C*-graph algebra maps that lift to Leavitt path algebras

Guillermo Cortiñas

Departamento de Matemática-IMAS Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires & CONICET

GeNoCAS Buenos Aires, October 5, 2021

Graph algebras

Graph C* and Leavitt path algebra maps

G. Cortiñas

 $E: E^1 \stackrel{r}{\underset{s}{\Longrightarrow}} E^0$

 $E: E^1 \stackrel{r}{\underset{s}{\Longrightarrow}} E^0$ a finite directed graph,

 $E: E^1 \stackrel{r}{\underset{s}{\Longrightarrow}} E^0$ a finite directed graph, $sink(E) = \emptyset$

 $E: E^1 \stackrel{r}{\underset{s}{\Longrightarrow}} E^0$ a finite directed graph, $sink(E) = \emptyset$ (i.e. s onto).

 $E:E^1\stackrel{r}{\underset{s}{\Longrightarrow}}E^0$ a finite directed graph, $\mathrm{sink}(E)=\emptyset$ (i.e. s onto). $A_E\in\mathbb{Z}^{E^0\times E^0}$,

 $E: E^1 \stackrel{r}{\underset{s}{\Longrightarrow}} E^0$ a finite directed graph, $\operatorname{sink}(E) = \emptyset$ (i.e. s onto). $A_E \in \mathbb{Z}^{E^0 \times E^0}$, incidence matrix

$$E: E^1 \stackrel{r}{\underset{s}{\Longrightarrow}} E^0$$
 a finite directed graph, $\operatorname{sink}(E) = \emptyset$ (i.e. s onto). $A_E \in \mathbb{Z}^{E^0 \times E^0}$, incidence matrix

$$A_E(v, w) = |\{e \in E^1 : s(e) = v, r(e) = w\}|.$$

$$E: E^1 \stackrel{r}{\underset{s}{\Longrightarrow}} E^0$$
 a finite directed graph, $\operatorname{sink}(E) = \emptyset$ (i.e. s onto). $A_E \in \mathbb{Z}^{E^0 \times E^0}$, incidence matrix

$$A_E(v, w) = |\{e \in E^1 : s(e) = v, r(e) = w\}|.$$

$$\mathfrak{BF}(E) = \operatorname{Coker}(I - A_E^t : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}) \ni [1_E] = \sum_{v \in E^0} [v]$$

$$A_E(v, w) = |\{e \in E^1 : s(e) = v, r(e) = w\}|.$$

$$\mathfrak{BF}(E) = \operatorname{Coker}(I - A_E^t : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}) \ni [1_E] = \sum_{v \in E^0} [v]$$

$$ightharpoonup L(E) = L_{\mathbb{C}}(E),$$

G. Cortiñas

$$A_E(v, w) = |\{e \in E^1 : s(e) = v, r(e) = w\}|.$$

$$\mathfrak{BF}(E) = \operatorname{Coker}(I - A_E^t : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}) \ni [1_E] = \sum_{v \in E^0} [v]$$

 $ightharpoonup L(E) = L_{\mathbb{C}}(E)$, Leavitt path algebra;

G. Cortiñas

onto). $A_E \in \mathbb{Z}^{E^0 \times E^0}$, incidence matrix

$$A_E(v, w) = |\{e \in E^1 : s(e) = v, r(e) = w\}|.$$

$$\mathfrak{BF}(E) = \operatorname{Coker}(I - A_E^t : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}) \ni [1_E] = \sum_{v \in E^0} [v]$$

 \blacktriangleright $L(E) = L_{\mathbb{C}}(E)$, Leavitt path algebra; a *-algebra.

G. Cortiñas

 $E: E^1 \stackrel{r}{\Longrightarrow} E^0$ a finite directed graph, $sink(E) = \emptyset$ (i.e. s

onto). $A_E \in \mathbb{Z}^{E^0 \times E^0}$, incidence matrix

$$A_E(v, w) = |\{e \in E^1 : s(e) = v, r(e) = w\}|.$$

$$\mathfrak{BF}(E) = \operatorname{Coker}(I - A_E^t : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}) \ni [1_E] = \sum_{v \in E^0} [v]$$

- \blacktriangleright $L(E) = L_{\mathbb{C}}(E)$, Leavitt path algebra; a *-algebra.
- $ightharpoonup C^*(E) = \overline{L(E)}^{||\cdot||},$

$$E: E^1 \stackrel{r}{\underset{s}{\Longrightarrow}} E^0$$
 a finite directed graph, $sink(E) = \emptyset$ (i.e. s

onto). $A_F \in \mathbb{Z}^{E^0 \times E^0}$, incidence matrix

$$A_E(v, w) = |\{e \in E^1 : s(e) = v, r(e) = w\}|.$$

$$\mathfrak{BF}(E) = \operatorname{Coker}(I - A_E^t : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}) \ni [1_E] = \sum_{v \in E^0} [v]$$

- ▶ $L(E) = L_{\mathbb{C}}(E)$, Leavitt path algebra; a *-algebra.
- $ightharpoonup C^*(E) = \overline{L(E)}^{||||}$, graph C^* , Cuntz-Krieger algebra.

