1.4.2. If ϕ ∈ L2(Rd) andϕ , 0 then the functions{tkϕ : k ∈ Zd} are linearly
independent (see [Chr03, Proposition 7.4.2] or [HSWW10a] for more details). So, every
non trivial SIS is an infinite dimensional linear space.

As a consequence of the integer invariance of the SISs we havethe following lemma.

Lemma 1.4.3.Let V⊆ L2(Rd) be a SIS and PV the orthogonal projection onto V. Then

tkPV = PVtk ∀ k ∈ Zd.

Let us remark here that ifΦ ⊆ L2(Rd) is a set of generators for a shift-invariant space
V, that isV = V(Φ), then the setE(Φ) does not need to be a frame forV, even for finitely
generated SISs (see Example1.5.15). However it is always true that there exists a set of
generators forV such that its integer translates form a frame forV. This is the result of the
next theorem.

Theorem 1.4.4.Given V a SIS of L2(Rd), there exists a subsetΦ = {ϕ j} j∈J ⊆ V such that
E(Φ) is a Parseval frame for V. If V is finitely generated, the cardinal of J can be chosen
to be the length of V.

We would like to note here that although a SIS always has a frame of translates, there
are SISs which have no Riesz bases of translates (see Example1.5.11). This fact shows
the importance of considering frames instead of Riesz baseswhen we are studying the
structure of SISs.



1.4 Shift-invariant spaces 9

1.4.1 Sampling in shift-invariant spaces

Our aim in this section is to give a brief description of sampling in shift-invariant spaces,
for more details we refer the reader to [AG01, Sun05, Wal92, ZS99].

We will begin by studying the structure of the canonical dualof a frame of translates.
We will show that the canonical dual is formed by translates of functions.

Proposition 1.4.5. Let Φ = {ϕ j} j∈J be a set of functions of L2(Rd). Assume E(Φ) is a
frame for a closed space V⊆ L2(Rd). Then, the dual frame of E(Φ) is the set of translates
E(Φ̃) = {tkϕ̃ j} j∈J,k∈Zd, whereϕ̃ j = S−1ϕ j and S is the frame operator associated to E(Φ)
given by

S : V → V S f =
∑

k∈Zd

∑

j∈J
〈 f , tkϕ j〉tkϕ j.

Proof. Recall from Proposition1.2.13 that the canonical dual ofE(Φ) is given by
{S−1(tkϕ j) : k ∈ Zd, j ∈ J}. It is easily seen that the operatorS commutes with inte-
ger translates. So, its inverse also commutes with integer translates. Thus, the canonical
dual is given by{tk(S−1ϕ j) : k ∈ Zd, j ∈ J}.

�

As we have mentioned in theIntroduction, the Kotelnikov-Shannon-Whittaker (KSW)
theorem states that a band-limited functionf can be reconstructed from its values in the
integers using the formula

f (t) =
∑

k∈Z
f (k)sinc(t − k),

with the series on the right converging uniformly onR, as well as inL2(R) (see (0.1)).

The space of band-limited functionsPW = { f ∈ L2(R) : supp(̂f ) ⊆ [−1
2,

1
2]} is a

principal shift-invariant space generated by the functionϕ = sinc. That is,PW = V(sinc).

As a generalization of the KSW theorem, the sampling problemin SISs consists in
studying conditions on the generators of a SISV in order that every function ofV can be
reconstructed from its values in a discrete sequence of samples.

In this section we will focus our attention in the problem of sampling in principal shift-
invariant spaces. We will describe some of the conditions which a generatorϕ for a PSIS
must satisfy in order to have a reconstruction formula inV(ϕ) similar to the one given in
the KSW theorem.

A closed subspaceV ⊆ L2(Rd) of continuous functions will be called areproducing
kernel Hilbert space(RKHS) if for eachx ∈ Rd the evaluation function

f 7→ f (x)

is a continuous linear functional onV. If this condition is verified, by the Riesz’s rep-
resentation theorem (see for instance [Con90]), for every x ∈ Rd there exists a unique
functionNx ∈ V such that

f (x) = 〈 f ,Nx〉 ∀ f ∈ V.
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The set of functions{Nx}x∈Rd is called thereproducing kernel.

Assume now that for a givenϕ ∈ L2(Rd), the setE(ϕ) is a frame forV = V(ϕ) and that
V is a RKHS. Then, for everyf ∈ V andk ∈ Zd,

〈 f , tkN0〉 = 〈t−k f ,N0〉 = t−k f (0) = f (k) = 〈 f ,Nk〉.

That is, tkN0 = Nk. If, in addition, E(N0) is a frame forV with dual frameE(Ñ0) (see
Proposition1.4.5), by Proposition1.2.13we have that

f (x) =
∑

k∈Zd

〈 f , tkN0〉tkÑ0 =
∑

k∈Zd

f (k)tkÑ0. (1.5)

If the convergence of the previous series is uniform, then every function f ∈ V can be
reconstructed from its values in the integers. In this way, we obtain inV(ϕ) a result
similar to the one in the KSW theorem.

As a consequence of the previous analysis, we obtain that thesampling problem for
principal shift-invariant spaces is based on studying conditions on the generatorϕ so that
every function ofV = V(ϕ) is continuous, the spaceV is a RKHS, the setE(N0) is a frame
for V, and the convergence in (1.5) is uniform. All of these conditions were studied in
[ZS99, Sun05], for a fuller treatment of this problem we refer the reader to these papers.

1.5 Range function and fibers for shift-invariant spaces

A useful tool in the theory of shift-invariant spaces is based on early work of Helson
[Hel64]. An L2(Rd) function is decomposed into “fibers”. This produces a characteri-
zation of SISs in terms of closed subspaces ofℓ2(Zd) (the fiber spaces). The advantage
of this approach is that, although the FSISs are infinite-dimensional subspaces (see Re-
mark1.4.2), most of their properties can be translated into properties on the fibers of the
spanning sets. That allows to work with finite-dimensional subspaces ofℓ2(Zd).

In the sequel, we will give the definition and some propertiesof the fibers. For a detailed
description of this approach, see [Bow00] and the references therein.

The Hilbert space of square integrable vector functionsL2([0, 1)d, ℓ2(Zd)), consists of
all vector valued measurable functionsF : [0, 1)d → ℓ2(Zd) such that

‖F‖ :=
( ∫

[0,1)d
‖F(x)‖2

ℓ2 dx
) 1

2
,

is finite.

Proposition 1.5.1.The functionτ : L2(Rd) → L2([0, 1)d, ℓ2(Zd)) defined for f∈ L2(Rd)
by

τ f (ω) := { f̂ (ω + k)}k∈Zd,

is an isometric isomorphism between L2(Rd) and L2([0, 1)d, ℓ2(Zd)).

The sequence{ f̂ (ω + k)}k∈Zd is called the fiber of f atω.
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Definition 1.5.2. A range functionis a mapping

J : [0, 1)d → {closed subspaces ofℓ2(Zd)}.

J is measurable if the operator valued function of the orthogonal projectionsω 7→ PJ(ω)

is weakly measurable. In a separable Hilbert space measurability is equivalent to weak
measurability. Therefore, the measurability ofJ is equivalent toω 7→ PJ(ω)(a) being
vector measurable for eacha ∈ ℓ2(Zd), orω 7→ PJ(ω)(F(ω)) being vector measurable for
each fixed vector measurable functionF : [0, 1)d → ℓ2(Zd).

Shift-invariant spaces can be characterized through rangefunctions.

Proposition 1.5.3.A closed subspace V⊆ L2(Rd) is shift-invariant if and only if

V = { f ∈ L2(Rd) : τ f (ω) ∈ JV(ω) for a.e.ω ∈ [0, 1)d},

where JV is a measurable range function. The correspondence betweenV and JV is one-
to-one.

Moreover, if V= V(Φ) for some countable setΦ ⊆ L2(Rd), then

JV(ω) = span{τϕ(ω) : ϕ ∈ Φ} for a.e.ω ∈ [0, 1)d.

The subspace JV(ω) is called the fiber space of V atω.

Note that ifV ⊆ L2(Rd) is an FSIS generated by the set of functionsΦ = {ϕ1, . . . , ϕm},
then

JV(ω) = span{τϕ1(ω), . . . , τϕm(ω)}.

So, even thoughV is an infinite dimensional subspace ofL2(Rd), the fiber spacesJV(ω)
are all finite dimensional subspaces ofℓ2(Zd).

We have the following property concerning fibers of SISs.

Proposition 1.5.4.Let V be a SIS of L2(Rd) and f ∈ L2(Rd), then

τ(PV f )(ω) = PJV(ω)(τ f (ω)) for a.e.ω ∈ [0, 1)d.

As a consequence of the previous proposition, we obtain the following.

Proposition 1.5.5.Let V1 and V2 be SISs. If V= V1 ⊕̇V2, then

JV(ω) = JV1(ω) ⊕̇ JV2(ω), a.e.ω ∈ [0, 1)d.

The converse of this proposition is also true, but will not beneeded for the subjects
developed in this thesis.

Let us now introduce the concept of dimension function for SISs.
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Definition 1.5.6. Given V a SIS ofL2(Rd), the dimension functionassociated toV is
defined by

dimV : [0, 1)d → N0 ∪ {∞}, dimV(ω) = dim(JV(ω)).

HereN0 denotes the set of non-negative integers.

We have the following property which relates the essential supremum of the dimension
function to the length of an FSIS.

Proposition 1.5.7([dBDVR94]). Let V⊆ L2(Rd) be an FSIS. Then

len(V) = ess-sup{dimV(ω) : ω ∈ [0, 1)d}.

1.5.1 Riesz bases and frames for shift-invariant spaces

The next two theorems characterize Bessel sequences, frames and Riesz bases of trans-
lates in terms of fibers. The main idea is that every property of the setE(Φ) (being a
Bessel sequence, a frame or a Riesz basis) is equivalent to its fibers satisfying an analo-
gous property in a uniform way.

Theorem 1.5.8.LetΦ be a countable subset of L2(Rd). The following are equivalent.

i) E(Φ) is a Bessel sequence in L2(Rd) with constantβ.

ii) τΦ(ω) := {τϕ(ω) : ϕ ∈ Φ} is a Bessel sequence inℓ2(Zd) with constantβ for a.e.
ω ∈ [0, 1)d.

Theorem 1.5.9.Let V= V(Φ), whereΦ is a countable subset of L2(Rd). Then the follow-
ing holds:

i) E(Φ) is a frame for V with constantsα and β if and only if τΦ(ω) is a frame for
JV(ω) with constantsα andβ for a.e.ω ∈ [0, 1)d.

ii) E (Φ) is a Riesz basis for V with constantsα andβ if and only ifτΦ(ω) is a Riesz
basis for JV(ω) with constantsα andβ for a.e.ω ∈ [0, 1)d.

Furthermore, ifΦ is finite, V has a Riesz basis of translates if and only if the di-
mension function associated to V is constant a.e.ω ∈ [0, 1)d.

Remark1.5.10. If V is an FSIS generated byΦ = {ϕ1, . . . , ϕm} ⊆ L2(Rd), thenJV(ω) =
span{τϕ1(ω), . . . , τϕm(ω)} a.e. ω ∈ [0, 1)d. So, by Remark1.2.12, τΦ(ω) is a frame for
JV(ω) for a.e.ω. But, as we will see in Example1.5.15, E(Φ) might not be a frame for
V(Φ) in general. This is due to the fact that we need a pair of uniform positive frame
boundsα andβ for the frameτΦ(ω) which are independent ofω in order forE(Φ) to be
a frame forV(Φ).

As we have mentioned in Theorem1.4.4every SIS has a frame of translates. Using
fiberization techniques, we will give below an example of a SIS which do not have a
Riesz basis of translates.
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Example 1.5.11.Consider the shift-invariant spaceV generated byϕ ∈ L2(R), where
ϕ̂(ω) = χ[0, 12 )(ω). Since dimV(ω) = 1 for a.e. ω ∈ [0, 1

2) and dimV(ω) = 0 for a.e.

ω ∈ [ 1
2, 1), it follows by Theorem1.5.9thatV has no Riesz bases of translates.

1.5.2 The Gramian operator for shift-invariant spaces

Definition 1.5.12. Let Φ = {ϕ j} j∈J be a countable set of functions inL2(Rd) such that
E(Φ) is a Bessel sequence. The Gramian ofΦ atω ∈ [0, 1)d isGΦ(ω) : ℓ2(J)→ ℓ2(J),

(GΦ(ω))i, j = 〈τϕ j(ω), τϕi(ω)〉ℓ2(Zd) =
∑

k∈Zd

ϕ̂i(ω + k)ϕ̂ j(ω + k) ∀ i, j ∈ J. (1.6)

In the notation of Definition1.3.1,GΦ(ω) is the Gramian operator associated to the Bessel
sequenceτΦ(ω) = {τϕ j(ω)} j∈J in ℓ2(Zd), that isGΦ(ω) = GτΦ(ω).

WhenΦ = {ϕ}, the Gramian will be denoted byGϕ and its expression is

Gϕ(ω) = 〈τϕ(ω), τϕ(ω)〉ℓ2(Zd) =
∑

k∈Zd

|̂ϕ(ω + k)|2.

From Theorem1.5.8and Theorem1.5.9we obtain the following result (see [Bow00]
for more details).

Theorem 1.5.13.LetΦ = {ϕ j} j∈J ⊆ L2(Rd). Then,

i) E(Φ) is a Bessel sequence with constantβ if and only if

ess-supω∈[0,1)d‖GΦ(ω)‖op ≤ β.

ii) E (Φ) is a frame for V(Φ) with constantsα andβ if and only if for almost allω ∈
[0, 1)d,

α〈GΦ(ω)c, c〉 ≤ 〈G2
Φ(ω)c, c〉 ≤ β〈GΦ(ω)c, c〉 ∀ c ∈ ℓ2(J).

iii) E (Φ) is a Riesz basis for V(Φ) with constantsα andβ if and only if for almost all
ω ∈ [0, 1)d,

α‖c‖2 ≤ 〈GΦ(ω)c, c〉 ≤ β‖c‖2 ∀ c ∈ ℓ2(J).

Remark1.5.14. As a consequence of Theorem1.5.13, for a PSISV(ϕ) we have

i) E(ϕ) is a frame forV(ϕ) with constantsα andβ if and only if

α ≤ Gϕ(ω) ≤ β for almost allω ∈ Nϕ,

whereNϕ := {ω ∈ [0, 1)d : Gϕ(ω) , 0}.

ii) E(ϕ) is a Riesz basis forV(ϕ) with constantsα andβ if and only if

α ≤ Gϕ(ω) ≤ β for almost allω ∈ [0, 1)d.
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We refer the reader to [HSWW10a] to see how other properties ofE(ϕ) (such as being
a Schauder basis forV(ϕ)) correspond to those ofGϕ.

We will present now an example from [Chr03] which shows a functionϕ whose trans-
lates are not a frame for the SIS generated byϕ.

Example 1.5.15.Let ϕ = χ[−1,2). It can be shown (see [Chr03]) that Gϕ(ω) = 3 +
4 cos(2πω) + 2 cos(4πω). Note thatGϕ is continuous and has two isolated zerosGϕ(1

3) =
Gϕ(2

3) = 0. So, by Remark1.5.14, E(ϕ) is not a frame forV(ϕ).
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Optimal signal models and dimensionality
reduction for data clustering

2.1 Introduction

In this chapter we are going to study the problem of finding models which best explain a
finite data set of signals. We will first review some results about finding a subspace that
is closest to a given finite data set. More precisely, ifF = { f1, . . . , fm} is a set of vectors
of a Hilbert spaceH , we will study the problem of finding an optimal subspaceV0 ⊆ H
that minimizes the expression

E(F ,V) :=
m∑

i=1

d2( fi,V) =
m∑

i=1

‖ fi − PV fi‖2

over all possible choices of subspacesV belonging to an appropriate classC of subspaces
ofH .

We will focus our attention in finding optimal subspaces for two cases: whenH = RN

andC is the set of subspaces of dimension at mostk with k << N, and whenH = L2(Rd)
with C being the family of FSISs of length at mostk.

Following the new paradigm for signal sampling and reconstruction developed recently
by Lu y Do [LD08] which assumes that the signals live in a union of subspaces instead of
a single vector space, we will study the problem of finding an appropriate signal model
X = ∪iVi from a set of observed dataF = { f1, . . . , fm}.

We will review the results from [ACM08], which find subspacesV1, . . . ,Vl, of some
Hilbert spaceH that minimize the expression

e(F , {V1, . . . ,Vl}) =
m∑

i=1

min
1≤ j≤l

d2( fi,V j),

over all possible choices ofl subspaces belonging to an appropriate class of subspaces of
H .
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If the subspacesVi belong to a family of closed subspacesC which satisfies the so
called Minimum Subspace Approximation Property (MSAP), anoptimal solution to the
non-linear subspace modeling problem that best fit the data exists, and algorithms to find
these subspaces were developed in [ACM08].

The results from [ACM08] are proved in a general setting and then applied to the case
of low dimensional subspaces ofRN and to infinite dimensional shift-invariant spaces of
L2(Rd).

For the euclidean caseRN, the problem of finding a union of subspaces of dimension
k << N that best explains a data setF = { f1, . . . , fm} ⊆ RN increases dramatically with the
dimensionN. In the present chapter we have focused on the computationalcomplexity
of finding optimal union of subspaces inRN. More precisely, we study techniques of
dimension reduction for the algorithm proposed in [ACM08]. These techniques can also
be used in a wide variety of situations and are not limited to this particular application.

We use random linear transformations to map the data to a lower dimensional space.
The “projected” signals are then processed in that space, (i.e. finding the optimal union
of subspaces) in order to produce an optimal partition. Thenwe apply this partition to the
original data to obtain the associated model for that partition and obtain a bound for the
error.

We analyze two situations. First we study the case when the data belongs to a union
of subspaces (ideal case with no noise). In that case we obtain the optimal model using
almost any transformation (see Proposition2.4.3).

In the presence of noise, the data usually doesn’t belong to aunion of low dimensional
subspaces. Thus, the distances from the data to an optimal model add up to a positive
error. In this case, we need to restrict the admissible transformations. We apply recent re-
sults on distributions of matrices satisfying concentration inequalities, which also proved
to be very useful in the theory of compressed sensing.

We are able to prove that the model obtained by our approach isquasi optimal with a
high probability. That is, if we map the data using a random matrix from one of the dis-
tributions satisfying the concentration law, then with high probability, the distance of the
data to the model is bounded by the optimal distance plus a constant. This constant de-
pends on the parameter of the concentration law, and the parameters of the model (number
and dimension of the subspaces allowed in the model).

Let us remark here that the problem of finding the optimal union of subspaces that fit
a given data set is also known as “Projective clustering”. Several algorithms have been
proposed in the literature to solve this problem. Particularly relevant is [DRVW06] (see
also references therein) where the authors used results from volume and adaptive sampling
to obtain a polynomial-time approximation scheme. See [AM04] for a related algorithm.

The rest of the chapter is organized as follows: inSection 2.2we present the Eckart-
Young’s Theorem, which solves the problem of finding a subspace of dimension less than
or equal tok that best approximates a finite set of vectors ofRN. We also review the results
from [ACHM07] to find an FSIS which best fits a finite data set of functions ofL2(Rd).
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In Section 2.3we state the results from [ACM08] which find, for a given set of vectors
in a Hilbert space, a union of subspaces minimizing the sum ofthe square of the distances
between each vector and its closest subspace in the collection. We also review the iterative
algorithm proposed in [ACM08] for finding the solution subspaces.

In Section 2.4we concentrate on the non-linear subspace modeling problemwhen the
model is a finite union of subspaces ofRN of dimensionk << N. We study a class of
transformations that map the problem into another one in lower dimension. We use the
best model in the low dimensional space to approximate the best solution in the original
high dimensional space. We then estimate the error producedbetween this solution and
the optimal solution in the high dimensional space.

In Section 2.5we give the proofs of the results fromSubsection 2.4.2.

2.2 Optimal subspaces as signal models

Given a set of vectorsF = { f1, . . . , fm} in a separable Hilbert spaceH and a family of
closed subspacesC of H , the problem of finding a subspaceV ∈ C that best models the
dataF has many applications to mathematics and engineering.

Since one of our goals is to model a set of data by a closed subspace, we first provide a
measure of how well a given data set can be modeled by a subspace.

Definition 2.2.1. Given a set of vectorsF = { f1, . . . , fm} in a separable Hilbert space, the
distance from a closed subspaceV ⊆ H toF will be denoted by

E(F ,V) :=
m∑

i=1

d2( fi ,V) =
m∑

i=1

‖ fi − PV fi‖2.

We will say that a family of subspacesC has the Minimum Subspace Approximation
Property (MSAP) if for any finite setF of vectors inH there exists a subspaceV0 ∈ C
such that

E(F ,V0) = inf {E(F ,V) : V ∈ C} ≤ E(F ,V), ∀V ∈ C. (2.1)

Any subspaceV0 ∈ C satisfying (2.1) will be called anoptimal subspacefor F .

