
BASIC ALGEBRAIC AND TOPOLOGICAL K-THEORY

GUILLERMO CORTIÑAS

Abstract. These notes, prepared for a minicourse given in Swisk, the Sedano Winter School

on K-theory held in Sedano, Spain, during the week January 22–27 of 2007, are themselves

based on a course given in the University of Buenos Aires during the second semester of 2006.
They intend to be an introduction to K-theory, with emphasis in the comparison between its

algebraic and topological variants. We have tried to keep as elementary as possible. The first

lecture introduces K0, K1 and K≤0, and discusses excision. Lecture II introduces Ktop for
Banach algebras, and sketches Cuntz’ proof of Bott periodicity for C∗-algebras, via the C∗-
Toeplitz extension. The parallelism between Bott periodicity and the fundamental theorem for

nonpositive K-theory is emphasized by the use of the algebraic Toeplitz extension in the proof
of the latter. Then an elementary definition of homotopy algebraic K-theory is given, and its

basic properties are proved. In Lecture III we introduce Quillen’s algebraic K-theory by means

of the plus construction, and sketch a proof of the fundamental theorem using the algebraic
Toeplitz extension. The excision theorems of Suslin and Wodzicki are discussed. After recalling

the homotopy invariance theorem for C∗-algebras, we give a proof of Karoubi’s conjecture in

both the C∗ and Banach cases. Next we review the spectrum definition of KH and of diffeotopy
K-theory and the associated spectral sequences. The lecture ends with the homotopy invariance

theorems for locally convex algebras and a proof of the isomorphism between KH and Ktop

in the stable case. In Lecture IV we introduce the various characters connecting K-theory to

cyclic homology and prove an exact sequence which shows that for stable locally convex algebras,

algebraic cyclic homology measures the obstruction for the comparison map K → Ktop to be
an isomorphism. Then we discuss some open problems in connection with this exact sequence.

Finally we review bivariant algebraic K-theory, its relation with KH, and the definition of the

bivariant Chern character.

1. Lecture I

Notations 1.0.1. Throughout these notes, A,B,C will be rings and R,S, T will be rings with unit.

Let R be a ring with unit. Write MnR for the matrix ring. Regard MnR ⊂ Mn+1R via

(1) a 7→
[
a 0
0 0

]
Put

M∞R =
∞⋃

n=1

MnR

Note M∞R is a ring (without unit). We write IdemR for the set of idempotent elements of M∞R.
Thus

M∞R ⊃ IdemR := {e : e2 = e} =
∞⋃

n=1

IdemnR.

We write GLnR ⊂ MnR for the group of invertible matrices. Regard GLnR ⊂ GLn+1R via

g 7→
[
g 0
0 1

]
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MTM00958.

1



2 GUILLERMO CORTIÑAS

Put

GLR :=
∞⋃

n=1

GLnR

Note GLR acts by conjugation in M∞R, IdemR and, of course, GLR.
For a, b ∈ M∞R there is defined the direct sum

(2) a⊕ b :=


a1,1 0 a1,2 0 a1,3 0 . . .
0 b1,1 0 b1,2 0 b1,3 . . .

a2,1 0 a2,2 0 a2,3 0 . . .
...

...
...

...
...

...
...


We remark that if a ∈ MpR and b ∈ MqR then a⊕ b ∈ Mp+qR and is conjugate, by a permutation
matrix, to the usual direct sum [

a 0
0 b

]
One checks that ⊕ is associative and commutative up to conjugation. Thus the coinvariants under
the conjugation action

I(R) := (Idem(R)GLR,⊕)
form an abelian monoid.

Lemma 1.0.2. Let M be an abelian monoid. Then there exist an abelian group M+ and a monoid
homomorphism M → M+ such that if M → G is any other such homomorphism, then there exists
a unique group homomorphism M+ → G such that

M //

!!DD
DD

DD
DD

M+

��
G

commutes.

Proof. Let F be the free abelian group on one generator em for each m ∈ M , and let S ⊂ F be the
subgroup generated by all elements of the form em1 + em2 − em1+m2 . One checks that M+ = F/S
satisfies the desired properties. �

Definition 1.0.3.

K0(R) := I(R)+

K1(R) := GLRGLR =
GLR

[GLR,GLR]
= GLRab.

Facts 1.0.4. (see [29, Section 2.1])

• [GLR,GLR] = ER :=< 1 + aei,j : a ∈ R, i 6= j >, the subgroup of GLR generated by
elementary matrices.

• If α ∈ GLnR then[
α 0
0 α−1

]
∈ E2nR (Whitehead’s Lemma).

As a consequence of the last fact, if β ∈ GLnR, then

αβ =
[
αβ 0
0 1n×n

]
=

[
α 0
0 β

] [
β 0
0 β−1

]
(3)

≡α⊕ β ModER.
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1.1. The maps Z → K0R and R∗
ab → K1R. Let r ≥ 1. Then

pr = 1r×r ∈ IdemR.

Also since pr⊕ps = pr+s, r 7→ pr defines a monoid homomorphism N → I(R). Applying the group
completion functor we obtain a group homomorphism

(4) Z = N+ → I(R)+ = K0R.

Similarly, the inclusion R∗ = GL1R ⊂ GLR induces a homomorphism

(5) R∗
ab → K1R

Example 1.1.1. If F is a field, and e ∈ IdemF is of rank r, then e is conjugate to pr; moreover pr

and ps are conjugate ⇐⇒ r = s. Thus (4) is an isomorphism in this case. Assume more generally
that R is commutative. Then (4) is a split monomorphism. Indeed, there exists a surjective unital
homomorphism R � F onto a field F ; the induced map K0(R) → K0(F ) = Z is a left inverse
of (4). Similarly, (5) is a split monomorphism, split by the map det : K1R → R∗ induced by the
determinant.

Example 1.1.2. The following are examples of rings for which the maps (4) and (5) are isomor-
phisms: fields, division rings, principal ideal domains (PIDs) and local rings. Recall that a ring R
is a local ring if R\R∗ is an ideal of R. For instance if k is a field, then the k-algebra k[ε] := k⊕ kε
with ε2 = 0 is a local ring. Indeed k[ε]∗ = k∗ + kε and k[ε]\k[ε]∗ = kε / k[ε].

Example 1.1.3. Here is an example of a local ring involving operator theory. Let H be a separable
Hilbert space over C; put B = B(H) for the algebra of bounded operators. Write K ⊂ B for the
ideal of compact operators, and F for that of finite rank operators. The Riesz-Schauder theorem
from elementary operator theory implies that if λ ∈ C∗ and T ∈ K then there exists an f ∈ F such
that λ + T + f is invertible in B. In fact one checks that if F ⊂ I ⊂ K is an ideal of B such that
T ∈ I then the inverse of λ + T + f is again in C⊕ I. Thus the ring

RI := C⊕ I/F
is local.

1.2. Infinite sum rings. Recall from [35] that a sum ring is a unital ring R together with elements
αi, βi, i = 0, 1 such that the following identities hold

α0β0 = α1β1 = 1

β0α0 + β1α1 = 1(6)

If R is a sum ring, then

� : R×R → R,(7)

(a, b) 7→ a � b = β0aα0 + β1bα1

is a unital homomorphism. In fact Wagoner has shown that if a, b ∈ R then there is a matrix
Q ∈ GL3R which conjugates a � b to a⊕ b ([35, page 355]). But as Kn is a matrix stable functor
of unital rings, inner automorphisms induce the identity on KnR ([6, 5.1.2]), whence ⊕ and � are
the same operation on KnR. Thus � is the sum in KnR. An infinite sum ring is a sum ring R
together with a unit preserving ring homomorphism ∞ : R → R, a 7→ a∞ such that

(8) a � a∞ = a∞ (a ∈ R).

Because � induces the group operation in KnR, it follows that KnR = 0 (n = 0, 1).

