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Abstract

We study the existence of solutions for the nonlinear elliptic system
∆u + g(u) = f(x), where g ∈ C(RN\S,RN ) and S is a bounded set
of singularities. Using topological degree methods, we prove existence
results. We analyze in particular the case in which S = {0} and the
isolated singularity is of a repulsive nature, by approximating prob-
lems and prove that if an appropriate Nirenberg type condition holds
then the problem has a solution.
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1 Introduction

Let Ω ⊂ Rd a smooth bounded domain. We consider the following elliptic
system: 

∆u+ g(u) = f(x) in Ω
u = C on ∂Ω∫

∂Ω
∂u
∂ν
dS = 0

(1)

with C ∈ RN a yet to be determined constant vector, f : Ω→ RN continuous
and g : RN\S → RN continuous, with S ⊂ RN bounded. Without loss of
generality we may assume that f := 1

|Ω|

∫
Ω
f(x)dx = 0

The particular case S = {0} was extensively studied in the literature: for
example, several results when d = 1 can be found in [5], [6] and [11], among
other works.

The nonlocal boundary conditions in (1) have been studied by Berestycki
and Brézis in [4] and also by Ortega in [9]. They arise from certain mod-
els in plasma physics: specifically, a model describing the equilibrium of a
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plasma confined in a toroidal cavity, called a Tokamak machine. A detailed
description of this problem can be found in the appendix of [12].

Note that when d = 1 and Ω = (a, b), the system reads:

u′′ + g(u) = p(t), t ∈ (a, b).

In this framework, the boundary conditions can be interpreted as follows:

u = C on ∂Ω ⇒ u(a) = u(b);

∫
∂Ω

∂u

∂ν
dS = 0 ⇒ u′(a) = u′(b).

Hence, for d > 1 the nonlocal boundary condition in (1) can be seen as a
generalization of the well known periodic conditions.

The case d = 1 has been studied by the authors in [3]. Using topological
degree methods it was proved that if the nonlinearity g : RN\{0} → RN is
continuous, repulsive at the origin and bounded at infinity, and an appropri-
ate Nirenberg type condition [8] holds, then either the problem has a classical
solution, or else there exists a family of solutions of perturbed problems that
converges uniformly and weakly in H1 to some limit function u. Further-
more, if the singularity is strong (in a sense that will be explained below),
then u is nontrivial and it can be shown, under extra assumptions, that the
problem has always a classical solution.

In this work, we shall consider two different problems. In the next section
we shall allow the (bounded) set S of singularities to be arbitrary and focus
our attention on the behavior of the nonlinear term g over the boundary
of an appropriate domain D ⊂ RN\S. More precisely, we shall assume the
boundedness condition

(B) lim sup|u|→∞ |g(u)| <∞

and introduce a condition of geometric nature that involves the geodesic
distance on Ω, namely:

d(x, y) := inf{lenght(γ) : γ ∈ C1([0, 1],Ω) : γ(0) = x, γ(1) = y}.

Indeed, we shall fix a compact neighborhood C of S and a number

r := k diamd(Ω)(‖f‖∞ + sup
u/∈C
|g(u)|), (2)

where k is a constant such that

‖∇u‖∞ ≤ k‖∆u‖∞

for all u ∈ C2(Ω,RN) satisfying the nonlocal boundary conditions of (1).
Then we shall assume, for a certain D ⊂ RN\(C +Br(0)):
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(D1) For all v ∈ ∂D, 0 /∈ co(g(Br(v))), where ‘co(X)’ stands for the convex
hull of a set X ⊂ RN .

(D2) deg(g,D, 0) 6= 0.

Condition (D1) was introduced by Ruiz and Ward in [10] and extended
in [2] by the first author and Clapp. It generalizes a classical condition given
by Nirenberg in [8] which, in particular, implies that g cannot rotate around
the origin when |u| is large. Condition (D1) is weaker: it allows g to rotate,
although not too fast since r cannot be arbitrarily small.

The main result in Section 2 reads as follows:

Theorem 1.1 Let g ∈ C(RN\S,RN) satisfying (B) and f ∈ C(Ω,RN) such
that f = 0. Let C be a compact neighborhood of S and let r be as in (2). If
there exists a domain D ⊂ RN\(C + Br(0)) such that (D1) and (D2) hold,
then (1) has at least one solution u with u ∈ D and ‖u− u‖∞ < r.

