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0. Introduction

Many papers have been devoted recently to twisted K-theory as
originally de�ned in [15] and [29]. See for instance the references [2],
[23] and the very accessible paper [30]. We o¤er here a more direct
approach based on the notion of �twisted vector bundles�. This is
not an entirely new idea, since we �nd it in [9], [7], [6], [8] and [4] for
instance, under di¤erent names and from various viewpoints. However,
a careful look at this notion shows that we may interpret such bundles
as modules over suitable algebra bundles. More precisely, the category
of twisted vector bundles is equivalent to the category of vector bundles
which are modules over algebra bundles with �bre End(V ); where V is
a �nite dimensional vector space. This notion was �rst explored in [15]
in order to de�ne twisted K-theory. In the same vein, twisted Hilbert
bundles may be used to de�ne extended twisted K-groups, following
[14] and [29].
More generally, we also analyse the notion of �twisted principal bun-

dles� with structural group G. Under favourable circumstances, we
show that the associated category is equivalent to the category of lo-
cally trivial �bration, with an action of a bundle of groups with �bre
G; which is simply transitive on each �bre. Such bundles are classically
called �torsors�in the literature. When the bundle of groups is trivial,
we recover the usual notion of principal G-bundle.
As is well known, twisted K-theory is a graded group, indexed essen-

tially by the third cohomology1 of the base space X, namely H3(X;Z):
The twisted vector bundles we de�ne in this paper are also indexed
by elements of the same group up to isomorphism. Roughly speaking,
twisted K-theory appears as the Grothendieck group of the category
of twisted vector bundles. This provides a geometric description of this
theory, very close in spirit to Steenrod�s de�nition of coordinate bun-
dles [31]. The more subtle notion of graded twisted K-theory, indexed
by H1(X;Z=2)�H3(X;Z), may also be analyzed in this framework.
The usual operations on vector bundles (exterior powers, Adams

operations...) are easily extended to twisted vector bundles, in a way

Date: 23 October 2010.
1More precisely, it is indexed by 3-cocycles. Two cohomologous cocycles give

twisted K-groups which are isomorphic (non canonically). This technical point is
discussed in Appendix 8.3.
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parallel to the operations de�ned in [2]. We have also added a section
on cup-products, in order to show that the various ways to de�ne them
coincide up to isomorphism. This is essentially relevant in the last
section of the paper, where we de�ne an analog of the Chern character.
In this section, we de�ne connections on twisted vector bundles in

the �nite and in�nite dimensional cases, very much in the spirit of [26,
pg. 78], [6], [22, Chapitre 1], in a quite elementary way. It is also
described in [11] and [4] with a di¤erent method. From this analog of
Chern-Weil theory, we deduce a �Chern character� from twisted K-
theory to twisted cohomology. This character is de�ned in a much
more elaborate way in [3], [27], [32] and [8], in the general framework
of the �Connes-Karoubi Chern character� [12], [22], except in [3]. In
the paper of Atiyah and Segal [3], classical topology tools are used to
show that the twisted Chern character is essentially unique. Therefore,
it coincides with the character de�ned by our elementary approach in
this paper.
Finally, in a detailed appendix divided into three subsections, we

study carefully the relation between µCech cohomology with coe¢ cients
in S1 and de Rham cohomology. We also discuss more deeply multi-
plicative structures and the functorial aspects of twisted K-theory and
of the Chern character.
Aknowledgments. We thank very much A. Carey, A. Gorokhovsky,

J. Rosenberg, and especially L Breen, C. Schochet and Bai-Ling Wang
for their very relevant comments on preliminary versions of this paper.

CONTENTS
1) Twisted principal bundles
2) Relation with torsors
3) Twisted vector bundles
4) Various de�nitions of twisted K-theory
5) Multiplicative structure
6) Thom isomorphism and operations in twisted K-theory
7) Connections and the Chern character.
8) Appendix
8.1. Relation between µCech cohomology with coe¢ cients in S1 and

de Rham cohomology
8.2. Some key isomorphisms between various de�nitions of twisted

K-groups
8.3. Functoriality of twisted K-theory and of the Chern character.

1. Twisted principal bundles

Let G be a topological group and let U =(Ui); i 2 I; be an open
covering of a topological space X: The µCech cohomology set H1(U ;G)
is well known (see [31], [18] for instance). One starts with �non abelian�
1-cocycles g, i.e. a set of continuous maps (also called �transition
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functions�)
gji : Ui \ Uj �! G;

such that gkj � gji = gki over Ui \ Uj \ Uk: Two cocycles g and h are
equivalent if there are continuous maps

ui : Ui �! G;

such that
uj � gji = hji � ui: (1)

The set of equivalence classes is denoted by H1(U ;G): A covering
V =(Vs); s 2 S; is a re�nement of U if there is a map � : S �! I
such that Vs � U�(s): We then have a �restriction map�

R� : H
1(U ;G) �! H1(V ;G);

assigning to the g0s the functions k = � �(g) de�ned by

ks;r = g�(s);�(r):

It is shown in [18, pg. 48] for instance that the map R� is in fact
independent of the choice of �: We then de�ne

H1(X;G) = Colim
U

H1(U ;G);

where U runs over the �set�of coverings of X:
Now let Z be a subgroup of the centre of G and let � = (�kji) be

a completely normalized 2-cocycle of U with values in Z: This means
that � = 1 if two of the three indices k; j; i are equal and that

��(k)�(j)�(i) = (�kji)
"(�);

where � is a permutation of the indices (k; j; i); with signature "(�).

Remark 1.1. One can prove (see [21] for instance) that a µCech cocycle
in any dimension is cohomologous to a completely normalized one.
Moreover, if every open subset of X is paracompact, any cohomology
class may be represented by a completely normalized µCech cocycle.

A �-twisted 1-cocycle (simply called twisted cocycle if � is implicit)
is then given by transition functions g = (gji) as above, such that

gii = 1; gji = (gij)
�1

and
gkj � gji = gki � �kji

over Ui\Uj\Uk: If we compute the product glk �gkj �gji in two di¤erent
ways using associativity, we indeed �nd that � should be a 2-cocycle.
On the other hand, one can easily show that the function gij �gjk �gki is
invariant under a circular permutation of the indices and is changed to
its inverse if we permute i and k: Since we have �kjk = 1; the cocycle
� should be completely normalized.
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Two twisted cocycles g and h are equivalent if there are continuous
maps ui : Ui �! G; such that we have a condition analogous to the
above

uj � gji = hji � ui (1)

We de�ne the twisted (non abelian) cohomology H1
�(U ;G) as the set

of equivalence classes.

Proposition 1.2. Let � be a 2-cocycle cohomologous to �, i.e. such
that we have the relation

�kji = �kji � �ji � ��1ki � �kj;
for some � = (�ji) with �ji = (�ij)�1 and �ii = 1: Then the map

� : H1
�(U ;G) �! H1

�(U ;G);
sending (g) to the twisted cocycle (g0) given by g0ji = gji � �ji, is an
isomorphism.

