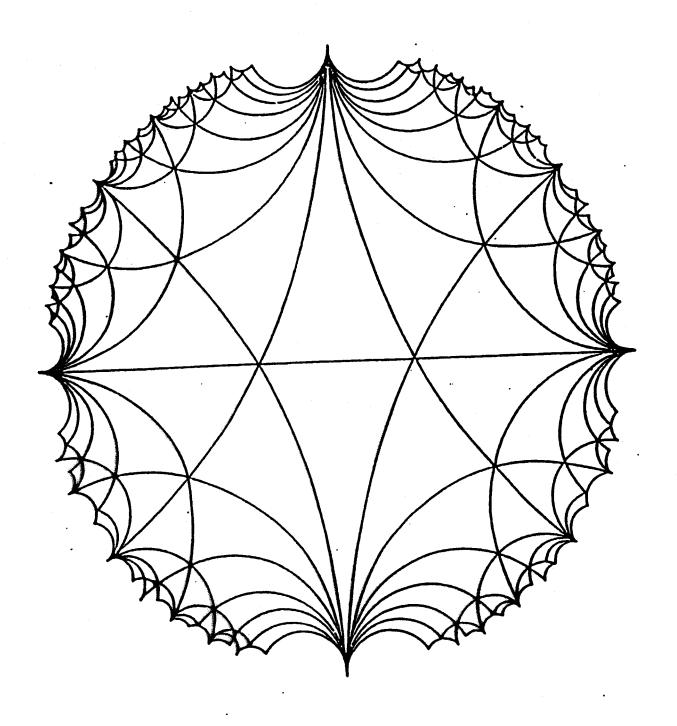
Γ (countable) discrete group

$$\underline{E}\Gamma = \left\{ f: \Gamma \longrightarrow [0,1] \middle| \begin{array}{l} \{\gamma \in \Gamma | f(\gamma) \neq 0\} \text{ is finite} \\ \sum_{\gamma \in \Gamma} f(\gamma) = 1 \end{array} \right\}$$

$$(\beta f)(\gamma) = f(\beta^{-1}\gamma)$$
 $\beta, \gamma, \in \Gamma$
$$f: \Gamma \longrightarrow [0, 1]$$

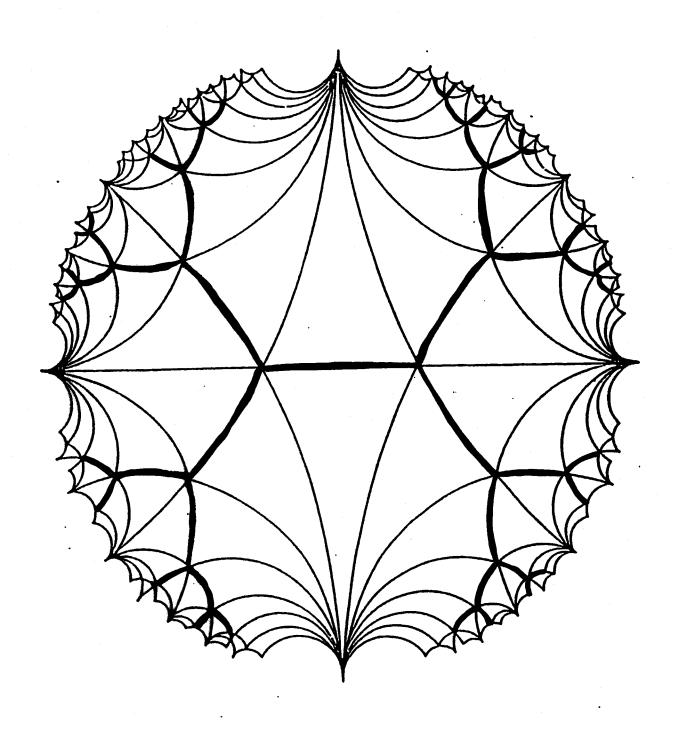
topologized by metric d

$$d(f,h) = \left(\sum_{\gamma \in \Gamma} \left| f(\gamma) - h(\gamma) \right|^2 \right)^{1/2}$$