In Section 3 we study the case in which S consists in a single point;
without loss of generality, it may be assumed S = {0}. We shall focus our
attention on the way g behaves near the singular point. In first place, we
shall assume that g is repulsive, namely:

(Rep) There exists c > 0 such that 〈g(u), u〉 < 0 for 0 < |u| < c.

Furthermore, it will be assumed that g is sequentially strongly repulsive, in
the following sense:

(Seq) There exists a sequence rn ↘ 0 such that.

sup
|u|=rn

〈
g(u),

u

|u|

〉
→ −∞ as n→∞.

We shall proceed as follows: firstly, we shall prove existence of at least
one solution of an approximated problem. Next, we shall obtain accurate es-
timates and deduce the existence of a convergent sequence of these solutions.

In order to define the approximated problems, fix a sequence εn → 0 and
consider the problem

∆u+ gn(u) = f(x) in Ω (3)

together with the nonlocal boundary conditions of (1). Although more gen-
eral perturbations are admitted, for convenience we shall define gn by
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gn(u) =


g(u) |u| ≥ εn

ρn(|u|)g
(
εn

u
|u|

)
0 < |u| < εn

0 u = 0,

(4)

with ρn : [0, εn]→ [0,+∞) continuous such that ρn(0) = 0, ρn(εn) = 1.
The conditions on g shall be, as before, of geometric nature. However,

a stronger assumption is needed in order to obtain uniform estimates. A
similar condition has been introduced by one of the authors and De Nápoli
in [1] and has been employed also in [3] for a system of singular periodic
ordinary differential equations:

(P1) There exists a family F = {(Uj, wj)}j=1,...,J , where {Uj}j=1,...,J is an
open cover of SN−1, constants cj > 0 and wj ∈ SN−1, such that for
j = 1, . . . , K:

lim sup
r→+∞

〈g(ru), wj〉 ≤ −cj

uniformly for u ∈ Uj.

On the other hand, we shall take advantage of the repulsiveness condition
(Seq), which ensures that the degree over certain small balls centered at the
origin is (−1)N . Thus, (D2) shall be replaced by

(P2) There exists a R0 > 0 such that deg(g,BR, 0) 6= (−1)N for r ≥ R0.

The preceding conditions will allow us to construct a sequence {un} of
solutions of the approximated problems that converges weakly in H1 to some
function u. It is easy to see that if u does not vanish on Ω, then u is a classical
solution of the problem. If u 6≡ 0 but possibly vanishes in Ω, then we shall
call it a generalized solution. With this idea in mind, let us introduce a
stronger repulsiveness condition:

(SR) limu→0 〈g(u), u〉 = −∞.

We now state the main result of Section 3:

Theorem 1.2 Let g : RN\{0} → RN be continuous satisfying (B), (Rep),
(Seq) and let f ∈ C(Ω,RN) with f = 0. Suppose that (P1) and (P2) hold
and let {gn} be as in (4). Then there exist {un}n solutions of (3), a positive
constant r̃ such that ‖un‖∞ ≥ r̃ and a subsequence of {un} that converges
weakly in H1 to some function u. If furthermore (SR) is assumed, then u is
a generalized solution of the problem.

Remark 1.3 All the preceding results can be reproduced similarly for the
Neumann boundary conditions.
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2 The general case. Proof of Theorem 1.1

Let U = {u ∈ C(Ω,RN) : ‖u− u‖∞ < r, u ∈ D} and consider, for λ ∈ (0, 1],
the problem 

∆u+ λĝ(u) = λf(x) in Ω
u = C on ∂Ω∫

∂Ω
∂u
∂ν
dS = 0,

(5)

where ĝ : RN → RN is continuous and bounded with ĝ = g over D +Br(0).
It is clear that if u ∈ U solves (5) for λ = 1 then u is a solution of (1). Thus,
from the standard continuation methods [7] it suffices to prove that (5) has
no solutions on ∂U for 0 < λ < 1.

Indeed, if u ∈ ∂U is a solution of (5), then u ∈ D and ‖u− u‖∞ ≤ r, so
ĝ ◦ u = g ◦ u. As dist(u, C) ≥ r, we deduce that u(x) ∈ RN − C and hence
|g(u(x))| ≤ supz /∈C|g(z)| for all x. This implies

‖∇u‖∞ ≤ k‖∆u‖∞ < k(‖f‖∞ + supz /∈C|g(z)|),

and thus

‖u− u‖∞ ≤ diamd(Ω)‖∇u‖∞ < r.