Proof. If we compute g0kj � g0ji we indeed �nd
g0kj � g0ji = g0ki � �kji � �kj � �ji � (�ki)�1 = g0ki � �kji:

This shows that the map � is well de�ned. The inverse map is of course
given by the correspondence (g0ji) 7�! (g0ji � ��1ji ): �

From the previous considerations one may de�ne the following cate-
gory. The objects are �-twisted bundles on a covering U , the morphisms
between (gji) and (hji) being continuous maps (ui), with the compat-
ibility condition (1). In this category the covering U is �xed together
with the 2-cocycle �.
However, this category is too rigid for our purposes, since we want

to consider covering re�nements. The covering V = (Vs); s 2 S; is a
re�nement of U = (Ui); i 2 I if there is a map � : S �! I such that
Vs � U�(s):This map � induces a morphism

�� : H
1
�(U ;G) �! H1

�(V ;G)
which is not necessarily an isomorphism. Starting with a twisted co-
cycle (gji), its image by �� is the cocycle (hsr) given by the formula

hsr = g�(s)�(r):

The 2-cocycle associated to h is

�tsr = g�(t)�(s) � g�(s)�(r) � g�(r)�(t) = ��(t)�(s)�(r):

Proposition 1.3. Let � and � 0 be two maps from S to I such that
Vs � U�(s) and Vs � U� 0(s) and let x be an element of the set H1

�(U ;G):
Then �� (x) and �� 0(x) are related through an isomorphism

H1
�(V ;G) �= H1

�0(V ;G);
made explicit in the proof below. This isomorphism does not depend on
x and depends only on �; � 0 and the 2-cocycle �:
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Proof. Let h0 be the following transition functions

h0sr = g� 0(s)� 0(r):

We may write

h0sr = g� 0(s)�(s) � hsr � g�(r)� 0(r) � �sr;
where

�sr = �� 0(s)�(r)�(s) � �� 0(s)� 0(r)�(r):
Since we have hrs = (hsr)�1; hrr = 1 and the same properties for h0;

it follows that �rs = (�sr)�1 and �rr = 1: Therefore,
1) the twisted 1-cocycles (hsr) and (hsr); where

hsr = g� 0(s)�(s) � hsr � g�(r)� 0(r);
are isomorphic in the category of twisted bundles over V with the same
twist.
2) the twisted bundles de�ned by the 1-cocycles (hsr) and (h0sr) are

also isomorphic through the isomorphism

H1
�(V ;G) �= H1

�0(V ;G)
de�ned in the previous proposition.
We note that �0 is the following 2-cocycle with values in Z

�0tsr = hts � hsr:hrt = hts � hsr � hrt � �ts � �sr � �rt = �tsr � �ts � �sr � �rt;
which is of course cohomologous to �:
It remains to show that the isomorphism

H1
�(V ;G) �= H1

�0(V ;G)
depends only of � and � 0 and not of the speci�c element x: The previous
identity shows indeed that the 2-cocycles � and �0 are cohomologous
through the completely normalized 1-cochain � which is a function of
� only. �
Remark 1.4. Although we don�t need it in the proof, this computation
showing that � and �0 are cohomologous is based on the existence of a
twisted 1-cocycle (gji) associated to a 2-completely normalised cocycle
�: Unfortunately, this is not true in general. However, when X has
the homotopy type of a CW-complex, we may also argue as follows in
greater generality. First me may assume that X is pathwise connected,
so that we can choose a base point on X: Now let PX be the path
space of X and let

� : PX ! X

be the canonical map associating to a path starting at the base point
its end point. In order to check that �ts � �sr � �rt = �0tsr � (�tsr)�1;
we consider the covering of PX de�ned by the pull-back ��(U) of the
covering U of X: Since the nerve of ��(U) is contractible, there is a
completely normalized 1-cochain g, with values in the subgroup Z of
G; such that �tsr is the associated twist, i.e. its coboundary. This
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enables us to perform the previous computations on PX (with g as
our 1-twisted cocycle) and hence on X; since the pull-back of functions
from X to PX by the map � is injective.

2. Relation with torsors

There is another interpretation of twisted principal bundles in some
favourable circumstances and which is more familiar. For this, we
observe that G acts on itself by inner automorphisms and that the
kernel of the map

G! Aut(G)

is the centre of G: We now assume that the induced map G=Z !
Aut(G) is a homeomorphism on its image for the quotient topology
and that the map

G! G=Z

is a locally trivial �bration. In the applications we have in mind, G
is a Lie group or a Banach Lie group and is well known that these
conditions are ful�lled if Z is a closed subgroup of the centre.
On the other hand, we notice that if P is a twisted principal bundle

associated to a covering U with transition functions gji; we may de�ne
a bundle of groups AUT(P ) as follows. Its transition functions are
de�ned over Ui \ Uj by

g 7�! gji � g � (gji)�1 = gji � g � gij:

Proposition 2.1. Let eG be a bundle of groups with �bre G and with
structural group G=Z; acting by inner automorphisms on G. Then,
if the covering U = (Ui) is �ne enough, there is a twisted principal
bundle P such that eG is isomorphic to the bundle of groups AUT(P )
de�ned above.

Proof. The bundle of groups eG is given by transition functions


ji : Ui \ Uj ! G=Z;

where we may assume without loss of generality that


ii = Id and 
ij = (
ji)
�1:

According to our assumptions, the �bration G! G=Z is locally trivial.
Therefore, if the covering U is �ne enough, we can �nd continuous
functions

gji : Ui \ Uj ! G

such that the class of gji is 
ji, and moreover gii = Id, gij = (gji)
�1:

From these identities, it follows that the following continuous function
de�ned on Ui \ Uj \ Uk

�kji = gkj � gji � gik
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is a completely normalized 2-cocycle with values in Z: Therefore, it de-
�nes a twisted principal bundle P with transition functions (gji):More-
over, according to the previous considerations, the bundle of groups eG
is canonically isomorphic to AUT(P ); with transition functions

u 7�! gji(u) = gji � u � gij:
�

This proposition enables us to relate the category of twisted prin-
cipal bundles to more classical mathematical objects. We notice that
if P and Q are twisted principal bundles with transition functions gji
and hji respectively (with the same twist �); we can de�ne a locally
trivial bundle ISO(P;Q) with �bre G; the transition functions being
automorphisms of the underlying space G de�ned by

u 7�! hji � u � gij = �ji(u):

Since we have gkj �gji �gik = hkj �hji �hik = �kji; the 1-cocycle condition
is satis�ed for the bundle ISO(P;Q); i.e. we have the relation

�kj � �ji = �ki:

In particular, if P = Q; we get the previous bundle of groups AUT(P ):

Moreover, there is a bundle map

ISO(P;Q)� AUT(P )! ISO(P;Q):

It is de�ned by
(u; v) 7�! u � v;

or by (ui; vi) 7! ui � vi in local coordinates. Therefore, the bundle
ISO(P;Q) inherits a right �brewise AUT(P )-action which is simply
transitive on each �bre. In classical terminology2, the bundle ISO(P;Q)
is a �torsor�over the bundle of groups AUT(P ); acting on the right.

Theorem 2.2. Let eG be a bundle of groups with �bre G and struc-
tural group G=Z acting on G by inner automorphisms. We assume
the existence of a covering U = (Ui) such that eG may be written as
AUT(P ); where P is a �-twisted principal bundle. Then, any torsor M
over eG may be written as ISO(P;Q); where Q is a �-twisted principal
bundle. More precisely, the correspondence Q 7�! ISO(P;Q) induces
an equivalence between the category of �-twisted principal bundles and
the category of eG-torsors.

2It is not the purpose of this paper to develop the theory of torsors. Roughly
speaking, this notion is a generalization of the de�nition of a principal bundle P .
Instead of having a topological group G acting on P as usual, we have a bundle
of groups eG acting �berwise on P in a way which is simply transitive on each
�ber. In our situation, the structural group of eG is G=Z; acting on G by inner
automorphisms.
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Proof. Let 
ji be the transition functions of M with �bre G and let
gji be the transition functions of P: Then the transition functions of
AUT (P ) are given by gji(u) = gji � u � gij: Now we claim that the
transition functions of M should be of type


ji(u) = hji � u � gij;
for some continuous functions hji: In order to prove this, we use the
action of eG on the right by writing


ji(u) = 
ji(1 � u) = 
ji(1) � gji(u) = 
ji(1) � gji:u � gij:
We then put hji = 
ji(1) � gji: The fact that 
kj � 
ji = 
ki implies the
identity

hkj � hji � u � gij � gjk = hki � u � gik:
Since gij � gjk = gik � �ijk; this implies that hkj:hji = hki � (�ijk)�1 =
hki � �kji; therefore the (hji) are the transition functions of a �-twisted
principal bundle.
We have to check the coherence of the action of eG on the right, i.e.

the identity

ji(u � v) = 
ji(u) � gji(v):