Necessary and sufficient conditions forC to satisfy the MSAP are obtained in [AT10].

Let us denote byE0(F ,C) the minimal error defined by

E0(F ,C) := inf {E(F ,V) : V ∈ C}. (2.2)

In this section we will study the problem of finding optimal subspaces for two cases:
whenH = RN andC is the set of subspaces of dimension at mostk (with k << N), and
whenH = L2(Rd) with C being the family of FSISs of length at mostk.

We will begin by studying the euclidean caseH = RN. Assume we have a finite data
setF = { f1, . . . , fm} ⊆ RN. Our goal is to find a subspaceV0 such that dim(V0) ≤ k and

E(F ,V0) = E0(F ,Ck) = inf {E(F ,V) : V ∈ Ck},
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whereCk is the family of subspaces ofRN with dimension at mostk.

This well-known problem is solved by the Eckart-Young’s Theorem (see [Sch07])
which uses the Singular Value Decomposition (SVD) of a matrix. Before stating the the-
orem, we will briefly recall the SVD of a matrix (for a detailedtreatment see for example
[Bha97]).

Let M = [ f1, . . . , fm] ∈ RN×m andd := rank(M). Consider the matrixM∗M ∈ Rm×m.

SinceM∗M is self-adjoint and positive semi-definite, it has eigenvaluesλ1 ≥ · · · ≥ λd >

0 = λd+1 = · · · = λm. The associated eigenvectorsy1, . . . , ym can be chosen to form an
orthonormal basis ofRm. The left singular vectorsu1, . . . , ud can then be obtained from

ui = λ
−1/2
i Myi = λ

−1/2
i

m∑

j=1

yi j f j ∀1 ≤ i ≤ d.

The remaining left singular vectorsud+1, . . . , um can be chosen to be any orthonormal
collection ofm− d vectors inRN that are perpendicular to the subspace spanned by the
columns ofM. One obtain the following SVD ofM

M = UΛ1/2Y∗,

whereU ∈ RN×m is the matrix with columns{u1, . . . , um}, Λ1/2 = diag(λ1/2
1 , . . . , λ

1/2
m ), and

Y = {y1, . . . , ym} ∈ Rm×m with U∗U = Im = Y∗Y = YY∗.

We are now able to state the Eckart-Young’s Theorem.

Theorem 2.2.2.LetF = { f1, . . . , fm} be a set of vectors inRN and let M= [ f1, . . . , fm] ∈
RN×m be the matrix with columns fi. Suppose that M has a SVD M= UΛ1/2Y∗ and that
0 < k ≤ d, with d := rank(M). If V0 = span{u1, . . . , uk}, then

E(F ,V0) = E0(F ,Ck) = inf {E(F ,V) : V ∈ Ck}.

Furthermore,

E0(F ,Ck) =
d∑

j=k+1

λ j,

whereλ1 ≥ · · · ≥ λd > 0 are the positive eigenvalues of M∗M.

The previous theorem proves that inH = RN, the classCk of subspaces of dimension
at mostk has the MSAP. Therefore, for any finite setF = { f1, . . . , fm} of vectors in
RN there exists an optimal subspaceV0 ∈ Ck which best approximates the data setF .
Moreover, Theorem2.2.2gives a way to construct the generators of an optimal subspace
and estimates the minimal errorE0(F ,Ck).

Let us now study the problem of finding an FSIS ofL2(Rd) that best approximates a
finite data set of functions ofL2(Rd). More specifically, given a set of functionsF =
{ f1, . . . , fm} in L2(Rd), our goal is to find an FSISV0 of length at mostk (with k much
smaller thanm) that is closest toF in the sense that

E(F ,V0) = E0(F ,Lk) = inf {E(F ,V) : V ∈ Lk}, (2.3)
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whereLk is the set of all the SISs of length less than or equal tok.

To solve this problem, in [ACHM07] the authors used fiberization techniques to reduce
it to the finite dimensional problem of finding a subspace of dimension at mostk that
best approximates a finite data set of vectors in the Hilbert spaceℓ2(Zd). This last prob-
lem can be solved by an extension of the Eckart-Young’s Theorem (for more details see
[ACHM07]).

The following theorem states the existence of an optimal subspace which solves prob-
lem (2.3). Recall from Definition1.6 that for a given setF = { f1, . . . , fm} of functions in
L2(Rd), the Gramian matrixGF (ω) ∈ Cm×m is defined by (GF (ω))i, j = 〈τ fi(ω), τ f j(ω)〉 for
every 1≤ i, j ≤ m, whereτ f (ω) = { f̂ (ω + k)}k∈Zd.

Theorem 2.2.3.AssumeF = { f1, . . . , fm} is a set of functions in L2(Rd), let λ1(ω) ≥
λ2(ω) ≥ · · · ≥ λm(ω) be the eigenvalues of the GramianGF (ω). Then

i) The eigenvaluesλi(ω), 1 ≤ i ≤ m are Zd-periodic, measurable functions in
L2([0, 1)d) and

E0(F ,Lk) =
m∑

i=k+1

∫

[0,1)d

λi(ω)dω,

whereLk is the set of all the FSISs of length less than or equal to k.

ii) Let Ni := {ω : λi(ω) , 0}, and defineσ̃i(ω) = λ−1/2
i (ω) on Ni and σ̃i(ω) = 0 on

Nc
i . Then, there exists a choice of measurable left eigenvectors y1(ω), . . . , yk(ω) as-

sociated with the first k largest eigenvalues ofGF (ω) such that the functions defined
by

ϕ̂i(ω) = σ̃i(ω)
m∑

j=1

yi j (ω) f̂ j(ω), i = 1, . . . , k, ω ∈ Rd

are in L2(Rd). Furthermore, the corresponding set of functionsΦ = {ϕ1, . . . , ϕk} is
a generator for an optimal space V0 and the set E(Φ) is a Parseval frame for V0.

As a consequence of the previous theorem we obtain that the classLk of FSISs of
L2(Rd) of length at mostk satisfies the MSAP. So, problem (2.3) always has a solution.
Moreover, Theorem2.2.3gives a way to construct the generators of an optimal subspace
and estimates the minimal errorE0(F ,Lk).

2.3 Optimal union of subspaces as signal models

In this section we will study the problem of finding a union of subspaces that best approx-
imates a finite data set in a Hilbert spaceH .

LetC be a family of closed subspaces ofH containing the zero subspace. Givenl ∈ N,
denote byB the collection ofbundlesof subspaces inC,

B = {B = {V1, . . . ,Vl} : Vi ∈ C, i = 1, ..., l}.
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For a set of vectorsF = { f1, . . . , fm} inH , the error between a bundleB = {V1, . . . ,Vl} ∈ B
andF will be defined by

e(F , B) =
m∑

i=1

min
1≤ j≤l

d2( fi,V j),

whered stands for the distance inH (see Figure2.1for an example).

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5 V1 V2

b
f1

b

f2
b
f3

b
f4

b
f5

Figure 2.1:An example of a data setF = { f1, . . . , f5} in R2 and a bundleB = {V1,V2} of two
lines. In this casee(F , B) = d2( f1,V1) + d2( f2,V1) + d2( f3,V2) + d2( f4,V2) + d2( f5,V1). The
partition generated by the bundleB is S1 = {1, 2, 5} andS2 = {3, 4}.

Observe that for the casel = 1 the errore coincides with the errorE defined in the
previous section. That is,

e(F , {V}) = E(F ,V) =
m∑

i=1

d2( fi,V).

Recall from the previous section that a family of subspacesC has the Minimum Sub-
space Approximation Property (MSAP) if for any finite setF of vectors inH there exists
a subspaceV0 ∈ C such that

E(F ,V0) = inf {E(F ,V) : V ∈ C} ≤ E(F ,V), ∀V ∈ C.

The following theorem states that the problem of finding an optimal union of subspaces
has solution for every finite data setF ⊆ H and everyl ≥ 1 if and only ifC has the MSAP.

Theorem 2.3.1([ACM08]). Let F = { f1, . . . , fm} be vectors inH , and let l be given
(l < m). If C satisfies the MSAP, then there exists a bundle B0 = {V0

1, . . . ,V
0
l } ∈ B such

that
e(F , B0) = e0(F ) := inf {e(F , B) : B ∈ B}. (2.4)

Any bundle B0 ∈ B satisfying (2.4) will be called anoptimal bundlefor F .
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Remark2.3.2. In the context of the Hilbert spaceH = L2(Rd), Teorem2.2.3proves that
the familyLk of shift-invariant spaces with length less than or equal tok has the MSAP.
Thus, by Theorem2.3.1there exists a solution for the problem of optimal union of FSISs.

In the case ofH = RN, Theorem2.2.2states that the familyCk of subspaces of dimen-
sion at mostk has the MSAP. So, also in this case there exists a union ofk-dimensional
subspaces which is closest to a given data set.

2.3.1 Bundles associated to a partition and partitions associated to a
bundle

The following relations between partitions of the indices{1, . . . ,m} and bundles will be
relevant for understanding the solution to the problem of optimal models. From now on
we will assume that the classC has the MSAP.

We will denote byΠl({1, . . . ,m}) the set of alll-sequencesS = {S1, . . . ,Sl} of subsets
of {1, . . . ,m} satisfying the property that for all 1≤ i, j ≤ l,

l⋃

r=1

Sr = {1, . . . ,m} and Si ∩ S j = ∅ for i , j.

We want to emphasize that this definition does not exclude thecase when some of the
Si are the empty set. By abuse of notation, we will still call theelements ofΠl({1, . . . ,m})
partitionsof {1, . . . ,m}.

Definition 2.3.3. Given a bundleB = {V1, . . . ,Vl} ∈ B, we can split the set{1, . . . ,m}
into a partitionS= {S1, . . . ,Sl} ∈ Πl({1, . . . ,m}) with respect to that bundle, by grouping
together intoSi the indices of the vectors inF that are closer to a given subspaceVi

than to any other subspaceV j, j , i. Thus, the partitions generated byB are defined by
S= {S1, . . . ,Sl} ∈ Πl({1, . . . ,m}), where

j ∈ Si if and only if d( f j,Vi) ≤ d( f j,Vh), ∀h = 1, . . . , l.

We can also associate to a given partitionS ∈ Πl the bundles inB as follows:

Definition 2.3.4. Given a partitionS = {S1, . . . ,Sl} ∈ Πl, we will denote byFi the set
Fi = { f j} j∈Si . A bundleB = {V1, . . . ,Vl} ∈ B is generated byS if and only if for every
i = 1, . . . , l,

E(Fi,Vi) = E0(Fi,C) = inf {E(Fi,V) : V ∈ C}.

In this way, for a given data setF , every bundle has a set of associated partitions (those
that are generated by the bundle) and every partition has a set of associated bundles (those
that are generated by the partition). Note however, that thefact thatS is generated byB
does not imply thatB is generated byS, and vice versa (an example is given in Figure
2.2). However, ifB0 is an optimal bundle that solves the problem for the dataF as in
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Theorem2.3.1, then in this case, the partitionS0 generated byB0 also generatesB0. On
the other hand not every pair (B,S) with this property produces the minimal errore0(F ).

Here and subsequently, the partitionS0 generated by the optimal bundleB0 will be
called an optimal partition forF .
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Figure 2.2:The data setF = { f1, . . . , f5} is the same as in Figure2.1. The bundleB = {V1,V2}
generates the partitionS= {{1, 2, 5}, {3, 4}}. This partition generates the bundleB′ = {W1,W2}.

An algorithm to solve the problem of finding an optimal union of subspaces was pro-
posed in [ACM08]. It consists in picking any partitionS1 ∈ Πl and finding a bundleB1

generated byS1. Then find a partitionS2 generated by the bundleB1 and calculate the
bundleB2 associated toS2. Iterate this procedure until obtaining the optimal bundle(see
[ACM08] for more details).

2.3.2 The euclidean case: sparsity and dictionaries

In this section we will focus our attention in the problem of optimal union of subspaces
for the euclidean case. The study of optimal union of subspaces models for the case
H = RN has applications to mathematics and engineering [CL09, EM09, EV09, Kan01,
KM02, LD08, AC09, VMS05]. In the previous section we have shown that the problem of
finding a union ofl subspaces of dimension less than or equal tok that best approximates
a data set inRN has a solution (see Remark2.3.2).

In this section, we will relate the existence of optimal union of subspaces inRN with the
problem of finding a dictionary in which the data set has a certain sparsity. We will also
analyze the applicability of the algorithm given in the previous section for the euclidean
case.

Definition 2.3.5. Given a set of vectorsF = { f1, . . . , fm} in RN, a real numberρ ≥ 0
and positive integersl, k < N we will say that the dataF is (l, k, ρ)-sparse if there exist
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subspacesV1, . . . ,Vl of RN with dimension at mostk, such that

e(F , {V1, . . . ,Vl}) =
m∑

i=1

min
1≤ j≤l

d2( fi,V j) ≤ ρ,

whered stands for the euclidean distance inRN.

WhenF is (l, k, 0)-sparse, we will simply say thatF is (l, k)-sparse.

Note that ifF is (l, k)-sparse, there existl subspacesV1, . . . ,Vl of dimension at mostk,
such that

F ⊆ ∪l
i=1Vi.

For the general caseρ > 0, the (l, k, ρ)-sparsity of the data implies thatF can be
partitioned into a small number of subsets, in such a way thateach subset belongs to or
is at no more thanρ-distance from a low dimensional subspace. The collection of these
subspaces provides an optimal non-linear sparse model for the data.

Observe that if the dataF is (l, k, ρ)-sparse, a model which verifies Definition2.3.5
provides a dictionary of length not bigger thanlk (and in most cases much smaller) in
which our data can be represented using at mostk atoms with an error smaller thanρ.

More precisely, let{V1, . . . ,Vl} be a collection of subspaces which satisfies Definition
2.3.5andD a set of vectors from

⋃
j V j that is minimal with the property that its span

contains
⋃

j V j. Then for eachf ∈ F there existsΛ ⊆ D with #Λ ≤ k such that

‖ f −
∑

g∈Λ
αgg‖22 ≤ ρ, for some scalarsαg.

In [MT82] Megiddo and Tamir showed that it is NP-complete to decide whether a set
F of m points inR2 can be covered byl lines. This implies that the problem of finding a
union a subspaces that best explains a data set is NP-Complete even in the planar case.

The algorithm from [ACM08] described in the previous section involves the calcula-
tion of optimal bundles, which depends on finding an optimal subspace for a data set.
Recall that the solution to the casel = 1 is given by the SVD of a matrix (see Eckart-
Young’s Theorem). The running time of the SVD method for a matrix M ∈ RN×m is
O(min{mN2,Nm2}) (for further details see [TB97]). Thus the implementation of the algo-
rithm can be very expensive ifN is very large.

In the following section we study techniques of dimension reduction to avoid the ex-
pensiveness of the algorithm described above. These techniques can also be used in a
wide variety of situations and are not limited to this particular application.

2.4 Dimensionality reduction

The problem of finding the optimal union of subspaces that best models a given set of
dataF when the dimension of the ambient spaceN is large is computationally expensive.
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When the dimensionk of the subspaces is considerably smaller thanN, it is natural to
map the data onto a lower-dimensional subspace, solve an associated problem in the lower
dimensional space and map the solution back into the original space. Specifically, given
the data setF = { f1, . . . , fm} ⊆ RN which is (l, k, ρ)-sparse and a matrixA ∈ Rr×N, with
r << N, find the optimal partition of the projected dataF ′ := A(F ) = {A f1, . . . ,A fm} ⊆
Rr , and use this partition to find an approximate solution to theoptimal model forF .

2.4.1 The ideal caseρ = 0

In this section we will assume that the dataF = { f1, . . . , fm} ⊆ RN is (l, k)-sparse, i.e.,
there existl subspaces of dimension at mostk such thatF lies in the union of these sub-
spaces. For this ideal case, we will show that we can always recover the optimal solution
to the original problem from the optimal solution to the problem in the low dimensional
space as long as the low dimensional space has dimensionr > k.

We will begin with the proof that for any matrixA ∈ Rr×N, the projected dataF ′ = A(F )
is (l, k)-sparse inRr .

Lemma 2.4.1.Assume the dataF = { f1, . . . , fm} ⊆ RN is (l, k)-sparse and let A∈ Rr×N.
ThenF ′ := A(F ) = {A f1, . . . ,A fm} ⊆ Rr is (l, k)-sparse.

Proof. Let V0
1, . . . ,V

0
l be optimal spaces forF . Since

dim(A(V0
i )) ≤ dim(V0

i ) ≤ k ∀1 ≤ i ≤ l,

and

F ′ ⊆
l⋃

i=1

A(V0
i ),

it follows thatB := {A(V0
1), . . . ,A(V0

l )} is an optimal bundle forF ′ ande(F ′, B) = 0.

�

Let F = { f1, . . . , fm} ⊆ RN be (l, k)-sparse andA ∈ Rr×N. By Lemma2.4.1, F ′ is (l, k)-
sparse. Thus, there exists an optimal partitionS = {S1, . . . ,Sl} for F ′ in Πl({1, . . . ,m}),
such that

F ′ ⊆
l⋃

i=1

Wi ,

whereWi := span{A f j} j∈Si and dim(Wi) ≤ k. Note that{W1, . . . ,Wl} is an optimal bundle
for F ′.

We can define the bundleBS = {V1, . . . ,Vl} by

Vi := span{ f j} j∈Si , ∀1 ≤ i ≤ l. (2.5)

SinceS ∈ Πl({1, . . . ,m}), we have that

F ⊆
l⋃

i=1

Vi.
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Thus, the bundleBS will be optimal for F if dim(Vi) ≤ k, ∀1 ≤ i ≤ l. The above
discussion suggests the following definition:

Definition 2.4.2. Let F = { f1, . . . , fm} ⊆ RN be (l, k)-sparse. We will call a matrixA ∈
Rr×N admissiblefor F if for every optimal partitionS for F ′, the bundleBS defined by
(2.5) is optimal forF .

The next proposition states that almost allA ∈ Rr×N are admissible forF .

The Lebesgue measure of a setE ⊆ Rq will be denoted by|E|.

Proposition 2.4.3.Assume the dataF = { f1, . . . , fm} ⊆ RN is (l, k)-sparse and let r> k.
Then, almost all A∈ Rr×N are admissible forF .

Proof. If a matrix A ∈ Rr×N is not admissible, there exists an optimal partitionS ∈ Πl for
F ′ such that the bundleBS = {V1, . . . ,Vl} is not optimal forF .

Let Dk be the set of all the subspacesV in RN of dimension bigger thank, such that
V = span{ f j} j∈S with S ⊆ {1, . . . ,m}.

Thus, we have that the set of all the matrices ofRr×N which are not admissible forF is
contained in the set ⋃

V∈Dk

{A ∈ Rr×N : dim(A(V)) ≤ k}.

Note that the setDk is finite, since there are finitely many subsets of{1, . . . ,m}. There-
fore, the proof of the proposition is complete by showing that for a fixed subspaceV ⊆ RN,
such that dim(V) > k, it is true that

|{A ∈ Rr×N : dim(A(V)) ≤ k}| = 0. (2.6)

Let thenV be a subspace such that dim(V) = t > k. Given {v1, . . . , vt} a basis forV,
by abuse of notation, we continue to writeV for the matrix inRN×t with vectorsvi as
columns. Thus, proving (2.6) is equivalent to proving that

|{A ∈ Rr×N : rank(AV) ≤ k}| = 0. (2.7)

As min{r, t} > k, the set{A ∈ Rr×N : rank(AV) ≤ k} is included in

{A ∈ Rr×N : det(V∗A∗AV) = 0}. (2.8)

Since det(V∗A∗AV) is a non-trivial polynomial in ther × N coefficients ofA, the set (2.8)
has Lebesgue measure zero. Hence, (2.7) follows.

�
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2.4.2 The non-ideal caseρ > 0

Even if a set of data is drawn from a union of subspaces, in practice it is often corrupted
by noise. Thus, in generalρ > 0, and our goal is to estimate the error produced when we
solve the associated problem in the lower dimensional spaceand map the solution back
into the original space.

Intuitively, if A ∈ Rr×N is an arbitrary matrix, the setF ′ = AF will preserve the original
sparsity only if the matrixA does not change the geometry of the data in an essential way.
One can think that in theidealcase, since the data is sparse, it actually lies in an union of
low dimensional subspaces (which is a very thin set in the ambient space).

However, when the data is not 0-sparse, but onlyρ-sparse withρ > 0, the optimal
subspaces plus the data do not lie in a thin set. This is the main obstacle in order to obtain
an analogous result as in the ideal case.

Far from having the result that foralmost anymatrixA the geometry of the data will be
preserved, we have the Johnson-Lindenstrauss (JL) lemma [JL84], that guaranties - for a
given data set - the existence ofoneLipschitz mapping which approximately preserves
the relative distances between the data points.

