<u>Topic 2</u>: C^* algebras

<u>Definition</u>. A <u>Banach algebra</u> is an algebra A over $\mathbb C$ with a given norm $\| \ \|$

$$\| \ \| : A \longrightarrow \{ t \in \mathbb{R} \mid t \ge 0 \}$$

such that A is a complete normed algebra:

$$\|\lambda a\| = |\lambda| \|a\| \quad \lambda \in \mathbb{C} \quad a \in A$$

 $\|a + b\| \le \|a\| + \|b\| \quad a, b \in A$
 $\|ab\| \le \|a\| \|b\| \quad a, b \in A$
 $\|a\| = 0 \iff a = 0$

Every Cauchy sequence is convergent in A (with respect to the metric ||a - b||).

 C^* algebras

$$A C^*$$
 algebra

$$*:A\longrightarrow A$$

$$A = (A, \parallel \parallel, *)$$

$$a \longmapsto a^*$$

 $(A, \parallel \parallel)$ is a Banach algebra

$$(a^*)^* = a$$

$$(a+b)^* = a^* + b^*$$

$$(ab)^* = b^*a^*$$

$$(\lambda a)^* = \overline{\lambda} a^* \qquad a, b \in A \qquad \lambda \in \mathbb{C}$$

$$||aa^*|| = ||a||^2 = ||a^*||^2$$

A *-homorphism is an algebra homorphism $\varphi: A \longrightarrow B \text{ such that } \varphi(a^*) = (\varphi(a))^* \quad \forall \, a \in A.$

<u>Lemma</u>:

If
$$\varphi: A \longrightarrow B$$
 is a *-homorphism

then
$$\|\varphi(a)\| \le \|a\| \quad \forall a \in A$$

EXAMPLES OF C^* ALGEBRAS

Example (1)

X topological space, Hausdorff, locally compact $X^+=$ one-point compactification of X

$$= X \cup \{p_{\infty}\}\$$

$$C_0(X) = \left\{\alpha : X^+ \longrightarrow \mathbb{C} \middle| \begin{array}{c} \alpha \text{ continuous} \\ \alpha(p_{\infty}) = 0 \end{array}\right\}$$

$$\|\alpha\| = \sup_{p \in X} |\alpha(p)|$$

$$\alpha^*(p) = \overline{\alpha(p)}$$

$$(\alpha + \beta)(p) = \alpha(p) + \beta(p)$$
 $p \in X$

$$(\alpha\beta)(p) = \alpha(p)\beta(p)$$

$$(\lambda \alpha)(p) = \lambda \alpha(p) \qquad \qquad \lambda \in \mathbb{C}$$

If X is compact Hausdorf, then

$$C_0(X) = C(X) = \{\alpha : X \longrightarrow \mathbb{C} | \alpha \text{ continuous} \}$$

Example (2) H

Hilbert space

(separable = H admits a countable (or finite) orthonormal basis.)

$$\mathcal{L}(H) = \{ \text{bounded operators } T: H \longrightarrow H \}$$

$$||T|| = \sup_{\substack{u \in H \\ ||u||=1}} ||Tu||$$
 operator norm $||u|| = \langle u, u \rangle^{1/2}$

$$T^* = \text{ adjoint of } T \qquad \langle T u, v \rangle = \langle u, T^*v \rangle$$

$$(T+S)u = Tu + Su$$

$$(TS)u = T(Su)$$

$$(\lambda T)u = \lambda (T u) \qquad \lambda \in \mathbb{C}$$

Example 3 H

Hilbert space

$$\mathcal{K}(H) = \{ T \in \mathcal{L}(H) \mid T \text{ is a compact operator} \}$$
$$= \overline{\{ T \in \mathcal{L}(H) \mid \dim_{\mathbb{C}} T(H) < \infty \}}$$

(closure taken in operator norm)

 $\mathcal{K}(H)$ is a sub C^* algebra of $\mathcal{L}(H)$

 $\mathcal{K}(H)$ is an ideal in $\mathcal{L}(H)$

G topological group

locally compact

Hausdorf

second countable

Example 4: C_r^*G the reduced C^* algebra of G

Fix a left-invariant Haar measure dg for G

"left-invariant" = whenever $f: G \to \mathbb{C}$ is

continuous and compactly supported

$$\int_{G} f(\gamma g) dg = \int_{G} f(g) dg \qquad \forall \gamma \in G$$

 L^2G Hilbert space

$$L^2G = \left\{ u: G \to \mathbb{C} \mid \int_G |u(g)|^2 dg < \infty \right\}$$
 $\langle u, v \rangle = \int_G \overline{u(g)} v(g) \ dg$

 $u,v\in L^2G$

$$\mathcal{L}(L^2G) = C^*$$
 algebra of all bounded operators

$$T:L^2G\to L^2G$$

$$C_cG = \left\{ f: G o \mathbb{C} \middle| egin{array}{l} f ext{ is continuous} \\ f ext{ has compact support} \end{array}
ight\}$$

 C_cG is an algebra

$$(\lambda f)g = \lambda(fg) \qquad \lambda \in \mathbb{C} \qquad g \in G$$

$$(f+h)g = fg + hg$$

multiplication in C_cG is convolution

$$(f * h)g_0 = \int_G f(g)h(g^{-1}g_0)dg$$
 $g_0 \in G$

$$0 \longrightarrow C_c G \longrightarrow \mathcal{L}(L^2 G)$$

Injection of algebras

$$f \mapsto T_f$$

$$T_f(u) = f * u$$

$$u \in L^2G$$

$$(f * u)g_0 = \int_G f(g)u(g^{-1}g_0)dg$$

 $g_0 \in G$

$$C_r^*G \subset \mathcal{L}(L^2G)$$

$$C_r^*G = \overline{C_cG} = \text{closure of } C_cG$$

in the operator norm

 C_r^*G is a sub C^* algebra of $\mathcal{L}(L^2G)$

<u>Definition</u>. A sub-algebra A of $\mathcal{L}(H)$ is a C^* algebra of operators iff

- (1) A is closed with respect to the operator norm.
- (2) If $T \in A$ then the adjoint operator $T^* \in A$

Theorem. (I. Gelfand and V. Naimark)

Any C* algebra is isomorphic, as a C* algebra, to a C* algebra of operators.

Theorem. (I. Gelfand) Let A be a commutative C^* algebra. Then A is (cannonically) isomorphic to $C_0(X)$ where X is the space of maximal ideals of A.

Thus a non-commutative C* algebra can be viewed as a "non-commutative locally compact Hausdorff topological space."