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» spi=simple purely infinite. E
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E, F Spi, (%S(E%[]-E]) = (%%'(F)v [1F])r = References
C*(E) = C*(F).

Question (Abrams, Anh. Louly, Pardo, [1])

Does (BF(E), [1£]) = (BF(F), [1F]) imply L(E) = L(F)?
(In Algc? In Algg?).

Remark
¢ L(E) = L(F) = ¢: C*(E) = C*(F).

Theorem (C-Montero, [3])

E,F spi, (BS(E), [1e]) = (BT(F), [1F]) = 3
¢ L(E) <— L(F) : ¢ unital, o ¢ ~idy(g), o9 ~ idy ().
Here ~ is algebraic homotopy; =: continuous C*-htpy.
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Theorem A

E, F spi&: C*(E) — C*(F) unital. Then 3

¢ : L(E) — L(F) unital x, ¢ ~ & : C*(E) — C*(F).
Moreover & homotopy equivalence in C* — Alg <— ¢
homotopy equivalence in Algc.

Remark
Homotopy inverse of ¢ need not be x-homomorphism.
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Recall kk, KK triangulated categories.

» j: Algc — kk universal initial (algebraic) homotopy

invariant, M.-stable, excisive functor. Moreover
kk.(C, A) = KH.(A), htpy alg K-th.

» k:C*— Alg — KK universal initial (C*-) homotopy
invariant, C-stable, excisive functor (w.r.t. cp-split
extensions). Moreover KK, (C,2) = K:°P(2).

Full subcategories:

Algr D Leavitt® = {L(E) : E finite, no sinks}
kk O (Leavitt),, = {j(L(E)) : E finite, no sinks}

GRAPH C* AND
LEAVITT PATH
ALGEBRA MAPS

G. Cortifias

References




ALGEBRA MAPS

COMPLETION

G. Cortifias

References




COMPLETION

"~ Leavitt" — C* — Alg
L(E) — C*(E), ¢ — ¢.

GRAPH C* AND
LEAVITT PATH
ALGEBRA MAPS

G. Cortifias

References




COMPLETION

" Leavitt® — C* — Alg
L(E) = C*(E), ¢+ ¢.

Theorem B

Leavitt* — C* — Alg

bk

<LeaVitt>kk ,,,,,,,,,,,, > KK

GRAPH C* AND
LEAVITT PATH
ALGEBRA MAPS

G. Cortifias

References




COMPLETION

" Leavitt® — C* — Alg
L(E) = C*(E), ¢+ ¢.

Theorem B

Leavitt* — C* — Alg

bk

<LeaVitt>kk ,,,,,,,,,,,, > KK

comp is Z-linear,

GRAPH C* AND
LEAVITT PATH
ALGEBRA MAPS

G. Cortifias

References




COMPLETION

"~ Leavitt" — C* — Alg
L(E) — C*(E), ¢ — ¢.

Theorem B

Leavitt* — = C* — Alg

F

<LeaVitt>kk ,,,,,,,,,,,, > KK

comp is Z-linear, full,

GRAPH C* AND
LEAVITT PATH
ALGEBRA MAPS

G. Cortifias

References




COMPLETION

"~ Leavitt" — C* — Alg
L(E) — C*(E), ¢ — ¢.

Theorem B

Leavitt* — = C* — Alg

F

<LeaVitt>kk ,,,,,,,,,,,, > KK

comp

comp is Z-linear, full, and conservative.
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Theorem (C-Montero, [3])
[L(E), L(F)Im, \ {0} — kk(L(E), L(F)).
Theorem (Cuntz-Rgrdam, Phillips [5, 6])

[[C*(E), C*(F)lIm, \ {0} — KK(C*(E), C*(F)).

“rhomygr (L(E), L(F)) = [L(E), L(F)lm,

= [[C7(E), C*(F)llm,

comp(¢) equivalence <= [¢] equivalence.
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A x-homomorphism ¢ : A — B of unital x-algebras has
property (P) if ¢(1)B contains an isometry.

homjg: (A, B) D homayg: (A, B)P = {¢ has property (P)}.

Theorem A
1) homaigs (L(E), L(F))” — [[C*(E), C*(F)llm, \ {0}, is
onto and maps the subset of unital x-homomorphisms
onto the subset of homotopy classes of unital
C*-algebra homomorphisms.

i) Let ¢ € homAlgE(L(E), L(F))?. Then
b : C*(E) — C*(F) is an My-continuous homotopy
equivalence if and only if ¢ is a polynomial
M,-homotopy equivalence.
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homjg: (A, B) D homayg: (A, B)P = {¢ has property (P)}.