Several proofs of the JL lemma have been made in the past years. It is of our interest
the proof of an improved version of the JL lemma given in [Ach03] that uses random
matrices which verify a concentration inequality. In what follows we will announce this
concentration inequality. The aim of this chapter is to use these random matrices to obtain
positive results for the problem of optimal union of subspaces in theρ > 0 case.

Let (Ω,Pr) be a probability measure space. Givenr,N ∈ N, a random matrixAω ∈ Rr×N

is a matrix with entries (Aω)i, j = ai, j(ω), where{ai, j} are independent and identically
distributed random variables for every 1≤ i ≤ r and 1≤ j ≤ N.

Givenx ∈ Rd, we write‖x‖ for theℓ2 norm ofx in Rd.

Definition 2.4.4. We say that a random matrixAω ∈ Rr×N satisfies the concentration
inequality if for every 0< ε < 1, there existsc0 = c0(ε) > 0 (independent ofr,N) such
that for anyx ∈ RN,

Pr
(
(1− ε)‖x‖2 ≤ ‖Aωx‖2 ≤ (1+ ε)‖x‖2

)
≥ 1− 2e−rc0 (2.9)

Such matrices are easy to come by as the next proposition shows [Ach03]. We will
denote byN(0, 1

r ) the Normal distribution with mean 0 and variance1
r .

Proposition 2.4.5. Let Aω ∈ Rr×N be a random matrix whose entries are chosen in-
dependently from eitherN(0, 1

r ) or { −1√
r
, 1√

r
} Bernoulli. Then Aω satisfies (2.9) with

c0(ε) = ε2

4 −
ε3

6 .

To prove the proposition from above in [Ach03], the author showed that for anyx ∈ RN,
the expectation of the random variable‖Aωx‖2 is ‖x‖2. Then, it was proved that for any
x ∈ RN the random variable‖Aωx‖2 is strongly concentrated about its expected value.
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In what follows we will state and prove a simpler version of the JL lemma included
in [Ach03]. This lemma states that any set of points from a high-dimensional Euclidean
space can be embedded into a lower dimensional space withoutsuffering great distortion.

Here and subsequently, theunion boundwill refer to the property which states that for
any finite or countable set of events, the probability that atleast one of the events happens
is no greater than the sum of the probabilities of the individual events. That is, for a
countable set of events{Bi}i∈I , it holds that

Pr


⋃

i

Bi

 ≤
∑

i

Pr(Bi) .

This property follows from the fact that a probability measure isσ-sub-additive.

Lemma 2.4.6. Let F = { f1, . . . , fm} be a set of points inRN and let 0 < ε < 1. If
r > 24ε−2 ln(m), there exists a matrix A∈ Rr×N such that

(1− ε)‖ fi − f j‖2 ≤ ‖A fi − A f j‖2 ≤ (1+ ε)‖ fi − f j‖2 ∀1 ≤ i, j ≤ m. (2.10)

Proof. Let Aω ∈ Rr×N be a random matrix with entries having any one of the two distri-
butions from Proposition2.4.5.

Using the union bound property, we have that

Pr
(
(1− ε)‖ fi − f j‖2 ≤ ‖Aω( fi − f j)‖2 ≤ (1+ ε)‖ fi − f j‖2 ∀1 ≤ i, j ≤ m

)

= 1− Pr
(∣∣∣‖Aω( fi − f j)‖2 − ‖ fi − f j‖2

∣∣∣ ≥ ε‖ fi − f j‖2 for some 1≤ i, j ≤ m
)

≥ 1−
∑

1≤i, j≤m

Pr
(∣∣∣‖Aω( fi − f j)‖2 − ‖ fi − f j‖2

∣∣∣ ≥ ε‖ fi − f j‖2
)

≥ 1−
∑

1≤i, j≤m

2e−rc0

= 1−m(m− 1)e−rc0.

Recall from Proposition2.4.5thatc0 =
ε2

4 −
ε3

6 ≥
ε2

12. If r > 24ε−2 ln(m), it follows that
1−m(m− 1)e−rc0 > 0, thus (2.10) is verified with positive probability.

�

In this section we will use random matricesAω satisfying (2.9) to produce the lower
dimensional data setF ′ = AωF , with the aim of recovering with high probability an
optimal partition forF using the optimal partition ofF ′.

Below we will state the main results ofSubsection 2.4.2and we will give their proofs
in Section 2.5.

Note that by Lemma2.4.1, if F = { f1, . . . , fm} ⊆ RN is (l, k, 0)-sparse, thenAωF is
(l, k, 0)-sparse for allω ∈ Ω. The following proposition is a generalization of Lemma
2.4.1to the case whereF is (l, k, ρ)-sparse withρ > 0.
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Proposition 2.4.7.Assume the dataF = { f1, . . . , fm} ⊆ RN is (l, k, ρ)-sparse withρ > 0.
If Aω ∈ Rr×N is a random matrix which satisfies (2.9), then AωF is (l, k, (1+ ε)ρ)-sparse
with probability at least1− 2me−rc0.

Hence if the data is mapped with a random matrix which satisfies the concentration
inequality, then with high probability, the sparsity of thetransformed data is close to
the sparsity of the original data. Further, as the followingtheorem shows, we obtain an
estimation for the error betweenF and the bundle generated by the optimal partition for
F ′ = AωF .

Note that, given a constantα > 0, the scaled dataαF = {α f1, . . . , α fm} satisfies that
e(αF , B) = α2e(F , B) for any bundleB. So, an optimal bundle forF is optimal forαF ,
and vice versa. Therefore, we can assume that the dataF = { f1, . . . , fm} is normalized,
that is, the matrixM ∈ RN×m which has the vectors{ f1, . . . , fm} as columns has unitary
Frobenius norm. Recall that the Frobenius norm of a matrixM ∈ RN×m is defined by

‖M‖2 :=
N∑

i=1

m∑

j=1

M2
i, j , (2.11)

whereMi, j are the coefficients ofM.

Theorem 2.4.8.Let F = { f1, . . . , fm} ⊆ RN be a normalized data set and0 < ε < 1.
Assume that Aω ∈ Rr×N is a random matrix satisfying (2.9) andSω is an optimal partition
for F ′ = AωF in Rr . If Bω is a bundle generated by the partitionSω and the dataF in
RN as in Definition2.3.3, then with probability exceeding1− (2m2 + 4m)e−rc0, we have

e(F , Bω) ≤ (1+ ε)e0(F ) + εc1, (2.12)

where c1 = (l(d− k))1/2 and d= rank(F ).

Finally, we can use this theorem to show that the set of matrices which areη-admissible
(see definition below) is large.

The following definition generalizes Definition2.4.2to theρ-sparse setting, withρ > 0.

Definition 2.4.9. AssumeF = { f1, . . . , fm} ⊆ RN is (l, k, ρ)-sparse and let 0< η < 1. We
will say that a matrixA ∈ Rr×N is η-admissiblefor F if for any optimal partitionS for
F ′ = AF in Rr , the bundleBS generated bySandF in RN, satisfies

e(F , BS) ≤ ρ + η.

We have the following generalization of Proposition2.4.3, which provides an estimate
on the size of the set ofη-admissible matrices.

Corollary 2.4.10. LetF = { f1, . . . , fm} ⊆ RN be a normalized data set and0 < η < 1.
Assume that Aω ∈ Rr×N is a random matrix which satisfies property (2.9) for ε = η (1 +√

l(d− k))−1. Then Aω isη-admissible forF with probability at least1−(2m2+4m)e−rc0(ε).
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Proof. Using the fact thate0(F ) ≤ E(F , {0}) = ‖F ‖2 = 1, we conclude from Theo-
rem2.4.8that

Pr
(
e(F , Bω) ≤ e0(F ) + ε(1+ c1)

)
≥ 1− c2e

−rc0(ε), (2.13)

wherec1 = (l(d − k))1/2, d = rank(F ), andc2 = 2m2 + 4m. That is,

Pr
(
e(F , Bω) ≤ e0(F ) + η

)
≥ 1− (2m2 + 4m)e−rc0(ε).

�

As a consequence of the previous corollary, we have a bound onthe dimension of the
lower dimensional space to obtain a bundle which produces anerror atη-distance of the
minimal error with high probability.

Now, using thatc0(ε) ≥ ε2

12 for random matrices with gaussian or Bernoulli entries (see
Proposition2.4.5), from Theorem2.4.8we obtain the following corollary.

Corollary 2.4.11. Let η, δ ∈ (0, 1), be given. Assume that Aω ∈ Rr×N is a random matrix
whose entries are as in Proposition2.4.5.

Then for every r satisfying,

r ≥ 12(1+
√

l(d − k))2

η2
ln

(2m2 + 4m
δ

)

with probability at least1− δ we have that

e(F , Bω) ≤ e0(F ) + η.

We want to remark here that the results ofSubsection 2.4.2are valid for any probability
distribution that satisfies the concentration inequality (2.9). The bound on the error is still
valid for ρ = 0. However in that case we were able to obtain sharp results inSubsection
2.4.1.

2.5 Proofs

In this section we give the proofs forSubsection 2.4.2.

2.5.1 Background and supporting results

Before proving the results of the previous section we need several known theorems, lem-
mas, and propositions below.

Given M ∈ Rm×m a symmetric matrix, letλ1(M) ≥ λ2(M) ≥ · · · ≥ λm(M) be its
eigenvalues ands1(M) ≥ s2(M) ≥ · · · ≥ sm(M) ≥ 0 be its singular values.
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Recall that the Frobenius norm defined in (2.11) satisfies that

‖M‖2 =
∑

1≤i, j≤m

M2
i, j =

m∑

i=1

s2
i (M),

whereMi, j are the coefficients ofM.

Theorem 2.5.1.[Bha97, Theorem III.4.1]

Let A, B ∈ Rm×m be symmetric matrices. Then for any choice of indices1 ≤ i1 < i2 <
· · · < ik ≤ m,

k∑

j=1

(λi j (A) − λi j (B)) ≤
k∑

j=1

λ j(A− B).

Corollary 2.5.2. Let A, B ∈ Rm×m be symmetric matrices. Assume k and d are two integers
which satisfy0 ≤ k ≤ d ≤ m, then

∣∣∣∣
d∑

j=k+1

(λ j(A) − λ j(B))
∣∣∣∣ ≤ (d − k)1/2‖A− B‖.

Proof. SinceA−B is symmetric, it follows that for each 1≤ j ≤ m there exists 1≤ i j ≤ m
such that

|λ j(A− B)| = si j (A− B).

From this and Theorem2.5.1we have
d∑

j=k+1

(λ j(A) − λ j(B)) ≤
d−k∑

j=1

λ j(A− B) ≤
d−k∑

j=1

si j (A− B)

≤
d−k∑

j=1

sj(A− B) ≤ (d− k)1/2
( d−k∑

j=1

s2
j (A− B)

)1/2

≤ (d − k)1/2‖A− B‖.

�

Remark2.5.3. Note that the bound of the previous corollary is sharp. Indeed, letA ∈ Rm×m

be the diagonal matrix with coefficientsaii = 2 for 1 ≤ i ≤ d, andaii = 0 otherwise. Let
B ∈ Rm×m be the diagonal matrix with coefficientsbii = 2 for 1 ≤ i ≤ k, bii = 1 for
k+ 1 ≤ i ≤ d, andbii = 0 otherwise. Thus,

∣∣∣∣
d∑

j=k+1

(λ j(A) − λ j(B))
∣∣∣∣ =

∣∣∣∣
d∑

j=k+1

(2− 1)
∣∣∣∣ = d − k.

Further‖A− B‖ = (d− k)1/2, and therefore

∣∣∣∣
d∑

j=k+1

(λ j(A) − λ j(B))
∣∣∣∣ = (d − k)1/2‖A− B‖.
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The next lemma was stated in [AV06], but we will give its proof since it shows an
important property satisfied by matrices verifying the concentration inequality.

Lemma 2.5.4. [AV06] Suppose that Aω ∈ Rr×N is a random matrix which satisfies (2.9)
and u, v ∈ RN, then

|〈u, v〉 − 〈Aωu,Aωv〉| ≤ ε‖u‖‖v‖,
with probability at least1− 4e−rc0.

Proof. It suffices to show that foru, v ∈ RN such that‖u‖ = ‖v‖ = 1 we have that

|〈u, v〉 − 〈Aωu,Aωv〉| ≤ ε,

with probability at least 1− 4e−rc0.

Applying (2.9) to the vectorsu+v andu−v we obtain with probability at least 1−4e−rc0

that
(1− ε)‖u− v‖2 ≤ ‖Aω(u− v)‖2 ≤ (1+ ε)‖u− v‖2

and
(1− ε)‖u+ v‖2 ≤ ‖Aω(u+ v)‖2 ≤ (1+ ε)‖u+ v‖2.

Thus,

4〈Aωu,Aωv〉 = ‖Aω(u+ v)‖2 − ‖Aω(u− v)‖2

≥ (1− ε)‖u+ v‖2 − (1− ε)‖u− v‖2

= 4〈u, v〉 − 2ε(‖u‖2 + ‖v‖2)
= 4〈u, v〉 − 4ε.

The other inequality follows similarly.

�

The following proposition was proved in [Sar08], but we include its proof for the sake
of completeness.

Proposition 2.5.5.Let Aω ∈ Rr×Nbe a random matrix which satisfies (2.9) and let M ∈
RN×m be a matrix. Then, we have

‖M∗M − M∗A∗ωAωM‖ ≤ ε‖M‖2,

with probability at least1− 2(m2 +m)e−rc0.

Proof. SetYi, j(ω) = (M∗M − M∗A∗ωAωM)i, j = 〈 fi, f j〉 − 〈Aω fi,Aω f j〉. By Lemma2.5.4
with probability at least 1− 4e−rc0 we have that

|Yi, j(ω)| ≤ ε‖ fi‖‖ f j‖ (2.14)

Note that if (2.14) holds for all 1≤ i ≤ j ≤ m, then
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‖M∗M − M∗A∗ωAωM‖2 =
∑

1≤i, j≤m

Yi, j(ω)2

≤ ε2
∑

1≤i, j≤m

‖ fi‖2‖ f j‖2 = ε2‖M‖4.

Thus, by the union bound, we obtain

Pr
(
‖M∗M − M∗A∗ωAωM‖ ≤ ε‖M‖2

)

≥ Pr
(
|Yi, j(ω)| ≤ ε‖ fi‖‖ f j‖ ∀1 ≤ i ≤ j ≤ m

)

≥ 1−∑
1≤i≤ j≤m 4e−rc0 = 1− 2(m2 +m)e−rc0.

�

2.5.2 New results and proof of Theorem2.4.8

Given a set of vectorsF = { f1, . . . , fm} ⊆ RN let E0(F ,Ck) be as in (2.2), that is

E0(F ,Ck) = inf{E(F ,V) : V is a subspace with dim(V) ≤ k},

whereE(F ,V) =
∑m

i=1 d2( fi,V). For simplicity of notation, we will writeE0(F ,Ck) as
Ek(F ).

AssumeM ∈ RN×m is the matrix with columnsF = { f1, . . . , fm}. If d := rank(M), recall
that Theorem2.2.2(Eckart-Young) states that

Ek(F ) =
d∑

j=k+1

λ j(M
∗M), (2.15)

whereλ1(M∗M) ≥ · · · ≥ λd(M∗M) > 0 are the positive eigenvalues ofM∗M.

Lemma 2.5.6.Assume that M∈ RN×m and A∈ Rr×N are arbitrary matrices. Let S∈ RN×s

be a submatrix of M. If d:= rank(M) is such that0 ≤ k ≤ d, then

|Ek(S) − Ek(AS)| ≤ (d− k)1/2 ‖S∗S − S∗A∗AS‖,

whereS ⊆ RN is the set formed by the columns of S .

Proof. Let ds := rank(S). We have rank(AS) ≤ ds. If ds ≤ k, the result is trivial.
Otherwise by (2.15) and Corollary2.5.2, we obtain

|Ek(S) − Ek(AS)| =
∣∣∣∣

ds∑

j=k+1

(λ j(S
∗S) − λ j(S

∗A∗AS))
∣∣∣∣

≤ (ds− k)1/2‖S∗S − S∗A∗AS‖.
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As S is a submatrix ofM, we have that (ds − k)1/2 ≤ (d − k)1/2, which proves the lemma.

�

Recall thate0(F ) is the optimal value for the dataF , ande0(AωF ) is the optimal value
for the dataF ′ = AωF (see (2.4)). A relation between these two values is given by the
following lemma.

Lemma 2.5.7. Let F = { f1, . . . , fm} ⊆ RN and 0 < ε < 1. If Aω ∈ Rr×N is a random
matrix which satisfies (2.9), then with probability exceeding1− 2me−rc0, we have

e0(AωF ) ≤ (1+ ε)e0(F ).

Proof. Let V ⊆ RN be a subspace. Using (2.9) and the union bound, with probability at
least 1− 2me−rc0 we have that

E(AωF ,AωV) =
m∑

i=1

d2(Aω fi,AωV) ≤
m∑

i=1

‖Aω fi − Aω(PV fi)‖2

≤ (1+ ε)
m∑

i=1

‖ fi − PV fi‖2 = (1+ ε)E(F ,V),

wherePV is the orthogonal projection ontoV.

Assume thatS= {S1, . . . ,Sl} is an optimal partition forF and{V1, . . . ,Vl} is an optimal
bundle forF . LetFi = { f j} j∈Si . From what has been proved above and the union bound,
with probability exceeding 1−∑l

i=1 2mie−rc0 = 1− 2me−rc0, it holds

e0(AωF ) ≤
l∑

i=1

E(AωFi,AωVi) ≤ (1+ ε)
l∑

i=1

E(Fi,Vi) = (1+ ε)e0(F ).

�

Proof of Proposition2.4.7. This is a direct consequence of Lemma2.5.7. �

Proof of Theorem2.4.8. Let Sω = {S1
ω, . . . ,S

l
ω} and F i

ω = { f j} j∈Si
ω
. Since Bω =

{V1
ω, . . . ,V

l
ω} is generated bySω andF , it follows that E(F i

ω,V
i
ω) = Ek(F i

ω). And as
Sω is an optimal partition forAωF in Rr , we have that

∑l
i=1Ek(AωF i

ω) = e0(AωF ).

Let mi
ω = #(Si

ω) and Mi
ω ∈ RN×mi

ω be the matrices which have{ f j} j∈Si
ω

as columns.
Using Lemma2.5.6, Lemma2.5.7, and Proposition2.5.5, with high probability it holds
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that

e(F , Bω) ≤
l∑

i=1

E(F i
ω,V

i
ω) =

l∑

i=1

Ek(F i
ω)

≤
l∑

i=1

Ek(AωF i
ω) + (d − k)1/2

l∑

i=1

‖Mi∗
ωMi

ω − Mi∗
ωA∗ωAωMi

ω‖

≤ e0(AωF ) + (l(d − k))1/2
( l∑

i=1

‖Mi∗
ωMi

ω − Mi∗
ωA∗ωAωMi

ω‖2
)1/2

≤ (1+ ε)e0(F ) + (l(d − k))1/2‖M∗M − M∗A∗ωAωM‖
≤ (1+ ε)e0(F ) + ε(l(d− k))1/2,

whereM ∈ RN×m is the unitary Frobenius norm matrix which has the vectors{ f1, . . . , fm}
as columns.

The right side of (2.12) follows from Proposition2.5.5, Lemma2.5.7, and the fact that

Pr
(
e(F , Bω) ≤ (1+ ε)e0(F ) + ε(l(d − k))1/2

)

≥ Pr
(
‖M∗M − M∗A∗ωAωM‖ ≤ ε ande0(AωF ) ≤ (1+ ε)e0(F )

)

≥ 1− (2(m2 +m)e−rc0 + 2me−rc0) = 1− (2m2 + 4m)e−rc0.

�



3

Sampling in a union of frame generated
subspaces

3.1 Introduction

In the previous chapter we have studied the problem of findinga union of subspaces that
best explains a data set. Our goal in this chapter is to study the sampling process for
signals which lie in this kind of models.

We will begin by describing the problem of sampling in a unionof subspaces. Assume
H is a separable Hilbert space and{Vγ}γ∈Γ are closed subspaces inH , with Γ an arbitrary
index set. LetX be the union of subspaces defined as

X :=
⋃

γ∈Γ
Vγ.

Suppose now that a signalx is extracted fromX and we take some measurements of that
signal. These measurements can be thought of as the result ofthe application of a series
of functionals{ϕi}i∈I to our signalx. The problem is then to reconstruct the signal using
only the measurements{ϕi(x)}i∈I and some description of the subspaces inX.

Assume the series of functionals define an operator,the sampling operator,

A : H → ℓ2(I ), Ax := {ϕi(x)}i∈I .
From the Riesz’s representation theorem [Con90], there exists a unique set of vectors
Ψ := {ψi}i∈I , such that

Ax= {〈x, ψi〉}i∈I .

