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1. Introduction

We may view Kasparov theory and its equivariant generalisations as categories.
These categories are non-commutative analogue of (equivariant generalisations of)
the stable homotopy category of spectra. These equivariant Kasparov categories
can be described in two ways:

Abstractly, as the universal split-exact C∗-stable functor on the appropriate
category of C∗-algebras — this approach is due to Cuntz and Higson

[9, 10, 14, 15].

It is useful for general constructions like the descent functor or the adjointness
between induction and restriction functors (see §2.6 or [25]).

Concretely, using Fredholm operators on equivariant Hilbert bimodules —
this is the original definition of Kasparov [16, 17].

It is useful for specific constructions that use, say, geometric properties of a
group to construct elements in Kasparov groups.

We mainly treat Kasparov theory as a black box. We define G-equivariant
Kasparov theory via its universal property and equip it with a triangulated cat-
egory structure. This formalises some basic properties of the stable homotopy
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category that are needed for algebraic topology. We later apply this structure to
construct spectral sequences in Kasparov theory.

We use the universal property to construct the descent functor and induction
and restriction functors for closed subgroups, and to verify that the latter are
adjoint for open subgroups.

Then we turn to the Baum–Connes assembly map for a locally compact
group G, which we treat as in [25]. Green’s Imprimitivity Theorem suggests
that we understand crossed products for compactly induced actions much better
than general crossed products. We want to construct more general actions out of
compactly induced actions by an analogue of the construction of CW-complexes.
The notion of localising subcategory makes this idea precise.

The orthogonal complement of the compactly induced actions consists of actions
that are KKH -equivalent to 0 for all compact subgroups H of G. We call such
actions weakly contractible.

The compactly induced and weakly contractible objects together generate the
whole Kasparov category. This allows us to compute the localisation of a functor
at the weakly contractible objects. The general machinery of localisation yields
the Baum–Connes assembly map

µ∗ : Ktop
∗ (G, A)→ K∗(G ⋉r A)

when we apply it to the functor A 7→ K∗(G ⋉r A). Roughly speaking, this means
that A 7→ Ktop

∗ (G, A) is the best possible approximation to K∗(G ⋉r A) that van-
ishes for weakly contractible objects. The above statements involve functors and
the Baum–Connes assembly map with coefficients. The above approach only
works if we study this generalisation right away.

The groups Ktop
∗ (G, A) are supposed to be computable by topological meth-

ods. We present one approach to make this precise that works completely within
equivariant Kasparov theory and is a special case of a very general machinery
for constructing spectral sequences. We carry over notions from homological al-
gebra like exact chain complexes and projective objects to our category and use
them to define derived functors (see [26]). The derived functors of K∗(G⋉r A) and
Ktop

∗ (G, A) agree and form the E2-term of a spectral sequence that converges to-
wards Ktop

∗ (G, A). Many other spectral sequences like the Adams spectral sequence
in topology can be constructed with the same machinery. In simple special cases,
the spectral sequence degenerates to an exact sequence. The Universal Coefficient
Theorem by Rosenberg–Schochet in [33] and the Pimsner–Voiculescu exact
sequence are special cases of this machinery.
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Part I

Kasparov theory and

Baum–Connes conjecture

2. Kasparov theory via its universal property

This section is mostly taken from [24], where more details can be found.

Let G be a locally compact group.

Definition 1. A G-C∗-algebra is a C∗-algebra with a strongly continuous repre-
sentation of G by ∗-automorphisms.

Let G-C∗alg be the category of G-C∗-algebras; its objects are G-C∗-algebras
and its morphisms A → B are the G-equivariant ∗-homomorphisms A → B; we
sometimes denote this morphism set by HomG(A, B).

A C∗-algebra is separable if it has a countable dense subset. We often restrict
attention to the full subcategory G-C∗sep ⊆ G-C∗alg of separable G-C∗-algebras.

Homology theories for C∗-algebras are usually required to be homotopy in-
variant, stable, and exact in a suitable sense. We can characterise G-equivariant
Kasparov theory as the universal functor on G-C∗sep with these properties, in
the following sense.

Definition 2. Let P be a property for functors defined on G-C∗sep. A universal
functor with P is a functor u : G-C∗sep→ UP (G-C∗sep) such that

• F̄ ◦ u has P for each functor F̄ : UP (G-C∗sep)→ C;

• any functor F : G-C∗sep→ C with P factors uniquely as F = F̄ ◦ u for some
functor F̄ : UP (G-C∗sep)→ C.

Of course, such a functor need not exist. If it does, then it restricts to a bijection
between objects of G-C∗sep and UP (G-C∗sep). Hence we can completely describe
it by the sets of morphisms UP (A, B) from A to B in UP (G-C∗sep) and the maps
G-C∗sep(A, B) → UP (A, B) for A, B ∈∈ G-C∗sep. The universal property means
that for any functor F : G-C∗sep → C with P there is a unique functorial way to
extend the maps HomG(A, B)→ C

(

F (A), F (B)
)

to UP (A, B).

2.1. Some basic homotopy theory. We define cylinders, cones, and
suspensions of objects and mapping cones and mapping cylinders of morphisms
in G-C∗alg. Then we define homotopy invariance for functors. Mapping cones
will be used later to introduce the triangulated category structure on Kasparov

theory.
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Notation 3. Let A be a G-C∗-algebra. We define the cylinder, cone, and suspen-
sion over A by

Cyl(A) := C([0, 1], A),

Cone(A) := C0
(

[0, 1] \ {0}, A),

Sus(A) := C0
(

[0, 1] \ {0, 1}, A) ∼= C0(S
1, A),

If A = C0(X) for a pointed compact space, then the cylinder, cone, and suspen-
sion of A are C0(Y ) with Y equal to the usual cylinder [0, 1]+ ∧X , cone [0, 1]∧X ,
or suspension S1 ∧X , respectively; here [0, 1] has the base point 0.

Definition 4. Let f : A → B be a morphism in G-C∗alg. The mapping cylinder
Cyl(f) and the mapping cone Cone(f) of f are the limits of the diagrams

A
f
−→ B

ev1←−− Cyl(B), A
f
−→ B

ev1←−− Cone(B)

in G-C∗alg. More concretely,

Cone(f) =
{

(a, b) ∈ A× C0
(

(0, 1], B
)

∣

∣ f(a) = b(1)
}

,

Cyl(f) =
{

(a, b) ∈ A× C
(

[0, 1], B
) ∣

∣ f(a) = b(1)
}

.

If f : X → Y is a morphism of pointed compact spaces, then the mapping cone
and mapping cylinder of the induced ∗-homomorphism C0(f) : C0(Y ) → C0(X)
agree with C0

(

Cyl(f)
)

and C0
(

Cone(f)
)

, respectively.
The familiar maps relating mapping cones and cylinders to cones and suspen-

sions continue to exist in our case. For any morphism f : A → B in G-C∗alg, we
get a morphism of extensions

Sus(B) // //

��

Cone(f) // //

��

A

Cone(B) // // Cyl(f) // // A

The bottom extension splits and the maps A↔ Cyl(f) are inverse to each other up
to homotopy. The composite map Cone(f)→ A→ B factors through Cone(idB) ∼=
Cone(B) and hence is homotopic to the zero map.

Definition 5. Let f0, f1 : A ⇉ B be two parallel morphisms in G-C∗alg. We write
f0 ∼ f1 and call f0 and f1 homotopic if there is a morphism f : A→ Cyl(B) with
evt ◦ f = ft for t = 0, 1.

A functor F : G-C∗alg → C is called homotopy invariant if f0 ∼ f1 implies
F (f0) = F (f1).

It is easy to check that homotopy is an equivalence relation on HomG(A, B).
We let [A, B] be the set of equivalence classes. The composition of morphisms
in G-C∗alg descends to maps

[B, C]× [A, B]→ [A, C],
(

[f ], [g]
)

7→ [f ◦ g],
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that is, f1 ∼ f2 and g1 ∼ g2 implies f1 ◦ f2 ∼ g1 ◦ g2. Thus the sets [A, B] form the
morphism sets of a category, called the homotopy category of G-C∗-algebras. A
functor is homotopy invariant if and only if it descends to the homotopy category.
Other characterisations of homotopy invariance are listed in [24, §3.1].

Of course, our notion of homotopy restricts to the usual one for pointed compact
spaces or to proper homotopy for locally compact spaces.

2.2. Morita–Rieffel equivalence and stable isomorphism. One
of the basic ideas of non-commutative geometry is that G⋉C0(X) (or G⋉r C0(X))
should be a substitute for the quotient space G\X , which may have bad singulari-
ties. In the special case of a free and proper G-space X , we expect that G⋉ C0(X)
and C0(G\X) are “equivalent” in a suitable sense. Already the simplest possible
case X = G shows that we cannot expect an isomorphism here because

G ⋉ C0(G) ∼= G ⋉r C0(G) ∼= K(L2G).

The right notion of equivalence is a C∗-version of Morita equivalence introduced
by Marc A. Rieffel ([30–32]); therefore, we call it Morita–Rieffel equiva-
lence.

The definition of Morita–Rieffel equivalence involves Hilbert modules over
C∗-algebras and the C∗-algebras of compact operators on them; these notions are
crucial for Kasparov theory as well. We refer to [19] for the definition and a
discussion of their basic properties.

Definition 6. Two G-C∗-algebras A and B are called Morita–Rieffel equiv-
alent if there are a full G-equivariant Hilbert B-module E and a G-equivariant
∗-isomorphism K(E) ∼= A.

It is possible (and desirable) to express this definition more symmetrically: E
is an A, B-bimodule with two inner products taking values in A and B, satisfying
various conditions (see also [30]). Two Morita–Rieffel equivalent G-C∗-algebras
hve equivalent categories of G-equivariant Hilbert modules via E ⊗B . The
converse is not so clear.

Example 7. The following is a more intricate example of a Morita–Rieffel equiv-
alence. Let Γ and P be two subgroups of a locally compact group G. Then Γ acts
on G/P by left translation and P acts on Γ\G by right translation. The corre-
sponding orbit space is the double coset space Γ\G/P . Both Γ ⋉ C0(G/P ) and
P ⋉C0(Γ\G) are non-commutative models for this double coset space. They are in-
deed Morita–Rieffel equivalent; the bimodule that implements the equivalence
is a suitable completion of Cc(G).

These examples suggest that Morita–Rieffel equivalent C∗-algebras are
different ways to describe the same non-commutative space. Therefore, we ex-
pect that reasonable functors on C∗alg should not distinguish between Morita–
Rieffel equivalent C∗-algebras.

Definition 8. Two G-C∗-algebras A and B are called stably isomorphic if there is
a G-equivariant ∗-isomorphism A⊗K(HG) ∼= B⊗K(HG), where HG := L2(G×N)
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is the direct sum of countably many copies of the regular representation of G; we
let G act on K(HG) by conjugation, of course.

The following technical condition is often needed in connection with Morita–
Rieffel equivalence.

Definition 9. A C∗-algebra is called σ-unital if it has a countable approximate
identity or, equivalently, contains a strictly positive element.

All separable C∗-algebras and all unital C∗-algebras are σ-unital; the algebra
K(H) is σ-unital if and only if H is separable.

Theorem 10 ([7]). σ-unital G-C∗-algebras are G-equivariantly Morita–Rieffel

equivalent if and only if they are stably isomorphic.

In the non-equivariant case, this theorem is due to Brown–Green–Rieffel

([7]). A simpler proof that carries over to the equivariant case appeared in [27].

2.3. C
∗-stable functors. The definition of C∗-stability is more intuitive in

the non-equivariant case:

Definition 11. Fix a rank-one projection p ∈ K(ℓ2N). The resulting embedding
A→ A⊗K(ℓ2N), a 7→ a⊗ p, is called a corner embedding of A.

A functor F : C∗alg → C is called C∗-stable if any corner embedding induces
an isomorphism F (A) ∼= F

(

A⊗K(ℓ2N)
)

.

The correct equivariant generalisation is the following:

Definition 12. A functor F : G-C∗alg → C is called C∗-stable if the canonical
embeddings H1 →H1 ⊕H2 ←H2 induce isomorphisms

F
(

A⊗K(H1)
) ∼=
−→ F

(

A⊗K(H1 ⊕H2)
) ∼=
←− F

(

A⊗K(H2)
)

for all non-zero G-Hilbert spaces H1 and H2.

Of course, it suffices to require F
(

A ⊗ K(H1)
) ∼=
−→ F

(

A ⊗ K(H1 ⊕ H2)
)

. It is
not hard to check that Definitions 11 and 12 are equivalent for trivial G.

Our next goal is to describe the universal C∗-stable functor. We abbreviate
AK := K(L2G)⊗A.

Definition 13. A correspondence from A to B (or A 99K B) is a G-equivariant
Hilbert BK-module E together with a G-equivariant essential (or non-degenerate)
∗-homomorphism f : AK → K(E).

Given correspondences E from A to B and F from B to C, their composition
is the correspondence from A to C with underlying Hilbert module E ⊗̄BK

F and
map AK → K(E)→ K(E ⊗̄BK

F), where the last map sends T 7→ T ⊗ 1; this yields
compact operators because BK maps to K(F). See [19] for the definition of the
relevant completed tensor product of Hilbert modules.
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The composition of correspondences is only defined up to isomorphism. It
is associative and the identity maps A → A = K(A) act as unit elements, so
that we get a category CorrG whose morphisms are the isomorphism classes of
correspondences. Any ∗-homomorphism ϕ : A→ B yields a correspondence: let E
be the right ideal ϕ(AK) · BK in BK, viewed as a Hilbert B-module, and let
ϕ(a) · b = ϕ(a) · b; this restricts to a compact operator on E . This defines a
canonical functor ♮ : G-C∗alg→ CorrG.

Proposition 14. The functor ♮ : G-C∗alg→ CorrG is the universal C∗-stable func-
tor on G-C∗alg; that is, it is C∗-stable, and any other such functor factors uniquely
through ♮.

Proof. First we sketch the proof in the non-equivariant case. First we must verify
that ♮ is C∗-stable. The Morita–Rieffel equivalence between K(ℓ2N) ⊗ A ∼=
K

(

ℓ2(N, A)
)

and A is implemented by the Hilbert module ℓ2(N, A), which yields

a correspondence
(

id, ℓ2(N, A)
)

from K(ℓ2N)⊗A to A; this is inverse to the corre-
spondence induced by a corner embedding A→ K(ℓ2

N)⊗A.
A Hilbert B-module E with an essential ∗-homomorphism A→ K(E) is count-

ably generated because A is assumed σ-unital. Kasparov’s Stabilisation Theorem
yields an isometric embedding E → ℓ2(N, B). Hence we get ∗-homomorphisms

A→ K(ℓ2
N)⊗B ← B.

This diagram induces a map F (A) → F (K(ℓ2N) ⊗ B) ∼= F (B) for any stable
functor F . Now we should check that this well-defines a functor F̄ : CorrG → C with
F̄ ◦ ♮ = F , and that this yields the only such functor. We omit these computations.

The generalisation to the equivariant case uses the crucial property of the left
regular representation that L2(G) ⊗ H ∼= L2(G × N) for any countably infinite-
dimensional G-Hilbert space H. Since we replace A and B by AK and BK in the
definition of correspondence right away, we can use this to repair a possible lack
of G-equivariance; similar ideas appear in [22].

Example 15. Let u be a G-invariant multiplier of B. Then the identity map
and the inner automorphism B → B, b 7→ ubu∗, defined by u define isomorphic
correspondences B 99K B (via u). Hence inner automorphims act trivially on
C∗-stable functors. Actually, this is one of the computations that we have omitted
in the proof above; the argument can be found in [11].

2.4. Exactness properties.

Definition 16. A diagram I → E → Q in G-C∗alg is an extension if it is iso-
morphic to the canonical diagram I → A → A/I for some G-invariant ideal I in
a G-C∗-algebra A. We write I ֌ E ։ Q to denote extensions. A section for an
extension

I
i

֌ E
p
։ Q (17)

in G-C∗alg is a map (of sets) Q→ E with p ◦ s = idQ. We call (17) split if there is
a section that is a G-equivariant ∗-homomorphism. We call (17) G-equivariantly
cp-split if there is a G-equivariant, completely positive, contractive, linear section.
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Sections are also often called lifts, liftings, or splittings.

Definition 18. A functor F on G-C∗alg is split-exact if, for any split extension

K
i

֌ E
p
։ Q with section s : Q→ E, the map

(

F (i), F (s)
)

: F (K)⊕F (Q)→ F (E)
is invertible.

Split-exactness is useful because of the following construction of Joachim

Cuntz ([9]).
Let B ⊳ E be a G-invariant ideal and let f+, f− : A ⇉ E be G-equivariant

∗-homomorphisms with f+(a)− f−(a) ∈ B for all a ∈ A. Equivalently, f+ and f−
both lift the same morphism f̄ : A→ E/B. The data (A, f+, f−, E, B) is called a
quasi-homomorphism from A to B.

Pulling back the extension B ֌ E ։ E/B along f̄ , we get an extension
B ֌ E′

։ A with two sections f ′
+, f ′

− : A ⇉ E′. The split-exactness of F shows
that F (B) ֌ F (E′) ։ F (A) is a split extension in C. Since both F (f ′

−) and
F (f ′

+) are sections for it, we get a map F (f ′
+) − F (f ′

−) : F (A) → F (B). Thus a
quasi-homomorphism induces a map F (A)→ F (B) if F is split-exact. The formal
properties of this construction are summarised in [11].

Given a C∗-algebra A, there is a universal quasi-homomorphism out of A. Let
Q(A) := A ∗ A be the free product of two copies of A and let πA : Q(A) → A
be the folding homomorphism that restricts to idA on both factors. Let q(A) be
its kernel. The two canonical embeddings A → A ∗ A are sections for the folding
homomorphism. Hence we get a quasi-homomorphism A ⇉ Q(A) ⊲ q(A). The
universal property of the free product shows that any quasi-homomorphism yields
a G-equivariant ∗-homomorphism q(A)→ B.

Theorem 19. Functors that are C∗-stable and split-exact are automatically ho-
motopy invariant.

This is a deep result of Nigel Higson ([15]); a simple proof can be found
in [11]. Besides basic properties of quasi-homomorphisms, it only uses that inner
endomorphisms act identically on C∗-stable functors.

