
An Algorithm for the Computation of the Radical of an Ideal

Santiago Laplagne
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

Buenos Aires, Argentina

slaplagn@dm.uba.ar

ABSTRACT
We propose a new algorithm for the computation of the
radical of an ideal in a polynomial ring. In recent years
many algorithms have been proposed. A common technique
used is to reduce the problem to the zero dimensional case.
In the algorithm we present here, we use this reduction, but
we avoid the redundant components that appeared in other
algorithms . As a result, our algorithm is in some cases more
efficient.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms

General Terms
Algorithms, Performance

Keywords
radical, primary decomposition, polynomial ideal, algorithms,
complexity

1. INTRODUCTION
Let k be a field, k[x] := k[x1, . . . , xn] the ring of polynomials
in n variables and I ⊂ k[x] an ideal. The radical of I is the
ideal

√
I = {f ∈ k[x] / fm ∈ I for some m ∈ N}.

The radical of an ideal plays an important role in commu-
tative algebra, when we are concerned with the geometry
aspects. This is due to the bijection existing between vari-
eties and radical ideals.
In recent years some algorithms for the computation of the
radical have been proposed. Among these, we mention [9],
[8] and [15] for the general case, [14] for the zero-dimensional
case and [18] for ideals over fields of positive characteristic.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’06,July 9–12, 2006, Genova, Italy.
Copyright 2006 ACM 1-59593-276-3/06/0007 ...$5.00.

In this paper we present a new algorithm for the computa-
tion of the radical of a general ideal. The algorithm pre-
sented here is based on the ideas of [9] and [15].
Recall that given I, J ideals in k[x], the quotient I : J is the
ideal {f ∈ k[x] / fJ ⊂ I} and the saturation I : J∞ is the
ideal {f ∈ k[x] / fJm ⊂ I for some m ∈ N}. When J is
generated by a single element h, we use the notation I : h
and I : h∞.
In [15], the authors use the splitting tool

√
I =

√
I : h ∩p

〈I, h〉 for an appropriate h. They find h such that
√

I : h
can be obtained by reduction to the zero-dimensional case
and obtain

p
〈I, h〉 by induction on the dimension.

When taking 〈I, h〉 there appear redundant components
(that is, components that were not part of the original ideal)
that slow down the algorithm performance.
In the algorithm of this paper, we avoid using 〈I, h〉 but
instead we use repeatedly the saturation I : h∞ for appro-
priate h.
This leads in some cases to a more efficient algorithm.

2. PRELIMINARIES
The algorithms that we present make extensive use of Gröb-
ner bases and its applications. For an introduction to the
subject, see for example [2], [3] and [11].
Given a monomial order <, if f = a1x

A1 + a2x
A2 + · · · +

arx
Ar ∈ k[x] with xA1 > xA2 > · · · > xAr , we write

lt(f) for the leading term a1x
A1 and lc(f) for the leading

coefficient a1.
We note Vk(I) for the vanishing set of I in kn and k̄ for the
algebraic closure of k. An ideal is called zero dimensional
if Vk̄(I) has only a finite number of points. In [9] and [15]
the computation of the radical of a general ideal is reduced
to the zero dimensional case. For the computation of the
radical of a zero dimensional ideal, the following algorithm
is used.

Proposition 1 (Seidenberg Lemma, [19]). Let I ⊂
k[x] (with k a perfect field) be a zero dimensional ideal and
I ∩ k[xi] = 〈fi〉 for i = 1, . . . , n. Let gi =

√
fi =

fi/ gcd(fi, f
′
i), the square free part of fi. Then

√
I = 〈I, g1, . . . , gn〉.

We will need to compute the radical of zero-dimensional
ideals over k(u), with u a set of variables. When k has char-
acteristic 0, k(u) is still perfect, so we can use this lemma.
However, if k does not have characteristic 0, k(u) might not
be perfect. In this case, more elaborated algorithms ([14],

[18]) can be used. We will restrict to the case of character-
istic 0.
The general algorithm is based on the following well known
properties (see for example [11], Chapters 3 and 4).

Lemma 2. Let I = Q1 ∩ · · · ∩ Qt ⊂ k[x] be a primary
decomposition of the ideal I, and J ⊂ k[x] another ideal.
Then I : J∞ =

T
J 6⊂Pi

Qi, where Pi =
√

Qi.

