K-Homology

December, 2006

Let A be a (separable) $G - C^*$ algebra.

A covariant representation of A is a triple (H, ψ, π) such that:

H is a separable Hilbert space.

 $\psi: A \to \mathcal{L}(H)$ is a *-homomorphism.

 $\pi: G \to \mathcal{U}(H)$ is a unitary representation of G.

 $\psi(ga) = \pi(g)\psi(a)\pi(g^{-1}) \qquad \forall (g,a) \in G \times A.$

Let X be a proper G-space with compact quotient space $G \setminus X$.

An equivariant (odd) K - cycle for X is a 4 - tuple (H, ψ, π, T) such that:

• (H, ψ, π) is a covariant representation of the $G - C^*$ algebra $C_0(X)$.

•
$$T \in \mathcal{L}(H)$$

•
$$T = T^*$$

- $\pi(g)T T\pi(g) = 0$ $\forall g \in G$
- $\psi(\alpha)T T\psi(\alpha) \in \mathcal{K}(H) \qquad \forall \alpha \in C_0(X)$
- $\psi(\alpha)(I T^2) \in \mathcal{K}(H)$ $\forall \alpha \in C_0(X)$

 $\mathcal{E}_1^G(X) = \{(H, \psi, \pi, T)\}$

Example

$$G = \mathbb{Z} \qquad X = \mathbb{R}$$
$$\mathbb{Z} \times \mathbb{R} \to \mathbb{R}$$
$$(n,t) \mapsto n+t \qquad \mathbb{Z} \setminus \mathbb{R} = S^{1}$$
$$H = L^{2}(\mathbb{R}) \qquad \psi(\alpha)u = \alpha u$$
$$\alpha u(t) = \alpha(t)u(t)$$
$$\alpha \in C_{0}(\mathbb{R}) \quad u \in L^{2}(\mathbb{R}) \quad t \in \mathbb{R}$$
$$(\pi(n)u)(t) = u(t-n) \qquad n \in \mathbb{Z} \quad u \in L^{2}(\mathbb{R})$$
$$-i\frac{d}{dx}$$
$$(L^{2}(\mathbb{R}), \psi, \pi, -i\frac{d}{dx})$$
$$-i\frac{d}{dx} \text{ is not a bounded operator on } L^{2}(\mathbb{R})$$

Shall "normalize" $-i\frac{d}{dx}$ to obtain a bounded operator T

Since $-i\frac{d}{dx}$ is self-adjoint there is functional calculus,

and T can be taken to be the function $\displaystyle \frac{x}{\sqrt{1+x^2}}$

applied to $-i\frac{d}{dx}$

$$T = \left(\frac{x}{\sqrt{1+x^2}}\right) \left(-i\frac{d}{dx}\right)$$

6

Equivalently, T can be constructed using Fourier transform

Let \mathcal{M}_x be the operator "multiplication by x"

$$\mathcal{M}_x\big(f(x)\big) = xf(x)$$

Fourier transform converts $-i\frac{d}{dx}$ to \mathcal{M}_x

i.e. there is commutativity in the diagram

 $\mathcal{F} =$ Fourier transform

Let
$$\mathcal{M}_{\sqrt{1+x^2}}^x$$
 be the operator "multiplication
by $\frac{x}{\sqrt{1+x^2}}$ "
 $\mathcal{M}_{\frac{x}{\sqrt{1+x^2}}}(f(x)) = \frac{x}{\sqrt{1+x^2}}f(x)$
 $\mathcal{M}_{\frac{x}{\sqrt{1+x^2}}}$ is a bounded operator
 $\mathcal{M}_{\frac{x}{\sqrt{1+x^2}}} : L^2(\mathbb{R}) \to L^2(\mathbb{R})$