Definition 20. We call F exact if F (K)→ F (E)→ F (Q) is exact (at F (E)) for
any extension K ֌ E ։ Q in S. More generally, given a class E of extensions
in S like, say, the class of equivariantly cp-split extensions, we define exactness for
extensions in E .

Most functors we are interested in satisfy homotopy invariance and Bott peri-
odicity, and these two properties prevent a functor from being exact in the stronger
sense of being left or right exact. This explains why our notion of exactness is much
weaker than usual in homological algebra.

It is reasonable to require that a functor be part of a homology theory, that is,
a sequence of functors (Fn)n∈Z together with natural long exact sequences for all
extensions. We do not require this because this additional information tends to be
hard to get a priori but often comes for free a posteriori :
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Proposition 21. Suppose that F is homotopy invariant and exact (or exact for
equivariantly cp-split extensions). Then F has long exact sequences of the form

· · · → F
(

Sus(K)
)

→ F
(

Sus(E)
)

→ F
(

Sus(Q)
)

→ F (K)→ F (E)→ F (Q)

for any (equivariantly cp-split) extension K ֌ E ։ Q. In particular, F is split-
exact.

See §21.4 in [4] for the proof.

Together with Bott periodicity, this yields long exact sequences that extend
towards ±∞ in both directions, showing that an exact homotopy invariant functor
that satisfies Bott periodicity is part of a homology theory in a canonical way.

2.5. Definition of Kasparov theory. Kasparov theory associates to
two Z/2-graded C∗-algebras an Abelian group KKG

0 (A, B); this is a vast generali-
sation of K-theory and K-homology. The most remarkable feature of this theory is
an associative product on KK called Kasparov product, which generalises various
known product constructions in K-theory and K-homology. We do not discuss
KKG for Z/2-graded G-C∗-algebras here because it does not fit so well with the
universal property approach.

Fix a locally compact group G. The Kasparov groups KKG
0 (A, B) for A, B ∈

G-C∗sep form morphisms sets A→ B of a category, which we denote by KKG; the
composition in KKG is the Kasparov product. The categories G-C∗sep and KKG

have the same objects. We have a canonical functor

KK: G-C∗sep→ KKG

that acts identically on objects.

Theorem 22. The functor KKG : G-C∗sep → KKG is the universal split-exact
C∗-stable functor; in particular, KKG is an additive category. In addition, KKG

also has the following properties and is, therefore, universal among functors with
some of these extra properties: KKG is

• homotopy invariant;

• exact for G-equivariantly cp-split extensions;

• satisfies Bott periodicity, that is, in KKG there are natural isomorphisms
Sus2(A) ∼= A for all A ∈∈ KKG.

Definition 23. A G-equivariant ∗-homomorphism f : A → B is called a KKG-
equivalence if KK(f) is invertible in KKG.

Corollary 24. Let F : G-C∗sep→ C be split-exact and C∗-stable. Then F factors
uniquely through KKG, is homotopy invariant, and satisfies Bott periodicity. A
KKG-equivalence A→ B induces an isomorphism F (A)→ F (B).
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We will take the universal property of Theorem 22 as a definition of KKG and
thus of the groups KKG

0 (A, B). We also let

KKG
n (A, B) := KKG

(

A, Susn(B)
)

;

since the Bott periodicity isomorphism identifies KKG
2
∼= KKG

0 , this yields a
Z/2-graded theory.

By the universal property, K-theory descends to a functor on KK, that is, we
get canonical maps

KK0(A, B)→ Hom
(

K∗(A), K∗(B)
)

for all separable C∗-algebras A, B, where the right hand side denotes grading-
preserving group homomorphisms. For A = C, this yields a map KK0(C, B) →
Hom

(

Z, K0(B)
)

∼= K0(B). Using suspensions, we also get a corresponding map
KK1(C, B)→ K1(B).

Theorem 25. The maps KK∗(C, B) → K∗(B) constructed above are isomor-
phisms for all B ∈∈ C∗sep.

Thus Kasparov theory is a bivariant generalisation of K-theory. Roughly
speaking, KK∗(A, B) is the place where maps between K-theory groups live. Most
constructions of such maps, say, in index theory can in fact be improved to yield
elements of KK∗(A, B). One reason for this is the Universal Coefficient Theo-
rem (UCT) by Rosenberg and Schochet [33], which computes KK∗(A, B) from
K∗(A) and K∗(B) for many C∗-algebras A, B. If A satisfies the UCT, then any
group homomorphism K∗(A) → K∗(B) lifts to an element of KK∗(A, B) of the
same parity.

With our definition, it is not obvious how to construct elements in KKG
0 (A, B).

The only source we know so far are G-equivariant ∗-homomorphisms. Another
important source are extensions, more precisely, equivariantly cp-split extensions.
Any such extension I ֌ E ։ Q yields a class in KKG

1 (Q, I) ∼= KKG
0 (Sus(Q), I) ∼=

KKG
0

(

Q, Sus(I)
)

. Conversely, any element in KKG
1 (Q, I) comes from an extension

in this fashion in a rather transparent way.
Thus it may seem that we can understand all of Kasparov theory from an

abstract, category theoretic point of view. But this is not the case. To get a
category, we must compose extensions; this leads to extensions of higher length.
If we allow such higher-length extensions, we can easily construct a category that
is isomorphic to Kasparov theory; this generalisation still works for more gen-
eral algebras than C∗-algebras (see [11]) because it does not involves any difficult
analysis any more. But such a setup offers no help to compute products. Here
computing products means identifying them with other simple things like, say, the
identity morphism. This is why the more concrete approach to Kasparov theory
is still necessary for the interesting applications of the theory.

In connection with the Baum–Connes conjecture, our abstract approach al-
lows us to formulate it and analyse its consequences. But to verify it, say, for
amenable groups, we must show that a certain morphism in KKG is invertible.
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This involves constructing its inverse and checking that the two Kasparov prod-
ucts in both order are 1. These computations require the concrete description
of Kasparov theory that we omit here. We merely refer to [4] for a detailed
treatment.

2.6. Extending functors and identities to KK
G. We use the uni-

versal property to extend functors from G-C∗alg to KKG and check identities in
KKG without computing Kasparov products. As our first example, consider the
full and reduced crossed product functors

G ⋉r , G ⋉ : G-C∗alg→ C∗alg.

Proposition 26. These two functors extend to functors

G ⋉r , G ⋉ : KKG → KK

called descent functors.

Kasparov constructs these functors directly using the concrete description of
Kasparov cycles. This requires a certain amount of work; in particular, checking
functoriality involves knowing how to compute Kasparov products.

Proof. We only write down the argument for reduced crossed products, the other
case is similar. It is well-known that G ⋉r

(

A⊗K(H)
)

∼= (G ⋉r A)⊗K(H) for any
G-Hilbert space H. Therefore, the composite functor

G-C∗sep
G⋉r−−−→ C∗sep

KK
−−→ KK

is C∗-stable. This functor is split-exact as well (we omit the proof). Now the
universal property provides an extension to a functor KKG → KK.

Similarly, we get functors

A⊗min , A⊗max : KKG → KKG

for any G-C∗-algebra A. Since these extensions are natural, we even get bifunctors

⊗min,⊗max : KKG × KKG → KKG.

For the Baum–Connes assembly map, we need the induction functors

IndG
H : KKH → KKG

for closed subgroups H ⊆ G. For a finite group H , IndG
H(A) is the H-fixed point

algebra of C0(G, A), where H acts by h ·f(g) = αh

(

f(gh)
)

. For infinite H , we have

IndG
H(A) = {f ∈ Cb(G, A) |

αhf(gh) = f(g) for all g ∈ G, h ∈ H , and gH 7→ ‖f(g)‖ is C0};
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the group G acts by translations on the left. This construction is clearly functorial
for equivariant ∗-homomorphisms. Furthermore, it commutes with C∗-stabilisa-
tions and maps split extensions again to split extensions. Therefore, the same
argument as above allows us to extend it to a functor

IndG
H : KKH → KKG

The following examples are more trivial. Let τ : C∗alg → G-C∗alg equip a
C∗-algebra with the trivial G-action; it extends to a functor τ : KK → KKG. The
restriction functors

ResH
G : KKG → KKH

for closed subgroups H ⊆ G are defined by forgetting part of the equivariance.
The universal property also allows us to prove identities between functors. For

instance, Green’s Imprimitivity Theorem provides ∗-isomorphisms

G ⋉ IndG
H(A) ∼M H ⋉ A, G ⋉r IndG

H(A) ∼M H ⋉r A (27)

for any H-C∗-algebra A. This is proved by completing C0(G, A) to an imprimitivity
bimodule for both C∗-algebras. This equivalence is clearly natural for H-equivari-
ant ∗-homomorphisms. Since all functors involved are C∗-stable and split exact, the
uniqueness part of the universal property of KKH shows that the KK-equivalences
G ⋉ IndG

H(A) ∼= H ⋉ A and G ⋉r IndG
H(A) ∼= H ⋉r A are natural for morphisms in

KKH . That is, the diagram

G ⋉r IndG
H(A1)

∼= //

G⋉rIndG
H(f)

��

H ⋉r A1

H⋉rf

��
G ⋉r IndG

H(A2)
∼= // H ⋉r A2

in KK commutes for any f ∈ KKH
0 (A1, A2). More examples of this kind are

discussed in §4.1 of [24].
We can also prove adjointness relations in Kasparov theory in an abstract

way by constructing the unit and counit of the adjunction. An important example
is the adjointness between induction and restriction functors (see also §3.2 of [25]).

Proposition 28. Let H ⊆ G be a closed subgroup. If H is open, then we have
natural isomorphisms

KKG(IndG
H A, B) ∼= KKH(A, ResH

G B) (29)

for all A ∈∈ H-C∗alg, B ∈∈ G-C∗alg. If H ⊆ G is cocompact, then we have natural
isomorphisms

KKG(A, IndG
H B) ∼= KKH(ResH

G A, B) (30)

for all A ∈∈ G-C∗alg, B ∈∈ H-C∗alg.
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Proof. We will not use (30) later and therefore only prove (29). We must construct
natural elements

αA ∈ KKG
0 (IndG

H ResH
G A, A), βB ∈ KKH

0 (B, ResH
G IndG

H B)

that satisfy the conditions for unit and counit of adjunction ([21]).
We have a natural G-equivariant ∗-isomorphism IndG

H ResG
H(A) ∼= C0(G/H)⊗A

for any G-C∗-algebra A. Since H is open in G, the homogeneous space G/H is
discrete. We represent C0(G/H) on the Hilbert space ℓ2(G/H) by pointwise
multiplication operators. This is G-equivariant for the representation of G on
ℓ2(G/H) by left translations. Thus we get a correspondence from IndG

H ResH
G (A)

to A, which yields αA ∈ KKG
0 (IndG

H ResH
G (A), A) because KKG is C∗-stable.

For any H-C∗-algebra B, we may embed B in ResH
G IndG

H(B) as the subalgebra
of functions supported on the single coset H . This embedding is H-equivariant
and provides βB ∈ KKH

0 (B, ResH
G IndG

H B).
Now we have to check that the following two composite maps are identity

morphisms in KKG and KKH , respectively:

IndG
H(B)

IndG
H (βB)

−−−−−−→ IndG
H ResH

G IndG
H(B)

α
IndG

H
(B)

−−−−−−→ IndG
H(B)

ResH
G A

β
ResH

G
A

−−−−−→ ResH
G IndG

H ResH
G (A)

ResH
G αA

−−−−−→ ResH
G A

This yields the desired adjointness by a general argument from category theory
(see [21]). In fact, both composites are already equal to the identity as corre-
spondences. Hence we need no knowledge of Kasparov theory except for its
C∗-stability to prove (29).

The following example is discussed in detail in §4.1 of [24]. If G is compact,
then the trivial action functor τ : KK→ KKG is left adjoint to G⋉ = G⋉r , that
is, we have natural isomorphisms

KKG
∗ (τ(A), B) ∼= KK∗(A, G ⋉ B). (31)

This is also known as the Green–Julg Theorem. For A = C, it specialises to a
natural isomorphism KG

∗ (B) ∼= K∗(G ⋉ B).

2.7. Triangulated category structure. We can turn KKG into a tri-
angulated category by extending standard constructions for topological spaces
(see [25]). But some arrows change direction because the functor C0 from spaces to
C∗-algebras is contravariant. We have already observed that KKG is additive. The
suspension automorphism is Σ−1(A) := Sus(A). Since Sus2(A) ∼= A in KKG by
Bott periodicity, we have Σ = Σ−1. Thus we do not need formal desuspensions
as for the stable homotopy category.

Definition 32. A triangle A → B → C → ΣA in KKG is called exact if it is
isomorphic as a triangle to the mapping cone triangle

Sus(B)→ Cone(f)→ A
f
−→ B

for some G-equivariant ∗-homomorphism f .
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Alternatively, we can use G-equivariantly cp-split extensions in G-C∗sep. Any
such extension I ֌ E ։ Q determines a class in KKG

1 (Q, I) ∼= KKG
0 (Sus(Q), I),

so that we get a triangle Sus(Q)→ I → E → Q in KKG. Such triangles are called
extension triangle. A triangle in KKG is exact if and only if it is isomorphic to the
extension triangle of a G-equivariantly cp-split extension.

Theorem 33. With the suspension automorphism and exact triangles defined
above, KKG is a triangulated category.

Proof. This is proved in detail in [25].

Triangulated categories clarify the basic bookkeeping with long exact sequences.
Mayer-Vietoris exact sequences and inductive limits are discussed from this point
of view in [25]. More importantly, this framework sheds light on more advanced
constructions like the Baum–Connes assembly map.

3. Subcategories in KK
G

Now we turn to the construction of the Baum–Connes assembly map by studying
various subcategories of KKG that are related to it.

3.1. Compactly induced actions.

Definition 34. Let G be a locally compact group. A G-C∗-algebra is compactly
induced if it is of the form IndG

H(A) for some compact subgroup H of G and
some H-C∗-algebra A. We let CI be the class of all G-C∗-algebras that are KKG-
equivalent to a direct summand of

⊕

i∈N
Ai with compactly induced G-C∗-alge-

bras Ai for i ∈ N.

Equivalently, CI is the smallest class of objects in KKG that is closed under
direct sums, direct summands and isomorphism and contains all compactly induced
G-C∗-algebras.

Green’s Imprimitivity Theorem (27) tells us that the (reduced) crossed prod-
uct for a compactly induced action IndG

H(A) is equivalent to the crossed product
H ⋉r A for the compact group H . Hence we have

K∗(G ⋉ IndG
H A) ∼= K∗(G ⋉r IndG

H A) ∼= K∗(H ⋉ A) ∼= KH
∗ (A)

by the Green–Julg Theorem, compare (31).
Since the computation of equivariant K-theory for compact groups is a problem

of classical topology, operator algebraists can pretend that it is Somebody Else’s
Problem. We are more fascinated by the analytic difficulties created by crosssed
products by infinite groups. For instance, it is quite hard to see which Laurent

series
∑

n∈Z
anzn correspond to an element of C∗

redZ = C∗Z or, equivalently, which
of them are the Fourier series of a continuous function on the unit circle. The
Baum–Connes conjecture, when true, implies that such analytic difficulties do
not influence the K-theory.
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3.2. Two simple examples. It is best to explain our goals with two exam-
ples, namely, the groups R and Z. The Baum–Connes conjectures for these groups
hold and are equivalent to the Connes–Thom isomorphism and a Pimsner–
Voiculescu exact sequence. Although the Baum–Connes conjecture only con-
cerns the K-theory of C∗

redG and, more generally, of crossed products G ⋉r A, we
get much stronger statements in this case.

Both R and Z are torsion-free, that is, they have no non-trivial compact sub-
groups. Hence the compactly induced actions are of the form C0(G, A) with
G ∈ {R, Z} acting by translation. If A carries another action of G, then it
makes no difference whether we let G act on C0(G, A) by t · f(x) := f(t−1x) or
t · f(x) := αt

(

f(t−1x)
)

: both definitions yield isomorphic G-C∗-algebras.

Theorem 35. Any R-C∗-algebra is KKR-equivalent to a compactly induced one.
More briefly, CI = KKR.

Proof. Let A be any R-C∗-algebra. Let R act on R by translation and extend
this to an action on X = (−∞,∞] by t · ∞ := ∞ for all t ∈ R. Then we get an
extension of R-C∗-algebras

C0(R, A) ֌ C0(X, A) ։ A,

where we let R act diagonally. It does not yet have an R-equivariant completely
positive section, but it becomes equivariantly cp-split if we tensor with K(L2G).
Therefore, it yields an extension triangle in KKR.

The Dirac operator on C0(R, A) for the standard Riemannian metric on R

defines a class in KKR

1 (C0(R), C) which we may then map to KKR

1 (C0(R, A), A) by
exterior product. This yields another cp-split extension

K(L2
R)⊗A ֌ T ⊗A ։ C0(R, A).

The resulting classes in KKG
1

(

A, C0(R, A)
)

and KKG
1 (C0(R, A), A) are inverse to

each other; this is checked by computing their Kasparov products in both orders.
Thus A is KKR-equivalent to the induced R-C∗-algebra C0(R, A).

Since the crossed product is functorial on Kasparov categories, this implies

R ⋉ A = R ⋉r A ∼ R ⋉r Sus
(

C0(R, A)
)

∼= Sus(K(L2
R)⊗A) ∼ Sus(A),

where ∼ denotes KK-equivalence. Taking K-theory, we get the Connes–Thom

Isomorphism K∗(R ⋉ A) ∼= K∗+1(A).

For most groups, we have CI 6= KKG. We now study the simplest case where
this happens, namely, G = Z.

We have seen above that C0(R) with the translation action of R is KKR-
equivalent to C0(R) with trivial action. This equivalence persists if we restrict
the action from R to the subgroup Z ⊆ R. Hence we get a KKZ-equivalence

A ∼ Sus
(

C0(R, A)
)

,

where n ∈ Z acts on C0(R, A) ∼= C0(R)⊗A by (αnf)(x) := αn

(

f(x−n)
)

. Although
the Z-action on R is free and proper, the action of Z on C0(R, A) need not be
induced from the trivial subgroup.



17

Theorem 36. For any Z-C∗-algebra A, there is an exact triangle

P1 → P0 → A→ ΣP1

in KKZ with compactly induced P0 and P1; more explicitly, P0 = P1 = C0(Z, A).