This follows from the simple calculation in local coordinates


ji(u � v) = hji � (u � v) � gij = (hji � u � gij) � (gji � v � gij) = 
ji(u) � gji(v):
The previous computations show that we can de�ne a functor back-

wards from the category of eG-torsors to the category of �-twisted prin-
cipal bundles. It remains to prove that the map

Hom(Q;Q0)! Hom(ISO(P;Q); ISO(P;Q0))

is an isomorphism. For this, we analyse the morphisms

ISO(P;Q)! ISO(P;Q0)

which are compatible with the structure of AUT(P )-torsor. Such a
morphism

ISO(P;Q)! ISO(P;Q0)

is given in local coordinates by the formula

� : u 7�! �i � u � �i;
where (�i) (resp. (�i)) is associated to AUT(P ) (resp. ISO(Q;Q0)):
We notice the formula

h0ji � �i � u � �i � gij = �j � hji � u � gij � �j;
where h0ji are the coordinate functions of Q

0: In the same way, an ele-
ment of AUT (P ) is given in local coordinates by

� : g 7�! g � �i:
Therefore, the equation

�(u � g) = �(u) ��(g)
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may be written

�i � (u � g) � �i = (�i � u � �i) � (g � �i);
which is only possible if �i = 1: �
Remark 2.3. An analog of this theorem in the framework of vector
bundles will be proved in the next section (Theorem 3.5).

3. Twisted vector bundles

One of the main aims of this paper is the theory of �twisted�vector
bundles3. We essentially studied it in Section 1, with the structural
group G = GLn(C): However, to keep track of the linear structure and
because we want the ��bres�not to have the same dimension on each
connected component of X, we change slightly the general de�nition
as follows.
We start as before with a covering U = (Ui); i 2 I; together with

a �nite dimensional vector space Ei �over�Ui: Another piece of infor-
mation is a completely normalized 2-cocycle �kji with values in C�: A
�-twisted vector bundle E on X is then de�ned by transition functions

gji : Ui \ Uj ! Iso(Ei; Ej);

such that

gii = 1; gji = (gij)
�1

and
gkj � gji = gki � �kji;

as in the previous section. There is however a slight change for the
de�nition of morphisms from a twisted vector bundle E to another one
F; with the same twist �: They are de�ned as continuous maps

ui : Ui ! Hom(Ei; Fi);

such that
uj � gji = hji � ui:

The point is that we no longer require the ui to be isomorphisms.
More generally, let E be a �-twisted vector bundle on a covering U

with transition functions (gji) and let F be a �-twisted vector bundle on
the same covering with transition functions (hji). We de�ne a ��1 � �-
twisted vector bundle in the following way: over each Ui we take as
��bre�Hom(Ei; Fi) and as transition functions the isomorphisms

Hom(Ei; Fi)! Hom(Ej; Fj);

3For simplicity�s sake, we shall only consider complex vector bundles. The theory
for real or quaternionic vector bundles follows the same pattern. More generally, we
may also consider vector bundles with �bres �nitely generated projective modules
over a Banach algebra. This remark will be useful in the next section for A-bundles.
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de�ned by
�ji : fi 7�! hji � fi � gij = fj:

We denote this twisted vector bundle by HOM(E;F ): An interesting
case is when E and F are associated to the same 2-cocycle �: Then
HOM(E;F ) is a genuine vector bundle associated to Hom(E;F ) by
the following proposition.

Proposition 3.1. Let E and F be two �-twisted vector bundles. Then
the vector space of morphisms from E to F; i.e. Hom(E;F ); may
be identi�ed canonically with the vector space of sections of the vector
bundle HOM(E;F ):

Proof. A section of this vector bundle is de�ned by elements fi of
Hom(Ei; Fi) such that

�ji(fi) = fj:

This relation is translated as

hji � fi = fj � gji;
which is exactly the de�nition of morphisms from E to F: �
An interesting case of the previous proposition is when E = F; so

that HOM(E;E) = END(E) is an algebra bundle A. The following
theorem relates algebra bundles to twisted vector bundles.

Theorem 3.2. Any algebra bundle A with �bre End(V ); where V is a
�nite dimensional vector space of positive dimension, is isomorphic to
some END(E); where E is a twisted vector bundle on a suitably �ne
covering of X:

Proof. Let V = Cn: According to the Skolem-Noether Theorem, the
structural group of A is PGLn(C) = GLn(C)=C�; where PGLn(C) acts
on Mn(C) by inner automorphisms. We may describe this bundle A
by transition functions


ji : Ui \ Uj ! PGLn(C);

for a suitable covering U = (Ui) of X: Without loss of generality, we
may assume that 
ii = 1 and that 
ji = (
ij)

�1: On the other hand,
the principal �bration

GLn(C)! PGLn(C)

admits local continuous sections. Therefore, if we choose the covering
U = (Ui) �ne enough, we can lift these 
ji to continuous functions

gji : Ui \ Uj ! GLn(C):

Moreover, we may choose the gji such that gii = 1; gij = (gji)�1. There-
fore, we have the identity gkj � gji = gki � �kji, where

�kji : Ui \ Uj \ Uk ! C�
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is de facto a completely normalized 2-cocycle. If E is the twisted vector
bundle associated to the g0s; we see that the algebra bundle END(E)
has transition functions which are

f 7�! gji � f � (gji)�1;
i.e. the inner automorphisms associated to the gji: �
Remark 3.3. We shall assume from now on that the coverings U we
are considering are �good�. This means that U has a �nite number
of elements and that all possible intersections of elements of U are
either empty or contractible. This is always possible if X is a compact
manifold for instance [5], [25]. In the previous theorem, we are then
able to replace the words �suitably �ne�by �good�since the �bration

GLn(C)! PGLn(C)
has the homotopy lifting property. In this case, we also have

H�(X) �= H�(N(U)); K(X) �= K(N(U));
etc., where N(U) is the nerve of the covering U : Note that its geometric
realization has the homotopy type of X:

Remark 3.4. For most spaces we are considering, good coverings are
co�nal: any open covering as a good re�nement. This is the case
for �nite polyedra and, more geometrically, for compact riemannian
manifolds with open geodesic coverings [5].

The previous considerations also show that the cohomology class in

H2(X;C�) �= H3(X;Z)
associated to a twisted vector bundle is a torsion class (assuming that
the covering is good as in Remark 3.3). To prove this, we consider the
commutative diagram

1! �n ! U(n) ! PU(n) ! 1
# # #

1! C� ! GLn(C) ! PGLn(C) ! 1

The non abelian cohomologies H1(X;PU(n)) and H1(X;PGLn(C))
are isomorphic and the coboundary map

H1(X; PU(n)) �= H1(X; PGLn(C))! H2(X;C�) �= H3(X;Z)
factors through H2(X;�n) (also see Appendix 8.1). Therefore the co-
cycle (�kji) de�nes a torsion class in H3(X;Z): It is a theorem of Serre
[17] that such an element comes from an algebra bundle such as we
have described. Later on, we shall show how we can recover the full co-
homology group H3(X;Z) from algebra bundles of in�nite dimension,
as it was observed by Rosenberg [29].
The following theorem is important for our dictionary relating twisted

vector bundles to modules over suitable algebra bundles.
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Theorem 3.5. Let A be an algebra bundle which may be written as
END(E); where E is a twisted vector bundle associated to a covering
U , transition functions gji and a completely normalized 2-cocycle � with
values in C�: Let E�(U) be the category of �-twisted vector bundles and
EA(U) be the category of �nite dimensional vector bundles trivialized
by the covering U , which are right A-modules. Then the functor

 : E�(U)! EA(U)
de�ned by

F 7! HOM(E;F )

is an equivalence of categories.