G. Cortiñas

$$A_E(v, w) = |\{e \in E^1 : s(e) = v, r(e) = w\}|.$$

$$\mathfrak{BF}(E) = \operatorname{Coker}(I - A_E^t : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}) \ni [1_E] = \sum_{v \in E^0} [v]$$

- ▶ $L(E) = L_{\mathbb{C}}(E)$, Leavitt path algebra; a *-algebra.
- $ightharpoonup C^*(E) = \overline{L(E)}^{||\cdot||}$, graph C^* , Cuntz-Krieger algebra.
- spi=simple purely infinite.

G. Cortiñas

$$A_E(v, w) = |\{e \in E^1 : s(e) = v, r(e) = w\}|.$$

$$\mathfrak{BF}(E) = \operatorname{Coker}(I - A_E^t : \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}) \ni [1_E] = \sum_{v \in E^0} [v]$$

- ▶ $L(E) = L_{\mathbb{C}}(E)$, Leavitt path algebra; a *-algebra.
- $ightharpoonup C^*(E) = \overline{L(E)}^{|| ||}$, graph C^* , Cuntz-Krieger algebra.
- ▶ spi=simple purely infinite. E spi $\iff L(E) \iff C^*(E)$ spi.

G. Cortiñas

KIRCHBERG-PHILLIPS PROBLEM

GRAPH C* AND LEAVITT PATH ALGEBRA MAPS

G. Cortiñas

Theorem (Cuntz-Rørdam, Kirchberg-Phillips [5, 6]) *E, F spi,*

References

Theorem (Cuntz-Rørdam, Kirchberg-Phillips [5, 6]) $E, F spi, (\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F]),$ Theorem (Cuntz-Rørdam, Kirchberg-Phillips [5,6]) $E, F spi, (\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F]), \Rightarrow C^*(E) \cong C^*(F).$

```
Theorem (Cuntz-Rørdam, Kirchberg-Phillips [5,6]) 
 E, F spi, (\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F]), \Rightarrow C^*(E) \cong C^*(F).
```

Question (Abrams, Ánh, Louly, Pardo, [1])
Does
$$(\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F])$$
 imply $L(E) \cong L(F)$?

```
Theorem (Cuntz-Rørdam, Kirchberg-Phillips [5, 6]) 
 E, F spi, (\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F]), \Rightarrow C^*(E) \cong C^*(F).
```

Question (Abrams, Ánh, Louly, Pardo, [1]) Does $(\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F])$ imply $L(E) \cong L(F)$? (In $\mathrm{Alg}_{\mathbb{C}}^*$?). Theorem (Cuntz-Rørdam, Kirchberg-Phillips [5, 6])

 $E, F \text{ spi, } (\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F]), \Rightarrow C^*(E) \cong C^*(F).$

Question (Abrams, Ánh, Louly, Pardo, [1])

Does $(\mathfrak{BF}(E),[1_E])\cong (\mathfrak{BF}(F),[1_F])$ imply $L(E)\cong L(F)$? (In $\mathrm{Alg}_{\mathbb{C}}$? In $\mathrm{Alg}_{\mathbb{C}}^*$?).

Remark

$$\phi: L(E) \xrightarrow{\sim}_{*} L(F) \Rightarrow \hat{\phi}: C^{*}(E) \xrightarrow{\sim}_{} C^{*}(F).$$

Theorem (Cuntz-Rørdam, Kirchberg-Phillips [5, 6])

 $E, F \text{ spi, } (\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F]), \Rightarrow C^*(E) \cong C^*(F).$

Question (Abrams, Ánh, Louly, Pardo, [1])

Does $(\mathfrak{BF}(E),[1_E])\cong (\mathfrak{BF}(F),[1_F])$ imply $L(E)\cong L(F)$? (In $\mathrm{Alg}_{\mathbb{C}}$? In $\mathrm{Alg}_{\mathbb{C}}^*$?).

Remark

$$\phi: L(E) \xrightarrow{\sim}_* L(F) \Rightarrow \hat{\phi}: C^*(E) \xrightarrow{\sim}_* C^*(F).$$

Theorem (C-Montero, [3])

$$\begin{array}{l} \textit{E},\textit{F} \; \textit{spi,} \; (\mathfrak{BF}(\textit{E}),[1_{\textit{E}}]) \cong (\mathfrak{BF}(\textit{F}),[1_{\textit{F}}]) \Rightarrow \exists \\ \phi:\textit{L}(\textit{E}) \longleftrightarrow \textit{L}(\textit{F}): \psi \; \textit{unital,} \; \psi \circ \phi \sim \mathsf{id}_{\textit{L}(\textit{E})}, \; \phi \circ \psi \sim \mathsf{id}_{\textit{L}(\textit{F})}. \end{array}$$

Theorem (Cuntz-Rørdam, Kirchberg-Phillips [5, 6])

E, F spi, $(\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F])$, $\Rightarrow C^*(E) \cong C^*(F)$.

Question (Abrams, Ánh, Louly, Pardo, [1])

Does $(\mathfrak{BF}(E),[1_E])\cong (\mathfrak{BF}(F),[1_F])$ imply $L(E)\cong L(F)$? (In $\mathrm{Alg}_{\mathbb{C}}$? In $\mathrm{Alg}_{\mathbb{C}}^*$?).