Proof. Restriction to Z ⊆ R provides a surjection C0(R, A) ։ C0(Z, A), whose
kernel may be identified with C0((0, 1))⊗ C0(Z, A). The resulting extension

C0((0, 1))⊗ C0(Z, A) ֌ C0(R, A) ։ C0(Z, A)

is Z-equivariantly cp-split and hence provides an extension triangle in KKZ. Since
C0(R, A) is KKZ-equivalent to the suspension of A, we get an exact triangle of the
desired form.

When we apply a homological functor KKG → C such as K∗(Z⋉ ) to the exact
triangle in Theorem 36, then we get the Pimsner–Voiculescu exact sequence

K1(A) // K0(Z ⋉ A) // K0(A)

α∗−1

��
K1(A)

α∗−1

OO

K1(Z ⋉ A)oo K0(A).oo

Here α∗ : K∗(A)→ K∗(A) is the map induced by the automorphism α(1) of A. It
is not hard to identify the boundary map for the above extension with this map.
Our approach yields such exact sequences for any homological functor.

Now we formulate some structural results for R and Z that have a chance to
generalise to other groups.

Theorem 37. Let G be R or Z. Let A1 and A2 be G-C∗-algebras and let f ∈
KKG(A1, A2). If ResG(f) ∈ KK(A1, A2) is invertible, then so is f itself. In
particular, if ResG(A1) ∼= 0 in KK, then already A ∼= 0 in KKG.

Proof. We only write down the proof for G = Z; the case G = R is similar but sim-
pler. If f were an equivariant ∗-homomorphisms, then it would induce a morphism
of extensions

C0
(

(0, 1)× Z, A1

)

//

f∗

��

C0
(

R, A1

)

//

f∗

��

C0
(

Z, A1

)

f∗

��
C0

(

(0, 1)× Z, A2

)

// C0
(

R, A2

)

// C0
(

Z, A2

)

and hence a morphism of triangles between the resulting extension triangles. The
latter morphism still exists even if f is merely a morphism in KKZ. This can
be checked directly or deduced in a routine fashion from the uniqueness part of
the universal property of KKZ. If ResG(f) is invertible, then so are the induced
maps C0

(

(0, 1) × Z, A1

)

→ C0
(

(0, 1) × Z, A2

)

and C0(Z, A1) → C0(Z, A2) because

C0(Z, A) ∼= IndZ ResZ(A). Hence the Five Lemma in triangulated categories shows
that f itself is invertible. To get the second statement, apply the first one to the
zero maps 0→ A1 → 0.
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Definition 38. A path of G-actions (αt)t∈[0,1] is continuous if its pointwise appli-
cation defines a strongly continuous action of G on Cyl(A) := C([0, 1], A).

Corollary 39. Let G = R or Z. If (αt)t∈[0,1] is a continuous path of G-actions

on A, then there is a canonical KKG-equivalence (A, α0) ∼ (A, α1). As a conse-
quence, the crossed products for both actions are KK-equivalent.

Proof. Equip Cyl(A) with the automorphism α. Evaluation at 0 and 1 provides
elements in KKZ

(

Cyl(A), (A, αt)
)

that are non-equivariantly invertible because KK

is homotopy invariant. Hence they are invertible in KKG by Theorem 37. Their
composition yields the desired KKG-equivalence (A, α0) ∼ (A, α1).

It is not hard to extend Theorem 37 and hence Corollary 39 to the groups
R

n and Z
n for any n ∈ Z. With a bit more work, we could also treat solvable

Lie groups. But Theorem 37 as stated above fails for finite groups: there exists
a space X and two homotopic actions α0, α1 of Z/2 on X for which K∗

Z/2(X, αt)
are different for t = 0, 1. Reversing the argument in the proof of Corollary 39,
this provides the desired counterexample. Less complicated counterexamples can
be constructed where A is a UHF C∗-algebra. Such counterexamples force us to
amend our question:

Suppose ResH
G (A) ∼= 0 for all compact subgroups H ⊆ G. Does it follow

that A ∼= 0 in KKG? Or at least that K∗(G ⋉r A) ∼= 0?

It is shown in [25] that the second question has a positive answer if and only
if the Baum–Connes conjecture holds for G with arbitrary coefficients. For many
groups for which we know the Baum–Connes conjecture with coefficients, we also
know that the first question has a positive answer. But the first question can
only have a positive answer if the group is K-amenable, that is, if reduced and
full crossed products have the same K-theory. The Lie group Sp(n, 1) and its
cocompact subgroups are examples where we know the Baum–Connes conjecture
with coefficients although the group is not K-amenable.

Definition 40. A G-C∗-algebra A is called weakly contractible if ResH
G (A) ∼= 0 for

all compact subgroups H ⊆ G. Let CC be the class of weakly contractible objects.
A morphism f ∈ KKG(A1, A2) is called a weak equivalence if ResH

G (f) is invert-
ible for all compact subgroups H ⊆ G.

Recall that any f ∈ KKG(A1, A2) is part of an exact triangle A1 → A2 → C →
ΣA1 in KKG. We have C ∈ CC if and only if f is a weak equivalence. Hence our
two questions above are equivalent to:

Are all weak equivalences invertible in KKG? Do they at least act
invertibly on K∗(G ⋉r )?

The second question is equivalent to the Baum–Connes conjecture.
Suppose now that G is discrete. Then any subgroup is open, so that the

adjointness isomorphism (29) always applies. It asserts that the subcategories CI
and CC are orthogonal, that is, KKG(A, B) = 0 if A ∈∈ CI, B ∈∈ CC. Even more,
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if KKG(A, B) = 0 for all A ∈∈ CI, then it follows that B ∈∈ CC. A more involved
argument in [25] extends these observations to all locally compact groups G.

Definition 41. Let 〈CI〉 be the smallest full subcategory of KKG that contains
CI and is closed under suspensions, (countable) direct sums, and exact triangles.

We may think of objects of 〈CI〉 as generalised CW-complexes that are built
out of the cells in CI.

Theorem 42. The pair of subcategories (〈CI〉, CC) is complementary in the fol-
lowing sense (see [25]):

• KKG(P, N) = 0 if P ∈∈ 〈CI〉, N ∈∈ CC;

• for any A ∈∈ KKG, there is an exact triangle P → A → N → ΣP with
P ∈∈ 〈CI〉, N ∈∈ CC.

Moreover, the exact triangle P → A→ N → ΣP above is unique up to a canonical
isomorphism and depends functorially on A, and the ensuing functors A 7→ P (A),
A 7→ N(A) are exact functors on KKG.

Proof. The orthogonality of 〈CI〉 and CC follows easily from the orthogonality of
CI and CC. The existence of an exact triangle decomposition is more difficult.
The proof in [25] reduces this to the special case A = C. A more elementary
construction of this exact triangle is explained in [11].

Theorem 42 asserts that CI and CC together generate all of KKG. This is why
the vanishing of K∗(G ⋉r A) for A ∈∈ CC is so useful: it allows us to replace an
arbitrary object by one in 〈CI〉. The latter is built out of objects in CI. We have
already agreed that the computation of K∗(G⋉rA) for A ∈∈ CI is Somebody Else’s
Problems. Once we understand a mechanism for decomposing objects of 〈CI〉 into
objects of CI, the computation of K∗(G ⋉r A) for A ∈∈ 〈CI〉 becomes a purely
topological affair and hence Somebody Else’s Problem as well.

For the groups Z
n and R

n, the subcategory CC is trivial, so that Theorem 42
simply asserts that KKG = 〈CI〉 is generated by the compactly induced actions.
More generally, this is the case for all amenable groups; the proof of the Baum–
Connes conjecture by Higson and Kasparov for such groups also yields this
stronger assertion (see [25]).

Definition 43. Let F : KKG → C be a functor. Its localisation at CC (or at the
weak equivalences) is the functor

LF := F ◦ P : KKG → 〈CI〉 ⊆ KKG → C,

where we use the functors P : KKG → 〈CI〉 and N : KKG → CC that are part of a
natural exact triangle P (A)→ A→ N(A)→ ΣP (A).

The natural transformation P (A) → A furnishes a natural transformation
LF (A)→ F (A). If F is homological or exact, then F ◦N(A) is the obstruction to
invertibility of this map.
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The localisation LF can be characterised by a universal property. First of all,
it vanishes on CC because P (A) ∼= 0 whenever A ∈∈ CC. If F̃ is another func-
tor with this property, then any natural transformation F̃ → F factors uniquely
through LF → F . This universal property characterises LF uniquely up to natural
isomorphism of functors.

Theorem 44. The natural transformation LF (A)→ F (A) for F (A) := K∗(G⋉rA)
is equivalent to the Baum–Connes assembly map. That is, there is a natural
isomorphism LF (A) ∼= Ktop

∗ (G, A) compatible with the maps to F (A).

Proof. It is known (but not obvious) that Ktop
∗ (G, A) vanishes for CC and that the

Baum–Connes assembly map is an isomorphism for coefficients in CI. These two
facts together imply the result.

The Baum–Connes conjecture asserts that the assembly map LF (A)→ F (A)
is invertible for all A if F (A) := K∗(G ⋉r A). This follows if CI = KKG, of course.
In particular, the Baum–Connes conjecture is trivial if G itself is compact.

Part II

Homological algebra

It is well-known that many basic constructions from homotopy theory extend to
categories of C∗-algebras. As we argued in [25], the framework of triangulated
categories is ideal for this purpose. The notion of triangulated category was in-
troduced by Jean-Louis Verdier to formalise the properties of the derived category
of an Abelian category. Stable homotopy theory provides further classical exam-
ples of triangulated categories. The triangulated category structure encodes basic
information about manipulations with long exact sequences and (total) derived
functors. The main point of [25] is that the domain of the Baum–Connes assembly
map is the total left derived functor of the functor that maps a G-C∗-algebra A to
K∗(G ⋉r A).

Projective resolutions are among the most fundamental concepts in homological
algebra; several others like derived functors are based on it. Projective resolutions
seem to live in the underlying Abelian category and not in its derived category.
This is why total derived functor make more sense in triangulated categories than
the derived functors themselves. Nevertheless, we can define derived functors in
triangulated categories and far more general categories. This goes back to S. Eilen-
berg and J. C. Moore ([12]). We learned about this theory in articles by Apostolos
Beligiannis ([3]) and J. Daniel Christensen ([8]).

Homological algebra in non-Abelian categories is always relative, that is, we
need additional structure to get started. This is useful because we may fit the
additional data to our needs. In a triangulated category T, there are several kinds
of additional data that yield equivalent theories; following [8], we use an ideal in T.
We only consider ideals I ⊆ T of the form

I(A, B) := {x ∈ T(A, B) | F (x) = 0}
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for a stable homological functor F : T→ C into a stable Abelian category C. Here
stable means that C carries a suspension automorphism and that F intertwines the
suspension automorphisms on T and C, and homological means that exact triangles
yield exact sequences. Ideals of this form are called homological ideals.

A basic example is the ideal in the Kasparov category KK defined by

IK(A, B) := {f ∈ KK(A, B) | 0 = K∗(f) : K∗(A)→ K∗(B)}. (45)

For a locally compact group G and a (suitable) family of subgroups F , we
define the homological ideal

VCF (A, B) := {f ∈ KKG(A, B) |

ResH
G (f) = 0 in KKH(A, B) for all H ∈ F}. (46)

If F is the family of compact subgroups, then VCF is related to the Baum–Connes
assembly map ([25]). Of course, there are analogous ideals in more classical cate-
gories of (spectra of) G-CW-complexes.

All these examples can be analysed using the machinery we explain; but we
only carry this out in some cases.

We use an ideal I to carry over various notions from homological algebra to
our triangulated category T. In order to see what they mean in examples, we
characterise them using a stable homological functor F : T → C with kerF = I.
This is often easy. For instance, a chain complex with entries in T is I-exact if
and only if F maps it to an exact chain complex in the Abelian category C, and a
morphism in T is an I-epimorphism if and only if F maps it to an epimorphism.
Here we may take any functor F with kerF = I.

But the most crucial notions like projective objects and resolutions require a
more careful choice of the functor F . Here we need the universal I-exact functor,
which is a stable homological functor F with kerF = I such that any other such
functor factors uniquely through F (up to natural equivalence). The universal
I-exact functor and its applications are due to Apostolos Beligiannis ([3]).

If F : T→ C is universal, then F detects I-projective objects, and it identifies
I-derived functors with derived functors in the Abelian category C. Thus all our
homological notions reduce to their counterparts in the Abelian category C.

In order to apply this, we need to know when a functor F with kerF = I is
the universal one. We develop a new, useful criterion for this purpose here, which
uses partially defined adjoint functors.

Our criterion shows that the universal IK-exact functor for the ideal IK ⊆ KK
in (45) is the K-theory functor K∗, considered as a functor from KK to the category

AbZ/2
c of countable Z/2-graded Abelian groups. Hence the derived functors for IK

only involve Ext and Tor for Abelian groups.
The derived functors that we have discussed above appear in a spectral sequence

which—in favourable cases—computes morphism spaces in T (like KKG(A, B)) and
other homological functors. This spectral sequence is a generalisation of the Adams
spectral sequence in stable homotopy theory and is the main motivation for [8].
Much earlier, such spectral sequences were studied by Hans-Berndt Brinkmann
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in [6]. In a sequel to this article, we plan to apply this spectral sequence to our
bivariant K-theory examples. Here we only consider the much easier case where this
spectral sequence degenerates to an exact sequence. This generalises the familiar
Universal Coefficient Theorem for KK∗(A, B).

4. Homological ideals in triangulated categories

After fixing some basic notation, we introduce several interesting ideals in bivariant
Kasparov categories; we are going to discuss these ideals throughout this article.
Then we briefly recall what a triangulated category is and introduce homological
ideals. Before we begin, we should point out that the choice of ideal is important
because all our homological notions depend on it. It seems to be a matter of
experimentation and experience to find the right ideal for a given purpose.

4.1. Generalities about ideals in additive categories. All cate-
gories we consider will be additive, that is, they have a zero object and finite direct
products and coproducts which agree, and the morphism spaces carry Abelian
group structures such that the composition is additive in each variable ([21]).

Notation 47. Let C be an additive category. We write C(A, B) for the group
of morphisms A → B in C, and A ∈∈ C to denote that A is an object of the
category C.

Definition 48. An ideal I in C is a family of subgroups I(A, B) ⊆ C(A, B) for all
A, B ∈∈ C such that

C(C, D) ◦ I(B, C) ◦ C(A, B) ⊆ I(A, D) for all A, B, C, D ∈∈ C.

We write I1 ⊆ I2 if I1(A, B) ⊆ I2(A, B) for all A, B ∈∈ C. Clearly, the ideals
in T form a complete lattice. The largest ideal C consists of all morphisms in C;
the smallest ideal 0 contains only zero morphisms.

Definition 49. Let C and C′ be additive categories and let F : C → C′ be an
additive functor. Its kernel kerF is the ideal in C defined by

kerF (A, B) := {f ∈ C(A, B) | F (f) = 0}.

This should be distinguished from the kernel on objects, consisting of all objects
with F (A) ∼= 0, which is used much more frequently. This agrees with the class of
kerF -contractible objects that we introduce below.

Definition 50. Let I ⊆ T be an ideal. Its quotient category C/I has the same
objects as C and morphism groups C(A, B)/I(A, B).

The quotient category is again additive, and the obvious functor F : C → C/I

is additive and satisfies kerF = I. Thus any ideal I ⊆ C is of the form kerF for a
canonical additive functor F .
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The additivity of C/I and F depends on the fact that any ideal I is compatible
with finite products in the following sense: the natural isomorphisms

C(A, B1 ×B2)
∼=
−→ C(A, B1)× C(A, B2), C(A1 × A2, B)

∼=
−→ C(A1, B)× C(A2, B)

restrict to isomorphisms

I(A, B1 ×B2)
∼=
−→ I(A, B1)× I(A, B2), I(A1 × A2, B)

∼=
−→ I(A1, B)× I(A2, B).

4.2. Examples of ideals.

Example 51. Let KK be the Kasparov category, whose objects are the separable
C∗-algebras and whose morphism spaces are the Kasparov groups KK0(A, B), with

the Kasparov product as composition. Let AbZ/2 be the category of Z/2-graded
Abelian groups. Both categories are evidently additive.

K-theory is an additive functor K∗ : KK → AbZ/2. We let IK := kerK∗ (as
in (45)). Thus IK(A, B) ⊆ KK(A, B) is the kernel of the natural map

γ : KK(A, B)→ Hom
(

K∗(A), K∗(B)
)

:=
∏

n∈Z/2

Hom
(

Kn(A), Kn(B)
)

.

There is another interesting ideal in KK, namely, the kernel of a natural map

κ : IK(A, B)→ Ext
(

K∗(A), K∗+1(B)
)

:=
∏

n∈Z/2

Ext
(

Kn(A), Kn+1(B)
)

due to Lawrence Brown (see [33]), whose definition we now recall. We represent
f ∈ KK(A, B) ∼= Ext

(

A, C0(R, B)
)

by a C∗-algebra extension C0(R, B) ⊗ K ֌

E ։ A. This yields an exact sequence

K1(B) // K0(E) // K0(A)

f∗

��
K1(A)

f∗

OO

K1(E)oo K0(B).oo

(52)

The vertical maps in (52) are the two components of γ(f). If f ∈ IK(A, B),
then (52) splits into two extensions of Abelian groups, which yield an element κ(f)
in Ext

(

K∗(A), K∗+1(B)
)

.

Example 53. Let G be a second countable, locally compact group. Let KKG be
the associated equivariant Kasparov category; its objects are the separable G-C∗-
algebras and its morphism spaces are the groups KKG(A, B), with the Kasparov
product as composition. If H ⊆ G is a closed subgroup, then there is a restriction
functor ResH

G : KKG → KKH , which simply forgets part of the equivariance.
If F is a set of closed subgroups of G, we define an ideal VCF ⊆ KKG by

VCF(A, B) := {f ∈ KKG(A, B) | ResH
G (f) = 0 for all H ∈ F}
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as in (46). Of course, the condition ResH
G (f) = 0 is supposed to hold in KKH(A, B).

We are mainly interested in the case where F is the family of all compact subgroups
of G and simply denote the ideal by VC in this case.