Proof. We �rst notice that if M;N and P are �nite dimensional vector
spaces with M 6= 0 and if � = End(M), the obvious map

Hom(N;P )! Hom�(Hom(M;N); Hom(M;P ))

is an isomorphism. Since N is a direct summand of some M r; it is
enough to check the statement for N =M; in which case it is obvious.
This functorial isomorphism at the level of vector spaces may be trans-
lated into the framework of twisted vector bundles by the isomorphism

Hom(F;G)
�=�! HomA(HOM(E;F );HOM(E;G)):

This shows that the functor 	 is fully faithful.
On the other hand, we have a canonical isomorphism of vector spaces

Hom(M;N)
AM ! N;

de�ned by (f; x) 7�! f(x) which can also be translated in the frame-
work of twisted vector bundles. This shows that if we start with a
bundle L which is a right A-module, where A is some END(E); we can
associate to it a twisted vector bundle F by the formula

F = L
A E = 	0(L):
Since HOM(E;F ) 
A E is canonically isomorphic to F;  0 induces a
functor going backwards

 0 : EA(U)! E�(U):
Finally, there is an obvious isomorphism

L! HOM(E;L
A E) = 	(	0(L))
This shows that the functor 	 is essentially surjective. �

This module interpretation enables us to prove the following Theo-
rem.

Theorem 3.6. Let U = (Ui); i 2 I; be a good covering of X as in
Remark 3.3 and let V = (Vs); s 2 S; be a re�nement of U which is
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also good. Then for any � : S ! I such that Vs � U�(s); the associated
restriction map

R� : H
1
�(U ;GLn(C))! H1

��(�)(V ;GLn(C))
is a bijection.

Proof. Since U is good, for any completely normalized cocycle �; one
can �nd a twisted vector bundle E of rank m on U and V, such that
A = END(E) is a bundle of algebras associated to �: According to
the previous equivalence of categories, the sets H1

�(U ;GLn(C)) and
H1
��(�)(V ;GLn(C)) are in bijective correspondence with the set of A-

modules which are locally of type Hom(Cm;Cn): With this identi�ca-
tion, the restriction map R is just an automorphism of this set. �
Remark 3.7. We may prove the homotopy invariance of the category
of twisted vector bundles thanks to this dictionary (at least if X is
compact): a twisted vector bundle may be interpreted as a bundle
of A-modules, or as a �nitely generated projective module over the
Banach algebra � = �(X;A) of continuous sections of A: It is easy to
show that modules over � [0; 1] can be extended from � (see e.g. [24]).

4. Twisted K-theory

Let U be a good covering (Remark 3.3) of a space X and let �kji be
a completely normalized 2-cocycle with values in C�: We consider the
category of twisted vector bundles associated to U and to the cocycle �.
This is clearly an additive category which is moreover pseudo-abelian
(every projection operator has a kernel). We denote by K�(U) its
Grothendieck group, which is also the K-group of the category of A-
modules over X; where A= END(E), as explained at the end of the
previous section. Since this de�nition is independent from U up to
a non canonical isomorphism (see Appendix 8.3), we shall also call it
K�(X): this is the classical de�nition of (ungraded) twisted K-theory
as detailed in many references, e.g. [15], [2], [23].
In this situation, the cocycle � has a cohomology class [�] in the

torsion subgroup of

H2(X;C�) �= H3(X;Z):
as we saw in Section 2. When [�] is not necessarily a torsion class,
we should consider �twisted Hilbert bundles�which are de�ned in the
same way as twisted vector bundles but with a �bre which is an in�nite
dimensional Hilbert space4 H: It is also more convenient to use the
unitary group U(H) instead of the general linear group as our basic

4For simplicity�s sake, we assume H to be separable, i.e. isomorphic to the
classical l2 space.
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structural group. In other words, the (gji) in Sections 1 and 2 are
now elements of U(H): The 2-cocycle (�kji) takes its values in the
topological group S1:
From the �bration

S1 ! U(H)! PU(H)

and the contractibility of U(H) (Kuiper�s theorem), we see that PU(H)
is a model of the Eilenberg-Mac Lane space K(Z; 3): On the other
hand, since PU(H) acts on L(H) = End(H) by inner automorphisms,
we deduce that any 2-cocycle � = (�kji) de�nes an algebra bundle L�
with �bre L(H) which is well de�ned up to isomorphism. Therefore,
as in the �nite dimensional case, we have the following theorem.

Theorem 4.1. Let L� be the bundle of algebras with �bre L(H) associ-
ated to the cocycle �: Then, if the covering U is good as in Remark 3.3,
L� may be written as END(E); where E is a �-twisted Hilbert bundle:

Proof. We just copy the proof of Theorem 3.2 in the in�nite dimensional
case. In a more precise way, the structural group of L� is PU(H) =
U(H)=S1 acting on L(H) by inner automorphisms. Therefore, we may
describe the principal bundle by transition functions


ji : Ui \ Uj ! PU(H)

for a suitable covering U = (Ui) of X and we may assume that 
ii =
1; 
ji = (
ij)

�1: Since the principal �bration

� : U(H)! PU(H)

is locally trivial and the Ui \ Uj are contractible (if non empty), there
are continuous maps

gji : Ui \ Uj ! U(H);

such that � � gji = 
ji: The proof now ends as the proof of Theorem
3.2. �
Theorem 4.2. Let L� be the algebra bundle END(E); where E is a
�-twisted Hilbert bundle on a covering U : Let E�(U) be the category of
�-twisted Hilbert bundles with �bre H and, �nally, let EL�(U) be the
category of bundles which are right L�-modules5, trivialized over the
elements of U . Then, the functor

	 : E�(U)! EL�(U);
de�ned by the formula

F 7�! HOM(E;F ):

is an equivalence of categories.

5More precisely, we assume that locally the module is isomorphic to L(H); with
its standard L(H)-module structure.
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Proof. It is also completely analogous to the proof of Theorem 3.5. In
a more precise way, instead of considering all �nite dimensional vector
spaces, we take Hilbert spaces M;N;P; etc: of the same cardinality,
i.e. isomorphic to the classical l2-space. For instance, the isomorphism
used in the proof of Theorem 3.5

Hom(F;G)
�=�! HomA(HOM(E;F );HOM(E;G))

is a consequence of the fact that it is true at the level of Hilbert spaces
since Hom(M;N) is isomorphic to End(M) = L(H): The proof of the
theorem again ends as in the case of �nite dimensional vector spaces.

�

For [�] 2 H3(X;Z) = H1(X;PU(H)) which is not necessarily a
torsion class, we may de�ne the associated twisted K-theory in many
ways. The �rst de�nition is due to Rosenberg [29]: the class [�] is
represented up to isomorphism by a principal bundle P with structural
group PU(H): Since PU(H) is acting on the ideal of compact operators
K in L = L(H) by inner automorphisms, we get an associated bundle
K� of C*-algebras. The twisted K-theory is then the usual K-theory
of the algebra of sections of K�:An equivalent way to de�ne K� is to
consider a twisted Hilbert bundle E associated to the cocycle � (it is
unique up to isomorphism). Then, K� is the subalgebra of the sections
of the bundle L� = END(E) which belong to K(H) over each open
set of U :
One unpleasant aspect of this de�nition is the non existence of a

unit element in K�; which makes its K-theory slightly complicated to
handle. However, we may replace K by the subalgebra A of L � L
consisting of couples of operators (f; g) such that f � g 2 K: The
group PU(H) is acting on A , so that we may also twist the algebra A
by � in order to get an algebra bundle A�: The obvious exact sequence
of C*-algebras

0! K ! A! L ! 0

induces an exact sequence of algebra bundles

0! K� ! A� ! B� ! 0:

Here and elsewhere, using a variation of the Serre-Swan theorem, we
shall often use the same terminology for an algebra bundle and its
associated algebra of continuous sections. In particular the K-theory
of A� is canonically isomorphic to the K-theory of K� since B� is a
�abby algebra6 (in particular its K-groups are trivial).