Example 1.2.1. Let A be a ring. Write ΓA for the ring of all N×N matrices a = (ai,j)i,j≥1 which
satisfy the following two conditions:

(i) The set {aij , i, j ∈ N} is finite.
(ii) There exists a natural number N ∈ N such that each row and each column has at most N

nonzero entries.
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It is an exercise to show that ΓA is indeed a ring and that M∞A ⊂ ΓA is an ideal. The ring ΓA is
called (Karoubi’s) cone ring; the quotient ΣA := ΓA/M∞A is the suspension of A. Assume A has
a unit; one checks that the the following elements of ΓA

α1 =
∞∑

i=0

ei,2i, β1 =
∞∑

i=0

e2i,i, α2 =
∞∑

i=0

ei,2i+1, and β2 =
∞∑

i=0

e2i+1,i.

satisfy the identities (6). Let a ∈ ΓA. Because the map N × N → N, (k, i) 7→ 2k+1i + 2k − 1, is
injective, the following assignment defines gives a well-defined, N× N-matrix

(9) φ∞(a) =
∞∑

k=0

βk
2β1aα1α

k
2 =

∑
k,i,j

e2k+1i+2k−1,2k+1j+2k−1 ⊗ ai,j .

One checks that φ∞ is a ring endomorphism of ΓA which satisfies (8) (see [6, 4.8.2]). In particular
KnΓA = 0. A further useful fact about Γ and Σ is that the well-known isomorphism M∞Z⊗A ∼=
M∞A extends to Γ, so that there are isomorphisms (see [6, 4.7.1])

ΓZ⊗A
∼=→ ΓA and ΣZ⊗A

∼=→ ΣA.

Exercise 1.2.2. Let B and H be as in Example 1.1.3. Choose a Hilbert basis {ei}i≥1 of H, and
regard B as a ring of N×N matrices. With these identifications, show that B ⊃ ΓC. Deduce from
this that B is a sum ring. Further show that (9) extends to B, so that the latter is in fact an
infinite sum ring.

1.3. Basic properties of Kn for n = 0, 1.
• Additivity: If R1 and R2 are unital rings, then each of the projections R := R1 × R2 →

Ri induces a group homomorphism Kn(R) → Kn(Ri), which, when added up yield a
homomorphism

Kn(R) → Kn(R1)⊕Kn(R2)
One checks that this map is in fact an isomorphism.
Application: extension to nonunital rings. If A is any (not necessarily unital) ring, then
the abelian group Ã = A⊕ Z equipped with the multiplication

(a + n)(b + m) := ab + nm (a, b ∈ A, n, m ∈ Z)

is a unital ring, with unit element 1 ∈ Z, and Ã → Z, a+n 7→ n, is a unital homomorphism.
Put

Kn(A) := ker(KnÃ → KnZ)
If A happens to have a unit, we have two definitions for KnA. To check that they are the
same, one observes that the map

Ã → A× Z, a + n 7→ (a + n · 1, n)

is a unital isomorphism. Under this isomorphism, Ã → Z identifies with A× Z → Z, and
ker(Kn(Ã) → KnZ) with ker(KnA⊕KnZ → KnZ) = KnA.

• Matrix stability: We have a canonical isomorphism Kn(MpR) ∼= Kn(R). The isomorphism
is induced by the (nonunital) ring homomorphism (1).

• Continuity: Kn preserves colimits of filtered systems of (not necessarily unital) rings; that
is, the canonical map

colim
i

Kn(Ai) → Kn(colim
i

Ai)

is an isomorphism.
Note that matrix stability combined with continuity yields

Kn(M∞R) = KnR.
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• Nilinvariance for K0: If I / R is a nilpotent ideal, then K0(R) → K0(R/I) is an isomor-
phism. This property is a consequence of the well-known fact that nilpotent extensions
admit idempotent liftings, and that any two liftings of the same idempotent are conjugate.
Note that K1 does not have the same property, as the following example shows.

Example 1.3.1. Let k be a field. Then by 1.1.2, K1(k[ε]) = k∗ + kε and K1(k) = k∗.
Thus k[ε] → k[ε]/εk[ε] = k does not become an isomorphism under K1.

Remark 1.3.2. The functor GL : Rings1 → Grp preserves products. Hence it extends to all rings
by

GL(A) := ker(GL(A⊕ Z) → GLZ)
It is a straightforward exercise to show that, with this definition, GL becomes a left exact functor
in Rings; thus if A / B is an ideal embedding, then GL(A) = ker(GL(B) → GL(B/A)). It is
straightforward from this that the group K1A defined above can be described as

K1A = GL(A)/E(Ã) ∩GL(A)

A little more work shows that E(Ã) ∩GL(A) is the smallest normal subgroup of E(Ã) generated
by the elementary matrices 1 + aei,j with a ∈ A [29, 2.5].

1.4. Excision. The reason one considers K0 and K1 as part of the same theory is that they are
connected by a long exact sequence, as shown by the following theorem.

Theorem 1.4.1. Let

(10) 0 → A → B → C → 0

be an exact sequence of rings. Then there is a long exact sequence

K1A // K1B // K1C

∂

��
K0C K0Boo K0Aoo

Remark 1.4.2. Let g ∈ GLn(C) = ker(GLn(C̃) → GLn(Z)), and let ĝ, ĝ∗ ∈ MnB̃ be liftings of g
and g−1. Then pn and its conjugate under

h :=
[
2ĝ − ĝĝ∗ĝ ĝĝ∗ − 1
1− ĝ∗ĝ ĝ∗

]
∈ GL2n(B̃)

both go to the class of pn in K0(C). The connecting map ∂ of the long exact sequence above sends
the class of g to the difference [hpnh−1]− [pn] ∈ ker(K0(Ã) → K0(Z)) = K0(A).

Corollary 1.4.3. Assume (10) is split by a ring homomorphism C → B. Then K0(A) → K0(B)
is injective, and induces an isomorphism

K0(A) = ker(K0(B) → K0(C))

Because of this we say that K0 is split exact.

Remark 1.4.4. (Swan’s example [33]) K1 is not split exact. To see this, let k be a field, and consider
the ring of upper triangular matrices

T :=
[
k k
0 k

]
The set I of strictly upper triangular matrices forms an ideal of T , isomorphic as a ring, to the
ideal kε / k[ε]. By Example 1.1.2, ker(K1(k[ε]) → K1(k)) ∼= kε, the additive group underlying k.
If K1 were split exact, then also ker(K1(T ) → K1(k × k)) should be isomorphic to k. However we
shall see presently that

ker(K1(T ) → K1(k × k)) = 0
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It suffices to show that the inclusion k × k ⊂ T

(λ, µ) 7→
[
λ 0
0 µ

]
induces a surjection K1(k×k) → K1(T ). Note that if g ∈ GLnT , then its image in Mn(k×k) must
be invertible. Thus each column and each row of g must have a coefficient (which is an element
of T and thus a matrix) such that both its diagonal coefficients are nonzero. Note any such an
element of T is invertible. Using row and column operations (which do not change the class in
K1) we can replace g by a diagonal matrix in the same conjugacy class. Using (3), we can further
replace the diagonal matrix by a 1 × 1 matrix. Thus T ∗ab → K1(T ) is onto. To finish, we must
show that if λ ∈ k then the element 1 + λe12 ∈ T ∗ is in ET . We leave this as an exercise.

Exercise 1.4.5. Use the previous corollary to prove that the matrix invariance and nilinvariance
properties of K0 cited above remain valid for nonunital rings, and that K0(ΓA) = 0 for all rings
A.

Example 1.4.6. Let R be a unital ring. Applying the theorem above to the cone sequence

(11) 0 → M∞R → ΓR → ΣR → 0

we obtain an isomorphism

(12) K1(ΣR) = K0(R).

The example above motivates the following definition.

Definition 1.4.7. Let A be a ring and n ≥ 0. Put

K−nA := K0(ΣnA).

Properties of K≤0 1.4.8.
• Using the fact that Σ preserves exact sequences, the isomorphism (12) and Theorem 1.4.1,

one shows, first for B → C unital and then in general, that the sequence of 1.4.1 extends
to all negative Kn. In particular it follows that Kn is split exact.

• From the fact, mentioned above, that ΣA = ΣZ⊗A, and that similarly MpA = MpZ⊗A,
it follows that ΣMpA = MpΣA. Taking this into consideration it is immediate that the
isomorphism K0(MpA) = K0(A) is valid for all Kn with n ≤ 0.

• Since tensor products preserve filtering colimits, the functor Σ does. Since K0 is continous,
it follows that the same is true for Kn (n ≤ 0).

• If I / A is a nilpotent ideal, then KnA → Kn(A/I) is an isomorphism for all n ≤ 0.
• Recall a noetherian unital ring R is called regular if every finitely generated R-module has

a projective resolution of finite length. It is a theorem of Bass that if R is noetherian
regular, then KnR = 0 for n < 0 (see Schlichting’s lectures).