This ideal arises if we try to compute G-equivariant homology theories in terms
of H-equivariant homology theories for H ∈ F . The ideal VC is closely related to
the approach to the Baum–Connes assembly map in [25].

Since I feel more at home with Kasparov theory than with spectra. Many
readers will prefer to work in categories of spectra of, say, G-CW-complexes. We
do not introduce these categories here; but it shoud be clear enough that they
support similar restriction functors, which provide analogues of the ideals VCF .

Finally, we consider a classic example from homological algebra.

Example 54. Let C be an Abelian category. Let Ho(A) be the homotopy category
of unbounded chain complexes

· · · → Cn
δn−→ Cn−1

δn−1
−−−→ Cn−2

δn−2
−−−→ Cn−3 → · · ·

over C. The space of morphisms A→ B in Ho(C) is the space [A, B] of homotopy
classes of chain maps A→ B.

Taking homology defines functors Hn : Ho(C)→ C for n ∈ Z, which we combine
to a single functor H∗ : Ho(C)→ CZ. We let IH ⊆ Ho(C) be its kernel:

IH(A, B) := {f ∈ [A, B] | H∗(f) = 0}. (55)

We also consider the category Ho(C; Z/p) of p-periodic chain complexes over C

for p ∈ N≥1; its objects satisfy Cn = Cn+p and δn = δn+p for all n ∈ Z, and chain
maps and homotopies are required p-periodic as well. The category Ho(C; Z/2)
plays a role in connection with cyclic cohomology, especially with local cyclic
cohomology ([23, 29]). The category Ho(C; Z/1) is isomorphic to the category
of chain complexes without grading. By convention, we let Z/0 = Z, so that
Ho(C; Z/0) = Ho(C).

The homology of a periodic chain complex is, of course, periodic, so that we
get a homological functor H∗ : Ho(C; Z/p)→ CZ/p; here CZ/p denotes the category
of Z/p-graded objects of C. We let IH ⊆ Ho(C; Z/p) be the kernel of H∗ as in (55).

4.3. What is a triangulated category?. A triangulated category is
a category T with a suspension automorphism Σ: T → T and a class of exact
triangles, subject to various axioms (see [25,28,35]). An exact triangle is a diagram
in T of the form

A→ B → C → ΣA or A // B

����
��

�

C,

[1]99

\\99

where the [1] in the arrow C → A warns us that this map has degree 1. A morphism
of triangles is a triple of maps α, β, γ making the obvious diagram commute.
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A typical example is the homotopy category Ho(C; Z/p)) of Z/p-graded chain
complexes. Here the suspension functor is the (signed) translation functor

Σ
(

(Cn, dn)
)

:= (Cn−1,−dn−1) on objects,

Σ
(

(fn)
)

:= (fn−1) on morphisms;

a triangle is exact if it is isomorphic to a mapping cone triangle

A
f
→ B → Cone(f)→ ΣA

for some chain map f ; the maps B → Cone(f)→ ΣA are the canonical ones. It is
well-known that this defines a triangulated category for p = 0; the arguments for
p ≥ 1 are essentially the same.

Another classical example is the stable homotopy category, say, of compactly
generated pointed topological spaces (it is not particularly relevant which category
of spaces or spectra we use). The suspension is Σ(A) := S1 ∧A; a triangle is exact
if it is isomorphic to a mapping cone triangle

A
f
→ B → Cone(f)→ ΣA

for some map f ; the maps B → Cone(f)→ ΣA are the canonical ones.
We are mainly interested in the categories KK and KKG introduced in §4.2.

Their triangulated category structure is discussed in detail in [25]. We are facing a
notational problem because the functor X 7→ C0(X) from pointed compact spaces
to C∗-algebras is contravariant, so that mapping cone triangles now have the form

A
f
← B ← Cone(f)← C0(R, A)

for a ∗-homomorphism f : B → A; here

Cone(f) =
{

(a, b) ∈ C0
(

(0,∞], A
)

×B
∣

∣ a(∞) = f(b)
}

and the maps C0(R, A) → Cone(f) → B are the obvious ones, a 7→ (a, 0) and
(a, b) 7→ b.

It is reasonable to view a ∗-homomorphism from A to B as a morphism from B
to A. Nevertheless, we prefer the convention that an algebra homorphism A→ B
is a morphism A → B. But then the most natural triangulated category struc-
ture lives on the opposite category KKop. This creates only notational difficulties
because the opposite category of a triangulated category inherits a canonical tri-
angulated category structure, which has “the same” exact triangles. However,
the passage to opposite categories exchanges suspensions and desuspensions and
modifies some sign conventions. Thus the functor A 7→ C0(R, A), which is the sus-
pension functor in KKop, becomes the desuspension functor in KK. Fortunately,
Bott periodicity implies that Σ2 ∼= id, so that Σ and Σ−1 agree.

Depending on your definition of a triangulated category, you may want the
suspension to be an equivalence or isomorphism of categories. In the latter case,
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you must replace KK(G) by an equivalent category (see [25]); since this is not
important here, we do not bother about this issue.

A triangle in KK(G) is called exact if it is isomorphic to a mapping cone triangle

C0(R, B)→ Cone(f)→ A
f
→ B

for some (equivariant) ∗-homomorphism f .
An important source of exact triangles in KKG are extensions. If A ֌ B ։ C is

an extension of G-C∗-algebras with an equivariant completely positive contractive
section, then it yields a class in Ext(C, A) ∼= KK(Σ−1C, A); the resulting triangle

Σ−1C → A→ B → C

in KKG is exact and called an extension triangle. It is easy to see that any exact
triangle is isomorphic to an extension triangle.

It is shown in [25] that KK and KKG for a locally compact group G are trian-
gulated categories with this extra structure.

The triangulated category axioms are discussed in greater detail in [25, 28,
35]. They encode some standard machinery for manipulating long exact sequences.
Most of them amount to formal properties of mapping cones and mapping cylinders,
which we can prove as in classical topology. The only axiom that requires more
care is that any morphism f : A→ B should be part of an exact triangle.

Unlike in [25], we prefer to construct this triangle as an extension triangle be-
cause this works in greater generality; we have learned this idea from Alexander
Bonkat ([5]). Any element in KKS

0 (A, B) ∼= KKS
1

(

A, C0(R, B)
)

can be represented
by an extension K(H) ֌ E ։ A with an equivariant completely positive contrac-
tive section, where H is a full S-equivariant Hilbert C0(R, B)-module, so that K(H)
is KKS-equivalent to C0(R, B). Hence the resulting extension triangle in KKS is
isomorphic to one of the form

C0(R, A)→ C0(R, B)→ E → A;

by construction, it contains the suspension of the given class in KKS
0 (A, B); it is

easy to remove the suspension.

Definition 56. Let T be a triangulated and C an Abelian category. A covariant
functor F : T→ C is called homological if F (A)→ F (B)→ F (C) is exact at F (B)
for all exact triangles A → B → C → ΣA. A contravariant functor with the
analogous exactness property is called cohomological.

Let A → B → C → ΣA be an exact triangle. Then a homological functor
F : T→ C yields a natural long exact sequence

· · · → Fn+1(C)→ Fn(A)→ Fn(B)→ Fn(C)→ Fn−1(A)→ Fn−1(B)→ · · ·

with Fn(A) := F (Σ−nA) for n ∈ Z, and a cohomological functor F : Top → C

yields a natural long exact sequence

· · · ← Fn+1(C)← Fn(A)← Fn(B)← Fn(C)← Fn−1(A)← Fn−1(B)← · · ·

with Fn(A) := F (Σ−nA).
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Proposition 57. Let T be a triangulated category. The functors

T(A, ) : T→ Ab, B 7→ T(A, B)

are homological for all A ∈∈ T. Dually, the functors

T( , B) : Top → Ab, A 7→ T(A, B)

are cohomological for all B ∈∈ T.

Observe that

Tn(A, B) = T(Σ−nA, B) ∼= T(A, ΣnB) ∼= T−n(A, B).

Definition 58. A stable additive category is an additive category equipped with
an (additive) automorphism Σ: C→ C, called suspension.

A stable homological functor is a homological functor F : T → C into a stable
Abelian category C together with natural isomorphisms F

(

ΣT(A)
)

∼= ΣC

(

F (A)
)

for all A ∈∈ T.

Example 59. The category CZ/p of Z/p-graded objects of an Abelian category C is
stable for any p ∈ N; the suspension automorphism merely shifts the grading. The
functors K∗ : KK→ AbZ/2 and H∗ : Ho(C; Z/p)→ CZ/p introduced in Examples 51
and 54 are stable homological functors.

If F : T→ C is any homological functor, then

F∗ : T→ CZ, A 7→
(

Fn(A)
)

n∈Z

is a stable homological functor. Many of our examples satisfy Bott periodicity, that
is, there is a natural isomorphism F2(A) ∼= F (A). Then we get a stable homological
functor F∗ : T→ CZ/2. A typical example for this is the functor K∗.

Definition 60. A functor F : T→ T′ between two triangulated categories is called
exact if it intertwines the suspension automorphisms (up to specified natural iso-
morphisms) and maps exact triangles in T again to exact triangles in T′.

Example 61. The restriction functor ResH
G : KKG → KKH for a closed quantum

subgroup H of a locally compact quantum group G and the crossed product func-
tors G ⋉ , G ⋉r : KKG → KK are exact because they preserve mapping cone
triangles.

Let F : T1 → T2 be an exact functor. If G : T2 →? is exact, homological, or
cohomological, then so is G ◦ F .

Using Examples 59 and 61, we see that the functors that define the ideals kerγ
in Example 51, VCF in Example 53, and IH in Example 54 are all stable and either
homological or exact.
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4.4. The universal homological functor. The following general con-
struction of Peter Freyd ([13]) plays an important role in [3]. For an additive
category C, let Fun(Cop, Ab) be the category of contravariant additive functors
Cop → Ab, with natural transformations as morphisms. Unless C is essentially
small, this is not quite a category because the morphisms may form classes instead
of sets. We may ignore this set-theoretic problem because the bivariant Kasparov
categories that we are interested in are essentially small, and the subcategory
Coh(C) ⊆ Fun(Cop, Ab) is an honest category for any C.

The category Fun(Cop, Ab) is Abelian: if f : F1 → F2 is a natural transforma-
tion, then its kernel, cokernel, image, and co-image are computed pointwise on
the objects of C, so that they boil down to the corresponding constructions with
Abelian groups.

The Yoneda embedding is an additive functor

Y : C→ Fun(Cop, Ab), B 7→ T( , B).

This functor is fully faithful, and there are natural isomorphisms

Hom(Y(B), F ) ∼= F (B) for all F ∈∈ Fun(Cop, Ab), B ∈∈ T

by the Yoneda lemma. A functor F ∈∈ Fun(Cop, Ab) is called representable if it is
isomorphic to Y(B) for some B ∈∈ C. Hence Y yields an equivalence of categories
between C and the subcategory of representable functors in Fun(Cop, Ab).

A functor F ∈∈ Fun(Cop, Ab) is called finitely presented if there is an exact
sequence Y(B1)→ Y(B2)→ F → 0 with B1, B2 ∈∈ T. Since Y is fully faithful, this
means that F is the cokernel of Y(f) for a morphism f in C. We let Coh(C) be the
full subcategory of finitely presented functors in Fun(Cop, Ab). Since representable
functors belong to Coh(C), we still have a Yoneda embedding Y : C → Coh(C).
Although the category Coh(T) tends to be very big and therefore unwieldy, it
plays an important theoretical role.

Theorem 62 (Freyd’s Theorem). Let T be a triangulated category.
Then Coh(T) is a stable Abelian category that has enough projective and enough

injective objects, and the projective and injective objects coincide.
The functor Y : T → Coh(T) is fully faithful, stable, and homological. Its es-

sential range Y(T) consists of projective-injective objects. Conversely, an object of
Coh(T) is projective-injective if and only if it is a retract of an object of Y(T).

The functor Y is the universal (stable) homological functor in the following
sense: any (stable) homological functor F : T→ C′ to a (stable) Abelian category C′

factors uniquely as F = F̄ ◦ Y for a (stable) exact functor F : Coh(T)→ C′.

If idempotents in T split — as in all our examples — then Y(T) is closed under
retracts, so that Y(T) is equal to the class of projective-injective objects in Coh(T).

4.5. Homological ideals in triangulated categories. Let T be a
triangulated category, let C be a stable additive category, and let F : T → C be a
stable homological functor. Then kerF is a stable ideal in the following sense:
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Definition 63. An ideal I ⊆ T is called stable if the suspension isomorphisms

Σ: T(A, B)
∼=
−→ T(ΣA, ΣB) for A, B ∈∈ T restrict to isomorphisms

Σ: I(A, B)
∼=
−→ I(ΣA, ΣB).

If I is stable, then there is a unique suspension automorphism on T/I for which
the canonical functor T → T/I is stable. Thus the stable ideals are exactly the
kernels of stable additive functors.

Definition 64. An ideal I ⊆ T in a triangulated category is called homological if
it is the kernel of a stable homological functor.

Remark 65. Freyd’s Theorem shows that Y induces a bijection between (stable)
exact functors Coh(T)→ C′ and (stable) homological functors T→ C′ because F̄ ◦Y
is homological if F̄ : Coh(T)→ C′ is exact. Hence the notion of homological functor
is independent of the triangulated category structure on T because the Yoneda
embedding Y : T → Coh(T) does not involve any additional structure. Hence the
notion of homological ideal only uses the suspension automorphism, not the class
of exact triangles.

All the ideals considered in §4.2 except for kerκ in Example 51 are kernels of sta-
ble homological functors or exact functors. Those of the first kind are homological
by definition. If F : T→ T′ is an exact functor between two triangulated categories,
then Y ◦ F : T → Coh(T′) is a stable homological functor with ker Y ◦ F = kerF
by Freyd’s Theorem 62. Hence kernels of exact functors are homological as well.

Is any homological ideal the kernel of an exact functor? This is not the case:

Proposition 66. Let Der(Ab) be the derived category of the category Ab of Abelian
groups. Define the ideal IH ⊆ Der(Ab) as in Example 54. This ideal is not the
kernel of an exact functor.

We postpone the proof to the end of §5.1 because it uses the machinery of §5.1.
It takes some effort to characterise homological ideals because T/I is almost

never Abelian. The results in [3, §2–3] show that an ideal is homological if and only
if it is saturated in the notation of [3]. We do not discuss this notion here because
most ideals that we consider are obviously homological. The only example where
we could profit from an abstract characterisation is the ideal kerκ in Example 51.

There is no obvious homological functor whose kernel is kerκ because κ is not
a functor on KK. Nevertheless, kerκ is the kernel of an exact functor; the relevant
functor is the functor KK→ UCT, where UCT is the variant of KK that satisfies
the Universal Coefficient Theorem in complete generality. This functor can be
constructed as a localisation of KK (see [25]). The Universal Coefficient Theorem
implies that its kernel is exactly kerκ.

5. From homological ideals to derived functors

Once we have a stable homological functor F : T→ C, it is not surprising that we
can do a certain amount of homological algebra in T. For instance, we may call
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a chain complex of objects of T F -exact if F maps it to an exact chain complex
in C; and we may call an object F -projective if F maps it to a projective object
in C. But are these definitions reasonable?

We propose that a reasonable homological notion should depend only on the
ideal kerF . We will see that the notion of F -exact chain complex is reasonable
and only depends on kerF . In contrast, the notion of projectivity above depends
on F and is only reasonable in special cases. There is another, more useful, notion
of projective object that depends only on the ideal kerF .

Various notions from homological algebra still make sense in the context of
homological ideals in triangulated categories. Our discussion mostly follows [1, 3,
8, 12]. All our definitions involve only the ideal, not a stable homological functor
that defines it. We reformulate them in terms of an exact or a stable homological
functor defining the ideal in order to understand what they mean in concrete cases.
Following [12], we construct projective objects using adjoint functors.

The most sophisticated concept in this section is the universal I-exact functor,
which gives us complete control over projective resolutions and derived functors.
We can usually describe such functors very concretely.

5.1. Basic notions. We introduce some useful terminology related to an
ideal:

Definition 67. Let I be a homological ideal in a triangulated category T.

• Let f : A→ B be a morphism in T; embed it in an exact triangle A
f
→ B

g
→

C
h
→ ΣA. We call f

– I-monic if h ∈ I;

– I-epic if g ∈ I;

– an I-equivalence if it is both I-monic and I-epic, that is, g, h ∈ I;

– an I-phantom map if f ∈ I.

• An object A ∈∈ T is called I-contractible if idA ∈ I(A, A).

• An exact triangle A
f
→ B

g
→ C

h
→ ΣA in T is called I-exact if h ∈ I.

The notions of monomorphism (or monic morphism) and epimorphism (or epic
morphism) — which can be found in any book on category theory such as [21] —
are categorical ways to express injectivity or surjectivity of maps. A morphism in
an Abelian category that is both monic and epic is invertible.

The classes of I-phantom maps, I-monics, I-epics, and of I-exact triangles
determine each other uniquely because we can embed any morphism in an exact
triangle in any position. It is a matter of taste which of these is considered most
fundamental. Following Daniel Christensen ([8]), we favour the phantom maps.
Other authors prefer exact triangles instead ([1, 3, 12]). Of course, the notion of
an I-phantom map is redundant; it becomes more relevant if we consider, say, the
class of I-exact triangles as our basic notion.
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Notice that f is I-epic or I-monic if and only if −f is. If f is I-epic or I-monic,
then so are Σn(f) for all n ∈ Z because I is stable. Similarly, (signed) suspensions
of I-exact triangles remain I-exact triangles.

Lemma 68. Let F : T → C be a stable homological functor into a stable Abelian
category C.

• A morphism f in T is

– a kerF -phantom map if and only if F (f) = 0;

– kerF -monic if and only if F (f) is monic;

– kerF -epic if and only if F (f) is epic;

– a kerF -equivalence if and only if F (f) is invertible.

• An object A ∈∈ T is kerF -contractible if and only if F (A) = 0.

• An exact triangle A→ B → C → ΣA is kerF -exact if and only if

0→ F (A)→ F (B)→ F (C)→ 0

is a short exact sequence in C.

Proof. Sequences in C of the form X
0
→ Y

f
→ Z or X

f
→ Y

0
→ Z are exact at Y

if and only if f is monic or epic, respectively. Moreover, a sequence of the form

X
0
→ Y → Z → U

0
→W is exact if and only if 0→ Y → Z → U → 0 is exact.