Remark

$$\phi: L(E) \xrightarrow{\sim}_{*} L(F) \Rightarrow \hat{\phi}: C^{*}(E) \xrightarrow{\sim}_{} C^{*}(F).$$

Theorem (C-Montero, [3])

$$E, F \ spi, \ (\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F]) \Rightarrow \exists$$

 $\phi : L(E) \longleftrightarrow L(F) : \psi \ unital, \ \psi \circ \phi \sim \mathrm{id}_{L(E)}, \ \phi \circ \psi \sim \mathrm{id}_{L(F)}.$

Here \sim is algebraic homotopy;

Theorem (Cuntz-Rørdam, Kirchberg-Phillips [5,6])

 $E, F \text{ spi, } (\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F]), \Rightarrow C^*(E) \cong C^*(F).$

Question (Abrams, Ánh, Louly, Pardo, [1])

Does $(\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F])$ imply $L(E) \cong L(F)$? (In $Alg_{\mathbb{C}}^*$?).

Remark

$$\phi: L(E) \xrightarrow{\sim}_{*} L(F) \Rightarrow \hat{\phi}: C^{*}(E) \xrightarrow{\sim}_{} C^{*}(F).$$

Theorem (C-Montero, [3])

$$E, F \ spi, \ (\mathfrak{BF}(E), [1_E]) \cong (\mathfrak{BF}(F), [1_F]) \Rightarrow \exists$$

 $\phi : L(E) \longleftrightarrow L(F) : \psi \ unital, \ \psi \circ \phi \sim \mathrm{id}_{L(E)}, \ \phi \circ \psi \sim \mathrm{id}_{L(F)}.$

Here \sim is algebraic homotopy; \approx : continuous C^* -htpy.

G. Cortiñas References

New today:

New today:

Theorem A

E, F spi ξ : $C^*(E) \rightarrow C^*(F)$ unital.

New today:

Theorem A

E, F spi
$$\xi: C^*(E) \to C^*(F)$$
 unital. Then \exists $\phi: L(E) \to L(F)$ unital *,

New today:

Theorem A

E, F spi
$$\xi: C^*(E) \to C^*(F)$$
 unital. Then $\exists \phi: L(E) \to L(F)$ unital *, $\hat{\phi} \approx \xi: C^*(E) \to C^*(F)$.

New today:

Theorem A

```
E, F spi \xi: C^*(E) \to C^*(F) unital. Then \exists

\phi: L(E) \to L(F) unital *, \hat{\phi} \approx \xi: C^*(E) \to C^*(F).

Moreover \xi homotopy equivalence in C^* - \mathrm{Alg} \iff \phi

homotopy equivalence in \mathrm{Alg}_{\mathbb{C}}.
```

New today:

Theorem A

E, F spi $\xi: C^*(E) \to C^*(F)$ unital. Then \exists $\phi: L(E) \to L(F)$ unital *, $\hat{\phi} \approx \xi: C^*(E) \to C^*(F)$. Moreover ξ homotopy equivalence in $C^* - \mathrm{Alg} \iff \phi$ homotopy equivalence in $\mathrm{Alg}_{\mathbb{C}}$.

Remark

Homotopy inverse of ϕ

New today:

Theorem A

E, F spi $\xi: C^*(E) \to C^*(F)$ unital. Then \exists $\phi: L(E) \to L(F)$ unital *, $\hat{\phi} \approx \xi: C^*(E) \to C^*(F)$. Moreover ξ homotopy equivalence in $C^* - \mathrm{Alg} \iff \phi$ homotopy equivalence in $\mathrm{Alg}_{\mathbb{C}}$.

Remark

Homotopy inverse of ϕ need not be *-homomorphism.

G. Cortiñas

kk vs KK

Recall kk, KK triangulated categories.

GRAPH C* AND LEAVITT PATH ALGEBRA MAPS

G. Cortiñas

References

Recall kk, KK triangulated categories.

 $ightharpoonup j: \mathrm{Alg}_{\mathbb C} o kk$ universal initial

Recall kk, KK triangulated categories.

 $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant,

References

Recall kk, KK triangulated categories.

 $j: \mathrm{Alg}_{\mathbb{C}} o kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable,

References

Recall kk, KK triangulated categories.

▶ $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor.

Recall kk, KK triangulated categories.

▶ $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor. Moreover $kk_*(\mathbb{C}, A) = KH_*(A)$,

G. Cortiñas

Recall kk, KK triangulated categories.

▶ $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor. Moreover $kk_*(\mathbb{C},A) = KH_*(A)$, htpy alg K-th.