Example 1.4.9. It is well-known that the map M∞C → F induces an isomorphism in K0; in
particular K0(F) = Z. Next we use this fact to show that K0(I) = Z for any ideal 0 6= I ( B. It
is classical that F ⊂ I ⊂ K for any such ideal. We have a commutative diagram with exact rows
and split exact columns

0 // F // I

��

// I/F //

��

0

0 // F // C⊕ I

��

// RI
//

��

0

C C
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It follows from the discussion of Example 1.1.3 that the map K1(C⊕I) → K1(RI) is onto. Similarly,
K0(RI) → K0(C) is an isomorphism because RI is local. Thus K0(I/F) = 0 by split exactness.
It follows that Z = K0(F) → K0(I) is an isomorphism.

Exercise 1.4.10. A theorem of Karoubi asserts that K−1(K) = 0 [21]. Use this and excision to
show that K−1(I) = 0 for any operator ideal I.

2. Lecture II

We saw in the last lecture that K1 is not split exact. It follows from this that there is no way of
defining higher K-groups such that the long exact sequence of Theorem 1.4.1 can be extended to
higher K-theory. This motivates the question of whether this problem could be fixed if we replaced
K1 by some other functor. This is succesfully done in topological K-theory of Banach algebras.

2.1. Topological K-theory. Banach algebras. A Banach (C-) algebra is a C-algebra together
with a norm || || which makes it into a Banach space and is such that there exists a constant
C such that ||xy|| ≤ C||x|| · ||y|| for all x, y ∈ A. If A is a Banach algebra then A ⊕ C is a
unital Banach algebra with norm ||a + λ|| := ||a||+ |λ|. An algebra homomorphism is a morphism
of Banach algebras if it is continuous. If X is a compact Hausdorff space and A is a Banach
algebra, then the algebra C(X, A) of continuous functions X → A is a Banach algebra with norm
||f ||∞ := supx ||f(x)||. If X is locally compact and X+ its one point compactification then the
algebra C0(X, A) of continuous functions on X+ vanishing at infinity is again a Banach algebra,
isomorphic to the kernel of the homomorphism C(X+, A) → C, f 7→ f(∞). We write A[0, 1] for the
algebra of continous functions [0, 1] → A, and A(0, 1] and A(0, 1) for the ideals of those functions
which vanish respectively at 0 and at both endpoints. Two homomorphisms f0, f1 : A → B of
Banach algebras are called homotopic if there exists a homomorphism H : A → B[0, 1] such that
the following diagram commutes.

B[0, 1]

(ev0,ev1)

��
A

H
<<yyyyyyyyy

(f0,f1)
// B ×B

A functor G from Banach algebras to abelian groups is called homotopy invariant if it maps
homotopic maps to equal maps.

Exercise 2.1.1. Prove that G is homotopy invariant if and only if for every Banach algebra A
the map G(A) → G(A[0, 1]) induced by the natural inclusion A ⊂ A[0, 1] is an isomorphism.

Theorem 2.1.2. ([29, 1.6.11]) K0 is a homotopy invariant functor on Banach algebras.

Example 2.1.3. K1 is not homotopy invariant. The algebra A := C[ε] is a Banach algebra with
norm ||a + bε|| = |a| + |b|. Both the inclusion ι : C → A and the projection π : A → C are
homomorphisms of Banach algebras; they satisfy πι = 1. Moreover the map H : A → A[0, 1],
H(a + bε)(t) = a + tbε is also a Banach homomorphism, and satisfies ev0H = ιπ, ev1H = 1. Thus
any homotopy invariant functor G sends ι and π to inverse homomorphisms; since K1 does not do
so, it is not homotopy invariant.

The previous theorem and the example above suggest that we may try to modify K1 to obtain a
homotopy invariant version.

Definition 2.1.4. Let R be a unital Banach algebra. Put

GL(R)0 := {g ∈ GL(R) : ∃h ∈ GL(R[0, 1]) : h(0) = 1, h(1) = g}.

The topological K1 of R is
Ktop

1 R = GL(R)/GL(R)0
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Exercise 2.1.5. Show that if we regard GL(R) = colimn GLn(R) with the topology inherited
from that of R, then Ktop

1 R = π0(GL(R)). Then show that Ktop
1 is homotopy invariant.

Note that if R is a unital Banach algebra, a ∈ R and i 6= j, then 1 + taei,j ∈ E(R[0, 1]) is a path
connecting 1 to the elementary matrix 1 + aei,j . Thus ER ⊂ GLR, whence we have a surjection

K1R � Ktop
1 R.

Example 2.1.6. Because C is a field, K1C = C∗. Since on the other hand C∗ is path connected,
we have Ktop

1 C = 0.

Note that Ktop
1 is additive. Thus we can extend Ktop

1 to nonunital Banach algebras in the usual
way, i.e.

Ktop
1 A := ker(Ktop

1 (A⊕ C) → Ktop
1 C) = Ktop

1 (A⊕ C)

Exercise 2.1.7. Show that if A is a (not necessarily unital) Banach algebra, then

Ktop
1 A = GL(A)/GL(A)0

(cf. 1.3.2).

Fact 2.1.8. If R � S then GL(R)0 � GL(S)0. (See [2, 3.4.4]).

Let

(13) 0 → A → B → C → 0

be an exact sequence of Banach algebras. Then

0 → A → C⊕B → C⊕ C → 0

is again exact. By the fact above, the connecting map ∂ : K1(C⊕C) → K0A induces a homomor-
phism

∂ : Ktop
1 C → K0A.

Theorem 2.1.9. The sequence

Ktop
1 A // Ktop

1 B // Ktop
1 C

∂

��
K0C K0Boo K0Aoo

is exact.

Proof. Straightforward from 1.4.1. �

Since the sequences

0 → A(0, 1] → A[0, 1] → A → 0

0 → A(0, 1) → A(0, 1] → A → 0

are exact, and since K0 is homotopy invariant, we get an isomorphism

(14) Ktop
1 A = K0(A(0, 1))

Since also Ktop
1 is homotopy invariant, we put

(15) Ktop
2 (A) = Ktop

1 (A(0, 1)).

Fact 2.1.10. If (13) is exact, then

0 → A(0, 1) → B(0, 1) → C(0, 1) → 0

is exact too. (See [28, 10.1.2] for a proof in the C∗-algebra case; a similar argument works for
Banach algebras.)
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Taking into account the fact above, as well as (14) and (15), and applying 2.1.9, we obtain the
following.

Corollary 2.1.11. There is an exact sequence

Ktop
2 A // Ktop

2 B // Ktop
2 C

∂

��
Ktop

1 C Ktop
1 Boo Ktop

1 Aoo

The sequence can be extended further by defining inductively

Ktop
n+1(A) := Ktop

n (A(0, 1)).

2.2. Bott periodicity. Let R be a unital Banach algebra. Consider the map β : IdemnR →
GLnC0(S1, R),

(16) β(e)(z) = ze + 1− e

This map induces a group homomorphism K0R → Ktop
1 (C0(S1, R)) (see [2, 9.1]). If A is any

Banach algebra, we write β for the composite

(17) K0(A) → K0(C⊕A)
β→ Ktop

1 (C0(S1, C⊕A)) = Ktop
1 C(0, 1)⊕Ktop

1 A(0, 1) � Ktop
1 A(0, 1)

One checks that for unital A this defintion agrees with that given above.

Theorem 2.2.1. (Bott periodicity) ([2, 9.2.1]) The map (17) is an isomorphism.

Let

(18) 0 → A → B → C → 0

be an exact sequence of Banach algebras. By 2.1.11 we have a map ∂ : Ktop
1 (C(0, 1)) → Ktop

1 (A).
Composing with the Bott map, we obtain a homomorphism

∂β : K0(C) → Ktop
1 A

Theorem 2.2.2. The sequence

Ktop
1 A // Ktop

1 B // Ktop
1 C

∂

��
K0C

∂β

OO

K0Boo K0Aoo

is exact.