6A Banach algebra A is called �abby if there is a topological A-bimodule M
which is projective of �nite type as a right module, such that M �A is isomorphic
to M: This is equivalent to saying that the Banach category C = P(A) is �abby:
there is a linear continuous functor � from C to itself such that ��IdC is isomorphic
to �:
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A comment is in order to make our previous de�nition more func-
torial: the �-twisted K-theory is de�ned precisely as the K-theory of
bundles with �bres A-modules which are �nitely generated and pro-
jective but twisted by the cocycle �: How this depends only on the
cohomology class [�] is discussed in Appendix 8.3. Our Section 3 on
twisted vector bundles may now be rewritten by replacing the �eld of
complex numbers C by the C*-algebra A and the �nite dimensional
bundles by �A-bundles�as above. Theorem 3:5 adapted to this situ-
ation shows that the category of �-twisted A-bundles is equivalent to
the category of A�-modules if the covering U of X is good. This shows
in particular that the theory of twisted A-bundles is homotopically
invariant (at least if X is compact).
However, one has to point out a main di¤erence between C-modules

and A-modules: a priori, the �bres of A-bundles are not necessarily
free7. However, since K(A) is canonically isomorphic to Z, each A-
bundle E induces a locally constant function (called the �rank�)

Rk : X ! Z;

obtained by applying the K-functor to each �bre. This correspondence
de�nes a group map

Ch(0) : K(A�)! H0(X;Z):

In Section 7 we shall see how to de�ne �higher Chern characters�Ch(m);
starting from this elementary step.
In the spirit of Section 1, we may also consider twisted principal

G-bundles, where G is the group of invertible elements in the algebra
A. We note that the elements of G are couples of invertible operators
(g; h) in a Hilbert space such that g � h is compact. We get elements
in the centre by considering g = h 2 C�: More accurately, one should
replace A by the sub-algebra End(P ); where P is a �nitely generated
projectiveA-module which is the �bre of the bundles we are considering
(assuming the base is connected; otherwise the �bre P may vary). Then
G is not exactly A� but the subgroup Aut(P ) of A�: This point of view
will be exploited in Section 7 for the de�nition of the Chern character,
whose target is twisted cohomology.
Finally, there is a third de�nition of twisted K-theory in terms of

Fredholm operators, following the ideas in [1], [19] and [15]. We con-
sider the set of homotopy classes of triples

(E0; E1; D);

7However, we shall show in Section 7 that the �bres are free modules if the
restriction of the cohomology class of � to every connected component of X is of
in�nite order.
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where E0 and E1 are �-twisted Hilbert bundles on a good covering U
and D is a family of Fredholm operators8 from E0 to E1: With the
operation induced by the direct sum of triples, we get a group denoted
by K�(U): We note that K�(U) is a module over K(U): Here K(U) is
a short notation for the usual K-theory of the nerve of U : If U is good
as in Remark 3.3, it is isomorphic to the classical topological K-group
K(X):
In order to prove that this last de�nition is consistent with the previ-

ous ones, we consider the Banach category of �-twisted Hilbert bundles.
It is equivalent to the category of bundles of L�-modules, where L� is
the algebra bundle above with �bre L(H) twisted by �. Let L�=K� be
the quotient bundle with �bre the Calkin algebra L(H)=K(H):

Lemma 4.3. Let D be the class of D as a morphism between the as-
sociated L�=K�-modules. Then two triples (E0; E1; D) and (E 00; E 01; D0)
are homotopic if and only if the associated triples (E0; E1; D) and
(E 00; E

0
1; D

0
) are homotopic.

Proof. In general, let us denote also byM the class ofM as an L�=K�-
module. We have a continuous map

F(E0; E1)! Iso(E0; E1);

where the notation F stands for continuous families of Fredholm maps.
According to a classical theorem on Banach spaces, this map admits
a continuous section. Therefore, we get a trivial �bration with con-
tractible �bre which is the Banach space of sections of the bundle K�.
The proposition follows immediately. �

The philosophy of the lemma is that our third de�nition of twisted
K-theory is equivalent to the Grothendieck group of the Banach functor

' : P 0(L�)! P
0(L�/K�);

as de�ned in [24, Section II]. Here the categoryP 0(L�) (resp. P 0(L�/K�))
is equivalent to the category of free modules over L� (resp. L�=K�):
Since K0(P 0(L�)) = 0; this Grothendieck group is canonically isomor-
phic to K0(K�) which is precisely our �rst de�nition since, as already
mentioned, K� is the algebra bundle with �bre K(H) associated to the
cocycle �:

Remark 4.4. Instead of the Grothendieck group of the functor ';
we could as well consider the group K1(L�/K�) which is isomorphic to
K('); since L� is a �abby ring. We shall use this equivalent description
of twisted K-theory in Appendix 8.2.

8We note that HOM(E;F ) is an ordinary bundle with �bre Hom(H;H) = L(H):
The space of Fredholm operators "from E to F" is the subspace of HOM(E;F )
which are Fredholm over each point of X:
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Remarks 4.5. If � is of �nite order, the Fredholm de�nition of twisted
K-theory is detailed in [15, pg. 18]. If � = 1; we recover the theorem
of Atiyah and Janich [1], [19], in a slightly weaker form.

As is shown in [15] and [23], there is a Z/2-graded version of twisted
K-theory. This version is needed for the Thom isomorphism in the
general case of an arbitrary real vector bundle V (which is not neces-
sarily oriented). It is also needed for the Poincaré pairing applied to
arbitrary manifolds. We shall concentrate on the case of non torsion
classes [�] in the third cohomology group of X. The case when [�] is a
torsion class in H3(X;Z) has been extensively studied in [15].
The essential idea is to replace the previous structural group U(H)

by the group �(H) of matrices in U(H �H) of type�
g1 0
0 g2

�
or �

0 h1
h2 0

�
:

The point here is that �(H) acts by inner automorphisms on L(H �
H) with a degree shift which is either 0 or 1; the �rst copy of H
being of degree 0 and the second one of degree 1: As in the previous
Section, we may give a Z=2-graded module interpretation of twisted
Hilbert bundles modelled on �(H). IfE is such a graded twisted Hilbert
bundle, A = END(E) is a bundle of graded algebras with �bre L(H �
H): Conversely, for any bundle of graded algebras A with �bre L(H �
H); there is a twisted Hilbert bundle E with structural group �(H)
such that A is isomorphic to END(E): According to [15], [23] and
our previous computations, these graded algebras are classi�ed by the
following cohomology group

H1(X;Z=2)�H3(X;Z);

with a twisted addition rule, as explained in [15, p. 10]. The �rst
invariant in H1(X;Z=2) is induced by the map

�(H)! Z=2;

which describes the type of matrices in �(H) (diagonal or antidiagonal).
The second invariant is de�ned as before for the underlying ungraded
twisted Hilbert bundle.
If we consider the graded tensor product of the twisted Hilbert bun-

dle E by the Cli¤ord algebra C0;1 = C [x] =(x2�1); we get another type
of structural group we might call �1(H) which is simply U(H)�U(H):
The elements of degree 0 are of type (g; g); while the ones of degree 1
are of type (g;�g): Algebraicallly, this re�ects the fact that over the
complex numbers there are two types of Z=2-graded Azumaya algebra,
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up to graded Morita equivalence, which are C and C�C: For simplic-
ity�s sake, in the following discussion, we shall restrict ourselves to the
�rst case which is the group �(H) above. We note however that for
real graded vector bundles, there are eight types of graded algebras (up
to graded Morita equivalence) to consider instead of two; as noticed in
[15]. They correspond to the Cli¤ord algebras C0;n for n = 0; 1:::; 7;
over the real numbers.
If E and F are two graded twisted Hilbert bundles of structural

group �(H), a morphism (gi) is of degree 0 (resp. 1) if it is represented
locally by a matrix of type�

ui 0
0 vi

�
resp.

�
0 ui
vi 0

�
:

From the previous category equivalences and the de�nitions in [23], we
deduce the following theorem.

Theorem 4.6. Let � be a graded twist de�ned by two cocycles, with
classes in H1(X;Z=2) and H3(X;Z) respectively. We consider the set
of homotopy classes of couples (E;r); where E is a �-twisted graded
Hilbert bundle and r a family of self-adjoint Fredholm operators on E
which are of degree one. With the operation given by the direct sum
of couples, the group obtained is isomorphic to the �-twisted graded
K-theory de�ned in [23].