We say that u ⊂ x is independent (with respect to I) if
I ∩ k[u] = {0}. We say that an independent set is maximal
if it has dim(I) elements.
If u ⊂ x is a maximal independent set of variables with
respect to I then Ik(u)[x r u] ⊂ k(u)[x r u] is a zero-
dimensional ideal, Ik(u)[x r u] ∩ k[x] = Q1 ∩ · · · ∩ Qs,
where the Qi are the primary components of I such that
Qi ∩ k[u] = {0} and

p
Ik(u)[x r u] ∩ k[x] = P1 ∩ · · · ∩ Ps,

with Pi =
√

Qi.
To contract an ideal J ⊂ k(u)[x r u] to k[x], we take
{g1, . . . , gs}, a Gröbner basis of J in a monomial order <
in k(u)[x r u] consisting of polynomials in k[x], and h :=
lcm{lc(gi), 1 ≤ i ≤ s} ∈ k[u], where lc(gi) denotes the lead-
ing coefficient of gi considered as a polynomial in k[u][xru].
Then J ∩ k[x] = 〈g1, . . . , gs〉 : h∞, where 〈g1, . . . , gs〉 is the
ideal generated in k[x].

Remark 1. The ideal 〈g1, . . . , gs〉 : h∞ can be computed
algorithmically by a Gröbner basis calculation, using that
I : h∞ = 〈I, th − 1〉 ∩ k[x], where t is a new variable ([9],
Corollary 3.2).

Remark 2. A Gröbner basis of Jk(u)[x r u] can be ob-
tained by computations in k[x] taking {f1, . . . , fs}, a set
of generators of J consisting of polynomials in k[x], and
computing a basis of 〈f1, . . . , fs〉k[x] with respect to a lexi-
cographical order with x r u > u.
Note that the generators of J in k[x] can be obtained from
any set of generators of J by simply multiplying the poly-
nomials by its denominators in k[u].

To get other components of
√

I we will look for
g ∈ (

T
i≤s Pi)r

√
I. It is possible to know if a given polyno-

mial g is in
√

I without actually computing
√

I, by checking
whether or not I : g∞ is the unit ideal.

3. THE ALGORITHM
We now describe the algorithm.

Algorithm 3. radical1(I)
Input: I ⊂ k[x]

Output:
√

I, the radical of I.

1. P̃ ← 〈1〉.

2. Repeat

(a) Look for g ∈ P̃ r
√

I. To find it, search over the

generators of P̃ and check if they are in
√

I.

(b) If there does not exist such g, it means that P̃ ⊂√
I. Since we always have

√
I ⊂ P̃ , we conclude

that P̃ =
√

I. Exit the cycle.

(c) If there exists g ∈ P̃ r
√

I, this means that there
exists at least one minimal prime P associated to
I such that g 6∈ P .

J ← I : g∞.

(d) Reduction to the zero-dimensional case:

Take a maximal independent set u with respect to
J and compute the radical of the zero-dimensional
ideal Jk(u)[x r u] (Proposition 1).

(e) Contract
p

Jk(u)[x r u] to k[x].

(f) P̃ ← P̃ ∩ (
p

Jk(u)[x r u] ∩ k[x]).

3. output = P̃ , the radical of I.

The correctness of the algorithm is given by the following
proposition.

Proposition 4. Let I ⊂ k[x] be a proper ideal, let P be

a subset of the minimal primes of I and let P̃ :=
T

P∈P P
be the intersection of these minimal primes.
We assume that there exists g ∈ P̃ r

√
I. If I : g∞ = ∩s

i=1Qi

is an irredundant primary decomposition and u is a maximal
independent set with respect to I : g∞ then, for all 1 ≤ i ≤ s
such that Qi∩k[u] = {0},

√
Qi is a minimal prime of I, and

moreover
√

Qi /∈ P.

Proof. Let Qi be a primary component of I : g∞ such
that Qi ∩ k[u] = {0}. Clearly, Qi is a primary component
associated to I since it is a component of I : g∞ that satisfies
that g /∈

√
Qi = Pi. In particular g ∈ P̃ r Pi implies that

Pi /∈ P.
Since u is independent maximal and Qi ∩ k[u] = {0}, Pi is
a minimal prime of I : g∞.
If there exists a component Q of I with

√
Q (Pi, we would

have g /∈
√

Q and therefore Q would appear in the primary
decomposition of I : g∞, and Pi would not be minimal.
Contradiction.

Remark 3. The algorithm terminates because, in each it-
eration, we add to P̃ at least one new minimal prime ideal
associated to I.

Remark 4. In this algorithm there is no redundancy. All
the ideals that we intersect in P̃ are intersection of minimal
prime ideals associated to I.