2.3. Sketch of Cuntz’ proof of Bott periodicity for C∗-algebras. ([8, Sec. 2]) A C∗-algebra
is a Banach algebra with an involution ∗ such that ||aa∗|| = ||a||2. The Toeplitz algebra is the
free unital algebra T top on a generator α subject to αα∗ = 1. Since the shift s : `2(N) → `2(N),
s(e1) = 0, s(ei+1) = ei satisfies ss∗ = 1, there is a homomorphism T top → B = B(`2(N)). It turns
out that this is a monomorphism, that its image contains the ideal K, and that the latter is the
kernel of the homomorphism T top → C(S1) which sends α to the identity function S1 → S1. We
have a commutative diagram with exact rows and split exact columns:

0 // K // T top
0

//

��

C(0, 1) //

��

0

0 // K // T top //

��

C(S1) //

ev1

��

0

C C
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Here we have used the identification C0(S1, C) = C(0, 1). If now A is any C∗-algebra, and we
apply the functor A

∼
⊗ := A⊗min we obtain a commutative diagram whose columns are split

exact and whose rows are still exact [2, Ex. 9.4.2]

0 //
A

∼
⊗K // A

∼
⊗ T top

0
//

��

A(0, 1) //

��

0

0 //
A

∼
⊗K //

A
∼
⊗ T top //

��

A(S1) //

��

0

A A

Consider the inclusion C ⊂ M∞C ⊂ K = K(`2(N)), λ 7→ λe1,1. A functor G from C∗-algebras to

abelian groups is K-stable if for every C∗-algebra A the map G(A) → G(A
∼
⊗K) is an isomorphism.

We say that G is half exact if for every exact sequence (18), the sequence

GA → GB → GC

is exact.

Remark 2.3.1. In general, there is no precedence between the notions of split exact and half
exact. However a functor of C∗-algebras which is homotopy invariant, additive and half exact is
automatically split exact (see [2, §21.4]).

The following theorem of Cuntz’ is stated in the literature for half exact rather than split exact
functors. However the proof uses only split exactness.

Theorem 2.3.2. ([8, 4.4]) Let G be a functor from C∗-algebras to abelian groups. Assume that

• G is homotopy invariant.
• G is K-stable.
• G is split exact.

Then for every C∗-algebra A,

G(A
∼
⊗ T top

0 ) = 0

Fact 2.3.3. K0 is K-stable [28, 6.4.1].

It follows from the fact above, Cuntz’ theorem and excision, that the connecting map ∂ : Ktop
1 (A(0, 1)) →

K0(A
∼
⊗ K) is an isomorphism. Further, from the explicit formulas for β and ∂ ((16), 1.4.2), one

checks that the following diagram commutes

Ktop
1 (A(0, 1))

∂ // K0(A
∼
⊗K)

K0(A)

β
ggOOOOOOOOOOOO

o

OO

This proves that β is an isomorphism.

2.4. Back to the algebraic case. Next we analyze to what extent the properties of topological
K-theory of Banach algebras have analogues for algebraic K-theory of general rings.
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2.5. Homotopy invariance. It does not make sense to consider continuous homotopies for general
rings, among other reasons, because in general they do not carry any interesting topologies. What
does make sense is to consider polynomial homotopies. We shall let the reader figure out the
appropriate definitions for polynomial homotopy. Let us just say that a functor G from rings
to abelian groups is homotopy invariant if for every ring A the map GA → G(A[t]) induced by
the inclusion A ⊂ A[t] is an isomorphism. If G is any functor from rings to abelian groups,
we call a ring A G-regular if GA → G(A[t1, . . . , tn]) is an isomorphism for all n. We write
NG(A) = coker(GA → G(A[t])). Thus A is G-regular if NpG(A) = 0 for all p ≥ 1.

Example 2.5.1. Noetherian regular rings are K0-regular ([29], as are all Banach algebras 2.1.2.
If k is any field, then the ring R = k[x, y]/ < y2 − x3 > is not K0-regular. By the discussion of
2.1.3, the ring k[ε] is not K1-regular.

The groups GL( )0 and Ktop
1 have the following algebraic analogues. Let R be a unital ring. Put

GL(R)′0 = {g ∈ GLR : ∃h ∈ GL(R[t]) : h(0) = 1, h(1) = g}.

Set

KV1(R) := GLR/GL(R)′0

the group KV1 is the K1 of Karoubi-Villamayor [24]. The functor KV1 is additive, split exact and
matrix stable; furthermore it is homotopy invariant and nilinvariant [24]. However, unlike what
happens with its topological analogue, the functor GL( )′0 does not preserve surjections. As a
consequence, the KV -analogue of 1.4.1 does not hold for general short exact sequences of rings.
Higher KV -groups are defined as follows. We have exact sequences

0 → PA → A[t] ev0→ A → 0(19)

0 → ΩA → PA
ev1→ A → 0(20)

Here PA is defined as the kernel of ev0, and ΩA as that of ev1|PA. One defines inductively

KVn+1(A) = KV1(ΩnA)

As said above, the KV -analogue of 1.4.1 does not hold in general. However it does hold for the
sequences (19) and (20) ([24]). In particular we have a natural injective map

(21) KV1(A) ∂→ K0(ΩA).

Exercise 2.5.2. Prove the analogue of 2.1.7 for KV1.

2.6. Toeplitz ring. Write T for the free unital ring on two generators α, α∗ subject to αα∗ = 1.
Mapping α to

∑
i ei,i+1 and α∗ to

∑
i ei+1,i yields a monomorphism T → Γ := ΓZ whose image

contains the ideal M∞ := M∞Z [6, 4.10]. There is a commutative diagram with exact rows and
split exact columns:

0 // M∞ // T0

��

// σ

��

// 0

0 // M∞ // T

��

// Z[t, t−1]

ev1

��

// 0

Z Z
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Moreover the rows are split as sequences of abelian groups. Thus tensoring with any ring A yields
an exact diagram

(22) 0 // M∞A // T0A

��

// σA

��

// 0

0 // M∞A // T A

��

// A[t, t−1]

��

// 0

A A

We have the following algebraic analogue of Cuntz’ theorem.

Theorem 2.6.1. ([6, 7.3.2]) Let G be a functor from rings to abelian groups. Assume that:
• G is homotopy invariant.
• G is split exact.
• G is M∞-stable.

Then for any ring A, G(T0A) = 0.

Unfortunately, we cannot apply the theorem above to K-theory, as the latter is not homotopy
invariant. However, we can always consider the long exact sequence of K-groups associated to the
sequences (22).

Lemma 2.6.2. If A is a ring and n ≤ 0, then the map Kn(M∞A) → Kn(T A) is zero.

Proof. In view of 1.4.7 and of the fact that both M∞ and Σ commute with T , it suffices to prove the
lemma for n = 0. Using excision, we reduce further to the unital case. Let R be a unital ring; we
have to show that if p ≥ 1 and e ∈ MpR is idempotent, the class of its image in Mp(T R) = T (MpR)
is zero in K0(T R). By matrix stability, it suffices to prove this for p = 1. Let f ∈ Idem1R; then
f∞ :=

∑
i ei,i ⊗ f ∈ Idem1(T ⊗R) = Idem1(T R). Identify f = e1,1 ⊗ f ∈ T R. For the direct sum

operation � of ΓR, we have f � f∞ = f∞. Moreover, one checks that the matrix

Q =
[
1− α∗α α∗

α 0

]
∈ GL2T

satisfies Q2 = 1 and

Q

[
f 0
0 f∞

]
Q =

[
f∞ 0
0 0

]
Thus

[e] + [e∞] = [e∞] in K0(T R).
�

Corollary 2.6.3.
i) If n ≤ −1, there is a short exact sequence

0 → Kn+1T0A → Kn+1A → KnA → 0

ii) There is a surjection ∂ : K1(A[t, t−1]) → K0(A[t, t−1]).

Let R be a unital ring. Define a map β : IdemnR → GLn(R[t, t−1]) ,

β(e) = te + 1− e

One checks that β induces a group homomorphism K0(R) → K1(R[t, t−1]) whose image lies in
ker(K1(R[t, t−1]) ev1→ K1R).

Lemma 2.6.4. The composite K0R
β→ K1(R[t, t−1]) ∂→ K0R is the identity map.

Proof. Follows from direct computation, using the explicit formulas for β and ∂ ((16), 1.4.2). �
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Proposition 2.6.5. For any ring A and any n ≤ −1, the sequence of Lemma 2.6.2 i), is split.

Proof. (Sketch) For unital A this is immediate from Lemma 2.6.4, using 1.4.7. The general case
follows from the unital case using split exactness of Km (m ≤ 0). �

Proposition 2.6.6. Let A be a ring and n ≤ 0.

Kn(T0A) = NKnA⊕NKnA.