Remark 4.7. One should point out that there is a variant of this
Fredholm de�nition of twisted K-theory on a base X which is locally
compact: the family of Fredholm operators r must be an isomorphism
outside a compact set (see e.g. [1] or [24]). This remark will be impor-
tant for the de�nition of the Thom isomorphism in Section 6.

Remark 4.8. Whatever de�nition of graded or ungraded twisted K-
theory we choose, the group we obtain, denoted by K�(X) in all cases,
may be �derived�. One nice way to see this is to notice that we are
considering a K-group of special Banach algebras (or Z/2-graded Ba-
nach algebras, see [23]), for instance A = K�: We then de�ne K�n

� (X)
as Kn(A): By Bott periodicity for complex Banach algebras, we have
K�n
� (X) �= K�n�2

� (X): According to general theorems on K-theory,
one shows that

K�n
� (X) �= Coker(K�(X)! K���(X � Sn));

where � : X � Sn ! X is the canonical projection. We note here that
the smash product X ^ Sn cannot be used to de�ne K�n

� (X), since
there is no associated twist in the cohomology of X ^ Sn in general.

As a consequence, we may apply Mayer-Vietoris arguments to the
direct sum K�(X) � K�1

� (X); as for the K-theory of general Banach
algebras.
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5. Multiplicative structures

Since we have de�ned twisted K-theory in three ways (at least in
the non graded case), we should investigate the possible multiplicative
structure from these di¤erent viewpoints and show that they coincide
up to isomorphism. These multiplicative structures were also investi-
gated in a more general framework in [20].
The end result is a �cup-product�

K�(X)�K�(X)! K��(X);

where � and � are two 2-cocycles9 with values in S1. Since K�(X)
is the K-theory of the Banach algebra K� in general, it is enough to
de�ne a continuous bilinear pairing between nonunital Banach algebras

' : K� �K� ! K��;
such that '(aa0; bb0) = '(a; b)'(a0; b0): The implication that such a
' induces a pairing between K-groups is not completely obvious and
relies on excision in K-theory.
To de�ne the pairing ', we observe that if E� is a twisted Hilbert

bundle with twist � and F� another one with twist �;E b
F is a twisted
Hilbert bundle with twist ��: Here, the �bres of E�b
F� are the Hilbert
tensor product of the �bres of E and F respectively (we implicitly
identify the Hilbert tensor product of H 
H with H since it is in�nite
dimensional). Therefore, we have a pairing between Banach bundles

END(E�)� END(F�)! END(E�b
F�);
which is bilinear and continuous. If we take continuous sections, we
deduce the map ' required. We note that ' also induces a ring map

K�b
K� ! K��:
The symbol b
 now denotes the completed projective tensor product of
Grothendieck. The inclusion of Banach algebras

K�b
K� � K��
is not an isomorphism. However, when X varies, both functors de�ne
a (twisted) cohomology theory which is the usual K-theory when X is
contractible. Therefore, by a standard Mayer-Vietoris argument and
Bott periodicity, this inclusion induces an isomorphism on K-groups.
We should note that this cup-product is much simpler to de�ne if

[�] and [�] are torsion classes in the cohomology. According to Section
3; we may then assume that E and F are �nite dimensional twisted
vector bundles. The cup-product is simply the usual one10

K(A)�K(B)! K(A
B)
9See Appendix 8.3 for a possible pairing if we replace � and � by their cohomology

classes in H2(X;S1) �= H3(X;Z):
10As often, we underline the algebra of sections of the algebra bundles involved.
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where A = END(E�) and B = END(F�) are bundles of �nite dimen-
sional algebras, with matrix algebras as �bres.
Coming back to the general case, we now use our second de�nition

of twisted K-theory in order to get a cup-product between K-groups
of unital rings. According to Section 4; we have exact sequences of
Banach algebras

0! K� ! A� ! B� ! 0

0! K� ! A� ! B� ! 0;

which split as exact sequences of Banach spaces. Therefore, we deduce
another exact sequence by taking completed projective tensor products
of Banach algebras

0! K�b
K� ! A�b
A� ! D�;� ! 0:

The Banach algebra D�;� is the following �bre product

D�;� ! A�b
B�
# #

B�b
A ! B�b
B�
Since the algebras B� and B� are �abby, the algebra D�;� has trivial
K-groups. It follows that the map

K�b
K� ! A�b
A�
is aK-theory equivalence. Therefore, we may also de�ne a cup-product

K(A�)�K(A�)! K(A��);
as the following composition

K(A�)�K(A�)! K(A�b
A�) �= K(K�b
K�) �=! K(K��) �= K(A��):

If we identity K(A�b
A�) with K(A��) by the previous sequence of
isomorphisms, we may take as the de�nition for our cup-product the
pairing

K(A�)�K(A�)! K(A�b
A�):
We now come to the third de�nition of the cup-product in terms

of Fredholm operators. As is well known (see e.g.[1], [15] or [23]),
one advantage of this de�nition of twisted K-theory (for [�] of �nite or
in�nite order) is a handy de�nition of the cup-product. In the ungraded
case, it is more convenient still to view E = E1 � E1 as a Z=2-graded
twisted bundle and replace11 D : E0 ! E1 by the following operator r
which is self-adjoint and of degree 1:

r =
�
0 D�

D 0

�
:

11More correctly, we should write D as a section of the bundle HOM(E0; E1):
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The cup-product of (E;r) with another couple of the same type (E 0;r0)
is simply de�ned by the formula

(E;r) ` (E 0;r0) = (E b
E 0;rb
1 + 1b
r0):
Here the symbol b
 denotes the graded and Hilbert tensor product. We
notice that if E is associated to the twist �; E 0 to the twist �0; the cup-
product is associated to the twist � � �0, a cocycle whose cohomology
class is the sum of the two related cohomology classes in H2(X;S1).
It is not completely obvious that this third de�nition of the cup-

product is equivalent to the previous one with the bundles K� or A�.
In order to prove this technical point, we use the results of Appendix 8.2
describing explicitly the isomorphism between K(K�) and K1(B�=K�):
In fact, any element of K1(B�=K�) is the cup-product of an element u
of K(K�) by a generator � of

K1(L=K) �= Z:
This generator is classically de�ned by the shift (as a Fredholm oper-
ator). Moreover, we may assume that u is induced by a self-adjoint
involution on M2((K�)+); where (K�)+ is the algebra K� with a unit
added. On the other hand, both K�(K�) and K1+�(B�=K�) may be
considered as (twisted) cohomology theories on X: Therefore, again
by a Mayer-Vietoris argument, the formula above for the cup-product
with Fredholm operators has to be compared with the previous one
only when X is reduced to a point, a case which is obvious.

This Fredholm multiplicative setting has the advantage that it may
be extended to the graded version of twisted K-theory by the same
formula

(E;r) ` (E 0;r0) = (E b
E 0;rb
1 + 1b
r0):
If ([�1] ; [�3]) and ([�01] ; [�

0
3]) are the twists of E and E 0 respectively,

the twist of E b
E 0 in cohomology is ([�1] ; [�3]); where
[�1] = [�1] + [�

0
1]

and
[�3] = [�3] + [�

0
3] + �([�1] � [�01]):

Here � : H2(X;Z=2) ! H3(X;Z) is the Bockstein homomorphism
(compare with [15, p. 10]). Thanks to the Thom isomorphism which
is proved in [23] (see also the next section and [10]), this graded cup-
product is compatible with the ungraded one de�ned on the Thom
space of the orientation bundle determined by the graded twist.