The sampling problem consists of reconstructing a signalx ∈ X using the data
{〈x, ψi〉}i∈I . The first thing required is that the signals are uniquely determined by the
data. That is, the sampling operatorA should be one-to-one onX. Another important
property that is usually required for a sampling operator, is stability. That is, the existence
of two constants 0< α ≤ β < +∞ such that

α‖x1 − x2‖2H ≤ ‖Ax1 − Ax2‖2ℓ2(I) ≤ β‖x1 − x2‖2H ∀ x1, x2 ∈ X.
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This is crucial to bound the error of reconstruction in noisysituations.

Under some hypothesis on the structure of the subspaces, Lu and Do [LD08] found
necessary and sufficient conditions onΨ in order for the sampling operatorA to be one-
to-one and stable when restricted to the union of the subspacesX. These conditions were
obtained in two settings. In the euclidean space and inL2(Rd). In this latter case the
subspaces considered were finitely generated shift-invariant spaces.

There are two technical aspects in the approach of Lu and Do that restrict the applica-
bility of their results in the shift-invariant space case. The first one is due to the fact that
the conditions are obtained in terms of Riesz bases of translates of the SISs involved, and
it is well known that not every SIS has a Riesz basis of translates (see Example1.5.11).
The second one is that the approach is based upon the sum of every two of the SISs in
the union. The conditions on the sampling operator are then obtained using fiberization
techniques on that sum. This requires that the sum of each of two subspaces is a closed
subspace, which is not true in general.

In this chapter we obtain the conditions for the sampling operator to be one-to-one
and stable in terms offramesof translates of the SISs instead of orthonormal basis. This
extends the previous results to arbitrary SISs and in particular removes the restrictions
mentioned above.

We will obtain necessary and sufficient conditions for the stability of the sampling
operatorA in a union of arbitrary SISs. We will show that, without the assumption of the
closedness of the sum of every two of the SISs in the union, we can only obtain sufficient
conditions for the injectivity ofA.

On the other side, inChapter 4, using known results from the theory of SISs, we will ob-
tain necessary and sufficient conditions for the closedness of the sum of two shift-invariant
spaces. Using this, we will determine families of subspaceson which the conditions for
injectivity are necessary and sufficient.

This chapter is organized in the following way:Section 3.2contains some preliminary
results that will be used throughout. InSection 3.3we set the problem of sampling in
a union of subspaces in the general context of an abstract Hilbert space. We also give
injectivity and stability conditions for the sampling operator, within this general setting.
The case of finite-dimensional subspaces is studied inSection 3.4. Finally in Section 3.5
we analyze the problem for the Hilbert spaceL2(Rd) and sampling in a union of finitely
generated shift-invariant spaces.

3.2 Preliminaries

Let us define here an operator which will be useful to develop the sampling theory in a
union of subspaces.

Definition 3.2.1. AssumeI , J are countable index sets. SupposeX := {xj} j∈J andY :=
{yi}i∈I are Bessel sequences in a separable Hilbert spaceH . Let BX andBY be the analysis
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operators (see Definition1.2.9) associated toX andY respectively. Thecross-correlation
operator is defined by

GX,Y : ℓ2(J)→ ℓ2(I ), GX,Y := BYB∗X. (3.1)

IdentifyingGX,Y with its matrix representation, we write

(GX,Y)i, j = 〈xj , yi〉 ∀ j ∈ J,∀ i ∈ I .

In this chapter we will need the following corollary which isa consequence of Proposi-
tion 1.2.13. Its proof is straightforward using that the frame operatorof a Parseval frame
is the identity operator.

Corollary 3.2.2. If X = {xj} j∈J is a Parseval frame for a closed subspace V ofH , and BX

is the analysis operator associated to X, then the orthogonal projection ofH onto V is

PV = B∗XBX : H → H , PVh =
∑

j∈J
〈h, xj〉 xj.

3.3 The sampling operator

LetH be a separable Hilbert space andV ⊆ H an arbitrary set. GivenΨ = {ψi}i∈I a Bessel
sequence inH , the sampling problem consists of reconstructing a signalf ∈ V using the
data{〈 f , ψi〉}i∈I . We first require that the signals are uniquely determined bythe data. That
is, if we define theSampling operatorby

A : H → ℓ2(I ), A f := {〈 f , ψi〉}i∈I , (3.2)

we requireA to be one-to-one onV. The setΨ will be called theSampling set.

Note that the sampling operatorA is the analysis operator (see Definition1.2.9) for the
sequenceΨ.

Another important property that is usually required for a sampling operator, is stability.
This is crucial to bound the error of reconstruction in noisysituations.

The stable sampling condition was first proposed by [Lan67] for the case whenV is the
Paley-Wiener space. It was then generalized in [LD08] to the case whenV is a union of
subspaces.

Definition 3.3.1. A sampling operatorA is calledstableonV if there exist two constants
0 < α ≤ β < +∞ such that

α‖x1 − x2‖2H ≤ ‖Ax1 − Ax2‖2ℓ2(I) ≤ β‖x1 − x2‖2H ∀ x1, x2 ∈ V.

WhenV is a closed subspace, the injectivity and the stability can be expressed in terms
of conditions onPVΨ, wherePV is the orthogonal projection ofH ontoV.
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Proposition 3.3.2.LetH be a Hilbert space, V⊆ H a closed subspace andΨ = {ψi}i∈I
a Bessel sequence inH . If A is the sampling operator associated toΨ, then we have

i) The operator A isone-to-oneon V if and only if{PVψi}i∈I is complete in V, that is
V = span{PVψi}i∈I .

ii) The operator A isstableon V with constantsα andβ if and only if {PVψi}i∈I is a
frame for V with constantsα andβ.

Proof. The proof ofi) is straightforward using that iff ∈ V then

〈 f ,PVψi〉 = 〈PV f , ψi〉 = 〈 f , ψi〉.

For ii) note that for allf ∈ V

‖A f‖2
ℓ2(I) =

∑

i∈I
|〈 f , ψn〉|2 =

∑

i∈I
|〈PV f , ψn〉|2 =

∑

i∈I
|〈 f ,PVψn〉|2.

�

Remark3.3.3. Given a closed subspaceV in a Hilbert spaceH , a sequence of vectors
{ψi}i∈I ⊆ H is called anouter frame for V if {PVψi}i∈I is a frame forV. The notion
of outer frame was introduced in [ACM04]. See also [FW01] and [LO04] for related
definitions. Using this terminology, part ii) of Proposition 3.3.2says that the sampling
operatorA is stable if and only if{ψi} is an outer frame forV.

In what follows we will extend one-to-one and stability conditions for the operatorA,
to the case of a union of subspaces instead of a single subspace.

If {Vγ}γ∈Γ are closed subspaces ofH , with Γ an arbitrary index set. Let

X :=
⋃

γ∈Γ
Vγ.

We want to study conditions onΨ so that the sampling operatorA defined by (3.2) is
one-to-one and stable onX.

This study continues the one initiated by Lu and Do [LD08] in which they translated
the conditions onX into conditions on the subspaces defined by

Vγ,θ := Vγ + Vθ = {x+ y : x ∈ Vγ, y ∈ Vθ}. (3.3)

Working with the subspacesVγ,θ instead ofX, allows to exploit lineal properties ofA.

They proved the following proposition, we will include hereits proof for the sake of
completeness.

Proposition 3.3.4. [LD08] With the above notation we have,

i) The operator A is one-to-one onX if and only if A is one-to-one on every Vγ,θ with
γ, θ ∈ Γ.
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ii) The operator A is stable forX with stability boundsα and β, if and only if A is
stable for Vγ,θ with stability boundsα andβ for all γ, θ ∈ Γ, i.e.

α‖x‖2H ≤ ‖Ax‖2
ℓ2(I) ≤ β‖x‖

2
H ∀ x ∈ Vγ,θ,∀ γ, θ ∈ Γ.

Proof. We first prove part i). Assume thatA is one-to-one onX. Givenγ, θ ∈ Γ, Vγ,θ is a
subspace. Thus, for proving the injectivity ofA onVγ,θ it suffices to show that forx ∈ Vγ,θ,
Ax= 0 impliesx = 0.

Sincex ∈ Vγ,θ, there existx1 ∈ Vγ andx2 ∈ Vθ such thatx = x1 + x2. HenceAx1 =

A(−x2) for x1, x2 ∈ X. Thereforex1 = −x2, sox = x1 + x2 = 0.

Suppose now thatA is one-to-one on everyVγ,θ with γ, θ ∈ Γ. Let x1, x2 ∈ X such that
Ax1 = Ax2. There existγ, θ ∈ Γ such thatx1 ∈ Vγ andx2 ∈ Vθ. So,A(x1 − x2) = 0 and
x1 − x2 ∈ Vγ,θ. Hence,x1 − x2 = 0, which implies thatx1 = x2.

Using the same arguments from above the proof of ii) follows easily.

�

The sum of two closed infinite-dimensional subspaces of a Hilbert space is not neces-
sarily closed (see Example4.4.6). Furthermore, the injectivity of an operator on a sub-
space does not imply the injectivity on its closure. So, we can not apply Proposition3.3.2
to the subspacesVγ,θ. However, we can obtain a sufficient condition for the injectivity.

Proposition 3.3.5. If {PVγ,θ
ψi}i∈I is complete onVγ,θ for everyγ, θ ∈ Γ, then A is one-to-

one onX.

When the subspaces of the family{Vγ,θ}γ,θ∈Γ are all closed, the condition in Proposition
3.3.5, will be also necessary for the injectivity ofA onX. So, a natural question will be,
when the sum of two closed subspaces of a Hilbert space is closed. InChapter 4we study
this problem in several situations.

In the case of the stability, Proposition3.3.2can be applied since, by the boundedness
of A, we have the following.

Proposition 3.3.6.Let V be a subspace ofH , the operator A is stable for V with constants
α andβ if and only if it is stable forV with constantsα andβ.

As a consequence of this, using Propositions3.3.2and part ii) of Proposition3.3.4, we
have

Proposition 3.3.7.A is stable forX with constantsα andβ if and only if{PVγ,θ
ψi}i∈I is a

frame forVγ,θ for everyγ, θ ∈ Γ with the same constantsα andβ.

3.4 Union of finite-dimensional subspaces

In this section we will first obtain conditions on the sequence {ψi}i∈I for the sampling op-
erator to be one-to-one on a union of finite-dimensional subspaces. We will then analyze
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the stability requirements. We are interested in expressing these conditions in terms of
the generators of the sum of every two subspaces of the union.

3.4.1 The one-to-one condition for the sampling operator

LetH be a Hilbert space,Ψ = {ψi}i∈I a Bessel sequence inH , andA the sampling operator
associated toΨ as in (3.2).

Let V be a finite-dimensional subspace ofH andΦ = {ϕ j}mj=1 a finite frame forV.
(Recall that a finite set of vectors from a finite-dimensionalsubspace is a frame for that
subspace if and only if it spans it, see Remark1.2.12.)

The cross-correlation operator associated toΨ andΦ (see (3.1)) in this case can be
written as,

GΦ,Ψ : Cm→ ℓ2(I ), GΦ,Ψ = AB∗Φ,

whereB∗
Φ

: Cm→ H is the synthesis operator associated toΦ.

The next theorem gives necessary and sufficient conditions on the cross-correlation
operator for the sampling operator to be one-to-one onV.

Theorem 3.4.1.Let Ψ = {ψi}i∈I be a Bessel sequence forH , V a finite-dimensional
subspace ofH andΦ = {ϕ j}mj=1 a frame for V. Then the following are equivalent:

i) Ψ provides a one-to-one sampling operator on V.

ii) ker(GΦ,Ψ) = ker(B∗
Φ
).

iii) dim(range(GΦ,Ψ)) = dim(V).

Proof. The proof is straightforward using that the range of the operatorB∗
Φ

is V. �

Remark3.4.2. Note that the conditions in Theorem3.4.1do not depend on the particular
chosen frame. That is, if there exists a frameΦ for V, such that dim(range(GΦ,Ψ)) =
dim(V), then dim(range(GΦ̃,Ψ)) = dim(V), for any framẽΦ for V.

Now we will apply the previous theorem for the case of a union of subspaces.

Let {Vγ}γ∈Γ be a collection of finite-dimensional subspaces ofH , with Γ an arbitrary
index set. Define,

X :=
⋃

γ∈Γ
Vγ.

As before, setVγ,θ := Vγ + Vθ.

We obtain the following result which extends the result in [LD08] to the case that the
subspaces in the union are described by frames.

Theorem 3.4.3.LetΨ = {ψi}i∈I be a Bessel sequence forH and for everyγ, θ ∈ Γ, let
Φγ,θ be a frame for Vγ,θ, the following are equivalent:
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i) Ψ provides a one-to-one sampling operator onX.

ii) dim(range(GΦγ,θ,Ψ)) = dim(Vγ,θ) for all γ, θ ∈ Γ.

Note that if I is a finite set, the problem of testing the injectivity ofA onX reduces
to check that the rank of the cross-correlation matrices areequal to the dimension of the
subspacesVγ,θ.

In this case a lower bound for the cardinality of the samplingset can be established.
This is stated in the following corollary from [LD08]. We include a proof of the result
based on Theorem3.4.3.

Corollary 3.4.4. If the operator A is one-to-one onX and I is finite, then

#I ≥ sup
γ,θ∈Γ

(dim(Vγ,θ)).

Proof. SinceI is finite, we have that range(GΦγ,θ,Ψ) ⊆ C#I . Thus, using part ii) of Theorem
3.4.3, we obtain that

dim(Vγ,θ) = dim(range(GΦγ,θ,Ψ)) ≤ #I , ∀ γ, θ ∈ Γ.

�

3.4.2 The stability condition for the sampling operator

We are now interested in studying conditions for stability of the sampling operator. These
conditions will be set in terms of the cross-correlation operator. We will consider Parseval
frames to obtain simpler conditions.

Given Hilbert spacesK andL and a bounded linear operatorT : K → L, we denote
byσ2(T) the set

σ2(T) = σ(T∗T).

Theorem 3.4.5.Let Ψ = {ψi}i∈I be a Bessel sequence forH , V a finite-dimensional
subspace ofH andΦ a Parseval frame for V.

The sequenceΨ provides a stable sampling operator for V with constantsα andβ if
and only if

i) dim(range(GΦ,Ψ)) = dim(V) and

ii) σ2(GΦ,Ψ) ⊆ {0} ∪ [α, β].

Proof. Let W : H → ℓ2(I ), be the analysis operator associated toPVΨ. For x ∈ H , the
equation,

Wx= {〈x,PVψi〉}i∈I = {〈PVx, ψi〉}i∈I = APV x,

shows thatW = APV.
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SinceΦ is a Parseval frame forV, by Proposition3.2.2, PV = B∗
Φ
B
Φ

then,

GPVΨ =WW∗ = APVPVA∗ = APVA∗ = AB∗ΦBΦA∗ = GΦ,ΨG
∗
Φ,Ψ. (3.4)

Let us assume first thatA is stable forV. Item i) follows from Theorem3.4.1. Now we
prove ii).

SinceV is closed (V is finite dimensional) then Proposition3.3.2gives thatPVΨ :=
{PVψi}i∈I is a frame forV with constantsα andβ. Using Theorem1.3.4, we have,

σ(GPVΨ) ⊆ {0} ∪ [α, β].

So, by (3.4),
σ(GPVΨ) = σ(GΦ,ΨG

∗
Φ,Ψ) ⊆ {0} ∪ [α, β].

Finally, since (see [Rud91])

σ(G∗Φ,ΨGΦ,Ψ) ⊆ {0} ∪ σ(GΦ,ΨG
∗
Φ,Ψ),

it follows that
σ2(GΦ,Ψ) ⊆ {0} ∪ [α, β].

Suppose now that i) and ii) hold. Recall that A is stable forV with stability boundsα, β
if and only if PVΨ := {PVψi}i∈I is a frame forV with frame boundsα, β.

By Theorem3.4.1, condition i) implies that the sampling operator is one-to-one onV.
Therefore, using Proposition3.3.2, PVΨ := {PVψi}i∈I is complete inV.

ThatPVΨ := {PVψi}i∈I is a frame sequence is straightforward by ii), (3.4) and Theorem
1.3.4. �

Remark3.4.6. As in the case of injectivity, we note that the condition of stability does not
depend on the chosen Parseval frame. That means, if condition i) and ii) in the previous
theorem hold for a Parseval frameΦ for V, then they hold for any Parseval frameΦ̃ for V.

Theorem3.4.5applied to the union of subspaces gives:

Theorem 3.4.7.LetΨ = {ψi}i∈I be a set of sampling vectors and for everyγ, θ ∈ Γ, let
Φγ,θ be a Parseval frame for Vγ,θ.

The sequenceΨ provides a stable sampling operator forX with constantsα andβ if
and only if

i) dim(range(GΦγ,θ,Ψ)) = dim(Vγ,θ) for all γ, θ ∈ Γ and

ii) σ2(GΦγ,θ,Ψ) ⊆ {0} ∪ [α, β] for all γ, θ ∈ Γ.

For examples and existence of sequencesΨ which verify the conditions of injectivity
or stability in a union of finite-dimensional subspaces, we refer the reader to [BD09] and
[LD08].
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3.5 Sampling in a union of finitely generated shift-
invariant spaces

In this section we will consider the case of the Hilbert spaceH = L2(Rd) and finitely
generated shift-invariant spaces (FSISs). That is, we willstudy sampling in a union of
FSISs.

3.5.1 Sampling from a union of FSISs

Our aim is to study the sampling problem for the case in which the signal belongs to the
set,

X :=
⋃

γ∈Γ
Vγ, (3.5)

whereVγ are FSISs ofL2(Rd).

In this setting, since our subspaces are shift-invariant, it is natural and also convenient
that the sampling set will be the set of shifts from a fixed collection of functions inL2(Rd),
that is, the sampling operator will be given by a sequence of integer translates of certain
functions.

GivenΨ := {ψi}i∈I such thatE(Ψ) is a Bessel sequence inL2(Rd), we define the sam-
pling operator associated toE(Ψ) as

A : L2(Rd)→ ℓ2(Zd × I ), A f = {〈 f , tkψi〉}i∈I ,k∈Zd. (3.6)

As we showed inSection 3.3the conditions on the sampling operator to be one-to-one
and stable in a union of subspaces can be established in termsof one-to-one and stability
conditions on the sum of every two of the subspaces from the union.

However the condition that we have for the sampling operatorto be one-to-one on a
subspace, requires that the subspace is closed (Proposition 3.3.2).

Since the sum of two FSISs is not necessarily a closed subspace, the conditions should
be imposed on the closure of the sum.

Conditions that guarantee that the sum of two FSISs is closedare described inChapter
4.

In what follows we will consider, for eachγ, θ ∈ Γ, the subspaces,

Vγ,θ := Vγ + Vθ. (3.7)

The following proposition states that the closure of the sumof two SISs is a SIS generated
by the union of the generators of the two spaces. Its proof is straightforward.

Proposition 3.5.1.LetΦ andΦ′ be sets in L2(Rd), then

V(Φ) + V(Φ′) = V(Φ ∪ Φ′).
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In particular, if V and V′are FSISs, thenV + V′ is an FSIS and

len(V + V′) ≤ len(V) + len(V′).

Now, as a consequence of Proposition3.5.1, for eachγ, θ ∈ Γ, Vγ,θ is an FSIS. Then,
by Theorem1.4.4, we can choose, for eachγ, θ ∈ Γ, afiniteset

Φγ,θ = {ϕγ,θj }
mγ,θ

j=1

of L2(Rd) functions such that,
Vγ,θ = V(Φγ,θ),

andE(Φγ,θ) forms a Parseval frame forVγ,θ.

3.5.2 The one-to-one condition

We now study the conditions that the sampling set must satisfy in order for the operator
A defined by (3.6) to be one-to-one onX.

Given a shift-invariant spaceV, the orthogonal projection ontoV, denoted byPV, com-
mutes with integer translates (see Proposition1.4.3). Then, part i) of Proposition3.3.2
can be rewritten as,

Proposition 3.5.2.Given a shift-invariant space V,Ψ = {ψi}i∈I such that E(Ψ) is a Bessel
sequence in L2(Rd) and A the sampling operator associated to E(Ψ). Then the following
are equivalent.

i) The sampling operator A is one-to-one on V.

ii) E (PVΨ) = {tkPVψi}i∈I ,k∈Zd is complete in V, that is V= spanE(PVΨ).

SinceE(Ψ) is a Bessel sequence inL2(Rd), by Theorem1.5.8we have that{τψi(ω)}i∈I
is a Bessel sequence inℓ2(Zd) for a.eω ∈ [0, 1)d, so we can define (up to a set of measure
zero), forω ∈ [0, 1)d, the sampling operator related to the fibers:

A(ω) : ℓ2(Zd)→ ℓ2(I ),

with
A(ω)(c) = {〈c, τψi(ω)〉}i∈I . (3.8)

That is, for a fixedω ∈ [0, 1)d, we consider the problem of sampling from a union of
subspaces in a different setting. The Hilbert space isℓ2(Zd), the sequences of the sampling
set are{τψi(ω)}i∈I , and the subspaces in the union areJVγ(ω), γ ∈ Γ.