Combined with the long exact homology sequences for F and suitable exact
triangles, these observations yield the assertions about monomorphisms, epimor-
phisms, and exact triangles. The description of equivalences and contractible ob-
jects follows, and phantom maps are trivial, anyway.

Now we specialise these notions to the ideal IK ⊆ KK of Example 51, replac-
ing IK by K in our notation to avoid clutter.

• Let f ∈ KK(A, B) and let K∗(f) : K∗(A) → K∗(B) be the induced map.
Then f is

– a K-phantom map if and only if K∗(f) = 0;

– K-epic if and only if K∗(f) is surjective;

– K-monic if and only if K∗(f) is injective;

– a K-equivalence if and only if K∗(f) is invertible.

• A C∗-algebra A ∈∈ KK is K-contractible if and only if K∗(A) = 0.

• An exact triangle A→ B → C → ΣA in KK is K-exact if and only if

0→ K∗(A)→ K∗(B)→ K∗(C)→ 0

is a short exact sequence (of Z/2-graded Abelian groups).
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Similar things happen for the other ideals in §4.2 that are naturally defined as
kernels of stable homological functors.

Remark 69. It is crucial for the above theory that we consider functors that are
both stable and homological. Everything fails if we drop either assumption and
consider functors such as K0(A) or Hom

(

Z/4, K∗(A)
)

.

Lemma 70. An object A ∈∈ T is I-contractible if and only if 0: 0 → A is an
I-equivalence. A morphism f in T is an I-equivalence if and only if its generalised
mapping cone is I-contractible.

Thus the classes of I-equivalences and of I-contractible objects determine each
other. But they do not allow us to recover the ideal itself. For instance, the ideals
IK and kerκ in Example 51 have the same contractible objects and equivalences.

Proof. Recall that the generalised mapping cone of f is the object C that fits in an

exact triangle A
f
→ B → C → ΣA. The long exact sequence for this triangle yields

that F (f) is invertible if and only if F (C) = 0, where F is some stable homological
functor F with kerF = I. Now the second assertion follows from Lemma 68. Since
the generalised mapping cone of 0→ A is A, the first assertion is a special case of
the second one.

Many ideals are defined as kerF for an exact functor F : T → T′ between
triangulated categories. We can also use such a functor to describe the above
notions:

Lemma 71. Let T and T′ be triangulated categories and let F : T → T′ be an
exact functor.

• A morphism f ∈ T(A, B) is

– a kerF -phantom map if and only if F (f) = 0;

– kerF -monic if and only if F (f) is (split) monic.

– kerF -epic if and only if F (f) is (split) epic;

– a kerF -equivalence if and only if F (f) is invertible.

• An object A ∈∈ T is kerF -contractible if and only if F (A) = 0.

• An exact triangle A→ B → C → ΣA is kerF -exact if and only if the exact
triangle F (A)→ F (B)→ F (C)→ F (ΣA) in T′ splits.

We will explain the notation during the proof.

Proof. A morphism f : X → Y in T′ is called split epic (split monic) if there is

g : Y → X with f ◦g = idY (g◦f = idX). An exact triangle X
f
→ Y

g
→ Z

h
→ ΣX is

said to split if h = 0. This immediately yields the characterisation of kerF -exact
triangles. Any split triangle is isomorphic to a direct sum triangle, so that f is
split monic and g is split epic ([28, Corollary 1.2.7]). Conversely, either of these
conditions implies that the triangle is split.
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Since the kerF -exact triangles determine the kerF -epimorphisms and kerF -mo-
nomorphisms, the latter are detected by F (f) being split epic or split monic,
respectively. It is clear that split epimorphisms and split monomorphisms are
epimorphisms and monomorphisms, respectively. The converse holds in a triangu-
lated category because if we embed a monomorphism or epimorphism in an exact
triangle, then one of the maps is forced to vanish, so that the exact triangle splits.

Finally, a morphism is invertible if and only if it is both split monic and split
epic, and the zero map F (A)→ F (A) is invertible if and only if F (A) = 0.

We may also prove Lemma 68 using the Yoneda embedding Y : T′ → Coh(T′).
The assertions about phantom maps, equivalences, and contractibility boil down
to the observation that Y is fully faithful. The assertions about monomorphisms
and epimorphisms follow because a map f : A→ B in T′ becomes epic (monic) in
Coh(T′) if and only if it is split epic (monic) in T′.

There is a similar description for
⋂

kerFi for a set {Fi} of exact functors. This
applies to the ideal VCF for a family of (quantum) subgroupsF in a locally compact
(quantum) group G (Example 53). Replacing VCF by F in our notation to avoid
clutter, we get:

• A morphism f ∈ KKG(A, B) is

– an F-phantom map if and only if ResH
G (f) = 0 in KKH for all H ∈ F ;

– F-epic if and only if ResH
G (f) is (split) epic in KKH for all H ∈ F ;

– F-monic if and only if ResH
G (f) is (split) monic in KKH for all H ∈ F ;

– an F-equivalence if and only if ResH
G (f) is a KKH -equivalence for all

H ∈ F .

• A G-C∗-algebra A ∈∈ KKG is F-contractible if and only if ResH
G (A) ∼= 0 in

KKH for all H ∈ F .

• An exact triangle A→ B → C → ΣA in KKG is F-exact if and only if

ResH
G (A)→ ResH

G (B)→ ResH
G (C)→ Σ ResH

G (A)

is a split exact triangle in KKH for all H ∈ F .

Lemma 71 allows us to prove that the ideal IH in Der(Ab) cannot be the kernel
of an exact functor:

Proof of 66. We embed Ab → Der(Ab) as chain complexes concentrated in de-
gree 0. The generator τ ∈ Ext(Z/2, Z/2) corresponds to the extension of Abelian
groups Z/2 ֌ Z/4 ։ Z/2, where the first map is multiplication by 2 and the
second map is the natural projection. We get an exact triangle

Z/2→ Z/4→ Z/2
τ
−→ Z/2[1]

in Der(Ab). This triangle is IH-exact because the map Z/2 → Z/4 is injective as
a group homomorphism and hence IH-monic in Der(Ab).
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Assume there were an exact functor F : Der(Ab)→ T′ with kerF = IH. Then
F (τ) = 0, so that F maps our triangle to a split triangle and F (Z/4) ∼= F (Z/2)⊕
F (Z/2) by Lemma 71. It follows that F (2 · idZ/4) = 2 · idF (Z/4) = 0 because
2 · idF (Z/2) = F (2 · idZ/2) = 0. Hence 2 · idZ/4 ∈ kerF = IH, which is false. This
contradiction shows that there is no exact functor F with kerF = IH.

One of the most interesting questions about an ideal is whether all I-contracti-
ble objects vanish or, equivalently, whether all I-equivalences are invertible. These
two questions are equivalent by Lemma 70. The answer is negative for the ideal
IK ⊆ KK because the Universal Coefficient Theorem does not hold for arbitrary
separable C∗-algebras. If G is an amenable group, then VC-equivalences in KKG

are invertible; this follows from the proof of the Baum-Connes conjecture for these
groups by Nigel Higson and Gennadi Kasparov (see [25]). These examples show
that this question is subtle and may involve difficult analysis.

5.2. Exact chain complexes. We are going to extend to chain complexes
the notion of I-exactness, which we have only defined for exact triangles so far.
Our definition differs from Beligiannis’ one ([1, 3]), which we recall first.

Let T be a triangulated category and let I be a homological ideal in T.

Definition 72. A chain complex

C• := (· · · → Cn+1
dn+1
−−−→ Cn

dn−→ Cn−1
dn−1
−−−→ Cn−2 → · · · )

in T is called I-decomposable if there is a sequence of I-exact triangles

Kn+1
gn
−→ Cn

fn
−→ Kn

hn−−→ ΣKn+1

with dn = gn−1 ◦ fn : Cn → Cn−1.

Such complexes are called I-exact in [1, 3]. This definition is inspired by the
following well-known fact: a chain complex over an Abelian category is exact if
and only if it splits into short exact sequences of the form Kn ֌ Cn ։ Kn−1 as
in Definition 72.

We prefer another definition of exactness because we have not found a general
explicit criterion for a chain complex to be I-decomposable.

Definition 73. Let C• = (Cn, dn) be a chain complex over T. For each n ∈ N,
embed dn in an exact triangle

Cn
dn−→ Cn−1

fn
−→ Xn

gn
−→ ΣCn. (74)

We call C• I-exact in degree n if the map Xn
gn
−→ ΣCn

Σfn+1
−−−−→ ΣXn+1 belongs

to I(Xn, ΣXn+1). This does not depend on auxiliary choices because the exact
triangles in (74) are unique up to (non-canonical) isomorphism.

We call C• I-exact if it is I-exact in degree n for all n ∈ Z.

This definition is designed to make the following lemma true:
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Lemma 75. Let F : T → C be a stable homological functor into a stable Abelian
category C with kerF = I. A chain complex C• over T is I-exact in degree n if
and only if

F (Cn+1)
F (dn+1)
−−−−−→ F (Cn)

F (dn)
−−−−→ F (Cn−1)

is exact at F (Cn).

Proof. The complex C• is I-exact in degree n if and only if the map

Σ−1F (Xn)
Σ−1F (gn)
−−−−−−→ F (Cn)

F (fn+1)
−−−−−→ F (Xn+1)

vanishes. Equivalently, the range of Σ−1F (gn) is contained in the kernel of F (fn+1).
The long exact sequences

· · · → Σ−1F (Xn)
Σ−1F (gn)
−−−−−−→ F (Cn)

F (dn)
−−−−→ F (Cn−1)→ · · · ,

· · · → F (Cn+1)
F (dn+1)
−−−−−→ F (Cn)

F (fn+1)
−−−−−→ F (Xn+1)→ · · ·

show that the range of Σ−1F (gn) and the kernel of F (fn+1) are equal to the kernel
of F (dn) and the range of F (dn+1), respectively. Hence C• is I-exact in degree n
if and only if kerF (dn) ⊆ rangeF (dn+1). Since dn ◦ dn+1 = 0, this is equivalent to
kerF (dn) = rangeF (dn+1).

Corollary 76. I-decomposable chain complexes are I-exact.

Proof. Let F : T → C be a stable homological functor with kerF = I. If C• is
I-decomposable, then F (C•) is obtained by splicing short exact sequences in C.
This implies that F (C•) is exact, so that C• is I-exact by Lemma 75.

Example 77. For the ideal IK ⊆ KK, Lemma 75 yields that a chain complex C•

over KK is K-exact (in degree n) if and only if the chain complex

· · · → K∗(Cn+1)→ K∗(Cn)→ K∗(Cn−1)→ · · ·

of Z/2-graded Abelian groups is exact (in degree n). Similar remarks apply to the
other ideals in §4.2 that are defined as kernels of stable homological functors.

As a trivial example, we consider the largest possible ideal I = T. This ideal is
defined by the zero functor. Lemma 75 or the definition yield that all chain com-
plexes are T-exact. In contrast, it seems hard to characterise the I-decomposable
chain complexes, already for I = T.

Lemma 78. A chain complex of length 3

· · · → 0→ A
f
−→ B

g
−→ C → 0→ · · ·

is I-exact if and only if there are an I-exact exact triangle A′ f ′

−→ B′ g′

−→ C′ → ΣA′

and a commuting diagram

A′
f ′

//

α∼

��

B′
g′

//

β∼

��

C′

γ∼

��
A

f // B
g // C

(79)
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where the vertical maps α, β, γ are I-equivalences. Furthermore, we can achieve
that α and β are identity maps.

Proof. Let F be a stable homological functor with I = kerF .
Suppose first that we are in the situation of (79). Lemma 68 yields that F (α),

F (β), and F (γ) are invertible and that 0 → F (A′) → F (B′) → F (C′) → 0 is
a short exact sequence. Hence so is 0 → F (A) → F (B) → F (C) → 0. Now
Lemma 75 yields that our given chain complex is I-exact.

Conversely, suppose that we have an I-exact chain complex. By Lemma 75,
this means that 0→ F (A)→ F (B)→ F (C)→ 0 is a short exact sequence. Hence
f : A→ B is I-monic. Embed f in an exact triangle A→ B → C′ → ΣA. Since f
is I-monic, this triangle is I-exact. Let α = idA and β = idB. Since the functor
T( , C) is cohomological and g ◦ f = 0, we can find a map γ : C′ → C making (79)
commute. The functor F maps the rows of (79) to short exact sequences by
Lemmas 75 and 68. Now the Five Lemma yields that F (γ) is invertible, so that γ
is an I-equivalence.

Remark 80. Lemma 78 implies that I-exact chain complexes of length 3 are I-de-
composable. We do not expect this for chain complexes of length 4. But we have
not searched for a counterexample.

Which chain complexes over T are I-exact for I = 0 and hence for any homo-
logical ideal? The next definition provides the answer.

Definition 81. A chain complex C• over a triangulated category is called homo-
logically exact if F (C•) is exact for any homological functor F : T→ C.

Example 82. If A→ B → C → ΣA is an exact triangle, then the chain complex

· · · → Σ−1A→ Σ−1B → Σ−1C → A→ B → C → ΣA→ ΣB → ΣC → · · ·

is homologically exact by the definition of a homological functor.

Lemma 83. Let F : T → T′ be an exact functor between two triangulated cate-
gories. Let C• be a chain complex over T. The following are equivalent:

(1) C• is kerF -exact in degree n;

(2) F (C•) is I-exact in degree n with respect to I = 0;

(3) the chain complex Y ◦ F (C•) in Coh(T′) is exact in degree n;

(4) F (C•) is homologically exact in degree n;

(5) the chain complexes of Abelian groups T′
(

A, F (C•)
)

are exact in degree n for
all A ∈∈ T′.

Proof. By Freyd’s Theorem 62, Y◦F : T→ Coh(T′) is a stable homological functor
with kerF = ker(Y ◦ F ). Hence Lemma 75 yields (1) ⇐⇒ (3). Similarly, we
have (2) ⇐⇒ (3) because Y : T′ → Coh(T′) is a stable homological functor with
ker Y = 0. Freyd’s Theorem 62 also asserts that any homological functor F : T′ →
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C′ factors as F̄ ◦ Y for an exact functor F̄ . Hence (3)=⇒(4). Proposition 57
yields (4)=⇒(5). Finally, (5)⇐⇒ (3) because kernels and cokernels in Coh(T′) are
computed pointwise on objects of T′.

Remark 84. More generally, consider a set of exact functors Fi : T→ T′
i. As in the

proof of the equivalence (1)⇐⇒ (2) in Lemma 83, we see that a chain complex C•

is
⋂

kerFi-exact (in degree n) if and only if the chain complexes Fi(C•) are exact
(in degree n) for all i.

As a consequence, a chain complex C• over KKG for a locally compact quantum
group G is F -exact if and only if ResH

G (C•) is homologically exact for all H ∈ F .

Example 85. We exhibit an I-exact chain complex that is not I-decomposable for
the ideal I = 0. By Lemma 71, any 0-exact triangle is split. Therefore, a chain
complex is 0-decomposable if and only if it is a direct sum of chain complexes of the

form 0→ Kn
id
−→ Kn → 0. Hence any decomposable chain complex is contractible

and therefore mapped by any homological functor to a contractible chain complex.
By the way, if idempotents in T split then a chain complex is 0-decomposable if
and only if it is contractible.

As we have remarked in Example 82, the chain complex

· · · → Σ−1C → A→ B → C → ΣA→ ΣB → ΣC → Σ2A→ · · ·

is homologically exact for any exact triangle A → B → C → ΣA. But such
chain complexes need not be contractible. A counterexample is the exact triangle
Z/2→ Z/4→ Z/2→ ΣZ/2 in Der(Ab), which we have already used in the proof of
Proposition 66. The resulting chain complex over Der(Ab) cannot be contractible
because H∗ maps it to a non-contractible chain complex.

5.2.1. More homological algebra with chain complexes. Using our notion
of exactness for chain complexes, we can do homological algebra in the homotopy
category Ho(T). We briefly sketch some results in this direction, assuming some
familiarity with more advanced notions from homological algebra. We will not use
this later.

The I-exact chain complexes form a thick subcategory of Ho(T) because of
Lemma 75. We let Der := Der(T, I) be the localisation of Ho(T) at this subcate-
gory and call it the derived category of T with respect to I.

We let Der≥n and Der≤n be the full subcategories of Der consisting of chain
complexes that are I-exact in degrees < n and > n, respectively.

Theorem 86. The pair of subcategories Der≥0, Der≤0 forms a truncation struc-
ture (t-structure) on Der in the sense of [2].

Proof. The main issue here is the truncation of chain complexes. Let C• be a chain
complex over T. We embed the map d0 in an exact triangle C0 → C−1 → X → ΣC0

and let C≥0
• be the chain complex

· · · → C2 → C1 → C0 → C−1 → X → ΣC0 → ΣC−1 → ΣX → Σ2C0 → · · · .
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This chain complex is I-exact — even homologically exact — in negative degrees,
that is, C≥0

• ∈ Der≥0. The triangulated category structure allows us to construct
a chain map C≥0

• → C• that is an isomorphism on Cn for n ≥ −1. Hence its
mapping cone C≤−1

• is I-exact — even contractible — in degrees ≥ 0, that is,
C≤−1

• ∈∈ Der≤−1. By construction, we have an exact triangle

C≥0
• → C• → C≤−1

• → ΣC≥0
•

in Der.

We also have to check that there is no non-zero morphism C• → D• in Der if
C• ∈∈ Der≥0 and D• ∈∈ Der≤−1. Recall that morphisms in Der are represented
by diagrams C•

∼
← C̃• → D• in Ho(T), where the first map is an I-equivalence.

Hence C̃• ∈∈ Der≥0 as well. We claim that any chain map f : C̃≥0
• → D≤−1

• is
homotopic to 0. Since the maps C̃≥0

• → C• and D• → D≤−1
• are I-equivalences,

any morphism C• → D• vanishes in Der.

It remains to prove the claim. In a first step, we use that D≤−1
• is contractible

in degrees ≥ 0 to replace f by a homotopic chain map supported in degrees < 0.
In a second step, we use that C̃≥0

• is homologically exact in the relevant degrees
to recursively construct a chain homotopy between f and 0.