6. Thom isomorphism and operations in twisted K-theory

This Section is just a short rewriting of the corresponding sections 4
and 7 of [23], with the point of view of twisted Hilbert bundles. It is
added here for completeness�sake.
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In order to de�ne the Thom isomorphism in twisted K-theory, as in
[23] and [10] with our new point of view, we need to consider twisted
Hilbert bundles E with a Cli¤ord module structure. Such a structure is
given by a �nite dimensional real vector bundle V on X; provided with
a positive metric q and an action of V on E; such that (v)2 = q(v):1.
Now let � be a graded twist, given by a covering U = (Ui) together with
a couple (�1; �3) consisting of a 1-cocycle with values in Z=2 and a 2-
cocycle with values in S1: We de�ne the Grothendieck group KV

� (X)
from the set of homotopy classes of couples

(E;r);

as follows: E is a Z=2-graded twisted Hilbert bundle which is also a
gradedC(V )-module, V acting by self-adjoint endomorphisms of degree
1. Moreover, the family of Fredholm operators r must satisfy the
following properties
1) r is self-adjoint and of degree 1; as in the previous section,
2) r anticommutes with the elements v in V:
This group is not entirely new. Using our dictionary relating twisted

Hilbert bundles and module bundles, we described it in great detail
in [23, § 4]: We should also notice that this structure of C(V )-module
may be integrated into the twist �: if w1 = w1(V ) and w2 = w2(V )
are the �rst two Stiefel-Whitney classes of V; one has to replace � by
the sum of � and C(V ) in the graded Brauer group (this was one of
the main motivations for the paper [15]). More precisely, the resulting
cohomology classes are

[�1] + w1(V )

in degree one and

[�3] + �([�1] � w1) + �(w2)

in degree 3:

Using our previous reference [23], we are now able to de�ne the Thom
isomorphism

t : KV
� (X)! K���(V )

in simpler terms. If � denotes the projection V ! X; and if (E;r)
de�nes an element of the groupKV

� (X); we de�ne t(E;r) as the couple
(��(E);r0); where r0 is de�ned over a point v of V , with projection x;
by the formula

r0v = v +rx:
We recognize here the formula already given in [23]: we have just re-
placed module bundles by twisted Hilbert bundles.
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Operations on twisted K-theory have already been de�ned in many
references [15], [2], [23]. Twisted Hilbert bundles give a nice frame-
work to rede�ne them. For simplicity�s sake, we restrict ourselves to
ungraded twisted K-groups.
If we start with an element (E;r) de�ning an element of K�(X) as

at the end of Section 4, its kth-power12

(E
b
k;rb
:::b
1 + :::+ 1b
:::b
r)

has an obvious action of the symmetric group Sk: We should notice
that the twist of the kth-power is �k: According to Atiyah�s philosophy
[1], the kth-power de�nes a map

K�(X)! K�k(X)
Z R(Sk);
where R(Sk) denotes the complex representation ring of Sk: Therefore,
any Z-homomorphism

R(Sk)! Z
gives rise to an operation in twisted K-theory. In particular, the
Grothendieck exterior powers and the Adams operations may be de-
�ned in twisted K-theory, using Atiyah�s method.
As an interesting Z-homomorphism fromR(Sk) to Z; one may choose

the map which associates to a complex representation � the trace of
�(ck); where ck is the cycle (1; 2; :::; k); a trace which is in fact an
integer. The resulting homomorphism

K�(X)! K�k(X)

is quite explicit. We associate to F = (E;r) the "Gauss sum"X
(F

b
k)n 
 !n
in the group K�k(X) 
Z 
k, where 
k is the ring of k-cyclotomic in-
tegers. In this sum, ! is a primitive kth-root of unity. The element
(F b
k)n is the eigenmodule associated to the eigenvalue !n of a gener-
ator of the cyclic group Ck acting on F

b
k. This sum belongs in fact to
K�k(X); as a subgroup of K�k(X) 
 
k: As shown by Atiyah [1], we
get this way a nice alternative de�nition of the Adams operation 	k:

Remark 6.1. If the class of � in H3(X;Z) is of �nite order, it is not
necessary to consider twisted Hilbert bundles and Fredholm operators.
One just deal with �nite dimensional twisted vector bundles as in Sec-
tion 3:

Remark 6.2. One should notice that operations are much more del-
icate to de�ne in graded twisted K-theory, even for coe¢ cients [�] of
�nite order in H3(X;Z). This was pointed out in [15] and recalled in
[23]. Fredholm operators were already introduced in [15] in order to
deal with this problem, before subsequent works on twisted K-theory.

12where the symbol b
 denotes again the graded Hilbert tensor product.
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7. Connections and the Chern homomorphism

Let us now assume that X is a manifold. The previous de�nitions
make sense in the di¤erential category. The fact that we get the same
K-groups is more or less standard and relies on arguments going back
to Steenrod [31]. As an illustrative example, the µCech cohomologies
H1(X;GLn(C)) and H1(X;PGLn(C)) may be computed with di¤er-
ential cochains. Therefore the classi�cation of topological algebra bun-
dles (with �bre Mn(C)) is the same in the di¤erential category. The
same general result is true for module bundles and therefore for twisted
K-theory, if we choose di¤erential 2-cocycles � with values in S1 to pa-
rametrize the twisted K-groups.
In the di¤erential category, the de�nition of the Chern homomor-

phism between twisted K-theory and �twisted cohomology�was given
in many papers [3], [27], [8], [32], [11], and [4]. Our method is more el-
ementary and is based on the classical de�nitions of Chern-Weil theory
applied to twisted bundles13. We start with twisted �nite dimensional
bundles which are easier to handle. However, as we shall see later on,
the same method may be applied to in�nite dimensional bundles in the
spirit of Section 4.
Let E be a twisted vector bundle of rank14 n; de�ned on a covering U

= (Ui) by transition functions (gji); with the twisted cocycle condition

gki = gkj � gji � �kji;
as in Section 3: We assume that all functions are of class C1; which
does not change the classi�cation problem for twisted bundles as we
have seen previously.

De�nition 7.1. A connection � on E is given by (n� n)-matrices �i
of 1-di¤erential forms on Ui such that on Ui \ Uj we have the relation

�i = g�1ji � �j � gji + g�1ji � dgji + !ji:1:

Here !ji is a 1-di¤erential form related to the �kji by the following
relation

!ji � !ki + !kj = ��1kji � d�kji:

Moreover, from the relation above with the �0s, we deduce that !ij =
�!ji: If we take the di¤erential of the previous relation, we also get

d!ji � d!ki + d!kj = 0:

In the applications below, ! will be a di¤erential form with values in
iR; where15 i =

p
�1 (if the gji are unitary operators).

13For the classical computations, we refer to the books [26, pg. 78] and [22] for
instance.

14The rank may vary above di¤erent connected component of X:
15The two di¤erent meanings of the symbol "i" are clear from the context.
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Example 7.2. (which shows the existence of such connections). Let (�k)
be a partition of unity associated to the covering U . We then consider
the �barycentric connection�de�ned by the formula

�i =
X
k

�k � g�1ki � dgki:

Since gki = gkj � gji � �kji; we have the following expansion
g�1ki � dgki = g�1ji � (g�1kj � dgkj) � gji + g�1ji � dgji + ��1kji � d�kji:

Therefore, on Ui \ Uj we have the expected identity
�i = g�1ji � �j � gji + g�1ji � dgji + !ji � 1;

where
!ji =

X
k

�k � ��1kji � d�kji:

Remark 7.1. It is clear from the de�nition that the space of connec-
tions on E is an a¢ ne space: if � and r are two connections on E; for
any real number t; (1� t)� + tr is also a connection:

We have choosen a de�nition of a connexion in terms of "local coor-
dinates". However, we have to check how connections correspond when
we change them. In other terms, let (�) be an isomorphism from the
coordinate bundle (h) to (g) as in Section 1. According to Formula(1),
we then have the relation

gji � �i = �j � hji
Associated to this morphism, we de�ne the pull back ��(�) of the
connection (�) as locally de�ned on the coordinate bundle (h) by the
formula

ri = ��1i � �i � �i + ��1i � d�i
In order for this to make sense, we have to check the relation

ri = h�1ji � rj � hji + h�1ji � dhji + !ji:1:

which is slightly tedious. We start from the formula

�i = g�1ji � �j � gji + g�1ji � dgji + !ji:1;

where we replace gji by �j � hji � ��1i . We also replace dgji by
dgji = d�j � hji � ��1i + �j � dhji � ��1i � �j � hji � ��1i � d�i � ��1i :