As an example, we apply the algorithm to the ideal

I = 〈y + z, x z2w, x2z2〉 ⊂ Q[x, y, z, w].

In the first iteration, we take g := 1 and J := I : 1∞ = I.
We find that u = {x, w} is a maximal independent set with
respect to J . Making the reduction step, we obtain thatp

J(u)[x r u] ∩ k[x] = 〈y, z〉. We take P̃ := 〈y, z〉.
In the second iteration, we look for g ∈ P̃ such that g 6∈

√
I.

We obtain that z 6∈
√

I and compute J = I : z∞ = 〈y +
z, xw, x2〉. Now u = {z, w} is a maximal independent set

with respect to J . We compute
p

Jk(u)[x r u] ∩ k[x] =

〈y + z, x〉. We take P̃ := 〈y, z〉 ∩ 〈y + z, x〉 = 〈y + z, xz〉.
If we search for g ∈ P̃ such that g 6∈

√
I, we obtain that y+z

and xz are both in
√

I. Therefore, the algorithm terminates.
We obtain that

√
I = 〈y + z, xz〉.

We now apply Krick-Logar algorithm to the same ideal, to
compare it with ours. We start with I = 〈y +z, x z2w, x2z2〉
and we take the independent set u = {x, w}. Making the

reduction step, we obtain that
p

I(u)[x r u]∩k[x] = 〈y, z〉.
Up to now, there is no difference with the algorithm we
propose.

The next step is different. We look for h such that
√

I =
(
p

I(u)[x r u] ∩ k[x]) ∩ 〈I, h〉. We can take h = xz. Now,√
I = 〈y, z〉 ∩

p
〈I, xz〉. So it remains to be computed

the radical of 〈I, xz〉. Carrying on the algorithm, we getp
〈I, xz〉 =

p
〈y + z, x〉 ∩

p
〈w, y + z, z2〉 = 〈y + z, x〉 ∩

〈w, y, z〉.
The last component is redundant, it contains the component
〈y, z〉 that was already obtained. This redundant component
is not an embedded component of I, it is a new component
that appeared when we added xz to I.
This is a situation that repeats often in the examples. The
polynomials that the algorithm adds to I makes it more and
more complex. The polynomials added are usually large,
since they are the product of coefficients of polynomials in a
Gröbner basis and the size of the Gröbner basis of the new
ideal can increase drastically.
This does not happen in our proposed algorithm. We com-
pute instead the saturation with respect to polynomials that
are usually simple, and this saturation does not increase the
complexity of the ideal since it only takes some components
away from it. No new components can appear.

4. COMPLEXITY OF THE ALGORITHM
We shall now compute the theoretical complexity of the al-
gorithm. We remark that we will be analyzing the worst-
case-complexity. In the applications, the bounds that we
will get are usually not achieved and this is what gives the
algorithm practical interest. The modifications to the algo-
rithm that we will introduce in this section (such as random
coordinate changes) are only for the purpose of improving
the worst-case complexity but are not good in practice.
As presented in the section above, in each step of the algo-
rithm we intersect with P̃ at least one new prime component
of
√

I. Therefore, the number of iterations is bounded by
the number of prime components of

√
I, which is in time

bounded by the number of Bézout, dn ([13]). Since the de-
grees of the polynomials in a Gröbner basis is doubly expo-
nential in the number of variables, if we carry out the com-
plexity estimation with the previous algorithm, we would
obtain an estimate triply exponential in the number of vari-
ables.
To get a better theoretical complexity, we introduce some
modifications in the algorithm that will allow us to reduce
the dimension of the ideal in each iteration and therefore
perform at most n iterations. This will lead to a doubly
exponential complexity bound. We insist that although this
modifications improve the theoretical complexity, in practice
they are not efficient, since they destroy the good properties,
such as sparsity, that the ideal might have.

Definition 1. We say that an ideal I ⊂ k[x] of dimension
e is in Noether position if the set u = x1, . . . , xe is a maximal
independent set with respect to I and for each i, e + 1 ≤
i ≤ n, there exists a polynomial p ∈ I, in k[x1, . . . , xe, xi],
monic as a polynomial in k[x1, . . . , xe][xi].

If the ideal I is not in Noether position, we can put it in
Noether position by a linear coordinate change. We can use
a random coordinate change ([17], Proposition 4.5) or we

can do it deterministically with complexity s5dO(n2), where
s is the number of polynomials of I and d the maximum
degree of the polynomials ([6]).