G. Cortiñas

- ▶ $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor. Moreover $kk_*(\mathbb{C}, A) = KH_*(A)$, htpy alg K-th.
- ▶ $k: C^* Alg \rightarrow KK$ universal initial

- ▶ $j: Alg_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor. Moreover $kk_*(\mathbb{C}, A) = KH_*(A)$, htpy alg K-th.
- ▶ $k: C^* Alg \rightarrow KK$ universal initial (C^* -) homotopy invariant,

- ▶ $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor. Moreover $kk_*(\mathbb{C}, A) = KH_*(A)$, htpy alg K-th.
- ▶ $k: C^* Alg \rightarrow KK$ universal initial (C^* -) homotopy invariant, \mathcal{K} -stable,

- ▶ $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor. Moreover $kk_*(\mathbb{C}, A) = KH_*(A)$, htpy alg K-th.
- ▶ $k: C^* Alg \rightarrow KK$ universal initial (C^* -) homotopy invariant, \mathcal{K} -stable, excisive functor

Recall kk, KK triangulated categories.

- ▶ $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor. Moreover $kk_*(\mathbb{C}, A) = KH_*(A)$, htpy alg K-th.
- ▶ $k: C^* Alg \rightarrow KK$ universal initial (C^* -) homotopy invariant, \mathcal{K} -stable, excisive functor (w.r.t. cp-split extensions).

- ▶ $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor. Moreover $kk_*(\mathbb{C}, A) = KH_*(A)$, htpy alg K-th.
- ▶ $k: C^* Alg \to KK$ universal initial (C^*-) homotopy invariant, \mathcal{K} -stable, excisive functor (w.r.t. cp-split extensions). Moreover $KK_*(\mathbb{C}, \mathfrak{A}) = K_*^{top}(\mathfrak{A})$.

- ▶ $j: \mathrm{Alg}_{\mathbb{C}} \to kk$ universal initial (algebraic) homotopy invariant, M_{∞} -stable, excisive functor. Moreover $kk_*(\mathbb{C}, A) = KH_*(A)$, htpy alg K-th.
- ▶ $k: C^* Alg \to KK$ universal initial (C^*-) homotopy invariant, \mathcal{K} -stable, excisive functor (w.r.t. cp -split extensions). Moreover $\mathit{KK}_*(\mathbb{C},\mathfrak{A}) = \mathit{K}^\mathsf{top}_*(\mathfrak{A})$.

Full subcategories:

```
\begin{split} \operatorname{Alg}_{\mathbb{C}}^* \supset \operatorname{Leavitt}^* &= \{L(E) : E \text{ finite, no sinks}\} \\ kk \supset \langle \operatorname{Leavitt} \rangle_{kk} &= \{j(L(E)) : E \text{ finite, no sinks}\} \end{split}
```


COMPLETION

Graph C* and Leavitt path algebra maps

G. Cortiñas

$$\hat{}$$
: Leavitt* $\to C^* - \text{Alg}$
 $L(E) \mapsto C^*(E), \ \phi \mapsto \hat{\phi}.$

References

$$\hat{C}: Leavitt^* \to C^* - Alg$$

$$L(E) \mapsto C^*(E), \ \phi \mapsto \hat{\phi}.$$

Theorem B

$$\begin{array}{c} \mathsf{Leavitt}^* \stackrel{\widehat{}}{\longrightarrow} C^* - \mathsf{Alg} \\ \downarrow^j & \downarrow^k \\ \langle \mathsf{Leavitt} \rangle_{kk} \xrightarrow[\mathsf{comp}]{} \mathsf{K} \mathsf{K} \end{array}$$

^: Leavitt* $\to C^* - \text{Alg}$ $L(E) \mapsto C^*(E), \ \phi \mapsto \hat{\phi}.$

Theorem B

$$\begin{array}{ccc} \mathsf{Leavitt}^* & \xrightarrow{\hat{}} & C^* - \mathsf{Alg} \\ & & \downarrow^j & & \downarrow^k \\ \langle \mathsf{Leavitt} \rangle_{kk} & \xrightarrow{\mathsf{comp}} & \mathsf{KK} \end{array}$$

comp is \mathbb{Z} -linear,

^: Leavitt*
$$\to C^* - \text{Alg}$$

 $L(E) \mapsto C^*(E), \ \phi \mapsto \hat{\phi}.$

Theorem B

Leavitt*
$$\xrightarrow{\hat{}} C^* - \text{Alg}$$

$$\downarrow^j \qquad \qquad \downarrow^k$$

$$\langle \text{Leavitt} \rangle_{kk} \xrightarrow[\text{comp}]{} > KK$$

comp is \mathbb{Z} -linear, full,

References

$\hat{C}: \mathsf{Leavitt}^* \to C^* - \mathsf{Alg}$ $\mathsf{L}(\mathsf{E}) \mapsto C^*(\mathsf{E}), \ \phi \mapsto \hat{\phi}.$

Theorem B

$$\begin{array}{ccc} \mathsf{Leavitt}^* & \xrightarrow{\hat{}} & C^* - \mathsf{Alg} \\ & & \downarrow^j & & \downarrow^k \\ & & & \langle \mathsf{Leavitt} \rangle_{kk} \xrightarrow{\mathsf{comp}} & \mathsf{KK} \end{array}$$

comp is \mathbb{Z} -linear, full, and conservative.

SPI GRAPHS

Graph C* and Leavitt path algebra maps

G. Cortiñas

▶ Let $\iota: B \to M_2B$, $\iota(a) = \epsilon_{1,1}a$.