Proof. Let s ∈ Γ be the shift. Because s∗s− 1 ∈ M∞, there is a ring homomorphism Z[t, t−1] → Σ
mapping t to the class of s. It follows from results of Bass [1] and Loday [26] and split exactness,
that the kernel of the induced map Kn(A[t, t−1]) → Kn−1A is KnA ⊕ NKnA ⊕ NKnA. The
proposition follows from split exactness and the commutativity of the following diagram

0 // M∞

��

// T

��

// Z[t, t−1]

��

// 0

0 // M∞ // Γ // Σ // 0

�

Corollary 2.6.7. Kn(σA) = Kn−1A⊕NKnA⊕NKnA

Remark 2.6.8. In case A happens to be Kn-regular, the previous corollary says that Kn(σA) =
Kn−1A. We regard this as an algebraic analogue of Bott periodicity (at least for nonpositive
K-theory). What is missing in the algebraic case is an analogue of the exponential map; where
as for any Banach algebra A, A(0, 1) ∼= C0(S1, A), for a general ring A there is no isomorphism
ΩA → σA.

2.7. Homotopy K-theory. Let A be a ring. Consider the natural map

(23) ∂ : K0(A) → K−1(ΩA)

associated with the exact sequence (20). As K−1 = K0Σ we may iterate the construction and form
the colimit

KH0(A) := colim
n

K−n(ΩnA).

Put

KHn(A) :=
{

KH0(ΩnA) (n ≥ 0)
KH0(ΣnA) (n ≤ 0)

The groups KH∗A are Weibel’s homotopy K-theory groups of A ([37]). Although this is not
Weibel’s original definition, it is equivalent to it ([6, 8.1.1]).

Theorem 2.7.1. ([37]) Homotopy K-theory has the following properties.
i) It is homotopy invariant, nilinvariant and M∞-stable.
ii) It satisfies excision: to the sequence (10) there corresponds a long exact sequence (n ∈ Z)

KHn+1C → KHnA → KHnB → KHnC → KHn−1A

iii) KHn(σA) = KHn−1A (n ∈ Z).

Proof. (Sketch) We know that K1(S) = 0 for every infinite sum ring S; hence KV1(S) = 0. In
particular KV1(ΓR) = 0 for unital R. Using split exactness of KV1, it follows that KV1ΓA = 0 for
every ring A. Since K0(ΓA) = KV1(ΓA) = 0, the surjection K1(ΣA) → KV1(ΣA) factors through
K0(A), obtaining an epimorphism

(24) K0(A) � KV1(ΣA).

One checks that the map (23) is the composite of (24) with (21). Thus

KHn(A) = colim
r

KV1(Ωn+rΣrA).
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It follows from this that KH is homotopy invariant. Nilinvariance, M∞-stability and excision
follow from the fact that these hold for nonpositive K-theory. Thus parts i) and ii) are proved.
Part iii) follows from Theorem 2.6.1 and excision. �

3. Lecture III

3.1. Quillen’s Higher K-theory. The classifying space of a group G is a connected CW -complex
BG such that

πnBG =
{

G n = 1
0 n 6= 1

This property characterizes BG and makes it functorial up to homotopy. Further there are various
strictly functorial models of BG ([29], [16]). The homology of BG is the same as the group
homology of G; if M is π1BG = G-module, then

Hn(BG,M) = Hn(G, M) := TorZG
n (Z,M)

Let R be a unital ring. Quillen’s plus construction applied to BGLR yields a cellular map of
CW -complexes ι : BGLR → (BGLR)+ such that ([26])

• At the level of π1, ι induces the projection GLR → K1R.
• At the level of homology, ι is an isomorphism H∗(GLR,M) → H∗((BGLR)+,M) for each

K1R-module M .
• If BGLR → X is any continuous function which at the level of π1 maps ER → 0, then the

dotted arrow in the following diagram exists and is unique up to homotopy

BGLR
ι //

��

(BGLR)+

xx
X

The higher K-groups of R are the homotopy groups of (BGLR)+:

KnR := πn(BGLR)+ (n ≥ 1)

All the basic properties 1.3 which hold for K1 hold also for higher Kn ([26]). In particular KnR =
KnMpR = KnM∞R for unital R, and Kn is additive on unital rings. Hence the direct sum of
matrices induces the group operation in KnR ([26]). Thus K∗R = 0 for every ring R with infinite
sums [35], for all n, by the same argument as for n = 0, 1 (cf. [35]). In particular

(25) K∗ΓR = 0

for any unital ring R. The groups Kn have a lot of additional structure. For example, J.L. Loday
has defined an associative product [26]

∪ : KpR⊗KqS → Kp+q(R⊗ S)

3.1.1. Relative K-groups. Let R be a unital ring, I / R an ideal, and S = R/I. Put

GLS := Im(GLR → GLS)

The plus construction applied to BGLS yields a space whose fundamental group is the image of
K1R in K1S, and whose higher homotopy groups are the K-groups of S. Consider the homotopy
fiber

F (R : I) := hofiber((BGLR)+ → (BGLR)+)
The relative K-groups of I with respect to the ideal embedding I / R are the homotopy groups

Kn(R : I) := πnF (R : I) (n ≥ 1).

We have an exact sequence (n ≥ 2)

(26) Kn+1S → Kn(R : I) → KnR → Kn(S) → Kn−1(R : I)
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which can be spliced together with the excision sequence 1.4.1 as follows

K2S → K1(R : I) → K1R → K1S → K0I → K0R → K0S

Thus if we unify notation and set Kn(R : I) = KnI for n ≤ 0, we get the sequence (26) for all
n ∈ Z.
For n ≥ 1, we put

Kn(I) := Kn(Z⊕ I : I)
One checks that for n = 1 this defintion agrees with that given above. The canonical map Z⊕I → R
induces a map

(27) Kn(I) → Kn(R : I)

This map is an isomorphism for n ≤ 0, but not in general (see Remark 1.4.4). The rings I so
that this map is an isomorphism for all n and R are called K-excisive. Suslin and Wodzicki have
completely characterized K-excisive rings ([39],[32],[31]). We have

(27) is an isomorphism for all n and R ⇐⇒ TorZ⊕I
n (Z, I) = 0 ∀n

Remark 3.1.1.1.

TorZ⊕I
0 (Z, I) = I/I2

TorZ⊕I
n (Z, I) = TorZ⊕I

n+1(Z, Z)

Example 3.1.1.2. Let G be a group, IG / ZG the augmentation ideal. Then ZG = Z⊕ IG is the
unitalization of IG. Hence

TorZ⊕IG
n (Z, IG) = TorZG

n+1(Z, Z) = Hn+1(G, Z)

In particular
TorZ⊕I

0 (Z, I) = Gab

When this group is zero, we say that G is perfect. Note no nonzero abelian group can be perfect. In
particular, the ring σ is not excisive, as it coincides with the augmentation ideal of Z[Z] = Z[t, t−1].

Example 3.1.1.3. Any unital ring R is excisive. If I is excisive then M∞I is excisive too.

3.2. Cone and Toeplitz rings and the fundamental theorem. If R is a unital ring, then
M∞R is excisive, whence by (25), the connecting map in K-theory for the cone sequence (11) is
an isomorphism

(28) ∂ : Kn(ΣR)
∼=→ Kn−1R (n ∈ Z).

Remark 3.2.1. At the level of spaces, we obtain a weak equivalence between (BGLR)+ and the
connected component of the loopspace of (BGLΣR)+

(BGLR)+
∼=→ (Ω(BGLΣR)+)0

Taking loopspaces and iterating, we obtain a sequence of weak equivalences

nKR := ΩK(Σn+1R)
∼=→ Ω(n+1KR)

Thus KR := {nKR} is a spectrum, and its stable homotopy groups are the K-groups of R:

πnKR = colim
p

πn+p(nKR) = KnR

If A is any, not necessarily unital ring, one puts KA = hofiber(K(Z⊕A) → KZ).