Hence, u ∈ ∂D. Moreover, it follows from the mean value theorem for
vector integrals that

1

|Ω|

∫
Ω

g(u(x)) dx ∈ co(g(u(Ω))) ⊂ co(g(Br(u))).

On the other hand, simple integration shows that∫
Ω

g(u(x)) dx = 0,

so 0 ∈ co(g(Br(u))), a contradiction. �

Remark 2.1 In this framework, taking S = ∅ we obtain the main result in
[10] for the non-singular case, conveniently adapted to our problem.

Remark 2.2 After a more accurate computation of the a priori estimates,
the preceding theorem can be extended for g sublinear, namely, for g satisfy-
ing:

lim
|u|→∞

g(u)

|u|
= 0.
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Let us show an example that illustrates the possibility of obtaining multi-
ple solutions. For convenience, let us call Bρ := Bρ(0) = {u ∈ RN : |u| < ρ}.

Example 2.3 Let A : RN → RN be continuous and bounded, a = ‖A‖∞ and

b > 0. Define g(u) = A(u)
|u|(b−|u|) , so S = {0} ∪ ∂Bb. Let η > 0 and consider the

following compact set:

C = Bη ∪
(
Bb+η\Bb−η

)
.

Hence, RN\C = (Bb−η\Bη) ∪ (RN\Bb+η). From the previous computa-
tions, the following estimate holds:

‖∇u‖∞ ≤ K := k

(
‖f‖∞ +

a

η(b+ η)

)
Thus,

r = diamd(Ω)k

(
‖f‖∞ +

a

η(b+ η)

)
.

If also b > 2(r + η), then we might be able to obtain two disjoint sets
D1, D2 ⊂ RN\ (C +Br) such that:

D1 ⊂ Bb−η−r\Bη+r, D2 ⊂ RN\Bb+η+r

leading to two different solutions u1, u2 with u1 ∈ D1 and u2 ∈ D2 respec-
tively.

In order to apply our previous result, observe that condition (D1) requires
η + 2r < b− η − 2r, that is: b > 4r + 2η.

For example, let T > 0 be large enough and define g : Bb+T\S → RN by

g(u) :=
(|u| − x1)(|u| − x2)u

|u|(|u| − b)

for some numbers x1, x2 > 0. The numerator of this function can be extended
continuously to RN\S in such a way that a ≤ (b + T )3. Taking diam(Ω)
small enough, the preceding inequalities for r are satisfied, so we may fix
x1 ∈ (η + 2r, b− η − 2r) and x2 ∈ (b+ η + 2r, b+ T − 2r).

Thus, all the assumptions are satisfied for D1 and D2; hence, by Theorem
1.1 we deduce the existence of classical solutions u1 6= u2 of problem (1) such
that ui ∈ Di, for i = 1, 2.

Remark 2.4 This example shows that the if the assumptions of Theorem
1.1 are verified, then the distance between different conected components of
S cannot be too small.
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3 The case S = {0}
Before giving a proof of Theorem 1.2, let us make some comments on the
concept of generalized solution. Let un be a weak solution of (3) such that
un → u weakly in H1. From the equality∫

Ω

∆unϕ+

∫
Ω

gn(un)ϕ =

∫
Ω

fϕ ∀ϕ ∈ H

we deduce that the operator A : H → RN given by

Aϕ = lim
n→∞

∫
Ω

gn(un)ϕ

is well defined and continuous, that is: A ∈ H−1. In fact,

Aϕ =

∫
Ω

fϕdx+
∑
j=1

∇uj∇ϕjdx

so we may regard it as a pair (f,∇u) ∈ H−1, namely

Aϕ := (f,∇u)[ϕ].

Thus, we are able to define the operator G : H → H−1 by

G(u) := (f,∇u); i.e. G(u)[ϕ] = Aϕ. (6)

As shown in [3], it is always possible to find approximations in such a way
that u ≡ 0, this is why we need to exclude this case in the definition of
generalized solution.

Also, observe that if u does not vanish in Ω then for any ϕ ∈ H then

G(u)[ϕ] = Aϕ = lim
n→∞

∫
Ω

gn(un)ϕdx =

∫
Ω

g(u)ϕdx

So a generalized solution can be regarded as a nontrivial distributional solu-
tion of the equation

∆u+ G(u) = f.

In order to prove Theorem 1.2, firstly let us state an existence result for
the approximated problems.