G. Cortiñas

ALGEBRA MAPS
G. Cortiñas

References

Let $\iota: B \to M_2B$, $\iota(a) = \epsilon_{1,1}a$. Two homomorphisms $\phi, \psi: A \to B$ are M_2 -homotopic if

Let $\iota: B \to M_2B$, $\iota(a) = \epsilon_{1,1}a$. Two homomorphisms $\phi, \psi: A \to B$ are M_2 -homotopic if $\iota \circ \phi \sim \iota \circ \psi$.

Let $\iota: B \to M_2 B$, $\iota(a) = \epsilon_{1,1} a$. Two homomorphisms $\phi, \psi: A \to B$ are M_2 -homotopic if $\iota \circ \phi \sim \iota \circ \psi$. Let E, F be finite spi graphs.

Theorem (C-Montero, [3])

$$[L(E), L(F)]_{M_2} \setminus \{0\} \xrightarrow{\sim} kk(L(E), L(F)).$$

Let $\iota: B \to M_2B$, $\iota(a) = \epsilon_{1,1}a$. Two homomorphisms $\phi, \psi: A \to B$ are M_2 -homotopic if $\iota \circ \phi \sim \iota \circ \psi$.

Let *E*, *F* be finite spi graphs.

Theorem (C-Montero, [3])

$$[L(E), L(F)]_{M_2} \setminus \{0\} \xrightarrow{\sim} kk(L(E), L(F)).$$

Theorem (Cuntz-Rørdam, Phillips [5, 6])

$$[[C^*(E), C^*(F)]]_{M_2} \setminus \{0\} \xrightarrow{\sim} KK(C^*(E), C^*(F)).$$

Let $\iota: B \to M_2B$, $\iota(a) = \epsilon_{1,1}a$. Two homomorphisms $\phi, \psi: A \to B$ are M_2 -homotopic if $\iota \circ \phi \sim \iota \circ \psi$.

Let E, F be finite spi graphs.

Theorem (C-Montero, [3])

$$[L(E), L(F)]_{M_2} \setminus \{0\} \xrightarrow{\sim} kk(L(E), L(F)).$$

Theorem (Cuntz-Rørdam, Phillips [5, 6])

$$[[C^*(E), C^*(F)]]_{M_2} \setminus \{0\} \xrightarrow{\sim} \mathsf{KK}(C^*(E), C^*(F)).$$

$$\hat{} : \mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(L(E), L(F)) \to [L(E), L(F)]_{M_2}$$

$$\stackrel{\mathsf{comp}}{\to} [[C^*(E), C^*(F)]]_{M_2}$$

Let $\iota: B \to M_2B$, $\iota(a) = \epsilon_{1,1}a$. Two homomorphisms $\phi, \psi: A \to B$ are M_2 -homotopic if $\iota \circ \phi \sim \iota \circ \psi$.

Let E, F be finite spi graphs.

Theorem (C-Montero, [3])

$$[L(E), L(F)]_{M_2} \setminus \{0\} \xrightarrow{\sim} kk(L(E), L(F)).$$

Theorem (Cuntz-Rørdam, Phillips [5, 6])

$$[[C^*(E), C^*(F)]]_{M_2} \setminus \{0\} \xrightarrow{\sim} \mathsf{KK}(C^*(E), C^*(F)).$$

$$\hat{} : \mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(L(E), L(F)) \to [L(E), L(F)]_{M_2}$$

$$\stackrel{\mathsf{comp}}{\to} [[C^*(E), C^*(F)]]_{M_2}$$

 $\mathsf{comp}(\phi)$ equivalence $\iff [\phi]$ equivalence.

SPI GRAPHS, CONTINUED

GRAPH C* AND LEAVITT PATH ALGEBRA MAPS

G. Cortiñas

SPI GRAPHS, CONTINUED

A *-homomorphism $\phi:A\to B$ of unital *-algebras has property (P)

Graph C* and Leavitt path algebra maps

G. Cortiñas

A *-homomorphism $\phi:A\to B$ of unital *-algebras has property (P) if $\phi(1)B$ contains an isometry.

 $\mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(A,B)\supset \mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(A,B)^P=\{\phi \text{ has property (P)}\}.$

Theorem A

i) $\text{hom}_{\text{Alg}_{\mathbb{C}}^*}(L(E), L(F))^P \to [[C^*(E), C^*(F)]]_{M_2} \setminus \{0\}$, is onto

SPI GRAPHS, CONTINUED

A *-homomorphism $\phi:A\to B$ of unital *-algebras has property (P) if $\phi(1)B$ contains an isometry.

 $\mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(A,B)\supset \mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(A,B)^P=\{\phi \text{ has property (P)}\}.$

Theorem A

i) $\operatorname{hom}_{\operatorname{Alg}_{\mathbb{C}}^*}(L(F), L(F))^P \to [[C^*(F), C^*(F)]]_{M_2} \setminus \{0\}$, is onto and maps the subset of unital *-homomorphisms onto the subset of homotopy classes of unital C^* -algebra homomorphisms.