Next we recall a description of the inverse of the map (28) in terms of products, given by J. L.
Loday in [26]. We have a map of exact sequences

0 // M∞ // T //

��

Z[t, t−1] //

j

��

0

0 // M∞ // Γ // Σ // 0
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The Bott map β : K0Z → K1Z[t, t−1] sends β(p1) = t. Loday shows that the composite

Kn−1R // KnΣR

Kn−1R⊗K0Z
1⊗j(t)

// Kn−1R⊗K1(Σ)

∪

OO

is the inverse of (28). Similarly, the Toeplitz extension (22) yields an exact sequence. From the
argument of the proof of 2.6.2 and the fact that K∗ is matrix invariant, one shows that 2.6.2 holds
for higher Kn, so one obtains an exact sequence

(29) 0 → Kn(T R) → Kn(R[t, t−1]) ∂→ Kn−1R → 0

It follows from 2.6.4 and Loday’s results that the composite

Kn(R)

o
��

β // Kn+1R[t, t−1]

KnR⊗K0Z
1∪β(p1)

// KnR⊗K1Z[t, t−1]

∪

OO

is left inverse to the connecting map ∂ of (29). In particular

Kn(R[t, t−1]) = Kn−1R⊕Kn(T R) = Kn−1R⊕KnR⊕Kn(T R : T0R)

Further, it follows from diagram (22) that

Kn(R[t, t−1] : σR) = Kn(T R : T0R)⊕Kn−1R

It follows from the fundamental theorem in higher algebraic K-theory [29] that

Kn(T R : T0R) = NKnR⊕NKnR.

If R happens to be Kn-regular, this gives (cf. 2.6.8).

(30) Kn(R[t, t−1] : σR) = Kn−1R.

3.3. Fréchet algebras with approximate units. A locally convex algebra is a complete topo-
logical C-algebra L with a locally convex topology. Such a topology is defined by a family of
seminorms {ρα}; continuity of the product means that for every α there exists a β such that

ρα(xy) ≤ ρβ(x)ρβ(y) (x, y ∈ L)

Whenever a defining family of seminorms can be chosen so that the condition above is satisfied
with α = β (i.e. the seminorms are submultiplicative) we say that L is an m-algebra. A Fréchet
algebra is a locally convex algebra with a defining sequence of seminorms. A locally convex algebra
whose topology is Fréchet will be called Fréchet m-algebra. A uniformly bounded approximate left
unit (ubalu) in a locally convex algebra L is a net {eλ} of elements of L eλa 7→ a for all a and
supα ρα(a) < ∞. Right ubau’s are defined analogously.
The following theorem is a direct consequence of results of Suslin and Wodzicki.

Theorem 3.3.1. Every Fréchet m-algebra with left or right ubau is K-excisive.

Proof. It is proved in [39, 8.1] that such algebras satisfy the hypothesis of [32, Thm. C]. �

Example 3.3.2. Every C∗-algebra has a two-sided ubau. If G is a locally compact group, then
the group algebra L1(G) is a Banach algebra with ubau. If L1 and L2 are locally convex algebras
with ublaus {eλ} and {fµ}, then {eλ ⊗ fµ} is a ublau for the projective tensor product L1⊗̂L2,
which is a (Fréchet) m-algebra if both L1 and L2 are.
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3.4. Comparison between algebraic and topological K-theory I.

3.4.1. Stable C∗-algebras.

Theorem 3.4.1.1. [19, 3.2.2] Let G be a functor from C∗-algebras to abelian groups. Assume that
G is split exact and K-stable. Then G is homotopy invariant.

Proposition 3.4.1.2. Let G be a functor from C∗-algebras to abelian groups. Assume that G is
M2-stable. Then the functor A 7→ G(A

∼
⊗K) is stable.

Proof. The argument of the proof of [11, 5.1.2] shows this. �

The following result, due to Suslin and Wodzicki, is (one of the variants of) what is known as
Karoubi’s conjecture [21].

Theorem 3.4.1.3. [32, 10.9] Let A be a C∗-algebra. Then there is a natural isomorphism Kn(A
∼
⊗

K) = Ktop
n (A

∼
⊗K).

Proof. By definition K0 = Ktop
0 on all C∗-algebras. By 3.4.1.1 and 3.3.1, Kn(A(0, 1]

∼
⊗ K) = 0.

Hence

Kn+1(A
∼
⊗K) = Kn(A(0, 1)

∼
⊗K)

by excision (3.3.1). In particular, for n ≥ 0,

Kn(A
∼
⊗K) = K0(A

∼
⊗

∼
⊗

n

i=1C(0, 1)
∼
⊗K) = Ktop

n (A
∼
⊗K).

On the other hand, Kn+1(A(0, 1)
∼
⊗ K) = Kn(A

∼
⊗ K

∼
⊗ K) = Kn(A

∼
⊗ K) by 2.3.2. It follows that

for i = 0, 1 and q ≥ 0,

K−2q−i(A
∼
⊗K) = Ki(A

∼
⊗K) = Ktop

i (A
∼
⊗K)

�

3.4.2. Stable Banach algebras. The following result is a particular case of a theorem of Wodzicki.

Theorem 3.4.2.1. [40] Let L be Banach algebra with right or left ubau. Then there is an isomor-
phism K∗(L⊗̂K) = Ktop

∗ (L⊗̂K).

Proof. Consider the functor GL : C∗ → Ab, A 7→ K∗(L⊗̂(A
∼
⊗ K)). By 3.3.1 and 3.4.1.1, K∗ is

homotopy invariant. Hence C → C[0, 1] induces an isomorphism

GL(C) =K∗(L⊗̂K)
∼=→ GL(C[0, 1]) = K∗(L⊗̂(C[0, 1]

∼
⊗K))

=K∗(L⊗̂K[0, 1]) = K∗((L⊗̂K)[0, 1]).

Hence Kn+1(L⊗̂K) = Kn(L⊗̂K(0, 1)), by 3.3.1 and 3.3.2. Thus Kn(L⊗̂K) = Ktop
n (L⊗̂K) for n ≥ 0.

Consider the Calkin algebra Q := B/K. Because B is an infinite sum ring, we have Kn(L⊗̂B) = 0
for n ≤ 0. Thus

K−n(L⊗̂K) = K0(L⊗̂⊗̂
n
i=1Q) = Ktop

−n (L⊗̂K)

�

Remark 3.4.2.2. The theorem above holds more generally for m-Fréchet algebras ([40], [7, 8.3.4]),
with the appropriate definition of topological K-theory (see below).
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3.4.3. Various spectral sequences.
If A is any ring, we write ∆algA for the simplicial ring

[n] 7→ ∆alg
n A := A⊗ Z[t0, . . . , tn]/ <

∑
i

ti − 1 >

According to Weibel’s original definition [37], the groups KH∗ are the homotopy groups of the
spectrum

KH(A) := |K∆algA|
It is proved in [6, 8.1.1] that this definition agrees with that given above. Applying |K( )| to the
canonical map A → ∆algA and taking homotopy groups, one obtains a comparison homomorphism

(31) K∗A → KH∗A

The spectral sequence for a simplicial spectrum yields

(32) E2
p,q = πp([n] 7→ Kq∆alg

n A) ⇒ KHp+qA

Theorem 3.4.3.1. [34] If A is Kq-regular, then it is Kq−1-regular (q ∈ Z).

Remark 3.4.3.2. In [34], the theorem above is proved for q > 0. The case q ≤ 0 follows from this,
using (28).

Corollary 3.4.3.3. If A is Kn-regular then KmA → KHmA is an isomorphism for all m ≤ n
(see also [13]).

Example 3.4.3.4. One can show, using 3.4.1.1, that if A is a C∗-algebra, then A
∼
⊗K is K-regular

(see [30, 3.4] for a proof of this result of Higson’s). Thus KH∗(A
∼
⊗K) = K∗(A

∼
⊗K) = Ktop

∗ (A
∼
⊗K).

Rosenberg has shown that any commutative C∗-algebra is K-regular [30, 3.5].

There are several definitions of topological K-theory for locally convex algebras. One variant is
what we shall call diffeotopy K-theory [7, 4.1]. It is invariant under C∞-homotopies (diffeotopies).
If L is a locally convex algebra, we write ∆difL for the simplicial algebra

[n] 7→ ∆dif
n L := L⊗̂C∞(∆n)

The diffeotopy K-theory groups KD∗(L), are the stable homotopy groups of the spectrum

KD(L) = |K∆difL|
By the same reason as before, we get a comparison map K∗L → KD∗L; further, from the natural
map ∆alg ⊂ ∆dif we also obtain K∗L → KH∗L, so that there is a commutative diagram ([7, 4.3.1])

K∗L

$$HHHHHHHHH
// KD∗L

KH∗L

99ttttttttt

The spectral sequence for a simplicial spectrum yields

(33) E2
p,q = πp([n] 7→ Kq∆dif

n L) ⇒ KDp+qL

There is also a spectral sequence [7, 4.1]

(34) E′2
p,q = πp([n] 7→ KHq∆dif

n L) ⇒ KDp+qL

Hence we get:

Lemma 3.4.3.5. If the degeneracy L → ∆dif
p L induces an isomorphism KqL → Kq∆dif

p L (resp.
KHqL → KHq(∆dif

p L)) for all p ≥ 0 and all q ≤ n, then the map KnL → KDnL (resp. KHnL →
KDnL) is an isomorphism.
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3.4.4. KH of Stable locally convex algebras. Let H be a separable hilbert space; write H ⊗2 H for
the completed tensor product of Hilbert spaces. Note any two Hilbert separable Hilbert spaces are
isomorphic; hence we may regard any operator ideal J / B(H) as a functor on Hilbert spaces (see
[20, 3.3]). Let J / B be an ideal.