Since the subspacesVγ,θ are FSISs, the fiber spacesJVγ θ
(ω) are finite-dimensional. So,

the results ofSection 3.4can be applied, and conditions on the fibers can be obtained in
order for the operatorA(ω) to be one-to-one.
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We are now going to show that given a finitely generated shift-invariant spaceV, the
operatorA is one-to-one onV if and only if for almost everyω ∈ [0, 1)d, the operator
A(ω) is one-to-one on the corresponding fiber spacesJV(ω) associated toV. Once this is
accomplished, we can apply the known conditions for the operatorA(ω).

Given{tkϕ j}mj=1,k∈Zd a Bessel sequence inL2(Rd), we have the synthesis operator related
to the fibers, that is

B∗Φ(ω) : Cm→ ℓ2(Zd), B∗Φ(ω)(c1, . . . , cm) =
m∑

j=1

cjτϕ j(ω). (3.9)

Note thatB∗
Φ
(ω) is the synthesis operator associated to the setτΦ(ω), that isB∗

Φ
(ω) =

B∗
τΦ(ω).

And we will have the cross-correlation operator associatedto the fibers

GΦ,Ψ(ω) : Cm→ ℓ2(I ), GΦ,Ψ(ω) := A(ω)B∗Φ(ω),

(GΦ,Ψ(ω))i, j = 〈τϕ j(ω), τψi(ω)〉 ∀1 ≤ j ≤ m, i ∈ I . (3.10)

Again we should remark thatGΦ,Ψ(ω) is the cross-correlation operator associated toτΦ(ω)
andτΨ(ω), that isGΦ,Ψ(ω) = GτΦ(ω),τΨ(ω).

Theorem 3.5.3.LetΨ = {ψi}i∈I be such that E(Ψ) is a Bessel sequence in L2(Rd), V an
FSIS generated by a finite setΦ, and A the sampling operator associated to E(Ψ), then
the following are equivalent:

i) Ψ provides a one-to-one sampling operator for V.

ii) ker(GΦ,Ψ(ω)) = ker(B∗
Φ
(ω)) for a.e.ω ∈ [0, 1)d.

iii) dim(range(GΦ,Ψ(ω))) = dimV(ω) for a.e.ω ∈ [0, 1)d.

For the proof of Theorem3.5.3we need the following.

Lemma 3.5.4. Let V be an FSIS,Ψ = {ψi}i∈I such that E(Ψ) is a Bessel sequence in
L2(Rd), and A the sampling operator associated to E(Ψ). Then A is one-to-one on V if
and only ifA(ω) is one-to-one on JV(ω) for a.e.ω ∈ [0, 1)d.

Proof. Since V is a SIS, by Proposition3.5.2, A is one-to-one onV if and only if

V = spanE(PVΨ). (3.11)

By Proposition1.5.3, equation (3.11) is equivalent to

JV(ω) = span{τ(PVψi)(ω) : i ∈ I } for a.e.ω ∈ [0, 1)d. (3.12)

So, we have proved thatA is one-to-one onV if and only if (3.12) holds.
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On the other side, givenω ∈ [0, 1)d, and using Proposition3.3.2 for the sampling
operatorA(ω) and the spaceH = ℓ2(Zd), we have thatA(ω) is one-to-one onJV(ω) if
and only if

JV(ω) = span{PJV(ω)(τψi(ω)) : i ∈ I }.

Then, using Proposition1.5.4, we conclude that (3.12) holds if and only ifA(ω) is one-
to-one onJV(ω), for a.e.ω ∈ [0, 1)d, which completes the proof of the lemma.

�

Proof of Theorem3.5.3. SinceΦ is a set of generators forV, we have that for a.e.ω ∈
[0, 1)d, τΦ(ω) is a set of generators forJV(ω).

Now, for a.e. ω ∈ [0, 1)d we can apply Theorem3.4.1 for the sampling operator
A(ω) and the finite-dimentional subspaceJV(ω) to obtain the equivalence of the following
propositions:

a) A(ω) is one-to-one onJV(ω).

b) ker(GΦ,Ψ(ω)) = ker(B∗
Φ
(ω)).

c) dim(range(GΦ,Ψ(ω))) = dim(JV(ω)) = dimV(ω).

From here the proof follows using Lemma3.5.4.

�

Note that with the previous theorem we have conditions forA to be one-to-one onVγ,θ,
and since

Vγ,θ = Vγ + Vθ ⊆ Vγ,θ,

we obtain the following corollary.

Corollary 3.5.5. Let E(Ψ) be a Bessel sequence in L2(Rd) for some set of functionsΨ.
For everyγ, θ ∈ Γ, letΦγ,θ be a finite set of generators forVγ,θ. If for eachγ, θ ∈ Γ,

dim(range(GΦγ,θ,Ψ(ω))) = dimVγ,θ
(ω) for a.e.ω ∈ [0, 1)d,

then A is one-to-one onX.

Remark3.5.6. It is important to note that the injectivity ofA on Vγ,θ does not imply the
injectivity on Vγ,θ, thus, we have only obtained sufficient conditions forA to be one-to-
one. This is not a problem in general, because as we will see inthe next section, stability
implies injectivity in the case of the sampling operator andstability is a common and
needed assumption in most sampling applications.
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3.5.3 The stability condition

As a consequence of Proposition3.3.6, we will obtain necessary and sufficient conditions
for the stability ofA.

As in the previous subsection, using that the orthogonal projection onto a SIS commutes
with integer translates, we have the following version of Proposition3.3.2.

Proposition 3.5.7. Given V a SIS of L2(Rd), Ψ = {ψi}i∈I such that E(Ψ) is a Bessel se-
quence in L2(Rd) and A the sampling operator associated to E(Ψ). Then the following
are equivalent:

i) The sampling operator A is stable for V with constantsα andβ.

ii) E (PVΨ) is a frame for V with constantsα andβ.

Now we are able to state the stability theorem. We will use theoperator related to the
fibers, defined by (3.8), (3.9) and (3.10).

Theorem 3.5.8.LetΨ = {ψi}i∈I be such that E(Ψ) is a Bessel sequence for L2(Rd) and
A the sampling operator associated to E(Ψ). Let V be an FSIS, andΦ a finite set of
functions such that E(Φ) forms a Parseval frame for V.

Then E(Ψ) provides a stable sampling operator for V if and only if

i) dim(range(GΦ,Ψ(ω))) = dimV(ω) for a.e.ω ∈ [0, 1)d and

ii) There exist constants0 < α ≤ β < ∞ such that

σ2(GΦ,Ψ(ω)) ⊆ {0} ∪ [α, β] for a.e.ω ∈ [0, 1)d.

Proof. Φ is a Parseval frame forV, so, by Theorem1.5.9, we have that for a.e.ω ∈ [0, 1)d,
τΦ(ω) is a Parseval frame forJV(ω). SinceJV(ω) is a finite-dimensional space ofℓ2(Zd),
Theorem3.4.5holds forA(ω).

So, we only have to prove that A is stable forV with constantsα andβ if and only if
A(ω) is stable forJV(ω) with constantsα andβ.

By Proposition3.5.7, the stability ofA in V is equivalent toE(PVΨ) being a frame for
V with constantsα andβ. By Theorem1.5.9, this is equivalent to

{τ(PVψi)(ω)}i∈I

being a frame forJV(ω) with constantsα andβ for a.e.ω ∈ [0, 1)d.

On the other hand, givenω ∈ [0, 1)d, the operatorA(ω) is stable forJV(ω), if and only
if

{PJV(ω)(τψi(ω))}i∈I
is a frame forJV(ω) with constantsα andβ.
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The proof can be finished now using first Proposition1.5.4, i.e.

τ(PVψi)(ω) = PJV(ω)(τψi(ω)) for a.e.ω ∈ [0, 1)d,

and then Theorem3.4.5. �

Now we apply Theorem3.5.8and Proposition3.3.6to obtain the following.

Theorem 3.5.9.LetΨ = {ψi}i∈I such that E(Ψ) is a Bessel sequence for L2(Rd), and for
everyγ, θ ∈ Γ letΦγ,θ be a Parseval frame forVγ,θ. Then E(Ψ) provides a stable sampling
operator forX if and only if

i) dim(range(GΦγ,θ,Ψ(ω))) = dimVγ,θ
(ω) for a.e.ω ∈ [0, 1)d, ∀ γ, θ ∈ Γ and

ii) There exist constants0 < α ≤ β < ∞ such that

σ2(GΦγ,θ ,Ψ(ω)) ⊆ {0} ∪ [α, β] for a.e.ω ∈ [0, 1)d, ∀ γ, θ ∈ Γ.

Finally, as in [LD08], we obtain a lower bound for the amount of samples. In contrast
to the previous section, we only find bounds for stable operators. We can not say anything
about one-to-one operators since we only obtained sufficient conditions for the injectivity.

Proposition 3.5.10.If the operator A is stable forX and I is finite, then

#I ≥ sup
γ,θ∈Γ

(len(Vγ,θ)).

Proof. SinceI is finite, it holds that range(GΦγ,θ ,Ψ(ω))) ⊆ C#I for a.e.ω ∈ [0, 1)d. Hence,
by Theorem3.5.9, we have that

dimVγ,θ
(ω) = dim(range(GΦγ,θ,Ψ(ω))) ≤ #I for a.e.ω ∈ [0, 1)d, ∀ γ, θ ∈ Γ.

This shows that, givenγ, θ ∈ Γ,

ess-sup{dimVγ,θ
(ω) : ω ∈ [0, 1)d} ≤ #I .

The proof of the proposition follows using Theorem1.5.7.

�

We would like to note that based in our results, it is possibleto state conditions for
the injectivity and stability for the sampling operator in aunion of SISs which are not
necessarily finitely-generated. For this, condition iii) of Theorem3.5.3should be replaced
by condition ii).



4

Closedness of the sum of two shift-invariant
spaces

4.1 Introduction

In the previous chapter we obtained necessary and sufficient conditions for the stability
of the sampling operatorA in a union of arbitrary FSISs. We showed that, without the
assumption of the closedness of the sum of every two of the FSISs in the union, we could
only obtain sufficient conditions for the injectivity ofA. An interesting problem that arises
as a consequence of this restriction is under which conditions the sum of two SISs is a
closed subspace.

For two closed subspacesU andV of an arbitrary Hilbert spaceH , the conditions on
the closedness of the sum of these two spaces is given in termsof the angle between the
subspaces. In what follows we will define the notion of Dixmier and Friedrichs angle
between subspaces. We refer the reader to [Deu95] for details and proofs.

Throughout this chapter, we will use the symbolPU

∣∣∣
V

to denote the restriction of the
orthogonal projectionPU to the subspaceV.
The orthogonal complement ofU ∩ V in U will be denoted by

U ⊖ V := U ∩ (U ∩ V)⊥.

Definition 4.1.1. Let U andV be closed subspaces ofH .

a) Theminimal anglebetweenU andV (or Dixmier angle) is the angle in [0, π2] whose
cosine is

c0[U,V] := sup{|〈u, v〉| : u ∈ U, v ∈ V, ‖u‖ ≤ 1, ‖v‖ ≤ 1}.

b) TheanglebetweenU andV (or Friedrichs angle) is the angle in [0, π2] whose cosine
is

c[U,V] := sup{|〈u, v〉| : u ∈ U ⊖ V, v ∈ V ⊖ U and‖u‖ ≤ 1, ‖v‖ ≤ 1}.
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We have the following results concerning both notions of angles between subspaces.

Proposition 4.1.2.Let U and V be closed subspaces ofH .

i) c0[U,V] = ‖PU

∣∣∣
V
‖op.

ii) c[U,V] = c0[U ⊖ V,V ⊖ U].

As we have stated before, the Friedrichs angle is closely related with the closedness of
the sum of two closed subspaces.

Proposition 4.1.3.Let U and V be closed subspaces ofH . Then U+ V is closed if and
only if c[U,V] < 1.

In [KKL06] Kim et al. presented a formula for the Dixmier angle betweentwo closed
subspacesU,V of a Hilbert spaceH . This formula is given in terms of the operator
norm of an operator formed by the composition of the Gramiansand the cross-correlation
operator of two sequencesX andY which are frames forU andV respectively. They then
use this formula to obtain necessary and sufficient conditions for the closedness of the
sum of two SISs inL2(Rd).

Following the ideas from [KKL06], in this chapter we will first give a formula for the
calculation of the Friedrichs angle between two closed subspacesU,V of a Hilbert space
H . Then, we will use it to obtain necessary and sufficient conditions for the closedness
of the sum of two SISs inL2(Rd). The advantage of using the Friedrichs angle between
subspaces instead of the Dixmier angle is that the conditions for the closedness of the sum
of two subspaces are computationally simpler than the ones from [KKL06].

Using these results, we will show that it is possible to determine families of subspaces
on which the conditions for injectivity of the sampling operator in the union of subspaces
are necessary and sufficient.

This chapter is organized as follows. InSection 4.2we state some preliminary results
that will be used throughout. InSection 4.3we use the notion of Friedrichs angle between
subspaces to obtain necessary and sufficient conditions for the closedness of the sum of
two closed subspaces of a Hilbert space. We also obtain a formula for the calculation of
the Friedrichs angle between two closed subspaces. Finally, in Section 4.4we provide an
expression for the Friedrichs angle between two SISs. Usingthis, we give necessary and
sufficient conditions for the sum of two SISs to be closed.

4.2 Preliminary results

In this section we will introduce the pseudo-inverse of an operator (see [Chr03] for more
details).

Definition 4.2.1. LetH andK be separable Hilbert spaces, andT : H → K a bounded
linear operator with closed range.
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We denote byT†, thepseudo-inverseof T (or Moore-Penrose inverse) which is defined
as follows. LetR(T) be the closed range ofT and T̃ : ker(T)⊥ → R(T) the restriction
of T to ker(T)⊥. SinceT is injective on ker(T)⊥, it follows that T̃ is bijective and has a
bounded inversẽT−1 : R(T)→ ker(T)⊥.

The pseudo-inverse ofT is defined as the unique extensionT† of T̃−1 to a bounded
operator onK with the property ker(T†) = R(T)⊥.

The pseudo-inverse satisfies the following properties.

Proposition 4.2.2.LetH andK be separable Hilbert spaces, and T: H → K a bounded
linear operator with closed range. If T† is the pseudo-inverse of T, then

i) TT† = Prange(T).

ii) (T†)∗ = (T∗)†.

iii) (T∗T)† = T†(T∗)†.

iv) If T is a positive semi-definite operator, then T† is also positive semi-definite.

We will need in this chapter the notion of shift-preserving operators and range operator
(see [Bow00] for more details).

Definition 4.2.3. Let V be a SIS. A bounded linear operatorT : V → L2(Rd) is shift-
preservingif Ttk = tkT for all k ∈ Zd, wheretk is the translation byk.

Definition 4.2.4. AssumeV is a SIS ofL2(Rd) with range functionJV. A range operator
on JV is a mapping

Q : [0, 1)d → {bounded operators defined on closed subspaces ofℓ2(Zd)},

so that the domain ofQ(ω) equalsJV(ω) for a.e.ω ∈ [0, 1)d.

Q is measurable ifω 7→ Q(ω)PJV (ω) is weakly operator measurable, i.e.ω 7→
〈Q(ω)PJV (ω)a, b〉 is a measurable scalar function for eacha, b ∈ ℓ2(Zd).

The following theorem states that there is a correspondencebetween shift-preserving
operators and range operators.

Theorem 4.2.5.Assume V is a SIS of L2(Rd) and JV is its range function. For every shift
preserving operator T: V → L2(Rd) there exists a measurable range operator Q on JV

such that
τ(T f)(ω) = Q(ω)(τ f (ω)) for a.e.ω ∈ [0, 1)d, f ∈ V.

The correspondence between T and Q is one-to-one.

Moreover, we have

‖T‖op = ess-sup{‖Q(ω)‖op : ω ∈ [0, 1)d}.
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4.3 A formula for the Friedrichs angle

Recall that from Proposition4.1.3we have that the sum of two closed subspacesU,V of
a Hilbert spaceH is closed if and only if the Friedrichs angle satisfies thatc[U,V] < 1.

In this section we would like to obtain an easier way of calculating the Friedrichs angle
between subspaces. This is achieved in the following theorem which expresses this angle
in terms of the operator norm of certain operators associated to frames.

The proof of the theorem was given in [KKL06, Theorem 2.1], but we will include it
here for the sake of completeness.

Theorem 4.3.1.Let U and V be closed subspaces ofH . Suppose that X and X′ are
countable subsets ofH which are frames for U⊖ V and V⊖ U respectively. Then,

c[U,V] = ‖(G†X′)
1
2GX,X′(G

†
X)

1
2‖op,

where GX and GX′ are the Gramian operators and GX,X′ is the cross-correlation operator.

Proof. Using part ii) of Proposition4.1.2 it suffices to show that forU and V closed
subspaces ofH it holds that

c0[U,V] = ‖(G†X′)
1
2GX,X′(G

†
X)

1
2‖op,

whereX andX′ are countable subsets ofH which are frames forU andV respectively.

From Proposition1.2.10GX andGX′ have closed ranges, thus, their pseudo-inverses are
well-defined.

Let P := PV

∣∣∣
U

. From Proposition4.2.2we have that

P = PVPU = P∗VPU = (B∗X′B
∗†
X′)
∗B∗XB∗†X = B†X′BX′B

∗
XB∗†X = B†X′GX,X′B

∗†
X .

Then, using part i) of Proposition4.1.2and Proposition4.2.2, we obtain

c0[U,V]2 = c0[V,U]2 = ‖P‖2op = ‖PP∗‖op = ‖B†X′GX,X′B
∗†
X B†XG∗X,X′B

∗†
X′‖op

= ‖B†X′GX,X′(BXB∗X)†G∗X,X′B
∗†
X′‖op = ‖B†X′GX,X′G

†
XG∗X,X′B

∗†
X′‖op

= ‖B†X′GX,X′(G
†
X)1/2(G†X)1/2G∗X,X′B

∗†
X′‖op = ‖B†X′GX,X′(G

†
X)1/2‖2op

= ‖(G†X)1/2G∗X,X′B
∗†
X′B
†
X′GX,X′(G

†
X)1/2‖op

= ‖(G†X)1/2G∗X,X′G
†
X′GX,X′(G

†
X)1/2‖op

= ‖(G†X)1/2G∗X,X′(G
†
X′)

1/2(G†X′)
1/2GX,X′(G

†
X)1/2‖op

= ‖(G†X′)1/2GX,X′(G
†
X)1/2‖2op,

where we have used that‖TT∗‖op = ‖T∗T‖op = ‖T‖2op for a bounded operatorT.

�
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4.4 Closedness of the sum of two shift-invariant sub-
spaces

As it was stated in Proposition4.1.3, the closedness of the sum of two subspaces depends
on the Friedrichs angle between them. In this section, we provide an expression for
the Friedrichs angle between two SISs in terms of the Gramians of the generators. In
[KKL06] Kim et al found a similar expression for the Dixmier angle between two SISs.

The main theorem of this part gives necessary and sufficient conditions for the sum of
two SISs to be closed. We first state the theorem and then we apply this result to obtain
a more general version of Corollary3.5.5from Chapter 3. The proof of the theorem will
be given at the end of the section.

Theorem 4.4.1.Let U and V be SISs of L2(Rd). Suppose thatΦ,Φ′ are sets of functions
in L2(Rd) such that for a.e.ω ∈ [0, 1)d, τΦ(ω) and τΦ′(ω) are frames for JU⊖V(ω) and
JV⊖U(ω) respectively. Then, U+ V is closed if and only if

c[U,V] = ess-sup{‖(GΦ′(ω)†)
1
2GΦ,Φ′(ω)(GΦ(ω)†)

1
2‖op : ω ∈ [0, 1)d} < 1. (4.1)

Note that, ifV = V(Φ) is an FSIS, we have thatτΦ(ω) is a frame forJV(ω) for a.e.
ω ∈ [0, 1)d, even thoughE(Φ) is not a frame forV (see Remark1.5.10). Thus, ifU and
V are FSISs, condition (4.1) can be checked on any set of generators of the subspaces
U ⊖V andV ⊖U. At the end of the section we give an example in which we compute the
Friedrichs angle between two FSISs.

When the set of functionsΦ is finite and #(Φ) = m, for a fixedω ∈ [0, 1)d the Gramian
matrixGΦ(ω) ∈ Cm×m is Hermitian positive semidefinite. Thus, we have that

GΦ(ω) = U(ω)D(ω)U∗(ω),

whereU(ω) is a unitary matrix andD(ω) = diag{λ1(ω), . . . , λm(ω)} with λ1(ω) ≥ · · · ≥
λm(ω) ≥ 0 the eigenvalues of the Gramian matrix.