Any truncation structure gives rise to an Abelian category, its core. In our
case, we get the full subcategory C ⊆ Der of all chain complexes that are I-exact
except in degree 0. This is a stable Abelian category, and the standard embedding
T→ Ho(T) yields a stable homological functor F : T→ C with kerF = I.

This functor is characterised uniquely by the following universal property: any
(stable) homological functor H : T → C′ with I ⊆ kerH factors uniquely as H =
H̄ ◦ F for an exact functor H̄ : C→ C′. We construct H̄ in three steps.

First, we lift H to an exact functor Ho(H) : Ho(T, I) → Ho(C′). Secondly,
Ho(H) descends to a functor Der(H) : Der(T, I) → Der(C′). Finally, Der(H) re-
stricts to a functor H̄ : C → C′ between the cores. Since I ⊆ kerH , an I-exact
chain complex is also kerH-exact. Hence Ho(H) preserves exactness of chain com-
plexes by Lemma 75. This allows us to construct Der(H) and shows that Der(H)
is compatible with truncation structures. This allows us to restrict it to an exact
functor between the cores. Finally, we use that the core of the standard truncation
structure on Der(C) is C. It is easy to see that we have H̄ ◦ F = H .

Especially, we get an exact functor Der(F ) : Der(T, I) → Der(C), which re-
stricts to the identity functor idC between the cores. Hence Der(F ) is fully faithful
on the thick subcategory generated by C ⊆ Der(T, I). It seems plausible that
Der(F ) should be an equivalence of categories under some mild conditions on I

and T.

We will continue our study of the functor T→ C in §5.7. The universal property
determines it uniquely. Beligiannis ([3]) has another, simpler construction.

5.3. Projective objects. Let I be a homological ideal in a triangulated
category T.
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Definition 87. A homological functor F : T → C is called I-exact if F (f) = 0
for all I-phantom maps f or, equivalently, I ⊆ kerF . An object A ∈∈ T is called
I-projective if the functor T(A, ) : T → Ab is I-exact. Dually, an object B ∈∈ T

is called I-injective if the functor T( , B) : T→ Abop is I-exact.
We write PI for the class of I-projective objects in T.

The notions of projective and injective object are dual to each other: if we pass
to the opposite category Top with the canonical triangulated category structure
and use the same ideal Iop, then this exchanges the roles of projective and injective
objects. Therefore, it suffices to discuss one of these two notions in the following.
We will only treat projective objects because all the ideals in §4.2 have enough
projective objects, but most of them do not have enough injective objects.

Notice that the functor F is I-exact if and only if the associated stable functor
F∗ : T→ CZ is I-exact because I is stable.

Since we require F to be homological, the long exact homology sequence and
Lemma 75 yield that the following conditions are all equivalent to F being I-exact:

• F maps I-epimorphisms to epimorphisms in C;

• F maps I-monomorphisms to monomorphisms in C;

• 0 → F (A) → F (B) → F (C) → 0 is a short exact sequence in C for any
I-exact triangle A→ B → C → ΣA;

• F maps I-exact chain complexes to exact chain complexes in C.

This specialises to equivalent definitions of I-projective objects.

Lemma 88. An object A ∈∈ T is I-projective if and only if I(A, B) = 0 for all
B ∈∈ T.

Proof. If f ∈ I(A, B), then f = f∗(idA). This has to vanish if A is I-projective.
Suppose, conversely, that I(A, B) = 0 for all B ∈∈ T. If f ∈ I(B, B′), then T(A, f)
maps T(A, B) to I(A, B′) = 0, so that T(A, f) = 0. Hence A is I-projective.

An I-exact functor also has the following properties (which are strictly weaker
than being I-exact):

• F maps I-equivalences to isomorphisms in C;

• F maps I-contractible objects to 0 in C.

Again we may specialise this to I-projective and objects.

Lemma 89. The class of I-exact homological functors T → Ab or T → Abop

is closed under composition with Σ±1 : T → T, retracts, direct sums, and direct
products. The class PI of I-projective objects is closed under (de)suspensions,
retracts, and possibly infinite direct sums (as far as they exist in T).

Proof. The first assertion follows because direct sums and products of Abelian
groups are exact; the second one is a special case.



40

Notation 90. Let P ⊆ T be a set of objects. We let (P)⊕ be the smallest class
of objects of T that contains P and is closed under retracts and direct sums (as
far as they exist in T).

By Lemma 89, (P)⊕ consists of I-projective objects if P does. We say that P

generates all I-projective objects if (P)⊕ = PI. In examples, it is usually easier to
describe a class of generators in this sense.

Example 91. Suppose that G is discrete. Then the adjointness between induction
and restriction functors implies that all compactly induced objects are projective
for the ideal VC. Even more, the techniques that we develop below show that
PVC = CI.

5.4. Projective resolutions.

Definition 92. Let I ⊆ T be a homological ideal in a triangulated category and
let A ∈∈ T. A one-step I-projective resolution is an I-epimorphism π : P → A
with P ∈∈ PI. An I-projective resolution of A is an I-exact chain complex

· · ·
δn+1
−−−→ Pn

δn−→ Pn−1
δn−1
−−−→ · · ·

δ1−→ P0
δ0−→ A

with Pn ∈∈ PI for all n ∈ N.
We say that I has enough projective objects if each A ∈∈ T has a one-step

I-projective resolution.

The following proposition contains the basic properties of projective resolutions,
which are familiar from the similar situation for Abelian categories.

Proposition 93. If I has enough projective objects, then any object of T has an
I-projective resolution (and vice versa).

Let P• → A and P ′
• → A′ be I-projective resolutions. Then any map A → A′

may be lifted to a chain map P• → P ′
•, and this lifting is unique up to chain

homotopy. Two I-projective resolutions of the same object are chain homotopy
equivalent. As a result, the construction of projective resolutions provides a functor

P : T→ Ho(T).

Let A
f
→ B

g
→ C

h
→ ΣA be an I-exact triangle. Then there exists a canonical

map η : P (C)→ P (A)[1] in Ho(T) such that the triangle

P (A)
P (f)
−−−→ P (B)

P (g)
−−−→ P (C)

η
−→ P (A)[1]

in Ho(T) is exact; here [1] denotes the translation functor in Ho(T), which has
nothing to do with the suspension in T.

Proof. Let A ∈∈ T. By assumption, there is a one-step I-projective resolution
δ0 : P0 → A, which we embed in an exact triangle A1 → P0 → A→ ΣA1. Since δ0

is I-epic, this triangle is I-exact. By induction, we construct a sequence of such
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I-exact triangles An+1 → Pn → An → ΣAn+1 for n ∈ N with Pn ∈∈ P and
A0 = A. By composition, we obtain maps δn : Pn → Pn−1 for n ≥ 1, which satisfy
δn ◦ δn+1 = 0 for all n ≥ 0. The resulting chain complex

· · · → Pn
δn−→ Pn−1

δn−1
−−−→ Pn−2 → · · · → P1

δ1−→ P0
δ0−→ A→ 0

is I-decomposable by construction and therefore I-exact by Corollary 76.
The remaining assertions are proved exactly as their classical counterparts in

homological algebra. We briefly sketch the arguments. Let P• → A and P ′
• → A′

be I-projective resolutions and let f ∈ T(A, A′). We construct fn ∈ T(Pn, P ′
n) by

induction on n such that the diagrams

P0
δ0 //

f0

��   A
AA

AA
AA

A A

f

��
P ′

0
δ′

0

// A′,

Pn
δn //

fn

�� !!D
DD

DD
DD

D
Pn−1

fn−1

��
P ′

n
δ′

n

// P ′
n−1

for n ≥ 1 commute. We must check that this is possible. Since the chain complex
P ′
• → A is I-exact and Pn is I-projective for all n ≥ 0, the chain complexes

· · · → T(Pn, P ′
m)

(δ′

m)∗
−−−−→ T(Pn, P ′

m−1)→ · · · → T(Pn, P ′
0)

(δ′

0)∗−−−→ T(Pn, A)→ 0

are exact for all n ∈ N. This allows us to find the needed maps fn. By con-
struction, these maps form a chain map lifting f : A → A′. Its uniqueness up to
chain homotopy is proved similarly. If we apply this unique lifting result to two
I-projective resolutions of the same object, we get the uniqueness of I-projective
resolutions up to chain homotopy equivalence. Hence we get a well-defined functor
P : T→ Ho(T).

Now consider an I-exact triangle A→ B → C → ΣA as in the third paragraph
of the lemma. Let X• be the mapping cone of some chain map P (A) → P (B) in
the homotopy class P (f). This chain complex is supported in degrees ≥ 0 and has
I-projective entries because Xn = P (A)n−1⊕P (B)n. The map X0 = 0⊕P (B)0 →
B → C yields a chain map X• → C, that is, the composite map X1 → X0 → C
vanishes. By construction, this chain map lifts the given map B → C and we
have an exact triangle P (A) → P (B) → X• → P (A)[1] in Ho(T). It remains to
observe that X• → C is I-exact. Then X• is an I-projective resolution of C. Since
such resolutions are unique up to chain homotopy equivalence, we get a canonical
isomorphism X•

∼= P (C) in Ho(T) and hence the assertion in the third paragraph.
Let F be a stable homological functor with I = kerF . We have to check

that F (X•) → F (C) is a resolution. This reduces to a well-known diagram chase
in Abelian categories, using that F

(

P (A)
)

→ F (A) and F
(

P (B)
)

→ F (B) are
resolutions and that F (A) ֌ F (B) ։ F (C) is exact.

5.5. Derived functors. We only define derived functors if there are enough
projective objects because this case is rather easy and suffices for our applications.
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The general case can be reduced to the familiar case of Abelian categories using
the results of §5.2.1.

Definition 94. Let I be a homological ideal in a triangulated category T with
enough projective objects. Let F : T → C be an additive functor with values in
an Abelian category C. It induces a functor Ho(F ) : Ho(T) → Ho(C), applying F
pointwise to chain complexes. Let P : T → Ho(T) be the projective resolution
functor constructed in Proposition 93. Let Hn : Ho(C) → C be the nth homology
functor for some n ∈ N. The composite functor

LnF : T
P
−→ Ho(T)

Ho(F )
−−−−→ Ho(C)

Hn−−→ C

is called the nth left derived functor of F . If F : Top → C is a contravariant additive
functor, then the corresponding functor Hn ◦ Ho(F ) ◦ P : Top → C is denoted by
RnF and called the nth right derived functor of F .

More concretely, let A ∈∈ T and let (P•, δ•) be an I-projective resolution of A.
If F is covariant, then LnF (A) is the homology at F (Pn) of the chain complex

· · · → F (Pn+1)
F (δn+1)
−−−−−→ F (Pn)

F (δn)
−−−−→ F (Pn−1)→ · · · → F (P0)→ 0.

If F is contravariant, then RnF (A) is the cohomology at F (Pn) of the cochain
complex

· · · ← F (Pn+1)
F (δn+1)
←−−−−− F (Pn)

F (δn)
←−−−− F (Pn−1)← · · · ← F (P0)← 0.

Lemma 95. Let A → B → C → ΣA be an I-exact triangle. If F : T → C is a
covariant additive functor, then there is a long exact sequence

· · · → LnF (A)→ LnF (B)→ LnF (C)→ Ln−1F (A)

→ · · · → L1F (C)→ L0F (A)→ L0F (B)→ L0F (C)→ 0.

If F : Top → C is contravariant instead, then there is a long exact sequence

· · · ← R
nF (A)← R

nF (B)← R
nF (C)← R

n−1F (A)

← · · · ← R
1F (C)← R

0F (A)← R
0F (B)← R

0F (C)← 0.

Proof. This follows from the third assertion of Proposition 93 together with the
well-known long exact homology sequence for exact triangles in Ho(C).

Lemma 96. Let F : T→ C be a homological functor. The following assertions are
equivalent:

(1) F is I-exact;

(2) L0F (A) ∼= F (A) and LpF (A) = 0 for all p > 0, A ∈∈ T;

(3) L0F (A) ∼= F (A) for all A ∈∈ T.
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The analogous assertions for contravariant functors are equivalent as well.

Proof. If F is I-exact, then F maps I-exact chain complexes in T to exact chain
complexes in C. This applies to I-projective resolutions, so that (1)=⇒(2)=⇒(3).
It follows from (3) and Lemma 95 that F maps I-epimorphisms to epimorphisms.
Since this characterises I-exact functors, we get (3)=⇒(1).

It can happen that LpF = 0 for all p > 0 although F is not I-exact.
We have a natural transformation L0F (A) → F (A) (or F (A) → R0F (A)),

which is induced by the augmentation map P• → A for an I-projective resolution.
Lemma 96 shows that these maps are usually not bijective, although this happens
frequently for derived functors on Abelian categories.

Definition 97. We let Extn
T,I(A, B) be the nth right derived functor with respect

to I of the contravariant functor A 7→ T(A, B).

We have natural maps T(A, B) → Ext0T,I(A, B), which usually are not invert-
ible. Lemma 95 yields long exact sequences

· · · ← ExtnT,I(A, D)← Extn
T,I(B, D)← Extn

T,I(C, D)← Extn−1
T,I (A, D)←

· · · ← Ext1T,I(C, D)← Ext0T,I(A, D)← Ext0T,I(B, D)← Ext0T,I(C, D)← 0

for any I-exact exact triangle A→ B → C → ΣA and any D ∈∈ T.
We claim that there are similar long exact sequences

0→ Ext0T,I(D, A)→ Ext0T,I(D, B)→ Ext0T,I(D, C)→ Ext1T,I(D, A)→ · · ·

→ Extn−1
T,I (D, C)→ ExtnT,I(D, A)→ Extn

T,I(D, B)→ Extn
T,I(D, C)→ · · ·

in the second variable. Since P (D)n is I-projective, the sequences

0→ T(P (D)n, A)→ T(P (D)n, B)→ T(P (D)n, C)→ 0

are exact for all n ∈ N. This extension of chain complexes yields the desired long
exact sequence.

We list a few more elementary properties of derived functors. We only spell
things out for the left derived functors LnF : T→ C of a covariant functor F : T→
C. Similar assertions hold for right derived functors of contravariant functors.

The derived functors LnF satisfy I ⊆ ker LnF and hence descend to functors
LnF : T/I → C because the zero map P (A) → P (B) is a chain map lifting of f
if f ∈ I(A, B). As a consequence, LnF (A) ∼= 0 if A is I-contractible. The long
exact homology sequences of Lemma 95 show that LnF (f) : LnF (A) → LnF (B)
is invertible if f ∈ T(A, B) is an I-equivalence.

Warning 98. The derived functors LnF are not homological and therefore do not de-
serve to be called I-exact even though they vanish on I-phantom maps. Lemma 95
shows that these functors are only half-exact on I-exact triangles. Thus LnF (f)
need not be monic (or epic) if f is I-monic (or I-epic). The problem is that the
I-projective resolution functor P : T→ Ho(T) is not exact because it even fails to
be stable.
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The following remarks require a more advanced background in homological
algebra and are not going to be used in the sequel.

Remark 99. The derived functors introduced above, especially the Ext functors,
can be interepreted in terms of derived categories.

We have already observed in §5.2.1 that the I-exact chain complexes form a
thick subcategory of Ho(T). The augmentation map P (A)→ A of an I-projective
resolution of A ∈∈ T is a quasi-isomorphism with respect to this thick subcate-
gory. The chain complex P (A) is projective (see [18]), that is, for any chain com-
plex C•, the space of morphisms A→ C• in the derived category Der(T, I) agrees
with [P (A), C•]. Especially, ExtnT,I(A, B) is the space of morphisms A→ B[n] in
Der(T, I).

Now let F : T → C be an additive covariant functor. Extend it to an exact
functor F̄ : Ho(T)→ Ho(C). It has a total left derived functor

LF̄ : Der(T, I)→ Der(C), A 7→ F̄
(

P (A)
)

.

By definition, we have LnF (A) := Hn

(

LF̄ (A)
)

.

Remark 100. In classical Abelian categories, the Ext groups form a graded ring,
and the derived functors form graded modules over this graded ring. The same
happens in our context. The most conceptual construction of these products uses
the description of derived functors sketched in Remark 99.

Recall that we may view elements of Extn
T,I(A, B) as morphisms A → B[n]

in the derived category Der(T, I). Taking translations, we can also view them
as morphisms A[m] → B[n + m] for any m ∈ Z. The usual composition in the
category Der(T, I) therefore yields an associative product

ExtnT,I(B, C)⊗ Extm
T,I(A, B)→ Extn+m

T,I (A, C).

Thus we get a graded additive category with morphism spaces
(

Extn
T,I(A, B)

)

n∈N
.

Similarly, if F : T → C is an additive functor and LF̄ : Der(T, I) → Der(C) is
as in Remark 100, then a morphism A → B[n] in Der(T, I) induces a morphism
LF̄ (A)→ LF̄ (B)[n] in Der(C). Passing to homology, we get canonical maps

Extn
T,I(A, B)→ HomC

(

LFm(A), LFm−n(B)
)

∀m ≥ n,

which satisfy an appropriate associativity condition. For a contravariant functor,
we get canonical maps

ExtnT,I(A, B)→ HomC

(

RFm(B), RFm+n(A)
)

∀m ≥ 0.

5.6. Projective objects via adjointness. We develop a method for
constructing enough projective objects. Let T and C be stable additive categories,
let F : T→ C be a stable additive functor, and let I := kerF . In our applications,
T is triangulated and the functor F is either exact or stable and homological.

Recall that a covariant functor R : T→ Ab is (co)representable if it is naturally
isomorphic to T(A, ) for some A ∈∈ T, which is then unique. If the functor
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B 7→ C
(

A, F (B)
)

on T is representable, we write F †(A) for the representing object.
By construction, we have natural isomorphisms

T(F †(A), B) ∼= C
(

A, F (B)
)

for all B ∈ T. Let C′ ⊆ C be the full subcategory of all objects A ∈∈ C for which
F †(A) is defined. Then F † is a functor C′ → T, which we call the (partially defined)
left adjoint of F . Although one usually assumes C = C′, we shall also need F † in
cases where it is not defined everywhere.

The functor B 7→ C
(

A, F (B)
)

for A ∈∈ C′ vanishes on I = kerF for trivial
reasons. Hence F †(A) ∈∈ T is I-projective. This simple observation is surprisingly
powerful: as we shall see, it often yields all I-projective objects.