Theorem A

1) homaigs (L(E), L(F))” — [[C*(E), C*(F)llm, \ {0}, is
onto and maps the subset of unital x-homomorphisms
onto the subset of homotopy classes of unital
C*-algebra homomorphisms.

i) Let ¢ € homAlgE(L(E), L(F))?. Then
b : C*(E) — C*(F) is an My-continuous homotopy
equivalence if and only if ¢ is a polynomial
Ms-homotopy equivalence. If furthermore ¢ is unital,
then gg is a continuous homotopy equivalence if and
only if ¢ is a polynomial homotopy equivalence.
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essential.
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Ki(L(F) ® L(E:)) —
K{(C*(F) ® C*(E;)) = KK(C*(E), C*(F))

» comp is full: Cohn ext. C(E)/KC(E) = L(E) gives
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PRrROOF OF THEOREM B

» Definition of comp. Use Poincaré duality
(Kaminker-Putnam, C, [2,4]). Remove sources so E
essential.

kk(L(E),L(F)) = kki(C,L(F) ® L(E;)) =
Ki(L(F) ® L(E)) —

K{(C*(F) ® C*(E;)) = KK(C*(E), C*(F))

» comp is full: Cohn ext. C(E)/KC(E) = L(E) gives
triangles in kk and KK

I—At
CE L CF L(E)

__ At
(CEO / AE (CEO

C*(E)
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comp IS FULL

BF(E)V = Coker(/ — Ag) = kk_1(L(E), C).
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comp IS FULL

BF(E)V = Coker(/ — Ag) = kk_1(L(E), C).

K (L( T@ 83(E)" EDKer(1 - AL) © BF(E)Y
L(E), L(F)) — =" KK(C*(E), C*(F))
hom(B(E), BI(F))
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comp IS FULL
BF(E)V = Coker(/ — Ag) = kk_1(L(E), C).

A(E,F)

Ku(L( BF(E) —

comp

L(E), L(F)) KK(C*(E), C*(F))

I

hom(BF(E), BF(F))

Snake lemma = comp onto,

——="Ker(/ — AL) @ BF(E)"
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BF(E)V = Coker(/ — Ag) = kk_1(L(E), C).

A(E,F)

Ka(L( BF(E)Y —"Ker(l — AL) @ BF(E)V

comp

L(E), L(F)) KK(C*(E), C*(F))

I

hom(BF(E), BF(F))

Snake lemma = comp onto, Ker(comp) = Ker(9(E, F)).
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comp IS CONSERVATIVE

7w : C(F) — L(F) canonical map.
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BF(F) @ C* =n(Ki(C(F)) C
Ki(L(F)) = kki(C, L(F))

7(Ki(C(F))) ® kk_1(L(E), C) = Kerd(E, F).




comp IS CONSERVATIVE
7w : C(F) — L(F) canonical map.
BF(F) ® C* =n(Ki(C(F)) C
Ki(L(F)) = kki(C, L(F))

7(Ki(C(F))) ® kk_1(L(E), C) = Kerd(E, F).

Ker(9(F, F))) is a square-zero ideal of kk(L(F), L(F)).
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comp IS CONSERVATIVE
7w : C(F) — L(F) canonical map.

BF(F) @ C* =n(Ki(C(F)) C
Ki(L(F)) = kki(C, L(F))

7(Ki(C(F))) ® kk_1(L(E), C) = Kerd(E, F).

Ker(9(F, F))) is a square-zero ideal of kk(L(F), L(F)).
&, 6 € Ki(C(F)) = Ku(C)", m,m € kk_1(L(F),C)

((mo&1)om)o(ro&aomn)
nmomeE K_1((C)FO =0.
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(1) is onto by [2].
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homAlg (L(E ))

[L(E), L(F)]m, \ {0} S

B

[[C(E), €*(F)llm, \ {0} @, hom(BF(E), BI(F))

(1) is onto by [2]. For & € [[C*(E), C*(F)]]lm, \ {0}
J¢ € homayg: (L(E), L(F))P st

€ — k(9) € Ker(2).
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PrRooOF OoF THEOREM A

Set L(F)y = Y ocer 6(ce”)L(F)d(ece").
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PrRooOF OoF THEOREM A
Set L(F)y = ZeEEl o(ee*)L(F)p(ee*).

Ki(L(F))E' = Ki(L(F)s) Ker(3)

| |

Ker(/ — AL)E" = K{*P(C*(F);) -2 Ker(2)

Let U(L(F)) ={u: uu* = v*u = 1}.
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Ki(L(F))E' = Ki(L(F)s) Ker(3)

| |

Ker(/ — AL)E" = K{*P(C*(F);) -2 Ker(2)

Let U(L(F)) ={u: uv* = v*u=1}. By [3], [6] the
composite
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PrRooOF OoF THEOREM A
Set L(F)y = ZeEEl o(ee*)L(F)p(ee*).

Ki(L(F))E' = Ki(L(F)s) Ker(3)

| |

Ker(/ — AL)E" = K{*P(C*(F);) -2 Ker(2)

Let U(L(F)) ={u: uv* = v*u=1}. By [3], [6] the
composite

U(L(F))ae — Ki(L(F)) — Ker(I — AE).

is onto.
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PrRooOF OoF THEOREM A
Set L(F)y = ZeEEl o(ee*)L(F)p(ee*).

Ki(L(F))E' = Ki(L(F)s) Ker(3)

| |

Ker(/ — AL)E" = K{*P(C*(F);) -2 Ker(2)

Let U(L(F)) ={u: uv* = v*u=1}. By [3], [6] the
composite

U(L(F))ap — Ki(L(F)) — Ker(I — AfE).
is onto. By [6],
€ = [k()] + 0[u] = [¢]
@!(e) = ve.
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