In [RS95] it was proved that the eigenvaluesλ1 ≥ · · · ≥ λm and the entries of the matrix
U are measurable functions.

In this case we have that the pseudo-inverse of the Gramian matrix and the square root
of the pseudo-inverse are

GΦ(ω)† = U(ω)D(ω)†U∗(ω) and (GΦ(ω)†)
1
2 = U(ω)(D(ω)†)

1
2 U∗(ω),

whereD(ω)† = diag{λ1(ω)−1, . . . , λd(ω)(ω)−1, 0, . . . , 0} andd(ω) = rank[GΦ(ω)].

In the next theorem we show that imposing certain restrictions on the angle between the
subspaces, we obtain necessary and sufficient conditions for the injectivity of the sampling
operator in a union of subspaces. This gives a more complete version of Corollary3.5.5
from Chapter 3.
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Theorem 4.4.2.LetΨ = {ψi}i∈I be such that E(Ψ) is a Bessel sequence in L2(Rd) and let
{Vγ}γ∈Γ be FSISs of L2(Rd). Suppose condition (4.1) is satisfied for every pair of subspaces
Vγ,Vθ with γ, θ ∈ Γ.

If Φγ,θ is a finite set of generators for Vγ,θ = Vγ + Vθ, the following are equivalent:

i) Ψ provides a one-to-one sampling operator forX.

ii) dim(range(GΦγ,θ,Ψ(ω))) = dimVγ,θ(ω) for a.e.ω ∈ [0, 1)d,∀ γ, θ ∈ Γ.

Proof. Since condition (4.1) is satisfied for everyγ, θ ∈ Γ, it holds that the subspaces
Vγ,θ = Vγ + Vθ are FSISs. The proof of the theorem follows applying Theorem3.5.3to
these subspaces.

�

In what follows we will give some lemmas which will be needed for the proof of The-
orem4.4.1. The results in these lemmas are interesting by themselves.

The first lemma uses the notion of range function introduced in Definition1.5.2.

Lemma 4.4.3.Given U and V SISs of L2(Rd). Then the range function

R : [0, 1)d → {closed subspaces ofℓ2(Zd)}, R(ω) = JU(ω) ∩ JV(ω),

is measurable.

Proof. Recall that the measurability ofR is equivalent toω 7→ PJU (ω)∩JV (ω) being measur-
able.

It is known (see [VN50]) that givenM andN closed subspaces of a separable Hilbert
spaceH , for eachx ∈ H ,

PM∩N(x) = lim
n→+∞

(PMPN)n(x).

Note that if we have two measurable functions

Q1,Q2 : [0, 1)d → {orthogonal projections inℓ2(Zd)},
then the mapω 7→ Q1(ω)Q2(ω) is measurable. For, letF be an arbitrary measurable
function from [0, 1)d into ℓ2(Zd). Then

Q1(ω)Q2(ω)(F(ω)) = Q1(ω)(Q2(ω)(F(ω))).

By Definition 1.5.2, the measurability ofQ2(ω) implies the vector measurability of
Q2(ω)(F(ω)). SinceQ1(ω) is measurable,Q1(ω)Q2(ω)(F(ω)) is measurable. What shows
thatω 7→ Q1(ω)Q2(ω) is measurable.

As a consequence, it holds that for anyn ∈ N the mapω 7→ (PJU (ω)PJV(ω))n is measur-
able, that is, for eacha ∈ ℓ2(Zd), ω 7→ (PJU (ω)PJV(ω))n(a) is measurable. From here the
proof follows using that,

PJU (ω)∩JV (ω)(a) = lim
n→+∞

(PJU (ω)PJV(ω))
n(a).

�
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With the previous lemma we obtain the following property of the fiber spaces.

Lemma 4.4.4.Let U and V be SISs of L2(Rd). Then,

JU⊖V(ω) = JU(ω) ⊖ JV(ω) for a.e.ω ∈ [0, 1)d.

Proof. We will first prove that

JU∩V(ω) = JU(ω) ∩ JV(ω) for a.e.ω ∈ [0, 1)d. (4.2)

Let R be the measurable range function defined in Lemma4.4.3. Since

U ∩ V = { f ∈ L2(Rd) : τ f (ω) ∈ R(ω) for a.e.ω ∈ [0, 1)d},

it follows thatR is the range function associated to the shift-invariant spaceU ∩ V, thus
(4.2) holds.

Using (4.2), the proof of the proposition is straightforward as

(JV(ω))⊥ = JV⊥(ω) for a.e.ω ∈ [0, 1)d,

for any shift-invariant spaceV of L2(Rd). �

The next lemma follows the ideas from [BG04]. It states that the angle between two
shift-invariant spaces is the essential supremum of the angles between the fiber spaces.

Lemma 4.4.5.Let U and V be SISs of L2(Rd). Then,

c[U,V] = ess-sup{c[JU(ω), JV(ω)] : ω ∈ [0, 1)d}.

Proof. Given f ∈ V, by Proposition1.5.4, we have for a.e.ω ∈ [0, 1)d,

τ(PU

∣∣∣
V

f )(ω) = τ(PUPV f )(ω) = PJU (ω)PJV(ω)(τ f (ω)) = PJU (ω)

∣∣∣
JV(ω)

(τ f (ω)).

By Theorem4.2.5this shows thatPJU (ω)

∣∣∣
JV(ω)

is the range operator corresponding to the

shift-preserving operatorPU

∣∣∣
V

in the shift-invariant spaceV. What implies that

‖PU

∣∣∣
V
‖op = ess-sup{‖PJU (ω)

∣∣∣
JV(ω)
‖op : ω ∈ [0, 1)d}. (4.3)

Using (4.3), Proposition4.1.2and Lemma4.4.4, we obtain

c[U,V] = c0[U ⊖ V,V ⊖ U] = ‖PU⊖V

∣∣∣
V⊖U
‖op

= ess-sup{‖PJU⊖V (ω)

∣∣∣
JV⊖U (ω)

‖op : ω ∈ [0, 1)d}
= ess-sup{‖PJU (ω)⊖JV (ω)

∣∣∣
JV(ω)⊖JU (ω)

‖op : ω ∈ [0, 1)d}
= ess-sup{c0[JU(ω) ⊖ JV(ω), JV(ω) ⊖ JU(ω)] : ω ∈ [0, 1)d}
= ess-sup{c[JU(ω), JV(ω)] : ω ∈ [0, 1)d}.

�
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With the above results, we are able to prove the main theorem of this section.

Proof of Theorem4.4.1. By Lemma4.4.4, it follows thatτΦ(ω) andτΦ′(ω) are frames
for JU(ω) ⊖ JV(ω) andJV(ω) ⊖ JU(ω) respectively, for a.e.ω ∈ [0, 1)d.

Thus, using Theorem4.3.1, we obtain

c[JU(ω), JV(ω)] = ‖(GΦ′(ω)†)
1
2GΦ,Φ′(ω)(GΦ(ω)†)

1
2‖op for a.e.ω ∈ [0, 1)d.

Hence, by Lemma4.4.5,

c[U,V] = ess-sup{‖(GΦ′(ω)†)
1
2GΦ,Φ′(ω)(GΦ(ω)†)

1
2‖op : ω ∈ [0, 1)d}. (4.4)

The proof of the theorem follows from (4.4) and Proposition4.1.3. �

Next we provide an example of two shift-invariant spaces whose sum is not closed. In
order to prove that, we compute the Friedrichs angle betweenthe subspaces.

Example 4.4.6.Let ϕ1 ∈ L2(R) be given by

ϕ̂1(ω) =



cos(2πω) if 0 ≤ ω < 1

sin(2πω) if 1 ≤ ω < 2

0 otherwise,

andϕ2, ϕ3 ∈ L2(R) satisfying thatϕ̂2(ω) = χ[2,3)(ω) and ϕ̂3(ω) = χ[3,4)(ω). DefineU =
V(ϕ1, ϕ2, ϕ3).
Consider nowϕ0, ϕ4 ∈ L2(R), such thatϕ̂0(ω) = χ[0,1)(ω) and ϕ̂4(ω) = χ[ 5

2 ,
7
2 )(ω), set

V = V(ϕ0, ϕ4).

We will prove thatU + V is not closed using Theorem4.4.1.

Let {ek}k∈Z be the standard basis forℓ2(Z). Then,τϕ1(ω) = cos(2πω)e0 + sin(2πω)e1,
τϕ2(ω) = e2, τϕ3(ω) = e3, τϕ0(ω) = e0, τϕ4(ω) = e3χ[0, 12 )(ω) + e2χ[ 1

2 ,1)(ω). So, we have
that for a.e.ω ∈ [0, 1),

JU(ω) ⊖ JV(ω) = span{τϕ1(ω), τϕ5(ω)} and JV(ω) ⊖ JU(ω) = span{τϕ0(ω)},

whereϕ̂5(ω) = χ[2, 52 )(ω) + χ[ 7
2 ,4)(ω). Thus, by Lemma4.4.4, it follows that U ⊖ V =

V(ϕ1, ϕ5) andV ⊖ U = V(ϕ0).

LetΦ := {ϕ1, ϕ5} andΦ′ := {ϕ0}, then

GΦ′(ω) = 1 GΦ(ω) =

(
1 0
0 1

)
and GΦ,Φ′(ω) = (cos(2πω), 0).

Therefore

c[U,V] = ess-sup{‖(GΦ′(ω)†)
1
2GΦ,Φ′(ω)(GΦ(ω)†)

1
2‖op : ω ∈ [0, 1)}

= ess-sup{| cos(2πω)| : ω ∈ [0, 1)} = 1.

Hence, by Theorem4.4.1, U + V is not closed.
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Extra invariance of shift-invariant spaces

5.1 Introduction

In Chapter 2we have studied the problem of finding an FSISV0 that best approximates
a finite set of functionsF = { f1, . . . , fm} ⊆ L2(Rd). Suppose now that we want to ap-
proximate a delayed version of the dataF . That is, we would like to approximate the set
tαF = {tα f1, . . . , tα fm} for someα ∈ Rd. If the optimal FSISV0 for F is invariant under
the translation inα (i.e for any f ∈ V0, tα f ∈ V0), then we will prove in the following
proposition thatV0 is also optimal for the data settαF .

Proposition 5.1.1.LetF = { f1, . . . , fm} ⊆ L2(Rd) andα ∈ Rd. AssumeLk is the class of
FSISs of length at most k and V0 is an optimal FSIS forF in the sense that

E(F ,V0) = inf
V∈Lk

E(F ,V),

whereE is as in Definition2.2.1. If V0 is invariant under the translation inα, then V0 is
an optimal FSIS for the corrupted data tαF .

Proof. Due to theα-invariance ofV0, we have that

E(F ,V0) =
m∑

i=1

‖ fi − PV0 fi‖2 =
m∑

i=1

‖tα fi − tαPV0 fi‖2

=

m∑

i=1

‖tα fi − PV0tα fi‖2 = E(tαF ,V0)

For a givenV ∈ Lk, using the preceding and thatE(F ,V) = E(tαF , tαV), we obtain

E(tαF ,V) = E(F , t−αV)

≥ E(F ,V0) = E(tαF ,V0).

Thus,
E(tαF ,V0) = inf

V∈Lk

E(tαF ,V).

�
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The previous proposition shows that an FSIS which is optimalfor F and has extra-
invarianceα ∈ Rd, is also optimal for the corrupted datatαF . This fact motivates an
important and interesting question regarding SISs which iswhether they have the property
to be invariant under translations other than integers.

In this chapter we will be interested in characterizing the SISs that are not only invariant
under integer translations, but are also invariant under some particular set of translations
of Rd.

A limit case is when the space is invariant under translations by everyα ∈ Rd. In this
case the space is calledtranslation invariant. One example of a translation invariant space
is the Paley-Wiener space of functions that are bandlimitedto [−1

2,
1
2] defined by

PW=

{
f ∈ L2(R) : supp(̂f ) ⊆

[
−1

2
,
1
2

]}
.

Recall thatPW is a principal shift-invariant space generated by the function sinc(t). This
space is translation invariant since iff ∈ PW andα ∈ R, we have that supp(̂tα f ) =
supp(e−2πiα· f̂ ) = supp(̂f ), thustα f ∈ PW for everyα ∈ R.

In the same way it is easy to prove that for a measurable setE ⊆ Rd, the spaces

{ f ∈ L2(Rd) : supp(̂f ) ⊆ E}, (5.1)

are translation invariant. As a matter of fact, Wiener’s theorem (see [Hel64], [Sri64])
proves that any closed translation invariant subspaces ofL2(Rd) if of the form (5.1).

On the other hand, there exist SISs that are only invariant under integer translates. To
see this, consider for example the principal shift-invariant space generated by the indicator
functionχ[0,1)

V(χ[0,1)) = span{tk χ[0,1) : k ∈ Z}.
It is easy to see that this space is only invariant under integer translates.

Let us now define, for a given SISV ⊆ L2(Rd), theinvariance setassociated toV as

M := {x ∈ Rd : tx f ∈ V, ∀ f ∈ V}.

So, for the Paley-Wiener space we have thatM = R and for the PSISV(χ[0,1)), it follows
thatM = Z.

One question that naturally arises is, for a given SISV of L2(Rd), how is the structure
of the invariance setM.

In [ACHKM10] Aldroubi et al. showed that ifV is a shift-invariant space, then its
invariance set, is a closed additive subgroup ofR containingZ. As a consequence, since
every additive subgroup ofR is either discrete or dense, there are only two possibilities
left for the extra invariance. That is, eitherV is invariant under translations by the group
(1/n)Z, for some positive integern (and not invariant under any bigger subgroup) or it
is translation invariant. They found different characterizations in terms of the Fourier
transform, of when a shift invariant space is (1/n)Z-invariant.



5.2 The structure of the invariance set 59

The problem that we solve in this chapter is if the characterizations of extra invariance
that hold on the line are still valid in several variables. Asin the one-dimensional case
we will prove that the invariance setM associated to a SIS ofL2(Rd) is a closed subgroup
of Rd (see Proposition5.2.1). The main difference here with the one dimensional case, is
that there are subgroups ofRd that are neither discrete nor dense. So, it is no direct that
all the characterizations given in [ACHKM10] are still valid in several variables.

We will find necessary and sufficient conditions for a SIS to be invariant under a closed
additive subgroupM ⊆ Rd containingZd. In addition our results show the existence of
shift-invariant spaces that areexactly M-invariant for every closed subgroupM ⊆ Rd

containingZd. By ‘exactly M-invariant’ we mean that they are not invariant under any
other subgroup containingM. We apply our results to obtain estimates on the size of the
support of the Fourier transform of the generators of the space.

The chapter is organized in the following way:Section 5.2studies the structure of the
invariance set. We review the structure of closed additive subgroups ofRd in Section
5.3. In Section 5.4we extend some results, known for shift-invariant spaces inRd, to
M-invariant spaces whenM is a closed subgroup ofRd containingZd. The necessary and
sufficient conditions for theM-invariance of shift-invariant spaces are stated and proved
in Section 5.5. Finally,Section 5.6contains some applications of our results.

5.2 The structure of the invariance set

For a shift-invariant spaceV ⊆ L2(Rd), we define the invariance set as

M := {x ∈ Rd : tx f ∈ V, ∀ f ∈ V}. (5.2)

If Φ is a set of generators forV, it is easy to check that

M = {x ∈ Rd : txϕ ∈ V, ∀ϕ ∈ Φ}.

Our aim in this section is to study the structure of the setM.

Proposition 5.2.1.Let V be a SIS of L2(Rd) and let M be defined as in (5.2). Then M is
an additive closed subgroup ofRd containingZd.

For the proof of this proposition we will need the following lemma. Recall that an
additive semigroup is a non-empty set with an associative additive operation.

Lemma 5.2.2.Let H be a closed semigroup ofRd containingZd, then H is a group.

Proof. Let π be the quotient map fromRd ontoTd = Rd/Zd. SinceH is a semigroup
containingZd, we have thatH + Zd = H, thus

π−1(π(H)) =
⋃

h∈H
h+ Zd = H + Zd = H.
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This shows thatπ(H) is closed inTd and therefore compact.

By [HR63, Theorem 9.16], we have that a compact semigroup ofTd is necessarily a
group, thusπ(H) is a group and consequentlyH is a group.

�

Proof of Proposition5.2.1. SinceV is a SIS,Zd ⊆ M.

We now show thatM is closed. Letx0 ∈ Rd and{xn}n∈N ⊆ M, such that limn→∞ xn = x0.

Then
lim
n→∞
‖txn f − tx0 f ‖ = 0.

Therefore,tx0 f ∈ V. But V is closed, sotx0 f ∈ V.

It is easy to check thatM is a semigroup ofRd, hence we conclude from Lemma5.2.2
thatM is a group.

�

Since the invariance set of a SIS is a closed subgroup ofRd, our aim in what follows is
to give some characterizations concerning closed subgroups ofRd.

5.3 Closed subgroups ofRd

Throughout this section we describe the additive closed subgroups ofRd containingZd.
We first study closed subgroups ofRd in general.

When two groupsG1 andG2 are isomorphic we will writeG1 ≈ G2. Here and subse-
quently all the vector subspaces will be real.

5.3.1 General case

We will state in this section, some basic definitions and properties of closed subgroups
of Rd, for a detailed treatment and proofs we refer the reader to [Bou74].

Definition 5.3.1. Given M a subgroup ofRd, the rangeof M, denoted byr (M), is the
dimension of the subspace generated byM as a real vector space.

It is known that every closed subgroup ofRd is either discrete or contains a subspace
of at least dimension one (see [Bou74, Proposition 3]).

Definition 5.3.2. Given M a closed subgroup ofRd, there exists a subspaceV whose
dimension is the largest of the dimensions of all the subspaces contained inM. We will
denote byd(M) the dimension ofV. Note thatd(M) can be zero and 0≤ d(M) ≤ r (M) ≤
d.
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The next theorem establishes that every closed subgroup ofRd is the direct sum of a
subspace and a discrete group.

Theorem 5.3.3.Let M be a closed subgroup ofRd such thatr (M) = r andd(M) = p. Let
V be the subspace contained in M as in Definition5.3.2. There exists a basis{u1, . . . , ud}
for Rd such that{u1, . . . , ur} ⊆ M and{u1, . . . , up} is a basis for V. Furthermore,

M =
{ p∑

i=1

tiui +

r∑

j=p+1

n ju j : ti ∈ R, n j ∈ Z
}
.

Corollary 5.3.4. If M is a closed subgroup ofRd such thatr (M) = r andd(M) = p, then

M ≈ Rp × Zr−p.

5.3.2 Closed subgroups ofRd containing Zd

We are interested in closed subgroups ofRd containingZd. For their understanding, the
notion of dual group is important.

Definition 5.3.5. Let M be a subgroup ofRd. Consider the set

M∗ := {x ∈ Rd : 〈x,m〉 ∈ Z ∀m ∈ M}.

ThenM∗ is a subgroup ofRd called thedual groupof M. In particular, (Zd)∗ = Zd.

Now we will list some properties of the dual group.

Proposition 5.3.6.Let M,N be subgroups ofRd.

i) M ∗ is a closed subgroup ofRd.

ii) If N ⊆ M, then M∗ ⊆ N∗.

iii) If M is closed, thenr (M∗) = d − d(M) andd(M∗) = d − r (M).

iv) (M∗)∗ = M.

Let H be a subgroup ofZd with r (H) = q, we will say that a set{v1, . . . , vq} ⊆ H is a
basisfor H if for every x ∈ H there exist uniquek1, . . . , kq ∈ Z such that

x =
q∑

i=1

kivi .
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Note that{v1, . . . , vd} ⊆ Zd is a basis forZd if and only if the determinant of the matrix
A which has{v1, . . . , vd} as columns is 1 or−1.

GivenB = {v1, . . . , vd} a basis forZd, we will call B̃ = {w1, . . . ,wd} adual basisfor B if
〈vi ,wj〉 = δi, j for all 1 ≤ i, j ≤ d.

If we denote bỹA the matrix with columns{w1, . . . ,wd}, the relation betweenB andB̃
can be expressed in terms of matrices asÃ = (A∗)−1, whereA∗ is the transpose ofA.

The closed subgroupsM of Rd containingZd, can be described with the help of the dual
relations. SinceZd ⊆ M, we have thatM∗ ⊆ Zd. So, we need first the characterization of
the subgroups ofZd. This is stated in the following theorem which is proved in [Bou81].

Theorem 5.3.7.Let H be a subgroup ofZd with r (H) = q, then there exist a basis
{w1, . . . ,wd} for Zd and unique integers a1, . . . , aq satisfying ai+1 ≡ 0 (mod. ai) for all
1 ≤ i ≤ q − 1, such that{a1w1, . . . , aqwq} is a basis for H. The integers a1, . . . , aq are
called invariant factors.

Remark5.3.8. Under the assumptions of the above theorem we obtain

Zd/H ≈ Za1 × . . . × Zaq × Zd−q.