Remark 101. We have F †(ΣA) ∼= ΣF †(A) for all A ∈∈ C′, so that Σ(C′) = C′.
Moreover, F † commutes with infinite direct sums (as far as they exist in T) because

T
(

⊕

F †(Ai), B
)

∼=
∏

T(F †(Ai), B) ∼=
∏

C
(

Ai, F (B)
)

∼= C
(

⊕

Ai, F (B)
)

.

Example 102. Consider the functor K∗ : KK→ AbZ/2. Let Z ∈∈ AbZ/2 denote the
trivially graded Abelian group Z. Notice that

Hom
(

Z, K∗(A)
)

∼= K0(A) ∼= KK(C, A),

Hom
(

Z[1], K∗(A)
)

∼= K1(A) ∼= KK(C0(R), A),

where Z[1] means Z in odd degree. Hence K†
∗(Z) = C and K†

∗(Z[1]) = C0(R). More

generally, Remark 101 shows that K†
∗(A) is defined if both the even and odd parts

of A ∈∈ AbZ/2 are countable free Abelian groups: it is a direct sum of at most
countably many copies of C and C0(R). Hence all such countable direct sums are

IK-projective (we briefly say K-projective). As we shall see, K†
∗ is not defined on

all of AbZ/2; this is typical of homological functors.

Example 103. Consider the functor H∗ : Ho(C; Z/p) → CZ/p of Example 54. Let
j : CZ/p → Ho(C; Z/p) be the functor that views an object of CZ/p as a p-periodic
chain complex whose boundary map vanishes.

A chain map j(A) → B• for A ∈∈ CZ/p and B• ∈∈ Ho(C; Z/p) is a family of
maps ϕn : An → ker(dn : Bn → Bn−1). Such a family is chain homotopic to 0 if
and only if each ϕn lifts to a map An → Bn+1. Suppose that An is projective for
all n ∈ Z/p. Then such a lifting exists if and only if ϕn(An) ⊆ dn+1(Bn+1). Hence

[j(A), B•] ∼=
∏

n∈Z/p

C
(

An, Hn(B•)
)

∼= CZ/p
(

A, H∗(B•)
)

.

As a result, the left adjoint of H∗ is defined on the subcategory of projective
objects P(C)Z/p ⊆ CZ/p and agrees there with the restriction of j. We will show in

§5.8 that P(C)Z/p is equal to the domain of definition of H†
∗ and that all IH-pro-

jective objects are of the form H†
∗(A) (provided C has enough projective objects).
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By duality, analogous results hold for injective objects: the domain of the right
adjoint of H∗ is the subcategory of injective objects of CZ/p, the right adjoint
is equal to j on this subcategory, and this provides all H∗-injective objects of
Ho(C; Z/p).

These examples show that F † yields many kerF -projective objects. We want
to get enough kerF -projective objects in this fashion, assuming that F † is defined
on enough of C. In order to treat ideals of the form

⋂

Fi, we now consider a more
complicated setup. Let {Ci | i ∈ I} be a set of stable homological or triangulated
categories together with full subcategories PCi ⊆ Ci and stable homological or
exact functors Fi : T→ Ci for all i ∈ I. Assume that

• the left adjoint F †
i is defined on PCi for all i ∈ I;

• there is an epimorphism P → Fi(A) in Ci with P ∈∈ PCi for any i ∈ I,
A ∈∈ T;

• the set of functors F †
i : PCi → T is cointegrable, that is,

⊕

i∈I F †
i (Bi) exists

for all families of objects Bi ∈ PCi, i ∈ I.

The reason for the notation PCi is that for a homological functor Fi we usually
take PCi to be the class of projective objects of Ci; if Fi is exact, then we often
take PCi = Ci. But it may be useful to choose a smaller category, as long as it
satisfies the second condition above.

Proposition 104. In this situation, there are enough I-projective objects, and PI

is generated by
⋃

i∈I{F
†
i (B) | B ∈ PCi}. More precisely, an object of T is I-projec-

tive if and only if it is a retract of
⊕

i∈I F †
i (Bi) for a family of objects Bi ∈ PCi.

Proof. Let P̃0 :=
⋃

i∈I{F
†
i (B) | B ∈ PCi} and P0 := (P̃0)⊕. To begin with, we

observe that any object of the form F †
i (B) with B ∈∈ PCi is kerFi-projective and

hence I-projective because I ⊆ kerFi. Hence P0 consists of I-projective objects.
Let A ∈∈ T. For each i ∈ I, there is an epimorphism pi : Bi → Fi(A) with

Bi ∈ PCi. The direct sum B :=
⊕

i∈I F †
i (Bi) exists. We have B ∈∈ P0 by

construction. We are going to construct an I-epimorphism p : B → A. This shows
that there are enough I-projective objects.

The maps pi : Bi → Fi(A) provide maps p̂i : F †
i (Bi) → A via the adjointness

isomorphisms T(F †
i (Bi), A) ∼= Ci

(

Bi, Fi(A)
)

. We let p :=
∑

p̂i :
⊕

F †
i (Bi) → A.

We must check that p is an I-epimorphism. Equivalently, p is kerFi-epic for all
i ∈ I; this is, in turn equivalent to Fi(p) being an epimorphism in Ci for all i ∈ I,
because of Lemma 68 or 71. This is what we are going to prove.

The identity map on F †
i (Bi) yields a map αi : Bi → FiF

†
i (Bi) via the adjoint-

ness isomorphism T
(

F †
i (Bi), F

†
i (Bi)

)

∼= Ci

(

Bi, FiF
†
i (Bi)

)

. Composing with the
map

FiF
†
i (Bi)→ Fi

(

⊕

F †
i (Bi)

)

= Fi(B)

induced by the coordinate embedding F †
i (Bi)→ B, we get a map α′

i : Bi → Fi(B).
The naturality of the adjointness isomorphisms yields Fi(p̂i) ◦ αi = pi and hence
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Fi(p) ◦ α′
i = pi. The map pi is an epimorphism by assumption. Now we use a

cancellation result for epimorphisms: if f ◦g is an epimorphism, then so is f . Thus
Fi(p) is an epimorphism as desired.

If A is I-projective, then the I-epimorphism p : B → A splits; to see this,
embed p in an exact triangle N → B → A → ΣN and observe that the map
A → ΣN belongs to I(A, ΣN) = 0. Therefore, A is a retract of B. Since P0

is closed under retracts and B ∈∈ P0, we get A ∈∈ P0. Hence P̃0 generates all
I-projective objects.

5.7. The universal exact homological functor. For the following
results, it is essential to define an ideal by a single functor F instead of a family
of functors as in Proposition 104.

Definition 105. Let I ⊆ T be a homological ideal. An I-exact stable homological
functor F : T→ C is called universal if any other I-exact stable homological functor
G : T→ C′ factors as Ḡ = G◦F for a stable exact functor Ḡ : C→ C′ that is unique
up to natural isomorphism.

This universal property characterises F uniquely up to natural isomorphism.
We have constructed such a functor in §5.2.1. Beligiannis constructs it in [3, §3]
using a localisation of the Abelian category Coh(T) at a suitable Serre subcate-
gory; he calls this functor projectivisation functor and its target category Steenrod
category. This notation is motivated by the special case of the Adams spectral
sequence. The following theorem allows us to check whether a given functor is
universal:

Theorem 106. Let T be a triangulated category, let I ⊆ T be a homological ideal,
and let F : T → C be an I-exact stable homological functor into a stable Abelian
category C; let PC be the class of projective objects in C. Suppose that idempotent
morphisms in T split.

The functor F is the universal I-exact stable homological functor and there are
enough I-projective objects in T if and only if

• C has enough projective objects;

• the adjoint functor F † is defined on PC;

• F ◦ F †(A) ∼= A for all A ∈∈ PC.

Proof. Suppose first that F is universal and that there are enough I-projective
objects. Then F is equivalent to the projectivisation functor of [3]. The various
properties of this functor listed in [3, Proposition 4.19] include the following:

• there are enough projective objects in C;

• F induces an equivalence of categories PI
∼= PC (PI is the class of projective

objects in T);

• C
(

F (A), F (B)
)

∼= T(A, B) for all A ∈∈ PI, B ∈∈ T.
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Here we use the assumption that idempotents in T split. The last property is
equivalent to F † ◦ F (A) ∼= A for all A ∈∈ PI. Since PI

∼= PC via F , this implies
that F † is defined on PC and that F ◦ F †(A) ∼= A for all A ∈∈ PC. Thus F has
the properties listed in the statement of the theorem.

Now suppose conversely that F has these properties. Let P′
I ⊆ T be the

essential range of F † : PC → T. We claim that P′
I is the class of all I-projective

objects in T. Since F ◦F † is equivalent to the identity functor on PC by assumption,
F |P′

I
and F † provide an equivalence of categories P′

I
∼= PC. Since C is assumed

to have enough projectives, the hypotheses of Proposition 104 are satisfied. Hence
there are enough I-projective objects in T, and any object of PI is a retract of an
object of P′

I. Idempotent morphisms in the category P′
I
∼= PC split because C is

Abelian and retracts of projective objects are again projective. Hence P′
I is closed

under retracts in T, so that P′
I = PI. It also follows that F and F † provide an

equivalence of categories PI
∼= PC. Hence F † ◦F (A) ∼= A for all A ∈∈ PI, so that

we get C
(

F (A), F (B)
)

∼= T(F † ◦ F (A), B) ∼= T(A, B) for all A ∈∈ PI, B ∈∈ T.

Now let G : T→ C′ be a stable homological functor. We will later assume G to
be I-exact, but the first part of the following argument works in general. Since F
provides an equivalence of categories PI

∼= PC, the rule Ḡ
(

F (P )
)

:= G(P ) defines
a functor Ḡ on PC. This yields a functor Ho(Ḡ) : Ho(PC) → Ho(C′). Since C

has enough projective objects, the construction of projective resolutions provides
a functor P : C→ Ho(PC). We let Ḡ be the composite functor

Ḡ : C
P
−→ Ho(PC)

Ho(Ḡ)
−−−−→ Ho(C′)

H0−−→ C′.

This functor is right-exact and satisfies Ḡ ◦ F = G on I-projective objects of T.

Now suppose that G is I-exact. Then we get Ḡ ◦ F = G for all objects of T

because this holds for I-projective objects. We claim that Ḡ is exact. Let A ∈∈ C.
Since C has enough projective objects, we can find a projective resolution of A. We
may assume this resolution to have the form F (P•) with P• ∈∈ Ho(PI) because
F (PI) ∼= PC. Lemma 75 yields that P• is I-exact except in degree 0. Since
I ⊆ kerG, the chain complex P• is kerG-exact in positive degrees as well, so that
G(P•) is exact except in degree 0 by Lemma 75. As a consequence, LpḠ(A) = 0
for all p > 0. We also have L0Ḡ(A) = Ḡ(A) by construction. Thus Ḡ is exact.

As a result, G factors as G = Ḡ ◦ F for an exact functor Ḡ : C → C′. It is
clear that Ḡ is stable. Finally, since C has enough projective objects, a functor
on C is determined up to natural equivalence by its restriction to projective objects.
Therefore, our factorisation of G is unique up to natural equivalence. Thus F is
the universal I-exact functor.

Remark 107. Let P′C ⊆ PC be some subcategory such that any object of C

is a quotient of a direct sum of objects of P′C. Equivalently, (P′C)⊕ = PC.
Theorem 106 remains valid if we only assume that F † is defined on P′C and that
F ◦F †(A) ∼= A holds for A ∈∈ P′C because both conditions are evidently hereditary
for direct sums and retracts.
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Theorem 108. In the situation of Theorem 106, the domain of definition of the
functor F † is equal to PC, and its essential range is PI. The functors F and F †

restrict to equivalences of categories PI
∼= PC inverse to each other.

An object A ∈∈ T is I-projective if and only if F (A) is projective and

C
(

F (A), F (B)
)

∼= T(A, B)

for all B ∈∈ T; following Ross Street [34], we call such objects F -projective. We
have F (A) ∈∈ PC if and only if there is an I-equivalence P → A with P ∈∈ PI.

The functors F and F † induce bijections between isomorphism classes of projec-
tive resolutions of F (A) in C and isomorphism classes of I-projective resolutions
of A ∈∈ T in T.

If G : T → C′ is any (stable) homological functor, then there is a unique right-
exact (stable) functor Ḡ : C→ C′ such that Ḡ ◦ F (P ) = G(P ) for all P ∈∈ PI.

The left derived functors of G with respect to I and of Ḡ are related by natural
isomorphisms LnḠ ◦ F (A) = LnG(A) for all A ∈∈ T, n ∈ N. There is a similar
statement for cohomological functors, which specialises to natural isomorphisms

ExtnT,I(A, B) ∼= Extn
C

(

F (A), F (B)
)

.

Proof. We have already seen during the proof of Theorem 106 that F restricts to

an equivalence of categories PI

∼=
−→ PC, whose inverse is the restriction of F †, and

that C
(

F (A), F (B)
)

∼= T(A, B) for all A ∈∈ PI, B ∈∈ PC.
Conversely, if A is F -projective in the sense of Street, then A is I-projective

because already T(A, B) ∼= C
(

F (A), F (B)
)

for all B ∈∈ T yields A ∼= F † ◦ F (A),
so that A is I-projective; notice that the projectivity of F (A) is automatic.

Since F maps I-equivalences to isomorphisms, F (A) is projective whenever
there is an I-equivalence P → A with I-projective P . Conversely, suppose that
F (A) is I-projective. Let P0 → A be a one-step I-projective resolution. Since F (A)
is projective, the epimorphism F (P0)→ F (A) splits by some map F (A)→ F (P0).
The resulting map F (P0) → F (A) → F (P0) is idempotent and comes from an
idempotent endomorphism of P0 because F is fully faithful on PI. Its range
object P exists because we require idempotent morphisms in C to split. It belongs
again to PI, and the induced map F (P ) → F (A) is invertible by construction.
Hence we get an I-equivalence P → A.

If C• is a chain complex over T, then we know already from Lemma 75 that C•

is I-exact if and only if F (C•) is exact. Hence F maps an I-projective resolution
of A to a projective resolution of F (A). Conversely, if P• → F (A) is any projective
resolution in C, then it is of the form F (P̂•)→ F (A) where P̂• := F †(P•) and where
we get the map P̂0 → A by adjointness from the given map P0 → F (A). This shows
that F induces a bijection between isomorphism classes of I-projective resolutions
of A and projective resolutions of F (A).

We have seen during the proof of Theorem 106 how a stable homological functor
G : T → C′ gives rise to a unique right-exact functor Ḡ : C → C′ that satisfies
Ḡ◦F (P ) = G(P ) for all P ∈∈ PI. The derived functors LnḠ

(

F (A)
)

for A ∈∈ T are
computed by applying Ḡ to a projective resolution of F (A). Since such a projective
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resolution is of the form F (P•) for an I-projective resolution P• → A and since
Ḡ ◦ F = G on I-projective objects, the derived functors LnG(A) and LnḠ

(

F (A)
)

are computed by the same chain complex and agree. The same reasoning applies
to cohomological functors and yields the assertion about Ext.

Finally, we check that A ∈∈ C is projective if F †(A) is defined. We prove
Ext1C(A, B) = 0 for all B ∈∈ C, from which the assertion follows. There is a
projective resolution of the form F (P•)→ B, which we use to compute Ext1C(A, B).
The adjointness of F † and F yields that F †(A) ∈∈ T is I-projective and that
C
(

A, F (P•)
)

∼= T(F †(A), P•). Since P• is I-exact in positive degrees by Lemma 75

and F †(A) is I-projective, we get 0 = H1

(

C
(

A, F (P•)
))

= Ext1C(A, B).

Remark 109. The assumption that idempotents split is only needed to check that
the universal I-exact functor has the properties listed in Theorem 106. The con-
verse directions of Theorem 106 and Theorem 108 do not need this assumption.

If T has countable direct sums or countable direct products, then idempotents
in T automatically split by [28, §1.3]. This covers categories such as KKG because
they have countable direct sums.

5.8. Derived functors in homological algebra. Now we study the
kernel IH of the homology functor H∗ : Ho(C; Z/p)→ CZ/p introduced Example 54.
We get exactly the same statements if we replace the homotopy category by its
derived category and study the kernel of H∗ : Der(C; Z/p)→ CZ/p. We often abbre-
viate IH to H and speak of H-epimorphisms, H-exact chain complexes, H-projective
resolutions, and so on. We denote the full subcategory of H-projective objects in
Ho(C; Z/p) by PH.

We assume that the underlying Abelian category C has enough projective ob-
jects. Then the same holds for CZ/p, and we have P(CZ/p) ∼= (PC)Z/p. That is, an
object of CZ/p is projective if and only if its homogeneous pieces are.

Theorem 110. The category Ho(C; Z/p) has enough H-projective objects, and
the functor H∗ : Ho(C; Z/p) → CZ/p is the universal H-exact stable homological
functor. Its restriction to PH provides an equivalence of categories PH

∼= PCZ/p.
More concretely, a chain complex in Ho(C; Z/p) is H-projective if and only if it is
homotopy equivalent to one with vanishing boundary map and projective entries.

The functor H∗ maps isomorphism classes of H-projective resolutions of A ∈∈
Ho(C; Z/p) bijectively to isomorphism classes of projective resolutions of H∗(A)
in CZ/p. We have

ExtnHo(C;Z/p),IH
(A, B) ∼= ExtnC

(

H∗(A), H∗(B)
)

.

Let F : C→ C′ be some covariant additive functor and define

F̄ : Ho(C; Z/p)→ Ho(C′; Z/p)

by applying F entrywise. Then LnF̄ (A) ∼= LnF
(

H∗(A)
)

for all n ∈ N. Similarly,

we have RnF̄ (A) ∼= RnF
(

H∗(A)
)

if F is a contravariant functor.
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Proof. The category CZ/p has enough projective objects by assumption. We have
already seen in Example 103 that H†

∗ is defined on PCZ/p; this functor is denoted
by j in Example 103. It is clear that H∗ ◦ j(A) ∼= A for all A ∈∈ CZ/p. Now
Theorem 106 shows that H∗ is universal. We do not need idempotent morphisms
in Ho(C; Z/p) to split by Remark 109.