• J is multiplicative if B⊗̂B → B(H ⊗2 H) maps J ⊗̂J to J .
• J is Fréchet it is a Fréchet algebra and the inclusion J → B is continuous. A Fréchet ideal

is a Banach ideal if it is a Banach algebra.
Write ω = (1/n)n for the harmonic sequence.

• J is harmonic if it is a multiplicative Banach ideal such that J (`2(N)) contains diag(ω).

Example 3.4.4.1. Let p ∈ R>0; write Lp for the ideal of those compact operators whose sequence
of singular values is p-summable; Lp is called the p-Schatten ideal. It is Banach ⇐⇒ p ≥ 1, and
is harmonic ⇐⇒ p > 1. There is no interesting locally convex topology on Lp for p < 1.

The following theorem, due to J. Cuntz and A. Thom, is a variant of 3.4.1.1, valid for locally
convex algebras. The formulation we use here is a consequence of [11, 5.1.2] and [11, 4.2.1].

Theorem 3.4.4.2. Let J be a harmonic operator ideal, and G a functor from locally convex
algebras to abelian groups. Assume that

i) G is M2-stable.
ii) G is split exact.

Then L 7→ G(L⊗̂J ) is diffeotopy invariant.

We shall need a variant of 3.4.4.2 which is valid for all Fréchet ideals J . First we need some
notation. Let α : A → B be a homomorphism of locally convex algebras. We say that α is an
isomorphism up to square zero if there exists a continous linear map β : B⊗̂B → A such that the
compositions β ◦ (α⊗̂α) and α ◦ β are the multiplication maps of A and B. Note that if α is an
isomorphism up to square zero, then its image is a ideal of B, and both its kernel and its cokernel
are square-zero algebras.

Definition 3.4.4.3. Let G be a functor from locally convex algebras to abelian groups. We call
G continously nilinvariant if it sends isomorphisms up to square zero into isomorphisms.

Example 3.4.4.4. For any n ∈ Z, KHn is a continously nilinvariant functor of locally convex
algebras. If n ≤ 0, the same is true of Kn. In general, if H∗ is the restriction to locally convex
algebras of any excisive, nilinvariant homology theory of rings, then H∗ is continously nilinvariant.

Theorem 3.4.4.5. [7, 6.1.6] Let J be a Fréchet operator ideal, and G a functor from locally convex
algebras to abelian groups. Assume that

i) G is M2-stable.
ii) G is split exact.
iii) G is continuously nilinvariant.

Then L 7→ G(L⊗̂J ) is diffeotopy invariant.

Theorem 3.4.4.6. [7, 6.2.1 (iii)] Let L be a locally convex algebra and J a Fréchet ideal. Then
KHn(L⊗̂J ) = KDn(L⊗̂J ) for all n ∈ Z and Kn(L⊗̂J ) = KHn(L⊗̂J ) for n ≤ 0.

Proof. Immediate from 3.4.4.5, 3.4.4.4, using the spectral sequences (33) and (32). �

Fact 3.4.4.7. Theorem [7, 6.2.1] states further that all the variants of topological K-theory coincide
for algebras of the form L⊗̂J with J Fréchet. In particular, it agrees with the covariant version
of Cuntz’ bivariant K-theory of locally convex algebras [9]:

(35) KHn(L⊗̂J ) = kktop(C, L⊗̂J ) =: Ktop(L⊗̂J )

When restricted to Banach algebras L, this definition of Ktop coincides with that given above.
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Corollary 3.4.4.8. Let J be a Fréchet operator ideal. Then

KHn(J ) =
{

Z n even.
0 n odd.

Proof. The cases n = 0, 1 are 1.4.9 and 1.4.10. The general case follows from this, from (35) and
the fact that kktop is 2-periodic [9]. �

Remark 3.4.4.9. The corollary above is valid more generally for “subharmonic” ideals (see [7, 6.5.1]
for the definition of this term, and [7, 7.2.1] for the statment). This applies to the nonlocally convex
Schatten ideals Lε, 0 < ε < 1.

4. Lecture IV

4.1. The Chern character and homotopization. All rings considered from now on are implic-
itly (and some times also explicitly) assumed to be Q-algebras. There are various maps connecting
K-theory and its variants with cyclic homology and its variants. The variants of cyclic homol-
ogy we shall be concerned with are cyclic, negative cyclic and periodic cyclic homology, denoted
respectively HC, HN and HP . These homology groups are Q-vectorspaces connected by a long
exact sequence (n ∈ Z)

HPn+1A
S→ HCn−1A

B→ HNnA
i→ HPnA

S→ HCn−2A

This is Connes’ SBI-sequence. Cyclic homology is defined as the homology of Connes’ complex
CλA. This is a nonnegatively graded chain complex, given in dimension n by the coinvariants

(36) Cλ
nA := (A⊗n+1)Z/(n+1)Z

of the tensor power under the action of Z/(n + 1)Z given on a generator t by

t(a0 ⊗ · · · ⊗ an) = (−1)nan ⊗ a0 ⊗ · · · ⊗ an−1.

The boundary map b : Cλ
nA → Cλ

n−1A is induced by

b : A⊗n+1 → A⊗n, b(a0 ⊗ · · · ⊗ an) =
n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ · · · ⊗ an−1

Example 4.1.1. The map Cλ
1 (A) → Cλ

0 (A) sends the class of a⊗ b to [a, b] := ab− ba. Hence

HC0A = A/[A,A].

For a definition of HN and HP , see [25]. We’ll just mention here some of their properties. The
groups HN∗ and HP∗, as well as HC∗, are Q-vectorspaces. Periodic cyclic homology, like Ktop,
is periodic of period 2; like KH, it has some other desirable properties, including excision [12],
nil- and homotopy invariance [17], and matrix invariance. As a consequence of this, and of the
SBI-sequence, the homology groups measuring obstructions to desirable properties in HC and
HN coincide up to a degree-shift. For example, if I / A is nilpotent, then HP∗(A : I) = 0 by
nilinvariance, whence

HC∗−1(A : I) ∼= HN∗(A : I)

A similar situation occurs in K-theory; the obstruction groups to the desirable properties of KH
are the same for K-theory as for nil K-theory, which is defined by the spectrum

KnilA := hofiber(KA → KHA)

The analogy between the maps K → KH and HN → HP is in fact more profound. Geller
and Weibel noted in [15] that the spectrum HP (A) is weakly equivalent to the total spectrum
HNH(A) := |HN(∆algA)|. Jones and Goodwillie defined a map KA → HNA, the primary Chern
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character [18]. Using the fact that X 7→ |X(∆alg )| preserves fibration sequences, we obtain a
commutative diagram of spectra

(37) Kinf,nilA

��

// KinfA //

��

Kinf(∆algA)

��
KnilA //

ν

��

KA

cτ

��

// KHA

chτ

��
Ω−1HC(A) // HN(A) // HP (∆algA).

Each row and each column of this diagram is a homotopy fibration; the right column is the result
of applying the middle column to ∆algA and then | |. The column of the left is the homotopy
fiber of the map between the middle and right columns.

Remark 4.1.2. The approach to algebraic Chern characters presented above, taken from [7, 2.2], is
essentially due to Weibel [36] (see also [22] for a different approach). For locally convex algebras,
it makes sense to “diffeotopize” the Chern character; one can also replace the algebraic cyclic
theories for their topological variants (using completed projective tensor products over C instead
of algebraic tensor products over Z, as in (36)). This approach was studied by Connes and Karoubi
([3],[4],[22],[23]); see [7, §4] for a comparison of the two approaches.

4.2. Properties of K inf .

Theorem 4.2.1. [18] K inf is nilinvariant.

Theorem 4.2.2. [5] K inf is excisive.