When the ideal I is in Noether position, we have the follow-
ing lemma.

Lemma 5 ([15], Lema 2.3). Let I be an ideal of dimen-
sion e in Noether position, and

I = (Qe11 ∩ . . . Qe1a1) ∩ · · · ∩ (Qet1 ∩ · · · ∩Qetat)

the primary decomposition of I, where Qeij are primary
ideals of dimension ei and 0 ≤ e1 < · · · < et = e. Let
Peij be the associate primes. Then

k[x1, . . . , xe] ∩ Petj = (0), j = 1, . . . , at.

If we take u := {x1, . . . , xe}, we obtain that Ik(u)[x r u] ∩
k[x] = Qet1 ∩ · · · ∩Qetat .
Therefore, in Step 2c, when we take J = I : g∞ with g ∈
(Pet1 ∩ · · · ∩ Petat) r

√
I, all the primary components of I

of dimension e are killed.
To get a good complexity bound we want to kill only the
prime components of

√
I of maximal dimension. We can

use a random combination of the polynomials in P̃ as g or
we can do it deterministically in the following way.

Proposition 6. Let I be an ideal of dimension e, as in
Lemma 5. Let J = Qet1 ∩ · · · ∩ Qetat . Then I : J∞ has
dimension at most e− 1 and

√
I =
√

J ∩
√

I : J∞.

Therefore we can bound the number of iterations of the al-
gorithm by e.

Remark 5. The ideal I : J∞ is not exactly (Qe11 ∩ · · · ∩
Qe1a1)∩· · ·∩ (Qet−11∩· · ·∩Qet−1at−1), since some primary
components corresponding to immerse primes can also be
killed.

The ideal I : J∞ can be computed in the following way (see
Proposition 1.2.6 of [20]):

Proposition 7. Let I, J be ideals in k[x], with J gener-
ated by f1, . . . , fr. Let

f := f1 + tf2 + · · ·+ tr−1fr ∈ k[t, x].

Then I : J∞ = (I : f∞) ∩ k[x].

Proof. Let I = Q1∩· · ·∩Qs be a primary decomposition
of I and Pi =

√
Qi. By Proposition 2, I : J∞ =

T
J 6⊂Pi

Qi

and (I : f∞)∩k[x] = (
T

f 6∈Pik[t,x] Qik[t, x])∩k[x]. Therefore

we need to prove that J ⊂ Pi ⇐⇒ f ∈ Pik[t, x]. If J ⊂ Pi,
clearly, f ∈ Pik[t, x]. For the converse, let f = a1p1 + · · ·+
asps, with pj ∈ Pi and aj ∈ k[t, x]. If we replace t by r
different values, we obtain that f1 + tjf2 + · · ·+ tj

r−1fr ∈ Pi

for t1, . . . , tr ∈ k. We deduce that fi ∈ Pi for i = 1, . . . , r,
and therefore J ⊂ Pi as wanted.

We get the following algorithm.

Algorithm 8. radical2(I)
Input: I ⊂ k[x]

Output:
√

I = P , the radical of I.

1. Make a linear coordinate change of variables so that I
is in Noether position.

2. Let u := {x1, . . . , xe}, with e = dim I. Compute the
radical of the zero-dimensional ideal Ik(u)[xru] using
Proposition 1.

3. Contract
p

Ik(u)[x r u] to k[x].

J ←
p

Ik(u)[x r u] ∩ k[x]

4. output = J ∩ radical2(I : J∞).

Complexity
To estimate the complexity we work over k = Q. We analyze
the arithmetic complexity, that is, the number of operations
performed in Q. We use the notation CG(d, n, s), DG(d, n)
and NG(d, n, s) for the complexity, maximum degree and
number of polynomials in a Gröbner basis of an ideal in n
variables over Q, generated by s polynomials of maximum
degree d. In [10], [16] and [7] they prove bounds for the
complexity and the number of polynomials in the general
case doubly exponential in the number of variables. The

bounds are of order sO(1)d2O(n)
.

For the maximum degree, the following bound is given in
[7]:

deg(g) ≤ 2

�
d2

2
+ d

�2n−1

.

We approximate it by d2n

.
We estimate the complexity of each step of the algorithm,
without considering the intersection of the ideals in the last
step. We assume that I ⊂ Q[x] is an ideal generated by s
polynomials of maximum degree d.

1. The Noether position can be achieved by a linear co-
ordinate change. This does not affect the theoretical
complexity.

2. To compute the radical
p

Ik(u)[x r u], following
Proposition 1, we need to compute at most n Gröbner

bases of I. This has complexity at most nsO(1)d2O(n)
.