Remark 111. Since the universal I-exact functor is essentially unique, the univer-
sality of H∗ : Der(C; Z/p)→ CZ/p means that we can recover this functor and hence
the stable Abelian category CZ/p from the ideal IH ⊆ Der(C; Z/p). That is, the
ideal IH and the functor H∗ : Der(C; Z/p)→ CZ/p contain exactly the same amount
of information.

For instance, if we forget the precise category C by composing H∗ with some
faithful functor C→ C′, then the resulting homology functor Ho(C; Z/p)→ C′ still
has kernel IH. We can recover CZ/p by passing to the universal I-exact functor.

We compare this with the situation for truncation structures ([2]). These can-
not exist for periodic categories such as Der(C; Z/p) for p ≥ 1. Given the standard
truncation structure on Der(C), we can recover the Abelian category C as its core;
we also get back the homology functors Hn : Der(C)→ C for all n ∈ Z. Conversely,
the functor H∗ : Der(C) → CZ together with the grading on CZ tells us what it
means for a chain complex to be exact in degrees ≥ 0 or ≤ 0 and thus determines
the truncation structure. Hence the standard truncation structure on Der(C) con-
tains the same amount of information as the functor H∗ : Der(C) → CZ together
with the grading on CZ.

6. Universal Coefficient Theorems

First we study the ideal IK := kerK∗ ⊆ KK of Example 51. We complete our
analysis of this example and explain the Universal Coefficient Theorem for KK
in our framework. We call IK-projective objects and IK-exact functors briefly
K-projective and K-exact and let PK ⊆ KK be the class of K-projective objects.

Let AbZ/2
c ⊆ AbZ/2 be the full subcategory of countable Z/2-graded Abelian

groups. Since the K-theory of a separable C∗-algebra is countable, we may view K∗

as a stable homological functor K∗ : KK→ AbZ/2
c .

Theorem 112. There are enough K-projective objects in KK, and the universal
K-exact functor is K∗ : KK → AbZ/2

c . It restricts to an equivalence of categories

between PK and the full subcategory Ab
Z/2
fc ⊆ AbZ/2

c of Z/2-graded countable free
Abelian groups. A separable C∗-algebra belongs to PK if and only if it is KK-
equivalent to

⊕

i∈I0
C⊕

⊕

i∈I1
C0(R) where the sets I0, I1 are at most countable.

If A ∈∈ KK, then K∗ maps isomorphism classes of K-projective resolutions
of A in T bijectively to isomorphism classes of free resolutions of K∗(A). We have

Extn
KK,IK

(A, B) ∼=











HomAbZ/2

(

K∗(A), K∗(B)
)

for n = 0;

Ext1
AbZ/2

(

K∗(A), K∗(B)
)

for n = 1;

0 for n ≥ 2.



52

Let F : KK → C be some covariant additive functor; then there is a unique
right-exact functor F̄ : AbZ/2

c → C with F̄ ◦K∗ = F . We have LnF = (LnF̄ ) ◦K∗

for all n ∈ N; this vanishes for n ≥ 2. Similar assertions hold for contravariant
functors.

Proof. Notice that AbZ/2
c ⊆ AbZ/2 is an Abelian category. We shall denote objects

of AbZ/2 by pairs (A0, A1) of Abelian groups. By definition, (A0, A1) ∈∈ Ab
Z/2
fc

if and only if A0 and A1 are countable free Abelian groups, that is, they are of
the form A0 = Z[I0] and A1 = Z[I1] for at most countable sets I0, I1. It is well-
known that any Abelian group is a quotient of a free Abelian group and that
subgroups of free Abelian groups are again free. Moreover, free Abelian groups

are projective. Hence Ab
Z/2
fc is the subcategory of projective objects in AbZ/2

c and

any object G ∈∈ AbZ/2
c has a projective resolution of the form 0→ F1 → F0 ։ G

with F0, F1 ∈∈ Ab
Z/2
fc . This implies that derived functors on AbZ/2

c only occur in
dimensions 1 and 0.

As in Example 102, we see that K†
∗ is defined on Ab

Z/2
fc and satisfies

K†
∗

(

Z[I0], Z[I1]
)

∼=
⊕

i∈I0

C⊕
⊕

i∈I1

C0(R)

if I0, I1 are countable. We also have K∗ ◦K†
∗

(

Z[I0], Z[I1]
)

∼=
(

Z[I0], Z[I1]
)

, so that
the hypotheses of Theorem 106 are satisfied. Hence there are enough K-projective
objects and K∗ is universal. The remaining assertions follow from Theorem 108
and our detailed knowledge of the homological algebra in AbZ/2

c .

Example 113. Consider the stable homological functor

F : KK→ AbZ/2
c , A 7→ K∗(A⊗B)

for some B ∈∈ KK, where ⊗ denotes, say, the spatial C∗-tensor product. We claim
that the associated right-exact functor AbZ/2

c → AbZ/2
c is

F̄ : AbZ/2
c → AbZ/2

c , G 7→ G⊗K∗(B).

It is easy to check F ◦ K†
∗(G) ∼= G ⊗ K∗(B) ∼= F̄ (G) for G ∈∈ Ab

Z/2
fc . Since the

functor G 7→ G⊗K∗(B) is right-exact and agrees with F̄ on projective objects, we

get F̄ (G) = G⊗K∗(B) for all G ∈∈ AbZ/2
c . Hence the derived functors of F are

LnF (A) ∼=











K∗(A)⊗K∗(B) for n = 0;

Tor1
(

K∗(A), K∗(B)
)

for n = 1;

0 for n ≥ 2.

Here we use the same graded version of Tor as in the Künneth Theorem ([4]).

Example 114. Consider the stable homological functor

F : KK→ AbZ/2, B 7→ KK∗(A, B)
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for some A ∈∈ KK. We suppose that A is a compact object of KK, that is, the
functor F commutes with direct sums. Then KK∗

(

A, K†
∗(G)

)

∼= KK∗(A, C)⊗G for

all G ∈∈ Ab
Z/2
fc because this holds for G = (Z, 0) and is inherited by suspensions

and direct sums. Now we get F̄ (G) ∼= KK∗(A, C) ⊗ G for all G ∈∈ AbZ/2
c as in

Example 113. Therefore,

LnF (B) ∼=











KK∗(A, C)⊗K∗(B) for n = 0;

Tor1
(

KK∗(A, C), K∗(B)
)

for n = 1;

0 for n ≥ 2.

Generalising Examples 113 and 114, we have F̄ (G) ∼= F (C)⊗G and hence

LnF (B) ∼=

{

F (C)⊗K∗(B) for n = 0,

Tor1
(

F (C), K∗(B)
)

for n = 1,

for any covariant functor F : KK→ C that commutes with direct sums.
Similarly, if F : KKop → C is contravariant and maps direct sums to direct

products, then F̄ (G) ∼= Hom(G, F (C)) and

R
nF (B) ∼=

{

Hom
(

K∗(B), F (C)
)

for n = 0,

Ext1
(

K∗(B), F (C)
)

for n = 1.

The description of Extn
KK,IK

in Theorem 112 is a special case of this.

6.1. Universal Coefficient Theorem in the hereditary case. In
general, we need spectral sequences in order to relate the derived functors LnF back
to F . We will discuss this in a sequel to this article. Here we only treat the simple
case where we have projective resolutions of length 1. The following universal
coefficient theorem is very similar to but slightly more general than [3, Theorem
4.27] because we do not require all I-equivalences to be invertible.

Theorem 115. Let T be a triangulated category and let I ⊆ T be a homological
ideal. Let A ∈∈ T have an I-projective resolution of length 1. Suppose also that
T(A, B) = 0 for all I-contractible B. Let F : T → C be a homological functor,
F̃ : Top → C a cohomological functor, and B ∈∈ T. Then there are natural short
exact sequences

0→ L0F∗(A)→ F∗(A)→ L1F∗−1(A)→ 0,

0→ R
1F̃ ∗−1(A)→ F̃ ∗(A)→ R

0F̃ ∗(A)→ 0,

0→ Ext1T,I(ΣA, B)→ T(A, B)→ Ext0T,I(A, B)→ 0.

Example 116. For the ideal IK ⊆ KK, any object has a K-projective resolution of
length 1 by Theorem 112. The other hypothesis of Theorem 115 holds if and only
if A satisfies the Universal Coefficient Theorem (UCT). The UCT for KK(A, B)
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predicts KK(A, B) = 0 if K∗(B) = 0. Conversely, if this is the case, then Theo-
rem 115 applies, and our description of ExtKK,IK in Theorem 112 yields the UCT
for KK(A, B) for all B. This yields our claim.

Thus the UCT for KK(A, B) is a special of Theorem 115. In the situations of
Examples 113 and 114, we get the familiar Künneth Theorems for K∗(A⊗B) and
KK∗(A, B). These arguments are very similar to the original proofs (see [4]). Our
machinery allows us to treat other situations in a similar fashion.

Proof of Theorem 115. We only write down the proof for homological functors.
The cohomological case is dual and contains T( , B) as a special case.

Let 0 → P1
δ1−→ P0

δ0−→ A be an I-projective resolution of length 1 and view it
as an I-exact chain complex of length 3. Lemma 78 yields a commuting diagram

P1
δ1 // P0

δ̃0 // Ã

α

��
P1

δ1 // P0
δ0 // A,

such that the top row is part of an I-exact exact triangle P1 → P0 → Ã → ΣP1

and α is an I-equivalence. We claim that α is an isomorphism in T.

We embed α in an exact triangle Σ−1B → Ã
α
−→ A

β
−→ B. Lemma 70 shows

that B is I-contractible because α is an I-equivalence. Hence T(A, B) = 0 by our
assumption on A. This forces β = 0, so that our exact triangle splits: A ∼= Ã⊕B.
Then T(B, B) ⊆ T(A, B) vanishes as well, so that B ∼= 0. Thus α is invertible.

We get an exact triangle in T of the form P1
δ1−→ P0

δ0−→ A→ ΣP1 because any
triangle isomorphic to an exact one is itself exact.

Now we apply F . Since F is homological, we get a long exact sequence

· · · → F∗(P1)
F∗(δ1)
−−−−→ F∗(P0)→ F∗(A)→ F∗−1(P1)

F∗−1(δ1)
−−−−−−→ F∗−1(P0)→ · · · .

We cut this into short exact sequences of the form

coker
(

F∗(δ1)
)

֌ F∗(A) ։ ker
(

F∗−1(δ1)
)

.

Since cokerF∗(δ1) = L0F∗(A) and kerF∗(δ1) = L1F∗(A), we get the desired exact
sequence. The map L0F∗(A) → F∗(A) is the canonical map induced by δ0. The
other map F∗(A)→ L1F∗−1(A) is natural for all morphisms between objects with
an I-projective resolution of length 1 by Proposition 93.

The proof shows that — in the situation of Theorem 115 — we have

Ext0T,I(A, B) ∼= T/I(A, B), Ext1T,I(A, B) ∼= I(A, ΣB).

More generally, we can construct a natural map I(A, ΣB)→ Ext1T,I(A, B) for any
homological ideal, using the I-universal homological functor F : T→ C. We embed
f ∈ I(A, ΣB) in an exact triangle B → C → A→ ΣB. We get an extension

[

F (B) ֌ F (C) ։ F (A)
]

∈∈ Ext1C
(

F (A), F (B)
)
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because this triangle is I-exact. This class κ(f) in Ext1C
(

F (A), F (B)
)

does not
depend on auxiliary choices because the exact triangle B → C → A → ΣB is
unique up to isomorphism. Theorem 108 yields Ext1T,I(A, B) ∼= Ext1C

(

F (A), F (B)
)

because F is universal. Hence we get a natural map

κ : I(A, ΣB)→ Ext1T,I(A, B).

We may view κ as a secondary invariant generated by the canonical map

T(A, B)→ Ext0T,I(A, B).

For the ideal IK, we get the same map κ as in Example 51.
An Abelian category with enough projective objects is called hereditary if any

subobject of a projective object is again projective. Equivalently, any object has
a projective resolution of length 1. This motivates the following definition:

Definition 117. A homological ideal I in a triangulated category T is called
hereditary if any object of T has a projective resolution of length 1.

If I is hereditary and if I-equivalences are invertible, then Theorem 115 applies
to all A ∈∈ T (and vice versa).

Example 118. As another example, consider the ideal VC ⊆ KKZ for the group Z.
Here the family of subgroups only contains the trivial one. Theorem 36 shows that
Theorem 115 applies to all objects of KKZ. The resulting extensions are equivalent
to the Pimsner–Voiculescu exact sequence. To see this, first cut the latter into
two short exact sequences involving the kernel and cokernel of α∗−1. Then notice
that the latter coincide with the group homology of the induced action of Z on
K∗(A).

6.2. The Adams resolution. Let I be an ideal in a triangulated category
and let P be its class of projective objects. We assume that I has enough projective
objects. Let A ∈∈ T. Write A = B0 and let ΣB1 → P0 → B0 → B1 be a one-step
I-projective resolution of A = B0. Similarly, let ΣB2 → P1 → B1 → B2 be a
one-step I-projective resolution of B1. Repeating this process we obtain objects
Bn ∈∈ T, Pn ∈ P for n ∈ N with B0 = A and morphisms βn+1

n ∈ I(Bn, Bn+1),
πn ∈ T(Pn, Bn), αn ∈ T1(Bn+1, Pn) that are part of distinguished triangles

ΣBn+1
αn→ Pn

πn→ Bn
βn+1

n→ Bn+1 (119)

for all n ∈ N. Thus the maps πn are I-epic for all n ∈ N. We can assemble these
data in a diagram

A = B0

β1
0 // B1

β2
1 //

α0
��

B2

β3
2 //

α1
��

B3
//

α2
��

· · ·

P0

π0

``BBBBBBBB

P1

π1

\\9999999

P2

π2

\\9999999

· · ·

\\:::::::



56

called an Adams resolution of A. We also let

βn
m := βn

n−1 ◦ · · · ◦ βm+1
m : Bm → Bn

for all n ≥ m (by convention, βm
m = id). We have βn

m ∈ In−m(Bm, Bn), that is,
βn

m is a product of n−m factors in I.
We are particularly interested in the maps βn := βn

0 : A → Bn for n ∈ N.
Taking a mapping cone of βn we obtain a distinguished triangle

ΣBn
σn→ Cn

ρn
→ A

βn

→ Bn (120)

for each n, which is determined uniquely by βn up to non-canonical isomorphism.
Applying the octahedral axiom (TR4) of [35] or, equivalently, [28, Proposition
1.4.12], we get maps γn+1

n : Cn → Cn+1 and νn : Cn+1 → Pn that are part of
morphisms of distinguished triangles

ΣBn
σn //

Σβn+1
n

��

Cn
ρn //

γn+1
n

��

A
βn

// Bn

βn+1
n

��
ΣBn+1

σn+1 // Cn+1
ρn+1 //

νn

��

A
βn+1

//

βn

��

Bn+1

ΣBn+1
αn+1 // Pn

πn // Bn

βn+1
n // Bn+1

(121)

and of a distinguished triangle

ΣPn
σn◦Σπn−→ Cn

γn+1
n→ Cn+1

νn→ Pn. (122)

It follows by induction on n that Cn ∈ Pn for all n ∈ N. Since βn ∈ In by
construction, the distinguished triangle (120) shows that ρn : Cn → A is a one-
step In-projective resolution.

6.3. Spectral sequences from the Adams resolution. The Adams
resolution gives rise to an exact couple and thus to a spectral sequence in a canon-
ical way (our reference for exact couples and spectral sequences is [20]). We let
F : T→ Ab be a contravariant cohomological functor and define Fn(A) := F (ΣnA)
for n ∈ Z. We define Z× N-graded Abelian groups

Dpq
1 := F p+q(Bp), Epq

1 := F p+q(Pp),

and homomorphisms

ipq
1 := F ∗(βp

p−1) : Dp,q
1 → Dp−1,q+1

1 ,

jpq
1 := F ∗(πp) : Dp,q

1 → Ep,q
1 ,

kpq
1 := F ∗(αp) : Ep,q

1 → Dp+1,q
1
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of bidegree

deg i1 = (−1, 1), deg j1 = (0, 0), deg k1 = (1, 0).

Since F is cohomological, we get long exact sequences for the distinguished trian-
gles (119). This means that (D1, E1, i1, j1, k1) is an exact couple. As in [20, Sec-
tion XI.5] we form the derived exact couples (Dr, Er, ir, jr, kr) for r ∈ N≥2 and
let dr = jrkr : Er → Er. The map dr has bidegree (r, 1 − r) and the data (Er, dr)
define a cohomological spectral sequence.

Now consider instead a covariant homological functor F : T→ Ab.
Let Fn(A) := F (ΣnA) for n ∈ Z and define Z× N-graded Abelian groups

D1
pq := Fp+q(Bp), E1

pq := Fp+q(Pp)

and homomorphisms

i1pq := F∗(β
p+1
p ) : D1

p,q → D1
p+1,q−1,

j1
pq := F∗(αp) : D1

p,q → E1
p−1,q.

k1
pq := F∗(πp) : E1

p,q → D1
p,q

of bidegree

deg i1 = (1,−1), deg j1 = (−1, 0), deg k1 = (0, 0).

This is an exact couple because F is homological. We form derived exact couples
(Dr, Er, ir, jr, kr) for r ∈ N≥2 and let dr = jrkr. This map has bidegree (−r, r−1),
so that (Er, dr) is a homological spectral sequence.

The boundary maps d1 and d1 in the above spectral sequences are induced by
the composition

δn := αn ◦ Σπn+1 : ΣPn+1 → Pn.

Letting δ−1 := π0 : P0 → A, we obtain a chain complex

A
δ0← P0

δ1← ΣP1
δ2← Σ2P2

δ3← Σ3P3
δ4← · · ·

in T. This is an I-projective resolution of A.
Let F : T→ Ab be a covariant functor. By construction, we have

E2
pq
∼= Hp

(

Fq(Σ
•P•, δ•)

)

∼= LpFp+q(A).

Thus the second tableau of our spectral sequence comprises the derived functors
of suspensions of F .

We do not analyse the convergence of the above spectral sequence here in
detail. In general, we cannot hope for convergence towards F (A) itself because the
derived functors vanish if A is I-contractible, but F (A) need not vanish. Thus we
should replace F by LF right away. Under mild conditions, the spectral sequence
converges towards LF .
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