 $\mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(A,B)\supset \mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(A,B)^P=\{\phi \text{ has property (P)}\}.$

Theorem A

- i) $\operatorname{hom}_{\operatorname{Alg}_{\mathbb{C}}^*}(L(E),L(F))^P \to [[C^*(E),C^*(F)]]_{M_2} \setminus \{0\}$, is onto and maps the subset of unital *-homomorphisms onto the subset of homotopy classes of unital C^* -algebra homomorphisms.
- ii) Let $\phi \in \text{hom}_{\text{Alg}_{\mathbb{C}}^*}(L(E), L(F))^P$. Then $\hat{\phi}: C^*(E) \to C^*(F)$ is an M_2 -continuous homotopy equivalence if and only if ϕ is a polynomial M_2 -homotopy equivalence.

G. Cortiñas

SPI GRAPHS, CONTINUED

A *-homomorphism $\phi:A\to B$ of unital *-algebras has property (P) if $\phi(1)B$ contains an isometry.

 $\mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(A,B)\supset \mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(A,B)^P=\{\phi \text{ has property (P)}\}.$

Theorem A

- i) $\operatorname{hom}_{\operatorname{Alg}_{\mathbb{C}}^*}(L(E),L(F))^P \to [[C^*(E),C^*(F)]]_{M_2} \setminus \{0\}$, is onto and maps the subset of unital *-homomorphisms onto the subset of homotopy classes of unital C^* -algebra homomorphisms.
- ii) Let $\phi \in \text{hom}_{\text{Alg}_{\mathbb{C}}^*}(L(E), L(F))^P$. Then $\hat{\phi}: C^*(E) \to C^*(F)$ is an M_2 -continuous homotopy equivalence if and only if ϕ is a polynomial M_2 -homotopy equivalence. If furthermore ϕ is unital, then $\hat{\phi}$ is a continuous homotopy equivalence if and only if ϕ is a polynomial homotopy equivalence.

PROOF OF THEOREM B

Graph C* and Leavitt path algebra maps

G. Cortiñas

GRAPH C* AND LEAVITT PATH ALGEBRA MAPS

G. Cortiñas

Graph C* and Leavitt path algebra maps

G. Cortiñas

▶ Definition of comp. Use Poincaré duality (Kaminker-Putnam, C, [2,4]). GRAPH C* AND LEAVITT PATH ALGEBRA MAPS

G. Cortiñas

Graph C* and Leavitt path algebra maps

G. Cortiñas

Definition of comp. Use Poincaré duality (Kaminker-Putnam, C, [2,4]). Remove sources so E essential.

$$kk(L(E), L(F)) = kk_1(\mathbb{C}, L(F) \otimes L(E_t)) = K_1(L(F) \otimes L(E_t)) \rightarrow K_1^{top}(C^*(F) \overset{\sim}{\otimes} C^*(E_t)) = KK(C^*(E), C^*(F))$$

Definition of comp. Use Poincaré duality (Kaminker-Putnam, C, [2,4]). Remove sources so E essential.

$$kk(L(E), L(F)) = kk_1(\mathbb{C}, L(F) \otimes L(E_t)) =$$

$$K_1(L(F) \otimes L(E_t)) \rightarrow$$
 $K_1^{\text{top}}(C^*(F) \overset{\sim}{\otimes} C^*(E_t)) = KK(C^*(E), C^*(F))$

▶ comp is full: Cohn ext. $C(E)/\mathcal{K}(E) = L(E)$ gives triangles in kk and KK

Definition of comp. Use Poincaré duality (Kaminker-Putnam, C, [2, 4]). Remove sources so E essential.

$$kk(L(E), L(F)) = kk_1(\mathbb{C}, L(F) \otimes L(E_t)) =$$
 $K_1(L(F) \otimes L(E_t)) \rightarrow$
 $K_1^{top}(C^*(F) \overset{\sim}{\otimes} C^*(E_t)) = KK(C^*(E), C^*(F))$

riangleright comp is full: Cohn ext. $C(E)/\mathcal{K}(E) = L(E)$ gives triangles in kk and KK

$$\mathbb{C}^{E^0} \xrightarrow{I-A_E^t} \mathbb{C}^{E^0} \longrightarrow L(E)$$

$$\mathbb{C}^{E^0} \xrightarrow{I-A_E^t} \mathbb{C}^{E^0} \longrightarrow C^*(E)$$

G. Cortiñas

$$\mathfrak{BF}(E)^{\vee}=\operatorname{Coker}(I-A_E)=kk_{-1}(L(E),\mathbb{C}).$$

$$\mathfrak{BF}(E)^{\vee} = \operatorname{Coker}(I - A_E) = kk_{-1}(L(E), \mathbb{C}).$$

$$K_{1}(L(F)) \otimes \mathfrak{BF}(E)^{\vee} \xrightarrow{\partial(E,F)} \operatorname{Ker}(I - A_{F}^{t}) \otimes \mathfrak{BF}(E)^{\vee}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$\mathfrak{BF}(E)^{\vee} = \operatorname{Coker}(I - A_E) = kk_{-1}(L(E), \mathbb{C}).$$

$$K_{1}(L(F)) \otimes \mathfrak{BF}(E)^{\vee} \xrightarrow{\partial(E,F)} \operatorname{Ker}(I - A_{F}^{t}) \otimes \mathfrak{BF}(E)^{\vee}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Snake lemma \Rightarrow comp onto,

$$\mathfrak{BF}(E)^{\vee}=\operatorname{Coker}(I-A_E)=kk_{-1}(L(E),\mathbb{C}).$$

$$K_{1}(L(F)) \otimes \mathfrak{BF}(E)^{\vee} \xrightarrow{\partial(E,F)} \operatorname{Ker}(I - A_{F}^{t}) \otimes \mathfrak{BF}(E)^{\vee}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Snake lemma \Rightarrow comp onto, $Ker(comp) = Ker(\partial(E, F))$.