The n polynomials that appear have degree at most
d2n

.

3. The degree of the polynomial h used for the contrac-
tion can be bounded by the number of polynomials in
the basis times the maximum degree of the polynomi-
als:

sO(1)d2O(n)
d2n

= sO(1)d2O(n)
,

since the degree of the lcm is bounded by the degree
of the product of all the polynomials.

Now, the complexity of the contraction is the com-
plexity of the computation of the Gröbner basis of
〈I, th− 1〉:

CG(sO(1)d2O(n)
, n + 1, sO(1)d2O(n)

) =

(sO(1)d2O(n)
)O(1)(sO(1)d2O(n)

)2
O(n)

= (sd)2
O(n)

.

The number of polynomials in J and their degrees can

also be approximated by (sd)2
O(n)

.

4. To compute I : J∞, by Proposition 7 and Remark 1,
we need to compute a Gröbner basis of 〈I, tf − 1〉.
The degree of f is bounded by (sd)2

O(n)
+ d2O(n)

=

(sd)2
O(n)

. This has complexity

CG((sd)2
O(n)

, n + 1, (sd)2
O(n)

) = (sd)2
O(n)

.

The number of polynomials and the maximum degree

can also be approximated by (sd)2
O(n)

.

We can estimate the complexity of the whole call by

(sd)2
O(n)

= (sd)2
cn

for some universal constant c.
In each call, the dimension of the ideal considered decreases.
Therefore we need at most n calls, since the dimension can-
not be greater than the number of variables.
In the second call we start with (sd)2

cn

polynomials of de-

gree (sd)2
cn

. The complexity of this call is

((sd)2
cn

, n, (sd)2
cn

) = ((sd)2 2cn

)2
cn

= (sd)2
2cn+1

.

The same bounds are valid for the number of polynomials
and their degrees.
Therefore, after n calls we get the bound

(sd)2
n(cn)+n−1

= (sd)2
O(n2)

,

for the complexity, the number of polynomials and their
degrees in the last call.
Finally, to compute the intersection of the outputs in each
call, we use that I1 ∩ I2 = 〈I1 · t, I2 · (1 − t)〉 ∩ k[x], which
can be done by a Gröbner basis computation. This does not
modify the estimates obtained.
We have shown that the theoretical complexity of the algo-
rithm is doubly exponential in the number of variables.

5. PERFORMANCE EVALUATION
In this section, we apply the proposed algorithm to sev-
eral examples given in [4] and [1] and evaluate its perfor-
mance. (We only consider those ideals that are not zero
dimensional.) We implemented the algorithm in Singular
([12]). Our routine uses the subroutine for the reduction
to the zero dimensional case that is already implemented in
the library primdec [5] for the computation of the radical
by Krick-Logar-Kemper algorithm. We compare the times
obtained by our algorithm with the algorithms implemented
in primdec: Krick-Logar-Kemper ([15], [14]) and Eisenbud-
Huneke-Vasconcelos ([8]).
The results are shown in Table 1. All the computations are
done over Q. The ordering of the monomials is always the
degree reverse lexicographical ordering with the underlying
ordering of the alphabet.
The codes for the examples in the first column are the ones
given in [4] and [1]. The second column indicates the di-
mension of the ideal, the third column the total number
of primary components and the fourth column the number
of primary components corresponding to embedded primes.
Timing is measured in hundredth of seconds. The entry *
means that after one day of computations, the algorithm did
not terminate.
In the implementation of KLK in Singular, the original ideal
is first decomposed using factorizing Gröbner bases algo-
rithm and then the radical of each component is computed.
We do the same decomposition in our algorithm.
We see that for time consuming computations, our proposed
algorithm is always faster. We explain briefly the differences
that appear.
In example DGP-29, both KLK and our algorithm obtain
the radical in the first step. Because of the structure of them,
our algorithm stops after that step, but KLK algorithm goes
on computing redundant components. In examples DGP-
16, CCT-83 and CCT-C, after the first step, the saturations

Table 1: Timing results
Code D. Prim.