Proposition 3.1 Let Ω ⊂ Rd a bounded C2 domain. Let g : RN\{0} → RN

be continuous satisfying (B), (Rep), (Seq) and let f ∈ C(Ω,RN) with f = 0.
Suppose that (P1) and (P2) hold and let {gn} be as in (4). Then there exist
{un}n solutions of (3) and a constant r̃ > 0 such that ‖un‖∞ ≥ r̃.
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Proof:
Fix r̃ > 0 such that〈

g(u),
u

|u|

〉
+ ‖f‖L∞ < 0 for |u| = r̃. (7)

As before, we shall apply the continuation method, now over the set

U := {u ∈ C(Ω,RN) : r̃ < ‖u‖∞ < R}

for some R > r̃ to be specified.
Suppose that for some λ ∈ (0, 1) there exists u ∈ ∂U a solution of (5).
If ‖u‖∞ = r̃, then we may fix x0 such that ‖u‖∞ = |u(x0)| = r̃ and define

φ(x) := |u(x)|2
2

.
For x0 ∈ Ω, it is seen that

∆φ(x0) = |∇u(x0)|2 + 〈u(x0),∆u(x0)〉 ≥ 〈u(x0), f(x0)− g(u(x0))〉 =

= λ

[
〈u(x0), f(x0)〉 − |u(x0)|〈g(u(x0)),

u(x0)

|u(x0)|
〉
]
≥

≥ r̃

[
−‖f‖∞ −

〈
g(u(x0)),

u(x0)

|u(x0)|

〉]
> 0,

a contradiction.
If x0 ∈ ∂Ω, then r̃ = |C|. Moreover,∫

∂Ω

∂φ

∂ν
dS =

∫
∂Ω

〈
u,
∂u

∂ν

〉
dS = 〈C,

∫
∂Ω

∂u

∂ν
dS〉 = 0. (8)

From the continuity of φ, arguing as before we deduce that, ∆φ > 0 in
B2δ(x0) ∩ Ω for some δ > 0.

From the standard regularity theory, it follows that u ∈ C2(Ω) ∩ C1(Ω).
Moreover, we may consider a C2 domain Ω0 ⊂ Ω such that Bδ ∩Ω ⊂ Ω0 and
Ω0 ⊂ B2δ ∩ Ω; then φ(x0) > φ(x) for every x ∈ Ω0, and from Hopf’s Lemma
we obtain

∂φ

∂ν
(x0) > 0.

As u ≡ C on the boundary, then |u(x)| ≡ r̃ and so ∂φ
∂ν

(x) > 0 for each
x ∈ ∂Ω. This contradicts (8) and thus ‖u‖∞ = R.

For n large, it follows that ‖u − u‖∞ < r and from condition (P1) we
deduce (D1) for D = BR(0) when R is sufficiently large. As in Theorem 1.1,
a contradiction yields.
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Finally, observe that the repulsiveness condition implies that the degree
deg(gn, Br̃, 0) = (−1)N so, by the excision property of the degree, condition
(P2) ensures that deg(gn, U ∩ RN , 0) 6= 0 and so completes the proof.

�
The following Lemma shows that the solutions of the perturbed problems

are also bounded for the H1 norm.

Lemma 3.2 In the situation of Proposition 3.1, there exists a constant C
independent of n such that ‖un‖H1 ≤ C for all n.

Proof:
As ∆un + gn(un) = f(x) in Ω and un ≡ Cn on ∂Ω, we may multiply by
un − Cn and integrate to obtain:∫

Ω

〈∆un + gn(un), un − Cn〉 dx =

∫
Ω

〈p, un − Cn〉 dx.

Integrating by parts, the left hand side is equal to:

−
∫

Ω

|∇un|2 dx+

∫
∂Ω

〈
∂un
∂ν

, un − Cn
〉
dS +

∫
Ω

〈gn(un), un − Cn〉 dx

As un ≡ Cn on ∂Ω, it follows that

‖∇un‖2
L2 =

∫
Ω

〈gn(un), un − Cn〉 dx−
∫

Ω

〈p, un − Cn〉 dx.

Now, taking absolute value and using the Cauchy-Schwarz inequality, we
get

‖∇un‖2
L2 ≤

∣∣∣∣∫
Ω

〈gn(un), un − Cn〉 dx
∣∣∣∣+ ‖p‖L2‖un − Cn‖L2 .