comp IS CONSERVATIVE

Graph C* and Leavitt path algebra maps

G. Cortiñas

$$\pi: C(F) \twoheadrightarrow L(F)$$
 canonical map.

$$\mathfrak{BF}(F)\otimes\mathbb{C}^*=\pi(K_1(C(F))\subset$$

$$K_1(L(F)) = kk_1(\mathbb{C}, L(F))$$

$$\pi: C(F) \twoheadrightarrow L(F)$$
 canonical map.

$$\mathfrak{BF}(F)\otimes\mathbb{C}^*=\pi(K_1(C(F))\subset K_1(L(F))=kk_1(\mathbb{C},L(F))$$

$$\pi(\mathcal{K}_1(\mathcal{C}(F))) \otimes \mathit{kk}_{-1}(\mathit{L}(E),\mathbb{C}) \xrightarrow{\sim}^{\sim} \mathrm{Ker} \partial(E,F).$$

G. Cortiñas

$$\pi: C(F) \twoheadrightarrow L(F)$$
 canonical map.

$$\mathfrak{BF}(F)\otimes\mathbb{C}^*=\pi(K_1(C(F))\subset K_1(L(F))=kk_1(\mathbb{C},L(F))$$

$$\pi(K_1(C(F))) \otimes kk_{-1}(L(E),\mathbb{C}) \xrightarrow{\sim}_{\circ} \operatorname{Ker} \! \partial(E,F).$$

 $Ker(\partial(F,F)))$ is a square-zero ideal of kk(L(F),L(F)).

G. Cortiñas

$$\pi: C(F) \twoheadrightarrow L(F)$$
 canonical map.

$$\mathfrak{BF}(F)\otimes\mathbb{C}^*=\pi(K_1(C(F))\subset K_1(L(F))=kk_1(\mathbb{C},L(F))$$

$$\pi(K_1(C(F))) \otimes kk_{-1}(L(E), \mathbb{C}) \xrightarrow{\sim} \operatorname{Ker} \partial(E, F).$$

$$\operatorname{Ker}(\partial(F,F)))$$
 is a square-zero ideal of $kk(L(F),L(F))$.
 $\mathcal{E}_1,\mathcal{E}_2\in K_1(C(F))=K_1(\mathbb{C})^{F^0},\ \eta_1,\eta_2\in kk_{-1}(L(F),\mathbb{C})$

G. Cortiñas

$$\pi: C(F) \twoheadrightarrow L(F)$$
 canonical map.

$$\mathfrak{BF}(F)\otimes\mathbb{C}^*=\pi(\mathsf{K}_1(\mathsf{C}(F))\subset \mathsf{K}_1(\mathsf{L}(F))=\mathsf{kk}_1(\mathbb{C},\mathsf{L}(F))$$

$$\pi(K_1(C(F))) \otimes kk_{-1}(L(E), \mathbb{C}) \xrightarrow{\sim}_{\circ} \operatorname{Ker} \partial(E, F).$$

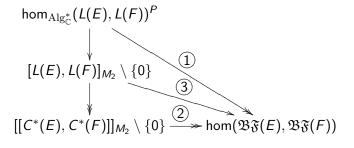
 $\eta_1 \circ \pi \in \mathcal{K}_{-1}(\mathbb{C})^{F^0} = 0.$

$$\operatorname{Ker}(\partial(F,F)))$$
 is a square-zero ideal of $kk(L(F),L(F))$. $\xi_1,\xi_2\in K_1(C(F))=K_1(\mathbb{C})^{F^0},\ \eta_1,\eta_2\in kk_{-1}(L(F),\mathbb{C})$
$$((\pi\circ\xi_1)\circ\eta_1)\circ(\pi\circ\xi_2\circ\eta_2)$$

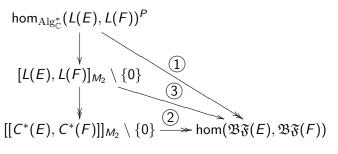
PROOF OF THEOREM A

Graph C* and Leavitt path algebra maps

G. Cortiñas



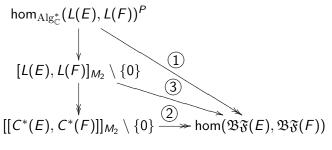
G. Cortiñas



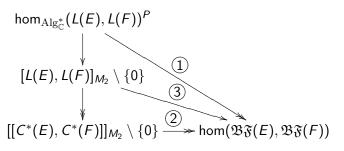
(1) is onto by [2].