We are now able to characterize the closed subgroups ofRd containingZd. The proof
of the following theorem can be found in [Bou74], but we include it here for the sake of
completeness.

Theorem 5.3.9.Let M ⊆ Rd. The following conditions are equivalent:

i) M is a closed subgroup ofRd containingZd andd(M) = d − q.

ii) There exist a basis{v1, . . . , vd} for Zd and integers a1, . . . , aq satisfying ai+1 ≡
0 (mod. ai) for all 1 ≤ i ≤ q− 1, such that

M =
{ q∑

i=1

ki
1
ai

vi +

d∑

j=q+1

t jvj : ki ∈ Z, t j ∈ R
}
.

Furthermore, the integers q and a1, . . . , aq are uniquely determined by M.

Proof. Suppose i) is true. SinceZd ⊆ M andd(M) = d − q, we have thatM∗ ⊆ Zd and
r (M∗) = q. By Theorem5.3.7, there exist invariant factorsa1, . . . , aq and{w1, . . . ,wd} a
basis forZd such that{a1w1, . . . , aqwq} is a basis forM∗.

Let {v1, . . . , vd} be the dual basis for{w1, . . . ,wd}.
SinceM is closed, it follows from item iv) of Proposition5.3.6that M = (M∗)∗. So,

m∈ M if and only if
〈m, a jwj〉 ∈ Z ∀ 1 ≤ j ≤ q. (5.3)

As {v1, . . . , vd} is a basis, givenu ∈ Rd, there existui ∈ R such thatu =
∑d

i=1 uivi. Thus, by
(5.3), u ∈ M if and only if uiai ∈ Z for all 1 ≤ i ≤ q.
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We finally obtain thatu ∈ M if and only if there existki ∈ Z andu j ∈ R such that

u =
q∑

i=1

ki
1
ai

vi +

d∑

j=q+1

u jvj .

The proof of the other implication is straightforward.

The integersq anda1, . . . , aq are uniquely determined byM sinceq = d − d(M) and
a1, . . . , aq are the invariant factors ofM∗.

�

As a consequence of the proof given above we obtain the following corollary.

Corollary 5.3.10. Let Zd ⊆ M ⊆ Rd be a closed subgroup withd(M) = d − q. If
{v1, . . . , vd} and a1, . . . , aq are as in Theorem5.3.9, then

M∗ =
{ q∑

i=1

niaiwi : ni ∈ Z
}
,

where{w1, . . . ,wd} is the dual basis of{v1, . . . , vd}.

Example 5.3.11.Assume thatd = 3. If M = 1
2Z×

1
3Z×R, thenv1 = (1, 1, 0),v2 = (3, 2, 0)

andv3 = (0, 0, 1) verify the conditions of Theorem5.3.9with the invariant factorsa1 = 1
anda2 = 6. On the other handv′1 = (1, 1, 0), v′2 = (3, 2, 1) andv′3 = (0, 0, 1) verify the
same conditions. This shows that the basis in Theorem5.3.9is not unique.

Remark5.3.12. If {v1, . . . , vd} anda1, . . . , aq are as in Theorem5.3.9, let us define the
linear transformationT as

T : Rd → Rd, T(ei) = vi ∀1 ≤ i ≤ d.

ThenT is an invertible transformation that satisfies

M = T
( 1
a1
Z × · · · × 1

aq
Z × Rd−q).

If {w1, . . . ,wd} is the dual basis for{v1, . . . , vd}, the inverse of the adjoint ofT is defined
by

(T∗)−1 : Rd → Rd, (T∗)−1(ei) = wi ∀1 ≤ i ≤ d.

By Corollary5.3.10, it is true that

M∗ = (T∗)−1(a1Z × · · · × aqZ × {0}d−q).
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5.4 The structure of principal M-invariant spaces

Throughout this sectionM will be a closed subgroup ofRd containingZd andM∗ its dual
group defined as in the previous section.

Here and subsequently forα ∈ Rd, we will write the exponential functione−2πi〈ω,α〉 as
eα(ω).

For a set of functionsΦ ⊆ L2(Rd), we writeΦ̂ = { f̂ : f ∈ Φ}.

Definition 5.4.1. We will say that a closed subspaceV of L2(Rd) is M-invariant if tm f ∈ V
for all m ∈ M and f ∈ V.

GivenΦ ⊆ L2(Rd), theM-invariant space generated byΦ is

VM(Φ) = span({tmϕ : m ∈ M , ϕ ∈ Φ}).

If Φ = {ϕ} we writeVM(ϕ) and we say thatVM(ϕ) is a principalM-invariant space. For
simplicity of notation, whenM = Zd, we writeV(ϕ) instead ofVZd(ϕ).

Principal SISs have been completely characterized by [dBDR94] (see also
[dBDVR94],[RS95]) as follows.

Theorem 5.4.2.Let f ∈ L2(Rd) be given. If g∈ V( f ), then there exists aZd-periodic
functionη such that̂g = η f̂ .

Conversely, ifη is a Zd-periodic function such thatη f̂ ∈ L2(Rd), then the function g
defined bŷg = η f̂ belongs to V( f ).

The aim of this section is to generalize the previous theoremto theM-invariant case.
In case thatM is discrete, Theorem5.4.2follows easily by rescaling. The difficulty arises
whenM is not discrete.

Theorem 5.4.3.Let f ∈ L2(Rd) and M a closed subgroup ofRd containingZd. If g ∈
VM( f ), then there exists an M∗-periodic functionη such that̂g = η f̂ .

Conversely, ifη is an M∗-periodic function such thatη f̂ ∈ L2(Rd), then the function g
defined bŷg = η f̂ belongs to VM( f ).

Theorem5.4.3was proved in [dBDR94] for the lattice case. We adapt their arguments
to this more general case.

We will first need some definitions and properties.

By Remark5.3.12, there exists a linear transformationT : Rd → Rd such thatM =
T
( 1

a1
Z× · · · × 1

aq
Z×Rd−q) andM∗ = (T∗)−1(a1Z× · · · ×aqZ× {0}d−q), whereq = d−d(M).

We will denote byD the section of the quotientRd/M∗ defined as

D = (T∗)−1([0, a1) × · · · × [0, aq) × Rd−q). (5.4)
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Therefore,{D +m∗}m∗∈M∗ forms a partition ofRd.

Given f , g ∈ L2(Rd) we define

[ f , g](ω) :=
∑

m∗∈M∗
f (ω +m∗)g(ω +m∗),

whereω ∈ D. Note that, asf , g ∈ L2(Rd) we have that [f , g] ∈ L1(D), since
∫

Rd

f (ω)g(ω) dω =
∑

m∗∈M∗

∫

D+m∗
f (ω)g(ω) dω

=
∑

m∗∈M∗

∫

D
f (ω +m∗)g(ω +m∗) dω

=

∫

D
[ f , g](ω) dω. (5.5)

From this, it follows that iff ∈ L2(Rd), then{ f (ω +m∗)}m∗∈M∗ ∈ ℓ2(M∗) a.e.ω ∈ D.

The Cauchy-Schwarz inequality inℓ2(M∗), gives the following a.e. pointwise estimate

|[ f , g]|2 ≤ [ f , f ][g, g] (5.6)

for every f , g ∈ L2(Rd).

Given anM∗-periodic functionη and f , g ∈ L2(Rd) such thatη f ∈ L2(Rd), it is easy to
check that

[η f , g] = η[ f , g]. (5.7)

The following lemma is an extension to general subgroups ofRd of a result which holds
for the discrete case.

Lemma 5.4.4.Let f ∈ L2(Rd), M a closed subgroup ofRd containingZd andD defined
as in (5.4). Then,

VM( f )⊥ = {g ∈ L2(Rd) : [ f̂ , ĝ](ω) = 0 a.e.ω ∈ D}.

Proof. Since the span of the set{tm f : m ∈ M} is dense inVM( f ), we have thatg ∈
VM( f )⊥ if and only if 〈̂g, em f̂ 〉 = 0 for all m ∈ M. As em is M∗-periodic, using (5.5) and
(5.7), we obtain thatg ∈ VM( f )⊥ if and only if

∫

D
em(ω)[ f̂ , ĝ](ω) dω = 0, (5.8)

for all m ∈ M.

At this point, what is left to show is that if (5.8) holds then [̂f , ĝ](ω) = 0 a.e.ω ∈ D.
For this, taking into account that [̂f , ĝ] ∈ L1(D), it is enough to prove that ifh ∈ L1(D)
and

∫
D hem = 0 for all m ∈ M thenh = 0 a.eω ∈ D.
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We will prove the preceding property for the caseM = Zq × Rd−q. The general case
will follow from a change of variables using the descriptionof M andD given in Remark
5.3.12and (5.4).

Suppose nowM = Zq × Rd−q, thenD = [0, 1)q × Rn−q. Takeh ∈ L1(D), such that
"

[0,1)q×Rn−q
h(x, y)e−2πi(kx+ty) dxdy= 0 ∀ k ∈ Zq, t ∈ Rd−q. (5.9)

Givenk ∈ Zq, defineαk(y) :=
∫

[0,1)q
h(x, y)e−2πikx dx for a.e.y ∈ Rd−q. It follows from (5.9)

that ∫

Rd−q
αk(y)e−2πity dy= 0 ∀ t ∈ Rd−q. (5.10)

Sinceh ∈ L1(D), by Fubini’s Theorem,αk ∈ L1([0, 1)q). Thus, using (5.10), αk(y) = 0
a.e.y ∈ Rd−q. That is ∫

[0,1)q
h(x, y)e−2πikx dx= 0 (5.11)

for a.e.y ∈ Rd−q. Define nowβy(x) := h(x, y). By (5.11), for a.e.y ∈ Rd−q we have that
βy(x) = 0 for a.e. x ∈ [0, 1)q. Therefore,h(x, y) = 0 a.e. (x, y) ∈ [0, 1)q × Rd−q and this
completes the proof. �

Now we will give a formula for the orthogonal projection ontoVM( f ).

Lemma 5.4.5.Let P be the orthogonal projection onto VM( f ). Then, for each g∈ L2(Rd),
we havêPg= ηg f̂ , whereηg is the M∗-periodic function defined by

ηg :=


[ĝ, f̂ ]/[ f̂ , f̂ ] on Ef + M∗

0 otherwise,

and Ef is the set{ω ∈ D : [ f̂ , f̂ ](ω) , 0}.

Proof. Let P̂ be the orthogonal projection ontôVM( f ). SinceP̂g = P̂̂g, it is enough to
show that̂P̂g = ηg f̂ .

We first want to prove thatηg f̂ ∈ L2(Rd). Combining (5.5), (5.6) and (5.7)
∫

Rd
|ηg f̂ |2 =

∫

D
|ηg|2[ f̂ , f̂ ] ≤

∫

D
[ĝ, ĝ] = ‖g‖2L2,

and so,ηg f̂ ∈ L2(Rd). Define the linear map

Q : L2(Rd) −→ L2(Rd), Q̂g = ηg f̂ ,

which is well defined and has norm not greater than one. We willprove thatQ = P̂.

Takeĝ ∈ V̂M( f )
⊥
= (VM( f )⊥)∧. Then Lemma5.4.4gives thatηg = 0, henceQ̂g = 0.

Therefore,Q = P̂ on V̂M( f )
⊥
.



5.5 Characterization of the extra invariance 67

On the other hand, onE f + M∗,

η(tm f ) = [em f̂ , f̂ ]/[ f̂ , f̂ ] = em ∀m ∈ M.

Since f̂ = 0 outside ofE f +M∗, we have thatQ(t̂m f ) = em f̂ . As Q is linear and bounded,
and the set span{tm f : m ∈ M} is dense inVM( f ), Q = P̂ on V̂M( f ).

�

Proof of Theorem5.4.3. Suppose thatg ∈ VM( f ), thenPg= g, whereP is the orthogonal
projection ontoVM( f ). Hence, by Lemma5.4.5, ĝ = ηg f̂ .

Conversely, ifη f̂ ∈ L2(Rd) andη is anM∗-periodic function, theng, the inverse trans-
form of η f̂ is also inL2(Rd) and satisfies, by (5.7), thatηg = [η f̂ , f̂ ]/[ f̂ , f̂ ] = η onE f +M∗.

On the other hand, since supp(f̂ ) ⊆ E f + M∗, we have thatηg f̂ = η f̂ .

So,P̂g= ηg f̂ = η f̂ = ĝ. Consequently,Pg= g, and henceg ∈ VM( f ).

�

5.5 Characterization of the extra invariance

GivenM a closed subgroup ofRd containingZd, our goal is to characterize when a SIS V
is anM-invariant space. For this, we will construct a partition{Bσ}σ∈N of Rd, where each
Bσ will be anM∗-periodic.

LetΩ be a measurable section of the quotientRd/Zd. ThenΩ tilesRd byZd translations,
that is

Rd =
⋃

k∈Zd

Ω + k. (5.12)

Now, for eachk ∈ Zd, consider (Ω+k)+M∗. Although these sets areM∗-periodic, they
are not a partition ofRd. So, we need to choose a subsetN of Zd such that ifσ, σ′ ∈ N
andσ + M∗ = σ′ + M∗, thenσ = σ′. ThusN should be a section of the quotientZd/M∗.

Givenσ ∈ N we define

Bσ = Ω + σ + M∗ =
⋃

m∗∈M∗
(Ω + σ) +m∗. (5.13)

Note that, in the notation ofSubsection 5.3.2, we can choose the setsΩ andN as:

Ω = (T∗)−1([0, 1)d), (5.14)

and
N = (T∗)−1({0, . . . , a1 − 1} × . . . × {0, . . . , aq − 1} × Zd−q), (5.15)

whereT is as in Remark5.3.12anda1, . . . , aq are the invariant factors ofM.

Below we give three basic examples of the construction of thepartition{Bσ}σ∈N .
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Example 5.5.1.

(1) Let M = 1
nZ ⊆ R, thenM∗ = nZ. We chooseΩ = [0, 1) andN = {0, . . . , n − 1}.

Givenσ ∈ {0, . . . , n− 1}, we have

Bσ =
⋃

m∗∈nZ
([0, 1)+ σ) +m∗ =

⋃

j∈Z
[σ, σ + 1)+ n j.

Figure5.1 illustrates the partition forn = 4. In the picture, the black dots represent the
setN . The setB2 is the one which appears in gray.

| | | | ||||||||

0 1 2 3 4 5 6 7 8-1-2-3-4-5-6-7

Ω
b b b b

Figure 5.1:Partition of the real line forM = 1
4Z.

(2) Let M = 1
2Z × R, thenM∗ = 2Z × {0}. We chooseΩ = [0, 1)2, andN = {0, 1} × Z.

So, the setsB(i, j) are

B(i, j) =
⋃

k∈Z

(
[0, 1)2 + (i, j)

)
+ (2k, 0)

where (i, j) ∈ N . See Figure5.2, where the setsB(0,0), B(1,1) andB(1,−1) are represented
by the squares painted in light gray, gray and dark gray respectively. As in the previous
figure, the setN is represented by the black dots.
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Figure 5.2:Partition of the plane forM = 1
2Z × R.

(3) Let M = {k1
3v1 + tv2 : k ∈ Z and t ∈ R}, wherev1 = (1, 0) andv2 = (−1, 1). Then,

{v1, v2} satisfy conditions in Theorem5.3.9. By Corollary5.3.10, M∗ = {k3w1 : k ∈ Z},
wherew1 = (1, 1) andw2 = (0, 1).

The setsΩ andN can be chosen in terms ofw1 andw2 as

Ω = {tw1 + sw2 : t, s∈ [0, 1)}
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and
N = {aw1 + kw2 : a ∈ {0, 1, 2}, k ∈ Z}.

This is illustrated in Figure5.3. In this case the setsB(0,0), B(1,0) andB(1,2) correspond to
the light gray, gray and dark gray regions respectively. Andagain, the black dots represent
the setN .
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Figure 5.3:Partition forM = {k1
3(1, 0)+ t(−1, 1) : k ∈ Z and t ∈ R}.

Once the partition{Bσ}σ∈N is set, for eachσ ∈ N , we define the subspaces

Uσ = { f ∈ L2(Rd) : f̂ = χBσĝ, with g ∈ V}. (5.16)

5.5.1 Characterization of the extra invariance in terms of subspaces

The main theorem of this section characterizes theM-invariance ofV in terms of the
subspacesUσ (see (5.16)).

Theorem 5.5.2.If V ⊆ L2(Rd) is a SIS and M is a closed subgroup ofRd containingZd,
then the following are equivalent.

i) V is M-invariant.

ii) Uσ ⊆ V for all σ ∈ N .

Moreover, in case any of the above holds, we have that V is the orthogonal direct sum

V =
⊕̇

σ∈N
Uσ.
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Below we state a lemma which will be necessary to prove Theorem 5.5.2.

Lemma 5.5.3.Let V be a SIS andσ ∈ N . Assume that the subspace Uσ defined in (5.16)
satisfies Uσ ⊆ V. Then, Uσ is a closed subspace which is M-invariant and in particular
is a SIS.

Proof. Let us first prove thatUσ is closed. Suppose thatf j ∈ Uσ and f j → f in L2(Rd).
SinceUσ ⊆ V andV is closed,f must be inV. Further,

‖ f̂ j − f̂ ‖22 = ‖( f̂ j − f̂ )χBσ‖22 + ‖( f̂ j − f̂ )χBc
σ
‖22 = ‖ f̂ j − f̂χBσ‖22 + ‖ f̂χBc

σ
‖22.

Since the left-hand side converges to zero, we must have thatf̂χBc
σ
= 0 a.e.ω ∈ Rd,

and f̂ j → f̂χBσ in L2(Rd). Then, f̂ = f̂χBσ . Consequentlyf ∈ Uσ, soUσ is closed.

Now we show thatUσ is M-invariant. Givenm ∈ M and f ∈ Uσ, we will prove that
em f̂ ∈ Ûσ. Since f ∈ Uσ, there existsg ∈ V such that̂f = χBσĝ. Hence,

em f̂ = em(χBσĝ) = χBσ(em̂g). (5.17)

If we can find aZd-periodic functionℓm verifying

em(ω) = ℓm(ω) a.e.ω ∈ Bσ, (5.18)

then, we can rewrite (5.17) as
em f̂ = χBσ(ℓm̂g).

By Theorem5.4.2, ℓm̂g ∈ V̂(g) ⊆ V̂ and so,em f̂ ∈ Ûσ.

Let us now define the functionℓm. Note that, sinceem is M∗-periodic,

em(ω + σ) = em(ω + σ +m∗) a.e.ω ∈ Ω, ∀m∗ ∈ M∗. (5.19)

For eachk ∈ Zd, set
ℓm(ω + k) = em(ω + σ) a.e.ω ∈ Ω. (5.20)

It is clear thatℓm is Zd-periodic and combining (5.19) with (5.20), we obtain (5.18).

Note that, sinceZd ⊆ M, theZd-invariance ofUσ is a consequence of theM-invariance.

�

Proof of Theorem5.5.2. i)⇒ ii): Fix σ ∈ N and f ∈ Uσ. Then f̂ = χBσĝ for someg ∈ V.
SinceχBσ is anM∗-periodic function, by Theorem5.4.3, we have thatf ∈ VM(g) ⊆ V, as
we wanted to prove.

ii)⇒ i): Suppose thatUσ ⊆ V for all σ ∈ N . Note that Lemma5.5.3implies thatUσ

is M-invariant, and we also have that the subspacesUσ are mutually orthogonal since the
setsBσ are disjoint.
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Take f ∈ V. Then, since{Bσ}σ∈N is a partition ofRd, we can decomposef as
f =

∑
σ∈N f σ where f σ is such that̂f σ = f̂χBσ. This implies thatf ∈

⊕̇
σ∈N Uσ and

consequently,V is the orthogonal direct sum

V =
⊕̇

σ∈N
Uσ.

As eachUσ is M-invariant, so isV. �

5.5.2 Characterization of the extra invariance in terms of fibers

The aim of this section is to express the conditions of Theorem 5.5.2in terms of fibers.
We will also give a useful characterization of theM-invariance for an FSIS in terms of
the Gramian.

If f ∈ L2(Rd) andσ ∈ N , let f σ denote the function defined by

f̂ σ = f̂χBσ .

Let Pσ be the orthogonal projection ontoSσ, where

Sσ := { f ∈ L2(Rd) : supp(̂f ) ⊆ Bσ}. (5.21)

Therefore
f σ = Pσ f and Uσ = Pσ(V) = { f σ : f ∈ V}. (5.22)

Remark5.5.4. In Lemma5.5.3we have proved that the spacesUσ are closed if they are
included inV, but it is important to observe that if this hypothesis is notsatisfied, they
might not be closed (see Example5.5.5). More precisely, ifV,W are two closed subspaces
of a Hilbert spaceH , thenPW(V) is a closed subspace ofH if and only if V+W⊥ is closed
(see [Deu95]). So, as a consequence of (5.22), in the notation ofChapter 4, Uσ will be a
closed subspace if and only if the Friedrichs angle satisfiesc[V,S⊥σ] < 1.