Let c be the constant in condition (Rep) and write:

∣∣∫
Ω
〈gn(un), un − Cn〉 dx

∣∣ ≤ ∣∣∣∫{|un|<c}〈gn(un), un − Cn〉 dx
∣∣∣

+
∣∣∣∫{|un|≥c}〈gn(un), un − Cn〉 dx

∣∣∣ .
Fix n0 ∈ N such that 1

n
< c for every n ≥ n0, then gn(un(x)) = g(un(x))

if |un(x)| > c > 1
n

and hence on the one hand∣∣∣∣∫
{|un|≥c}

〈gn(un), un − Cn〉 dx
∣∣∣∣ ≤ |Ω|1/2γc‖un − Cn‖L2 ,
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where γc := sup|u|>c |g(u)| and, on the other hand:∫
{|un|<c}

〈gn(un), un − Cn〉 dx ≤ −
∫
{|un|<c}

〈gn(un), Cn〉 dx.

Moreover, as
∫

Ω
gn(un) dx = 0, we deduce that∫

{|un|<c}
〈gn(un), un − Cn〉 dx ≤

〈
Cn,

∫
{|u|≥c}

gn(un)

〉
dx ≤ |Ω|1/2γc|Cn|.

Gathering all together,∣∣∣∣∫
Ω

〈gn(un), un − Cn〉 dx
∣∣∣∣ ≤ |Ω|1/2γc (‖un − Cn‖L2 + |Cn|) .

Thus,
‖∇un‖2

L2 ≤ C1‖un − Cn‖L2 + C2|Cn|

for some constants C1,C2. Using Poincaré inequality, we deduce the existence
of a constant C such that

‖∇un‖2
L2 ≤ C|Cn|

and hence

‖un − Cn‖2
H1 ≤ A+B|Cn| for some A,B > 0.

Suppose that |Cn| is unbounded, then taking a subsequence (still denoted
Cn) we may assume that |Cn| → +∞, Cn

|Cn| → η ∈ SN−1. From the inequality∥∥∥∥∥un − Cn√
|Cn|

∥∥∥∥∥
2

H1

≤ A

|Cn|
+B ∀n ≥ n0,

we may take again a subsequence and thus assume that un−Cn√
|Cn|

converges

almost everywhere and weakly in H1 to some w ∈ H1.
Let ε > 0 and fix M large enough so that |Ω\ΩM | < ε, where

ΩM := {x ∈ Ω : |w(x)| ≤M}.

Then un−Cn

|Cn| → 0 and un
|un| → η almost everywhere in ΩM .

Fix Uk ⊂ SN−1 as in (P1) such that η ∈ Uk, then writing

〈g(un(x)), wk〉 =

〈
g

(
|un(x)| un(x))

|un(x)|

)
, wk

〉
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we deduce that
lim sup
n→∞

〈g(un(x)), wk〉 ≤ −ck

a.e. in ΩM . Thus we obtain, from Fatou’s Lemma:

lim sup
n→∞

∫
ΩM

〈g(un(x)), wk〉 dx ≤
∫

ΩM

lim sup
n→∞

〈g(un(x)), wk〉 dx ≤ −ck|ΩM |.

We may assume that M ≥ c, then taking ε < ck|Ω|
γc

we conclude:

lim sup
n→∞

∫
Ω

〈g(un(x)), wk〉 dx ≤ −ck|ΩM |+ lim sup
n→∞

∫
Ω\ΩM

〈g(un(x)), wk〉 dx

≤ −ck|ΩM |+ γc|Ω\ΩM | < 0,

which contradicts the fact that
∫

Ω
g(un(x)) dx = 0.

�
Proof of Theorem 1.2:
From the preceding results, there exists a sequence (still denoted {un}) of
solutions of the approximated problems converging a.e. and weakly in H1 to
some function u, and also such that ‖un‖∞ ≥ r̃. It remains to prove that if
(SR) holds then u 6≡ 0.

Suppose that u ≡ 0, then from (3) we obtain∫
Ω

〈∆un(x), un(x)〉+ 〈g(un(x)), un(x)〉 dx =

∫
Ω

〈p(x), un(x)〉 dx→ 0

as n→∞. Moreover,∫
Ω

〈∆un(x), un(x)〉 dx = −
∫

Ω

|∇un(x)|2 dx

is bounded, and from (SR) an Fatou’s Lemma we obtain

lim sup
n→∞

∫
Ω

〈g(un(x)), un(x)〉 dx ≤
∫

Ω

lim sup
n→∞

〈g(un(x)), un(x)〉 dx = −∞

a contradiction.
�

4 Acknowledgments

We thank Pablo De Nápoli for his ideas on the subject and his appreciations
at the genesis of this work.

This work has been supported by the projects UBACyT 20020090100067
and CONICET PIP 11220090100637.

11



5 References

References
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