Poincaré Disc Fundamental Domains for $SL(2,\mathbb{Z})$

Poincaré Disc = SL(2, R)/SO(2)



Poincaré Disc Fundamental Domains for $SL(2,\mathbb{Z})$

Topic 6: Equivariant K homology $K_*^G(X)$

locally compact

Hausdorff

G topological group

second countable

H separable Hilbert space

$$\mathcal{U}(H) = \left\{ U \in \mathcal{L}(H) \mid UU^* = U^*U = I \right\}$$

Definition A unitary representation of G is a group homomorphism $\pi: G \longrightarrow \mathcal{U}(H)$ such that for each $v \in H$ the map $G \longrightarrow H$, $g \longmapsto \pi(g)v$, is a continuous map from G to H.

<u>Definition</u> A $G - C^*$ algebra is a C^* algebra A with a given continuous action

$$G \times A \longrightarrow A$$

of G on A.

G acts as C^* algebra automorphisms of A.

"continuous" means that for each $a \in A$, the map $G \longrightarrow A$, $g \longmapsto ga$ is a continuous map from G to A.

Let A be a (separable) $G - C^*$ algebra.

A covariant representation of A is a triple (H, ψ, π) such that:

 ${\cal H}$ is a separable Hilbert space.

 $\psi:A o \mathcal{L}(H)$ is a *-homomorphism.

 $\pi:G\to \mathcal{U}(H)$ is a unitary representation of G.

$$\psi(ga) = \pi(g)\psi(a)\pi(g^{-1}) \qquad \forall (g,a) \in G \times A.$$

Example Let X be a locally compact G-space.

G acts on $C_0(X)$

$$g \in G$$

$$(g\alpha)(x) = \alpha(g^{-1}x) \qquad \alpha \in C_0(X)$$

$$x \in X$$

 $C_0(X)$ is a $G-C^*$ algebra.

<u>Definition</u> Let A be a $G-C^*$ algebra. A <u>covariant representation</u> of A is a triple (H, ψ, π) with:

- (i) H is a separable Hilbert space
- (ii) $\psi: A \longrightarrow \mathcal{L}(H)$ is a *-homomorphism
- (iii) $\pi: G \longrightarrow U(H)$ is a unitary representation of H

(iv)
$$\psi(ga) = \pi(g)\psi(a)\pi(g^{-1}) \quad \forall (g,a) \in G \times A$$

Let X be a proper G-space with compact quotient space $G \backslash X$.

An equivariant (odd) K - cycle for X is a 4 - tuple (H, ψ, π, T) such that:

- (H, ψ, π) is a covariant representation of the $G C^*$ algebra $C_0(X)$.
- $T \in \mathcal{L}(H)$
- $T = T^*$

•
$$\pi(g)T - T\pi(g) = 0$$
 $\forall g \in G$

•
$$\psi(\alpha)T - T\psi(\alpha) \in \mathcal{K}(H)$$
 $\forall \alpha \in C_0(X)$

•
$$\psi(\alpha)(I - T^2) \in \mathcal{K}(H)$$
 $\forall \alpha \in C_0(X)$

$$\mathcal{E}_1^G(X) = \{(H, \psi, \pi, T)\}$$

Example

$$G = \mathbb{Z}$$
 $X = \mathbb{R}$

$$\mathbb{Z} \times \mathbb{R} \to \mathbb{R}$$

$$(n,t) \mapsto n+t$$
 $\mathbb{Z} \setminus \mathbb{R} = S^1$

$$H = L^2(\mathbb{R})$$
 $\psi(\alpha)u = \alpha u$

$$\alpha u(t) = \alpha(t)u(t)$$

$$\alpha \in C_0(\mathbb{R}) \quad u \in L^2(\mathbb{R}) \quad t \in \mathbb{R}$$

$$(\pi(n)u)(t) = u(t-n)$$
 $n \in \mathbb{Z}$ $u \in L^2(\mathbb{R})$

$$-i\frac{d}{dx}$$

$$(L^2(\mathbb{R}), \psi, \pi, -i\frac{d}{dx})$$

 $-i\frac{d}{dx}$ is not a bounded operator on $L^2(\mathbb{R})$