comps
Emb.
comps

EHV KLK this
paper

DGP-1 3 4 0 * 104 90
DGP-2 3 16 1 * 86 158
DGP-3 2 11 7 240 8 13
DGP-4 6 4 1 53 23 21
DGP-5 3 9 2 * 4271 627
DGP-6 3 3 0 * 158 185
DGP-7 3 6 0 * 45 153
DGP-9 1 12 0 11 * 229
DGP-12 1 25 0 329 5597 247
DGP-14 1 8 6 5 7 10
DGP-16 8 4 0 * 3214 3402
DGP-20 4 2 1 589 74 38
DGP-21 9 9 8 4 39 13
DGP-22 2 9 2 * 63 84
DGP-23 2 18 6 * 111 157
DGP-24 8 6 1 * 14 29
DGP-25 5 7 2 * 225 273
DGP-27 4 3 0 199 5 9
DGP-28 7 2 0 2380 46 56
DGP-29 2 12 11 * 61714 3598
DGP-30 1 14 0 * 132 163
DGP-31 1 1 0 1 6 8
DGP-32 2 17 9 25814 66 265
DGP-33 2 3 0 2 11 16
CCT-M 5 3 0 * 119 129
CCT-83 5 3 0 * * 250
CCT-C 5 4 0 * * 326
CCT-O 2 5 0 1 217 29

computed by our algorithm are simple and the algorithm
terminates quickly, while in KLK algorithm, the polynomials
added are large, and the resulting Gröbner bases are huge
and impossible to handle.

6. ACKNOWLEDGEMENTS
The author thanks Teresa Krick for her guidance in this
work, Gabriela Jeronimo for her valuable comments and cor-
rections and the referees of the previous version of this paper
for their extremely useful suggestions.

7. REFERENCES
[1] M. Caboara, P. Conti, and C. Traverso. Yet another

algorithm for ideal decomposition. Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes,
(12):39–54, 1997.

[2] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and
Algorithms. Springer, 1996.

[3] D. Cox, J. Little, and D. O’Shea. Using Algebraic
Geometry. Springer, 1998.

[4] W. Decker, G.-M. Gruel, and G. Pfister. Primary
decomposition: Algorithms and comparisons.
Algorithmic algebra and number theory, Springer
Verlag, Heidelberg, pages 187–220, 1998.

[5] W. Decker, G. Pfister, and H. Schoenemann.
primdec.lib. A singular 3.0 library for computing
primary decomposition and radical of ideals, 2005.

[6] A. Dickenstein, N. Fitchas, M. Giusti, and C. Sessa.
The membership problem for unmixed polynomial
ideals is solvable in single exponential time. Discrete
Applied Mathematics, (33):73–94, 1991.

[7] T. W. Dube. The structure of polynomial ideals and
grobner bases. SIAM J. Comput., (19):750–773, 1990.

[8] D. Eisenbud, C. Huneke, and W. Vasconcelos. Direct
methods for primary decomposition. Invent. Math.,
(110):207–235, 1992.

[9] P. Gianni, B. Trager, and G. Zacharias. Bases and
primary decomposition of ideals. J. Symbolic
Computation, (6):149–167, 1988.

[10] M. Giusti. Some effective problems in polynomial ideal
theory. EUROSAM 84, Lecture Notes in Computer
Science, (174):159–171, 1984.

[11] G.-M. Greuel and G. Pfister. A Singular Introduction
to Commutative Algebra. Springer, 2002.

[12] G.-M. Greuel, G. Pfister, and H. Schonemann.
Singular 3.0.1. A Computer Algebra System for
Polynomial Computations, Centre for Computer
Algebra, University of Kaiserslautern, 2005.
http://www.singular.uni-kl.de.

[13] J. Heintz. Definability and fast quantifier elimination
over algebraically closed fields. Theor. Comp. Science,
(24):239–278, 1983.

[14] G. Kemper. The calculation of radical ideals in
positive characteristic. J. Symbolic Computation,
(34):229–238, 2002.

[15] T. Krick and A. Logar. An algorithm for the
computation of the radical of an ideal in the ring of
polynomials. AAECC9, Springer LNCS,
(539):195–205, 1991.

[16] T. Krick and A. Logar. Membership problem,
representation problem and the computation of the
radical for one-dimensional ideals. Progress in
Mathematics, (94):203–216, 1991.

[17] T. Krick, L. M. Pardo, and M. Sombra. Sharp
estimates for the arithmetic nullstellensatz. Duke
Math J., (109):521–598, 2001.

[18] R. Matsumoto. Computing the radical of an ideal in
positive characteristic. J. Symbolic Computation,
(32):263–271, 2001.

[19] A. Seidenberg. Constructions in algebra. Trans. Amer.
Math. Soc., (197):273–313, 1974.

[20] W. Vasconcelos. Computational Methods in
Commutative Algebra and Algebraic Geometry.
Springer-Verlag, 1998.