 ${\cal T}$ is the unique bounded operator

$$T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$$

such that there is commutativity in the diagram

 $\mathcal{F} =$ Fourier transform

 $(L^2(\mathbb{R}), \psi, \pi, T) \in \mathcal{E}_1^{\mathbb{Z}}(\mathbb{R})$

X a proper G-space with compact quotient space $G \setminus X$.

$$\mathcal{E}_{1}^{G}(X) = \{(H, \psi, \pi, T)\}$$

$$K_{1}^{G}(X) := \mathcal{E}_{1}^{G}(X) / \sim$$

$$\sim = \text{``homotopy''}$$
``homotopy'' will be made precise later.
$$K_{1}^{G}(X) = \mathcal{E}_{1}^{G}(X) / \sim \text{ is an abelian group.}$$

$$(H, \psi, \pi, T) + (H', \psi', \pi', T') =$$

$$(H \oplus H', \psi \oplus \psi', \pi \oplus \pi', T \oplus T')$$

$$-(H, \psi, \pi, T) = (H, \psi, \pi, -T)$$

10

Let X be a proper G-space with compact quotient space $G \setminus X$.

An equivariant (even) K - cycle for X is a 4 - tuple (H, ψ, π, T) such that:

• (H, ψ, π) is a covariant representation of the $G - C^*$ algebra $C_0(X)$.

•
$$T \in \mathcal{L}(H)$$

•
$$\pi(g)T - T\pi(g) = 0$$
 $\forall g \in G$

- $\psi(\alpha)T T\psi(\alpha) \in \mathcal{K}(H)$ $\forall \alpha \in C_0(X)$
- $\psi(\alpha)(I T^*T) \in \mathcal{K}(H)$ $\forall \alpha \in C_0(X)$
- $\psi(\alpha)(I TT^*) \in \mathcal{K}(H)$ $\forall \alpha \in C_0(X)$

 $\mathcal{E}_0^G(X) = \{(H, \psi, \pi, T)\}$

• (H, ψ, π) is a covariant representation of the $G - C^*$ algebra $C_0(X)$.

•
$$T \in \mathcal{L}(H)$$

•
$$\pi(g)T - T\pi(g) = 0$$
 $\forall g \in G$

- $\psi(\alpha)T T\psi(\alpha) \in \mathcal{K}(H)$ $\forall \alpha \in C_0(X)$
- $\psi(\alpha)(I T^*T) \in \mathcal{K}(H)$ $\forall \alpha \in C_0(X)$
- $\psi(\alpha)(I TT^*) \in \mathcal{K}(H)$ $\forall \alpha \in C_0(X)$

 $\mathcal{E}_0^G(X) = \{(H, \psi, \pi, T)\}$

X a proper G-space with compact quotient space $G \setminus X$.

$$\mathcal{E}_0^G(X) = \{(H, \psi, \pi, T)\}$$

$$K_0^G(X) := \mathcal{E}_0^G(X) / \sim$$

$$\sim = \text{``homotopy''}$$

$$\text{``homotopy'' will be made precise later.}$$

$$K_0^G(X) = \mathcal{E}_0^G(X) / \sim \text{ is an abelian group.}$$

$$(H, \psi, \pi, T) + (H', \psi', \pi', T') =$$

$$(H \oplus H', \psi \oplus \psi', \pi \oplus \pi', T \oplus T')$$

$$-(H, \psi, \pi, T) = (H, \psi, \pi, T^*)$$

X, Y proper G-spaces with compact quotient spaces $G \setminus X$, $G \setminus Y$.

 $f: X \longrightarrow Y$ continuous *G*-equivariant map.

$$\tilde{f}: C_0(X) \longleftarrow C_0(Y)$$
$$\tilde{f}(\alpha) = \alpha \circ f \qquad \alpha \in C_0(Y)$$
$$f_*: K_j^G(X) \longrightarrow K_j^G(Y)$$

homomorphism of abelian groups j = 0, 1

$$(H,\psi,\pi,T)\longmapsto (H,\psi\circ\tilde{f},\pi,T)$$

 $(H,\psi,\pi,T)\in\mathcal{E}_{j}^{G}(X)$

Definition. A G-space is a topological space X with a given continuous action of G.