We include below an example of a SISV and a groupM for which the subspaceUσ is
not closed.

Example 5.5.5.Let V = V(ϕ) whereϕ = χ[− 1
2 ,

1
2 ). Consider the discrete groupM = 1

2Z. If

B0 = [0, 1)+2Z, we will prove that the subspaceU0 = { f ∈ L2(R) : f̂ = χB0̂g, with g ∈ V}
is not closed.

Using the remark from above, it is enough to show thatc[V,S⊥0 ] = 1, whereS⊥0 = S1 =

{ f ∈ L2(R) : supp(̂f ) ⊆ B1} andB1 = [0, 1)+ 2Z + 1.

From Lemma4.4.5, we have thatc[V,S1] = ess-sup{c[JV(ω), JS1(ω)] : ω ∈ [0, 1)}.
Note thatJV(ω) = span{τϕ(ω)} andJS1(ω) = span{e2 j+1} j∈Z. So,JV(ω) ∩ JS1(ω) = {0}.

Therefore,
c[JV(ω), JS1(ω)] = sup

j∈Z
|sinc(ω + 2 j + 1)|.
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Then, we obtain that,

c[V,S1] = ess-sup
{
sup
j∈Z
|sinc(ω + 2 j + 1)| : ω ∈ [0, 1)

}
= 1.

Thus,U0 is not closed.

As we have proved above, the subspacesUσ might not be closed, so we will need a
generalization of the concepts of fiber space and dimension function of SISs (seeSection
1.4.1) to this spaces.

Note that although the domain of a range function from Definition 1.5.2was [0, 1)d, it
is easy to prove that the same analysis from [Bow00] holds for any measurable sectionΩ
of the quotientRd/Zd.

Let V be a SIS andUσ be defined as in (5.16). If Φ a countable subset ofL2(Rd) such
thatV = V(Φ), then forω ∈ Ω we define the subspaceJUσ

(ω) as

JUσ
(ω) = span{τϕσ(ω) : ϕ ∈ Φ}. (5.23)

Note that whenUσ is closed, it is a SIS, so the subspaceJUσ
(ω) is the fiber spaceJUσ

(ω)
defined in Proposition1.5.3.

Remark5.5.6. The fibers

τϕσ(ω) = {χBσ(ω + k)ϕ̂(ω + k)}k∈Zd

can be described in a simple way as

χBσ(ω + k)ϕ̂(ω + k) =


ϕ̂(ω + k) if k ∈ σ + M∗

0 otherwise.

Therefore, ifσ , σ′,JUσ
(ω) is orthogonal toJUσ′ (ω) for a.e.ω ∈ Ω.

Theorem 5.5.7.Let V be a SIS generated by a countable setΦ ⊆ L2(Rd). The following
statements are equivalent.

i) V is M-invariant.

ii) τϕσ(ω) ∈ JV(ω) a.e.ω ∈ Ω for all ϕ ∈ Φ andσ ∈ N .

Proof. i)⇒ ii): By Theorem5.5.2, Uσ ⊆ V for anyσ ∈ N . Using this and (5.22), for a
givenϕ ∈ Φ, we have thatϕσ ∈ V, soτϕσ(ω) ∈ JV(ω).

ii)⇒ i): Fix σ ∈ N , we will prove thatUσ ⊆ V. Let f ∈ Uσ, we will show that
τ f (ω) ∈ JV(ω) for a.e.ω ∈ Ω.

For all ϕ ∈ Φ, τϕσ(ω) ∈ JV(ω) a.e. ω ∈ Ω, so, it follows thatJUσ
(ω) ⊆ JV(ω) a.e.

ω ∈ Ω. Thus, it is enough to prove thatτ f (ω) ∈ JUσ
(ω) for a.e.ω ∈ Ω.

Since f ∈ Uσ, there existsg ∈ V such thatf = gσ.
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The subspaceSσ defined in (5.21) is a SIS, so by Proposition1.5.4, we obtain

τ f (ω) = τgσ(ω) = τ(Pσg)(ω) = PJσ(ω)(τg(ω)), (5.24)

whereJσ(ω) is the fiber space associated toSσ.

Sinceg ∈ V, we have thatτg(ω) ∈ JV(ω) = span{τϕ(ω) : ϕ ∈ Φ}. So,

τ f (ω) = PJσ(ω)(τg(ω)) ∈ PJσ(ω)(span{τϕ(ω) : ϕ ∈ Φ}).

The proof follows using that

PJσ(ω)(span{τϕ(ω) : ϕ ∈ Φ}) ⊆ span{τϕσ(ω) : ϕ ∈ Φ} = JUσ
(ω).

�

Now we give a slightly simpler characterization ofM-invariance for the finitely gener-
ated case.

For ω ∈ Ω by abuse of notation, we will write dimUσ
(ω) for the dimension of the

subspaceJUσ
(ω).

Theorem 5.5.8.If V is an FSIS generated byΦ, then the following statements are equiv-
alent.

i) V is M-invariant.

ii) For almost everyω ∈ Ω, dimV(ω) =
∑
σ∈N dimUσ

(ω).

iii) For almost everyω ∈ Ω, rank[GΦ(ω)] =
∑
σ∈N rank[GΦσ(ω)],

whereΦσ = {ϕσ : ϕ ∈ Φ}.

Proof. i)⇒ ii): By Lemma 5.5.3and Theorem5.5.2, Uσ is a SIS for eachσ ∈ N and
V = ⊕̇σ∈N Uσ. Then, ii) follows from Proposition1.5.5.

ii)⇒ i): Givenϕ ∈ Φ, for ω ∈ Ω we have that

τϕ(ω) =
∑

σ∈N
τϕσ(ω).

Then,τϕ(ω) ∈ ⊕̇σ∈N JUσ
(ω) for a.e.ω ∈ Ω. Note that the orthogonality of the subspaces

JUσ
(ω) is a consequence of Remark5.5.6.

SinceJV(ω) = span{τϕ(ω) : ϕ ∈ Φ}, it follows that

JV(ω) ⊆ ⊕̇
σ∈N
JUσ

(ω).

Using ii), we obtain thatJV(ω) = ⊕̇σ∈N JUσ
(ω). This implies thatτϕσ(ω) ∈ JV(ω) for

all σ ∈ N , ϕ ∈ Φ. The proof follows as a consequence of Theorem5.5.7.

The equivalence between ii) and iii) follows from Proposition1.3.5.

�
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5.6 Applications of the extra invariance characteriza-
tions

In this section we present two applications of the results given before. First, we will
estimate the size of the supports of the Fourier transforms of the generators of an FSIS
which is alsoM-invariant. Finally, givenM a closed subgroup ofRd containingZd, we
will construct a shift-invariant spaceV which is exactlyM-invariant. That is,V will not
be invariant under any other closed subgroup containingM.

Theorem 5.6.1.Let V be an FSIS generated by{ϕ1, . . . , ϕℓ}, and define

E j = {ω ∈ Ω : dimV(ω) = j}, j = 0, . . . , ℓ.

If V is M-invariant andD′ is any measurable section ofRd/M∗, then

|{y ∈ D′ : ϕ̂h(y) , 0}| ≤
ℓ∑

j=0

j|E j | ≤ ℓ,

for each h= 1, . . . , ℓ.

Proof. The measurability of the setsE j follows from the results of Helson [Hel64], e.g.,
see [BK06] for an argument of this type.

Fix anyh ∈ {0, . . . , ℓ}. Note that, as a consequence of Remark5.5.6, if JUσ
(ω) = {0},

thenϕ̂h(ω + σ +m∗) = 0 for all m∗ ∈ M∗.

On the other hand, since{Ω+σ+m∗}σ∈N ,m∗∈M∗ is a partition ofRd, if ω ∈ Ω andσ ∈ N
are fixed, there exists a uniquem∗(ω,σ) ∈ M∗ such thatω + σ +m∗(ω,σ) ∈ D′.

So,
{σ ∈ N : ϕ̂h(ω + σ +m∗(ω,σ)) , 0} ⊆ {σ ∈ N : dimUσ

(ω) , 0}.
Therefore

#{σ ∈ N : ϕ̂h(ω + σ +m∗(ω,σ)) , 0} ≤ #{σ ∈ N : dimUσ
(ω) , 0}

≤
∑

σ∈N
dimUσ

(ω)

= dimV(ω).

Consequently, by Fubini’s Theorem,

|{y ∈ D′ : ϕ̂h(y) , 0}| =
∑

σ∈N
|{ω ∈ Ω : ϕ̂h(ω + σ +m∗(ω,σ)) , 0}|

= |{(ω,σ) ∈ Ω × N : ϕ̂h(ω + σ +m∗(ω,σ)) , 0}|

=

∫

Ω

#{σ ∈ N : ϕ̂h(ω + σ +m∗(ω,σ)) , 0} dw

≤
∫

Ω

dimV(ω)dw=
ℓ∑

j=0

j|E j | ≤ ℓ.
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�

WhenM is not discrete, the previous theorem shows that, despite the fact thatD′ has
infinite measure, the support of̂ϕh inD′ has finite measure.

On the other hand, ifM is discrete, the measure ofD′ is equal to the measure of the
sectionD given by (5.4). That is

|D′| = |D| = a1 . . .ad,

wherea1, . . . , ad are the invariant factors. Thus, ifa1 . . .ad − ℓ > 0, it follows that

|{y ∈ D′ : ϕ̂h(y) = 0}| ≥ a1 . . .ad − ℓ. (5.25)

As a consequence of Theorem5.6.1we obtain the following corollary.

Corollary 5.6.2. Letϕ ∈ L2(Rd) be given. If the SIS V(ϕ) is M-invariant for some closed
subgroup M ofRd such thatZd $ M, thenϕ̂ must vanish on a set of infinite Lebesgue
measure.

Proof. LetD be the measurable section ofRd/M∗ defined in (5.4). Then,

Rd =
⋃

m∗∈M∗
D +m∗,

thus
|{y ∈ Rd : ϕ̂(y) = 0}| =

∑

m∗∈M∗
|{y ∈ D +m∗ : ϕ̂(y) = 0}|.

If M is discrete, by (5.25), we have

|{y ∈ Rd : ϕ̂(y) = 0}| ≥
∑

m∗∈M∗
(|D| − 1) = +∞. (5.26)

The last equality is due to the fact thatM∗ is infinite and|D| > 1 (sinceM , Zd).

If M is not discrete, by Theorem5.6.1, |{y ∈ D + m∗ : ϕ̂(y) = 0}| = +∞, hence
|{y ∈ Rd : ϕ̂(y) = 0}| = +∞. �

Another consequence of Theorem5.6.1is the following.

Corollary 5.6.3. If ϕ ∈ L2(Rd) and V(ϕ) isRd-invariant, then

|supp(̂ϕ)| ≤ 1.

Proof. The proof is straightforward applying Theorem5.6.1for M = Rd.

�
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The converse of the previous corollary is not true. To see this consider the function
ϕ ∈ L2(Rd) such that̂ϕ = χ[0,1)d−1×[0, 12 ) + χ[0,1)d−1×[1, 32 ). If V := V(ϕ) wereRd-invariant, by
Theorem5.5.8, we would have that rank[Gϕ(ω)] =

∑
j∈Zd rank[Gϕ j (ω)] for a.e.ω ∈ [0, 1)d,

with ϕ̂ j = χ([0,1)d+ j)ϕ̂. However, forω ∈ [0, 1)d−1 × [0, 1
2) we obtain that rank[Gϕ(ω)] = 1

and rank[Gϕ0(ω)] = 1 = rank[Gϕed (ω)], with ed = (0, . . . , 0, 1). Thus,V can not be
Rd-invariant.

The following remark states that the converse of Corollary5.6.3is true if we impose
some conditions on the generatorϕ.

Remark5.6.4. Let ϕ ∈ L2(Rd) such that supp(Gϕ) = [0, 1)d. If |supp(̂ϕ)| ≤ 1, thenV(ϕ) is
Rd-invariant.

Proof. Using the decomposition from the previous section, for eachj ∈ Zd = N we have
the fibersτϕ j(ω) = ϕ̂(ω + j)ej, where{ej} is the canonical basis forℓ2(Zd).

By Theorem5.5.8 V(ϕ) is Rd-invariant if and only if for almost everyω ∈ [0, 1)d,
rank[Gϕ(ω)] =

∑
j∈Zd rank[Gϕ j (ω)]. Since supp(Gϕ) = [0, 1)d, we have that rank[Gϕ(ω)] =

1 for almost everyω ∈ [0, 1)d.

AsGϕ j (ω) = |̂ϕ(ω + j)|2, we obtain that

rank[Gϕ j (ω)] =


1 if ϕ̂(ω + j) , 0

0 if ϕ̂(ω + j) = 0

Thus,V(ϕ) is Rd-invariant if and only if for almost everyω ∈ [0, 1)d there exists one
and only onej ∈ Zd such that̂ϕ(ω + j) , 0.

For a givenω ∈ [0, 1)d, the existence of such aj ∈ Zd is a consequence of the fact that
supp(Gϕ) = [0, 1)d. To prove the uniqueness, we will show that forj ∈ Zd, the sets

Nj := {ω ∈ [0, 1)d : ϕ̂(ω + j) , 0} = (
supp(̂ϕ) ∩ ([0, 1)d + j)

) − j

satisfy that|Ni ∩ Nj | = 0 for all i , j.

Since supp(Gϕ) =
⋃

j∈Zd Nj, we obtain

1 = |supp(Gϕ)| =
∣∣∣∣
⋃

j∈Zd

Nj

∣∣∣∣ ≤
∑

j∈Zd

|Nj |

=
∑

j∈Zd

|supp(̂ϕ) ∩ ([0, 1)d + j)|

=

∣∣∣∣
⋃

j∈Zd

(supp(̂ϕ) ∩ ([0, 1)d + j))
∣∣∣∣

= |supp(̂ϕ)| ≤ 1.

Thus, ∣∣∣∣
⋃

j∈Zd

Nj

∣∣∣∣ =
∑

j∈Zd

|Nj |.
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So,|Ni ∩ Nj | = 0 for all i , j. Therefore,V(ϕ) isRd-invariant.

�

Observe that by Remark1.5.14, if ϕ ∈ L2(Rd) satisfies that{tkϕ : k ∈ Zd} is a Riesz
basis forV(ϕ), then supp(Gϕ) = [0, 1)d. So, as a consequence of the previous remark, if
ϕ ∈ L2(Rd) is such that{tkϕ : k ∈ Zd} is a Riesz basis forV(ϕ) and |supp(̂ϕ)| ≤ 1, then
V(ϕ) isRd-invariant.

5.6.1 Exact invariance

Given M be a closed subgroup ofRd, we will say that a subspaceV ⊆ L2(Rd) is exactly
M-invariant if it is an M-invariant space that isnot invariant under any vector outsideM.

Note that due to of Proposition5.2.1, an M-invariant space is exactlyM-invariant if and
only if it is not invariant under any closed subgroupM′ containingM.

It is known that on the real line, the SIS generated by a functionϕwith compact support
can only be invariant under integer translations. That is, it is exactlyZ-invariant. The
following proposition extends this result toRd.

Proposition 5.6.5. If a nonzero functionϕ ∈ L2(Rd) has compact support, then V(ϕ) is
exactlyZd-invariant.

Proof. The proof is a straightforward consequence of Corollary5.6.2.

�

Note that the compactness of the support ofϕ ∈ L2(Rd) is not a necessary condition for
the exactlyZd-invariance ofV(ϕ). To see this, consider the functionϕ ∈ L2(Rd) such that
ϕ̂ = χ[0,2)d. Since supp(̂ϕ) = [0, 2)d, it follows thatϕ is not compactly supported.

We claim thatV := V(ϕ) is exactlyZd-invariant. On the contrary, assume thatV is
M-invariant for some closed subgroupM of Rd such thatZd ( M.

For 1 ≤ j ≤ d let ej ∈ Rd be the canonical vectors. SinceZd ( M, it follows that
M∗ ( Zd. Thus there exists 1≤ j ≤ d such thatej < M∗.

We have thatej , 0 inN = Zd/M∗. Letϕ0, ϕej be the functions defined by

ϕ̂0 = χB0∩[0,2)d andϕ̂ej = χBej∩[0,2)d ,

whereBσ = [0, 1)d + σ + M∗ for σ ∈ N .

Since [0, 1)d ⊆ B0 ∩ [0, 2)d and [0, 1)d + ej ⊆ Bej ∩ [0, 2)d, it follows that ϕ̂0(ω) =
ϕ̂ej (ω + ej) = 1 for allω ∈ [0, 1)d. Thus,

rank[Gϕ0(ω)] = 1 = rank[Gϕej (ω)], for ω ∈ [0, 1)d.

On the other hand, rank[Gϕ(ω)] = 1 for ω ∈ [0, 1)d. So, by Theorem5.5.8, V can not be
M-invariant.
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The next theorem shows the existence of SISs that are exactlyM-invariant for every
closed subgroupM of Rd containingZd.

Theorem 5.6.6.For each closed subgroup M ofRd containingZd, there exists a shift-
invariant space of L2(Rd) which is exactly M-invariant.

Proof. Let M be a subgroup ofRd containingZd. We will construct a principal shift-
invariant space that is exactlyM-invariant.

Suppose that 0∈ N and takeϕ ∈ L2(Rd) satisfying supp(̂ϕ) = B0, whereB0 is defined
as in (5.13). Let V = V(ϕ).

Then,U0 = V andUσ = {0} for σ ∈ N , σ , 0. So, as a consequence of Theorem5.5.2,
it follows thatV is M-invariant.

Now, if M′ is a closed subgroup such thatM $ M′, we will show thatV can not be
M′-invariant.

SinceM ⊆ M′, (M′)∗ ⊆ M∗. Consider a sectionH of the quotientM∗/(M′)∗ containing
the origin. Then, the set given by

N ′ := {σ + h : σ ∈ N , h ∈ H},

is a section ofZd/(M′)∗ and 0∈ N ′.
If {B′γ}γ∈N ′ is the partition defined in (5.13) associated toM′, for eachσ ∈ N it holds

that{B′
σ+h}h∈H is a partition ofBσ, since

Bσ = Ω + σ + M∗ =
⋃

h∈H
Ω + σ + h+ (M′)∗ =

⋃

h∈H
B′σ+h. (5.27)

We will show now thatU′0 * V, whereU′0 is the subspace defined in (5.16) for M′. Let
g ∈ L2(Rd) such that̂g = ϕ̂χB′0

. Theng ∈ U′0. Moreover, since supp(̂ϕ) = B0, by (5.27),
ĝ , 0.

Suppose thatg ∈ V, thenĝ = ηϕ̂ whereη is aZd-periodic function. SinceM $ M′,
there existsh ∈ H such thath , 0. By (5.27), ĝ vanishes inB′h. Then, theZd-periodicity
of η implies thatη(y) = 0 a.e.y ∈ Rd. Soĝ = 0, which is a contradiction.

This shows thatU′0 * V. Therefore,V is notM′-invariant.

�

5.7 Extension to LCA groups

We would like to remark here that the characterizations of the extra invariance for shift-
invariant spaces are still valid for the general context of locally compact abelian (LCA)
groups (see [ACP10a]). This is important in order to obtain general conditions that can
be applied to different cases, as for example the case of the classic groups such as the
d-dimensional torusTd, the discrete groupZd, and the finite groupZd.
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Although in [ACP10a] we developed all the necessary theory to the complete under-
standing of the problem, we will not include here all the results obtained in that paper
since we would need a lot of notation and technical aspects which are not congruent with
the general line of these thesis. However, in this section, we will give a brief description
of the problem for the LCA context and the general results obtained for this case.

AssumeG is an LCA group andK is a closed subgroup ofG. For y ∈ G let us denote
by ty the translation operator acting onL2(G). That is,ty f (x) = f (x − y) for x ∈ G and
f ∈ L2(G). A closed subspaceV of L2(G) satisfying thattk f ∈ V for every f ∈ V and
everyk ∈ K is calledK-invariant. In the case thatG is Rd andK is Zd the subspaceV is
the classical shift-invariant space. The structure of these spaces for the context of general
LCA groups has been studied in [KT08, CP10]. Independently of their mathematical
interest, they are very important in applications. They provide models for many problems
in signal and image processing.

In [ACP10a] we study necessary and sufficient conditions in order that anH-invariant
spaceV ⊆ L2(G) is M-invariant, whereH ⊆ G is a countable uniform lattice andM is any
closed subgroup ofG satisfying thatH ⊆ M ⊆ G. As a consequence of our results we
proved that for each closed subgroupM of G containing the latticeH, there exists anH-
invariant spaceV that is exactlyM-invariant. That is,V is not invariant under any other
subgroupM′ containingM. We also obtained estimates on the support of the Fourier
transform of the generators of theH-invariant space, related to itsM-invariance.
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