G. Cortiñas

References



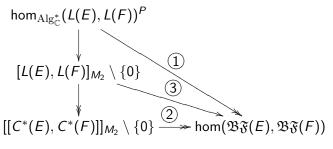
(1) is onto by [2]. For $\xi \in [[C^*(E), C^*(F)]]_{M_2} \setminus \{0\}$



(1) is onto by [2]. For $\xi \in [[C^*(E), C^*(F)]]_{M_2} \setminus \{0\}$ $\exists \phi \in \mathsf{hom}_{\mathrm{Alg}^*_{\mathbb{C}}}(L(E), L(F))^P$

G. Cortiñas

G. Cortiñas References



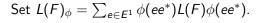
(1) is onto by [2]. For $\xi \in [[C^*(E), C^*(F)]]_{M_2} \setminus \{0\}$ $\exists \phi \in \mathsf{hom}_{\mathrm{Alg}_C^*}(L(E), L(F))^P$ s.t.

$$\xi - k(\hat{\phi}) \in \text{Ker}(2).$$

PROOF OF THEOREM A

Graph C* and Leavitt path algebra maps

G. Cortiñas



Set
$$L(F)_{\phi} = \sum_{e \in E^1} \phi(ee^*) L(F) \phi(ee^*).$$

$$K_{1}(L(F))^{E^{1}} = K_{1}(L(F)_{\phi}) \xrightarrow{\longrightarrow} \operatorname{Ker}(3)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ker}(I - A_{F}^{t})^{E^{1}} = K_{1}^{\operatorname{top}}(C^{*}(F)_{\hat{\phi}}) \xrightarrow{\partial} \operatorname{Ker}(2)$$

Set
$$L(F)_{\phi} = \sum_{e \in E^1} \phi(ee^*) L(F) \phi(ee^*)$$
.

$$K_{1}(L(F))^{E^{1}} = K_{1}(L(F)_{\phi}) \xrightarrow{\longrightarrow} \operatorname{Ker}(3)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ker}(I - A_{F}^{t})^{E^{1}} = K_{1}^{\operatorname{top}}(C^{*}(F)_{\hat{\phi}}) \xrightarrow{\partial} \operatorname{Ker}(2)$$

Let
$$U(L(F)) = \{u : uu^* = u^*u = 1\}.$$

Set
$$L(F)_{\phi} = \sum_{e \in E^1} \phi(ee^*) L(F) \phi(ee^*)$$
.

$$K_{1}(L(F))^{E^{1}} = K_{1}(L(F)_{\phi}) \xrightarrow{\longrightarrow} \operatorname{Ker}(3)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ker}(I - A_{F}^{t})^{E^{1}} = K_{1}^{\operatorname{top}}(C^{*}(F)_{\hat{\phi}}) \xrightarrow{\partial} \operatorname{Ker}(2)$$

Let
$$U(L(F)) = \{u : uu^* = u^*u = 1\}$$
. By [3], [6] the composite

Set
$$L(F)_{\phi} = \sum_{e \in E^1} \phi(ee^*) L(F) \phi(ee^*)$$
.

$$\begin{array}{ccc} K_1(L(F))^{E^1} = K_1(L(F)_{\phi}) & \longrightarrow & \operatorname{Ker}(3) \\ & & & \downarrow & & \downarrow \\ \operatorname{Ker}(I - A_F^t)^{E^1} = K_1^{\operatorname{top}}(C^*(F)_{\hat{\phi}}) & \stackrel{\partial}{\longrightarrow} & \operatorname{Ker}(2) \end{array}$$

Let $\mathcal{U}(L(F)) = \{u : uu^* = u^*u = 1\}$. By [3], [6] the composite

$$\mathcal{U}(L(F))_{\mathfrak{Ab}} \to K_1(L(F)) \twoheadrightarrow \operatorname{Ker}(I - A_E^t).$$

is onto.

Set
$$L(F)_{\phi} = \sum_{e \in F^1} \phi(ee^*) L(F) \phi(ee^*)$$
.

Let $\mathcal{U}(L(F)) = \{u : uu^* = u^*u = 1\}$. By [3], [6] the composite

$$\mathcal{U}(L(F))_{\mathfrak{Ab}} \to \mathcal{K}_1(L(F)) \twoheadrightarrow \operatorname{Ker}(I - A_E^t).$$

is onto. By [6],

$$\xi = [k(\hat{\phi})] + \partial[u] = [\widehat{\phi^u}]$$

$$\phi^u(e) = ue$$
.



- Gene Abrams, Adel Louly, Pham Ngoc Ahn, and Enrique Pardo, *The classification question for Leavitt path algebras*, J. Algebra 320 (2008), 1983–2026.
- [2] Guillermo Cortiñas, Classifying Leavitt path algebras up to involution preserving homotopy, available at arXiv:2101.05777.
- [3] Guillermo Cortiñas and Diego Montero, *Homotopy classification of Leavitt path algebras*, Adv. Math. **362** (2020).
- [4] Jerome Kaminker and Ian Putnam, K-theoretic duality for shifts of finite type, Commun. Math. Phys. 187 (1997), 505–541.
- [5] N. Christopher Phillips, A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math. 5 (2000), 49–114.
- [6] Mikael Rørdam, Classification of Cuntz-Krieger algebras, K-theory 9 (1995), no. 1, 31–58.

G. Cortiña:

References

THANK YOU!