<u>DEFINITION</u> A topological space X is <u>metrizable</u> if \exists a metric ρ for X whose underlying topology is the originally given topology of X

 $X \text{ metrizable} \Longrightarrow X \text{ Hausdorff and paracompact}$

X paracompact \iff whenever $\{U_{\alpha}\}$ $\alpha \in \mathcal{I}$ is an open cover of X, \exists a locally finite partition of unity φ_{α} $\alpha \in \mathcal{I}$ sub-ordinate to $\{U_{\alpha}\}$

X a CW complex

X is Hausdorff and paracompact

Definition. A G-space is a topological space X with a given continuous action of G.

$$G \times X \longrightarrow X$$

X, Y two G-spaces

<u>Definition</u> A <u>G-map</u> from X to Y is a continuous G-equivariant map $f: X \longrightarrow Y$.

$$f(gp) = gf(p)$$
 $(g,p) \in G \times X$

<u>Definition</u> Two G-maps $f_0, f_1 : X \longrightarrow Y$ are <u>G-homotopic</u> if they are homotopic through G-maps i.e. there exists a homotopy $\{f_t\}$ $0 \le t \le 1$ with each f_t a G-map.

Definition. A G-space X is proper if:

- X is paracompact and Hausdorff.
- The quotient space $G \setminus X$ (with the quotient topology) is paracompact and Hausdorff.
- For each $p \in X$ there exists a triple (U, H, ρ) such that :
 - 1. U is an open neighborhood of p in X with $gu \in U$ for all $(g,u) \in G \times U$.
 - 2. H is a compact subgroup of G.
 - 3. $\rho: U \longrightarrow G/H$ is a G-map from U to G/H.

Proposition (J. Chabert, S. Echterhoff, R. Meyer)

If X is a locally compact Hausdorff second countable G-space, then X is proper if and only if the map

$$G \times X \to X \times X$$

 $(g, x) \mapsto (gx, x)$

is proper (i.e. the pre-image of any compact set in $X \times X$ is compact)

<u>Definition</u>. A <u>universal example</u> for proper actions of G, denoted $\underline{E}G$, is a proper G-space such that:

If X is any proper G-space, then there exists a G-map $f: X \longrightarrow \underline{E}G$ and any two G-maps from X to $\underline{E}G$ are G-homotopic.

Lemma. $\underline{E}G$ exists.

Uniqueness of \underline{EG} . Suppose that \underline{EG} and $(\underline{EG})'$ are both universal examples for proper actions of G. Then there exist G-maps

$$f: \underline{E}G \longrightarrow (\underline{E}G)'$$
 $f': (\underline{E}G)' \longrightarrow \underline{E}G$

with $f' \circ f$ and $f \circ f'$ G-homotopic to the identity maps of $\underline{E}G$ and $(\underline{E}G)'$ respectively. Moreover, f and f' are unique up to G-homotopy.

Axioms for $\underline{E}G$

- (1) Y is a proper G-space.
- (2) If H is any compact subgroup of G,

 $\exists \ p \in Y \text{ with } hp = p \quad \forall \ h \in H.$

(3) View $Y \times Y$ as a G-space

<u>LEMMA</u> If (1) (2) (3) are valid for Y, then Y is an $\underline{E}G$.

Examples.

$$G$$
 compact

$$\underline{E}G = \cdot$$

G Lie group
$$(\pi_0 G \text{ finite})$$
 $\underline{E}G = G/H$

$$\underline{E}G = G/H$$

H = maximal compact subgroup of G

$$G$$
 p -adic group $\underline{E}G = \beta G$

= affine Bruhat-Tits building

for G

EXAMPLE. $\beta SL(2, \mathbb{Q}_p)$ is the (p+1)-regular tree. The (p+1)-regular tree is the unique tree with exactly p+1 edges at each vertex.