We call a Q-algebra A K inf-regular if it is K inf
n -regular for all n.

Lemma 4.2.3. Let A be a Q-algebra. If A is K inf-regular, then ν∗ : Knil
∗ A → HC∗−1A is an

isomorphism.

Proof. It is immediate from the spectral sequence associated to the simplicial spectrum Kinf(∆algA),
that if A is K inf -regular, then KnilA

∼=→ 0. �

4.3. Comparison between algebraic and topological K-theory II.

Theorem 4.3.1. [7, 6.2.1 (ii)] Let L be a locally convex algebra, and J a Fréchet operator ideal.
Then L⊗̂J is K inf-regular.

Proof. Let n ∈ Z; we have to prove that L 7→ K inf
n (L⊗̂J ) is polynomially homotopy invariant.

But by 4.2.1 and 4.2.2, K inf
n satisfies the hypothesis of 3.4.4.5, whence it is diffeotopy invariant,

and in particular polynomially homotopy invariant. �

Theorem 4.3.2. [7, 6.3.1] Let L be a locally convex algebra, and J a Fréchet operator ideal. For
each n ∈ Z, there is a natural 6-term exact sequence of abelian groups as follows:

Ktop
1 (L⊗̂J ) // HC2n−1(L⊗̂J ) // K2n(L⊗̂J )

��
K2n−1(L⊗̂J )

OO

HC2n−2(L⊗̂J )oo Ktop
0 (L⊗̂J ).oo

Proof. Follows from 4.2.3, (37), and Bott periodicity of Ktop. �

Remark 4.3.3. Applying the theorem above when L is an m-Fréchet algebra with right or left ubau
and J = K, and using 3.4.2.1, we obtain

HC∗(L⊗̂K) = 0.

One can also prove this statement independently, and use 4.3.2 to prove 3.4.2.1; see [7, 8.3.3].
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Example 4.3.4. Setting L = C in 4.3.2, and using 3.4.4.8, we obtain an exact sequence

0 → HC2n−1(J ) → K2n(J ) → Z αn→ HC2n−2(J ) → K2n−1(J ) → 0.

Note that, as the cyclic homology groups are Q-vectorspaces, there are only two possibilities for
map αn; it is either injective or zero. It is shown in [7, 7.2.1 (iii)] that αn is injective whenever
J ⊂ Lp for some p ≥ 1 and n ≥ (p + 1)/2. Thus for example we have an exact sequence

0 → Z → L1/[L1,L1] → K1(L1) → 0

4.4. Comments, questions and problems.
The first question that comes to mind when presented with Theorem 4.3.2 is: can one actually
compute the cyclic homology groups appearing there in some special cases, such as L = C? In
view of the formula 4.1.1, the first step in this direction is to understand the commutator structure
of operator ideals; this has been done in great detail by Dykema, Figiel, Weiss and Wodzicki
in [14]. One can extend vanishing results for lower cyclic homology to higher degrees, using
multiplicativity properties (see [40] and [7, 8.2.3]). Other vanishing results can be derived from
ring theoretic properties of Von Neumann algebras [41]. One can also consider the variants of the
cyclic homology theories which come from replacing the algebraic tensor product over Q by the
completed projective tensor product over C in the definition of the complex Cλ and those for HN
and HP . The resulting periodic theory HP top has been computed in several examples, including
all Schatten ideals Lp (p ≥ 1)(see [10]); one has HP top

∗ (Lp) = HP top
∗ (L1) = Ktop

∗ (L1) ⊗ C. On
the other hand, the groups HP∗(L1) have not been computed, nor is much known about the map
HP0(L1) → HP top

0 (L1), except that it is not zero. This is because the Connes-Karoubi character
Z = KH0(L1) = Ktop

∗ (L1) → HP top
∗ (L1) = C is an injection [4], which factors through the

algebraic character KH0 → HP0 mentioned above ([7, §4]).

4.5. Algebraic kk. Homology theories of rings are usually defined as the homology of some func-
torial complex or the homotopy of some functorial spectrum. The fact that the (stable) homotopy
categories of chain complexes and spectra are triangulated, suggests that we deal in general with
functors from rings to triangulated categories.

Let T be a triangulated category with loop (i.e. inverse suspension) functor Ω. Let E be the
class of all short exact sequences of rings (10). An excisive homology theory for rings with values
in T consists of a functor X : Rings → T , together with a collection {∂E : E ∈ E} of maps
∂X

E = ∂E ∈ homT (ΩX(C), X(A)). The maps ∂E are to satisfy the following requirements.
i) For all E ∈ E as in (10),

ΩX(C)
∂E // X(A)

X(f) // X(B)
X(g) // X(C)

is a distinguished triangle in T .
ii) If

(E) : A
f //

α

��

B
g //

β

��

C

γ

��
(E′) : A′ f ′

// B′ g′
// C ′

is a map of extensions, then the following diagram commutes

ΩX(C)

ΩX(γ)

��

∂E // X(A)

X(α)

��
ΩX(C ′)

∂E′
// X(A)
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We say that the functor X : Rings → T is homotopy invariant if it maps homotopic homomomor-
phisms to equal maps, or equivalently, if for every A ∈ Rings, X maps the inclusion A ⊂ A[t] to an
isomorphism. Call X M∞-stable if for every A ∈ Rings, it maps the inclusion ι∞ : A → M∞A to an
isomorphism. Note that if X is M∞-stable, and n ≥ 1, then X maps the inclusion ιn : A → MnA
to an isomorphism.

The homotopy invariant, M∞-stable, excisive homology theories form a category, where a homo-
morphism between the theories X : Rings → T and Y : Rings → U is a triangulated functor
G : T → U such that

(38) Rings

Y
""EEEEEEEE

X // T

G

��
U

commutes, and such that for every extension (10), the natural isomorphism φ : G(ΩX(C)) →
ΩY (C) makes the following into a commutative diagram

(39) G(ΩX(C))
G(∂X

E )//

φ

��

Y (A)

ΩY (C).
∂Y

E

99ssssssssss

Theorem 4.5.1. [6, 6.6.2] The category of all excisive, homotopy invariant and M∞-stable ho-
mology theories has an initial object j : Rings → kk. We have

j(ΩA) = ΩjA, Ω−1jA = j(ΣA) = j(σA)

Example 4.5.2. As a consequence of the theorem above, we obtain that any excisive, homotopy
invariant and M∞-stable homology theory X satisfies the fundamental theorem

Ω−1X(A)
∼=→ X(σA)

Definition 4.5.3. Let A,B ∈ Rings. Put kk(A,B) = homkk(jA, jB), and

kkn(A,B) := homkk(jA,ΩnjB) =
{

kk(A,ΩnB) n ≥ 0
kk(A,ΣnB) n ≤ 0

It follows from the definition and elementary properties of triangulated categories that any short
exact sequence (10) induces a long exact sequence (n ∈ Z)

kkn+1(D,C) // kkn(D,A) // kkn(D,B) // kkn(D,C) // kkn−1(D,A)

and similarly in the other variable.

Theorem 4.5.4. [6, 6.6.6] Let A be an abelian category, and G : Rings → A a half exact, homotopy
invariant, M∞-stable, additive functor. Then there exists a unique homological functor Ḡ : kk → A
such that the following diagram commutes.

Rings
j //

G
""FF

FF
FF

FF
F kk

Ḡ

��
A

Theorem 4.5.5. [6, 8.2.1] Let A be a ring, and n ∈ Z. Then

kkn(Z, A) = KHnA.
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4.5.1. Bivariant Chern character.
One can also consider homology theories of algebras over a (say commutative unital) ring H.
Theorems 4.5.1 and 4.5.4 still hold, and give rise to a bivariant K-theory kkH for H algebras,
which is in principle different from the one defined for all rings. However, Theorem 4.5.5 still holds
for H-algebras A with H substituted for Z; we have

kkH
n (H, A) = KHnA.

In particular, if X is a homotopy invariant, M∞-stable, excisive homology theory with values in
some triangulated category U , then by the universal property, we get a map

kkH
n (A,B) → homU (X(A),ΩnX(B))

Setting A = H, we obtain
KHn(B) → homU (X(H),ΩnX(B))

The bivariant Chern character for Q-algebras, of which the map KH∗ → HP∗ is the covari-
ant version, is a particular case of this construction. Here U is the homotopy category of pro-
supercomplexes and X is the Cuntz-Quillen pro-supercomplex.
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