 $G\times X \longrightarrow X$

Definition. A *G*-space *X* is proper if:

- X is paracompact and Hausdorff.
- The quotient space $G \setminus X$ (with the quotient topology) is paracompact and Hausdorff.
- For each p ∈ X there exists a triple (U, H, ρ) such that :
 - 1. U is an open neighborhood of p in X with $gu \in U$ for all $(g, u) \in G \times U$.
 - 2. H is a compact subgroup of G.
 - 3. ρ : $U \longrightarrow G/H$ is a *G*-map from *U* to G/H.

X a proper $G\mbox{-space}$ with compact quotient space $G\backslash X$

There is a map of abelian groups

$$K_j^G(X) \longrightarrow K_j C_r^* G$$

 $(H, \psi, \pi, T) \longmapsto \operatorname{Index}(T)$

j = 0, 1

This map

$$K_j^G(X) \longrightarrow K_j C_r^* G$$

 $(H, \psi, \pi, T) \longmapsto \operatorname{Index}(T)$

is natural, i.e. If X, Y are proper G-spaces with compact quotient spaces $G \setminus X$, $G \setminus Y$ and if

 $f: X \longrightarrow Y$ is a continuous G-equivariant map.

Then there is commutativity in the diagram

 $\underline{E}G$ universal example for proper actions of G **Definition.** $\Delta \subseteq \underline{E}G$ is *G*-compact if

- 1. $gx \in \Delta$ for all $(g, x) \in G \times \Delta$.
- 2. The quotient space $G \setminus \Delta$ is compact.

Set
$$K_j^G(\underline{E}G) = \lim_{\Delta \subseteq \underline{E}G \mid \Delta}$$
 is G -compact $K_j^G(\Delta)$.

The direct limit is taken over all *G*-compact subsets Δ of <u>*E*</u>*G*.

 $K_j^G(\underline{E}G)$ is the equivariant K-homology of $\underline{E}G$ with G-compact supports.

 $\mu: K_j^G(\underline{E}G) \longrightarrow K_j C_r^* G$

 $(H, \psi, \pi, T) \longmapsto \operatorname{Index}(T)$

Conjecture (P.B. and A.Connes , 1980) Let G be a locally compact Hausdorff second countable topological group. then

$$\mu: K_j^G(\underline{E}G) \longrightarrow K_j C_r^* G$$

is an isomorphism.

j=0, 1

THE CONJECTURE WITH COEFFICIENTS

Definition. A $G - C^*$ algebra is a C^* algebra A with a given continuous action of G.

 $G \times A \longrightarrow A$

G acts on A by C^* algebra automorphisms.

The continuity condition is: For each $a \in A$,

$$G \longrightarrow A, g \mapsto ga$$

is a continuous map from G to A.

Let A be a $G - C^*$ algebra. Form the reduced crossed-product C^* algebra $C^*_r(G, A)$.

 $K_j C_r^*(G, A) = ?$

 $K_j^G(\underline{E}G, A)$ denotes the equivariant K-homology of $\underline{E}G$ with G-compact supports and coefficients A. **Conjecture**(P.B. and A.Connes, 1980) Let G be a locally compact Hausdorff second countable topological group, and let A be any $G-C^*$ algebra, then

$$\mu: K_j^G(\underline{E}G, A) \longrightarrow K_j C_r^*(G, A)$$

is an isomorphism.

j = 0, 1.

EXPANDER GRAPHS

A.LUBOTZKY and P.SARNAK

Let Γ be a finitely presented discrete group which contains an expander in its Cayley graph.

Such a Γ is a counter-example to the conjecture with coefficients.

Does such a Γ exist?

M. Gromov outlined a proof that such a Γ exists. A number of mathematicians are now filling in the details.