We then get

ri = ��1i � (g�1ji � �j � gji + g�1ji � dgji + !ji:1:) � �i + ��1i � d�i
= ��1i � (g�1ji � �j � gji) � �i

+��1i � g�1ji � (d�j � hji ���1i +�j � dhji ���1i ��j � hji ���1i � d�i ���1i ) ��i
+!ji:1:
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= h�1ji � (rj � ��1j � d�j) � hji
+h�1ji � ��1j � d�j � hji + h�1ji � dhji � ��1i � d�i + ��1i � d�i + !ji:1:

= h�1ji � rj � hji + h�1ji � dhji + !ji:1;

which is the expected formula.
The �local curvatures�Ri associated to the �i are given by the usual

formula16

Ri = d�i + (�i)
2:

Unfortunately, the traces of these local curvatures do not agree on
Ui \ Uj, since a simple computation as above leads to the relation

Ri = g�1ji �Rj � gji + d!ji:1:

However, using a partition of unity (�i); as in the case of the barycentric
connection, we may de�ne a family of �twisted curvatures� by the
following formula, where m = 1; 2; :::

R(m) =
X
i

�i � (Ri)m:

We now de�ne a family of �Chern characters�Ch(m)(E;�) as

Ch(m)(E;�) = Tr(R(m)):

We should notice that Ch(m)(E;�) belongs to the vector space of dif-
ferential forms with values in (i)mR; since the gkl are unitary matrices.
By convention, we put

Ch(0)(E;�) = n:

The di¤erential of Ch(1) is

d(Ch(1)(E;�)) =
X
i

�i � :T r(dRi) +
X
i

d�i � Tr(Ri):

It is well known (and easy to prove) that

Tr(dRi) = Tr(d�i � �i � �i � d�i) = 0:
On the other hand, the relation between Ri and Rj above leads to the
following identity between di¤erential forms on Uj :X
i

d�i �Tr(Ri) = (
X
i

d�i �Tr(Rj))+n
X
i

d�i �d!ji = n
X
i

d�i �d!ji:

The 3-di¤erential form �j =
X
k

d�k �d!jk is clearly closed on Uj: More-

over, on Ui \ Uj we have

�j � �i =
X
k

d�k � (d!jk � d!ik) =
X
k

d�k � d!ji = 0;

16As in classical Chern-Weil theory, one may also write 1=2 [�i;�i] instead of
(�i)

2:
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according to the relation above between various d!0s: Therefore, the
f�ig de�ne a global 3-di¤erential form � on the manifold X with values
in iR. This 3-cohomology class is the opposite of the image of � by the
connecting homomorphism17

H2(X;S1)! H3(X; 2i�Z) �= H3(X;Z);
associated to the classical exact sequence of coe¢ cient groups

0! 2i�Z! iRexp!S1 ! 0:

Summarizing the above discussion, we get our �rst relation

d(Ch(1)(E;�)) = n � �:
Analogous computations can be made with R(2); R(3); etc.. For an
arbitrary m,

d(Ch(m)(E;�)) =
X
i

�i � Tr(d(Ri)m) +
X
i

d�i � Tr(Ri)m:

Since Tr(d(Ri)m) = 0 for the same reasons as above, we have

d(Ch(m)(E;�)) =
X
i

d�i � Tr(Ri)m:

On the other hand, from the relation

Tr(Ri)
m = Tr(Rj)

m +mTr(Rj)
m�1 � d!ji;

we deduce the following identity between di¤erential forms on Uj :X
i

d�i � Tr(Ri)m =
X
i

d�i � Tr(Rj)m +
X
i

m � d�i � Tr(Rj)m�1 � :d!ji

= m � Tr(Rj)m�1 � �:
Therefore, X

i

d�i � Tr(Ri)m =
X
j

�j
X
i

d�i � Tr(Ri)m

=
X
j

m � �j � Tr(Rj)m � � = m � Ch(m�1)(E;�) � �:

Summarizing again, we get the relation

d(Ch(m)(E;�)) = m � Ch(m�1)(E;�) � �:
We now de�ne the total Chern character of (E;�) with values in the
even de Rham forms18


0(X)� 
2(X)� :::� 
2m(X)� :::
17See Appendix 8.1 for a proof of this fact.
18More precisely, 
2k(X) is the vector space of 2k-di¤erential forms with values

in (i)kR.
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by the following formula:

Ch(E;�) = Ch(0)(E;�) + Ch(1)(E;�) +
1

2!
Ch(2)(E;�) + :::

+
1

m!
Ch(m)(E;�) + :::

We have choosen the coe¢ cients in front of theCh(m) such thatCh(E;�)
is a cycle in the even/odd de Rham complex with the di¤erential given
by D = d� :�; where :� is the map de�ned by the cup-product with �:
In Appendix 8.3, we prove by classical considerations that this total

Chern character is well de�ned as a twisted cohomology class and does
not depend on the connection � and on the partition of unity. This
remark is also valid with the in�nite dimensional case which will be
studied later on.
For the time being, since we consider �nite dimensional bundles, the

class � in H3(X; iR) is reduced to 0: Therefore, by classical consider-
ations on complexes using exponentials of even forms [3], we see that
the target of this special Chern character reduces to the classical one.
Moreover, we may also consider twisted bundles over X � S1; which
enables us to de�ne a Chern character from odd twisted K-groups
to odd twisted cohomology. From standard Mayer-Vietoris arguments
and Bott periodicity, we deduce that the Chern character induces an
isomorphism between K�(X)
Z R and Heven(X;R):

We want to extend the previous considerations to the case when the
cohomology class [�] is of in�nite order. For this, we use the second
de�nition of twisted K-theory in terms of twisted principal bundles as-
sociated to the groupG of couples (g; h) such that g and h are invertible
operators in L(H) with g�h compact. However, in order to be able to
take traces, we have to modify slightly this group by assuming more-
over that g � h is a trace class operator, i.e. belongs to L1: By abuse
of notation, we still call A the algebra of couples (g; h) 2 L � L such
that g � h 2 L1: Using the classical density theorem19 in topological
K-theory [24, pg. 109], it is easy to show that we get the same twisted
K-theory as for g � h compact. We may also choose the transition
functions to be C1, as we did in the �nite dimensional case.
The computations in the �nite dimensional case may now be eas-

ily transposed in this framework if we consider transition functions
(gji; hji) in the group20 G = A� and take �supertraces� instead of
traces. We just have to be careful that the �bres of our bundles are

19The norm of an element (g; h) is the sum of the operator norm on g and the
L1-norm on g � h:

20More precisely, in the group Aut(P ) � G = A�; see below.
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not necessarily free21. Concretely, we de�ne a rank map

Rk = Ch(0) : K�(X)! H0(X;Z)
as follows: if E is a �nitely generated projective module over A�; it is
de�ned by a family of two projection operators (p0; p1) in the algebra
A�. Then the trace of p0� p1 is a locally constant integer, de�ning the
rank function, since

K(A) �= K(K) �= K(C) = Z:
If we look at E as a twisted A-bundle over X with �bre P (which
is a �nitely generated projective A-module), we may consider End(P )
as included in Mn(A) �= A and restrict the supertrace de�ned on A
to End(P ): For instance, the suspertrace of the identity on P is just
the rank of P: By abuse of notations, we shall identify End(P ) and its
image in A.

We now de�ne a connection on E as a family of di¤erential forms
�i = (�

0
i ;�

1
i ) with values in End(P ) � A � L� L; such that �0i ��1i is

a di¤erential form with values in L1; satisfying the same compatibility
condition as above

�i = g�1ji � �j � gji + g�1ji � dgji + !ji:1:

We choose the transition functions gji = (g0ji; g
1
ji) to be inAut(P ) rather

than GLn(C). Such connections exist, for instance the barycentric
connection considered in the �nite dimensional case

�i =
X

�k � g�1ki � dgki;

where (�k) is a partition of unity associated to the covering. The
only di¤erence with the �nite dimensional case is that n is replaced
by Rk(E) = Ch(0)(E) and the usual trace by the supertrace22. If we
denote by str this supertrace, we have de�ne:

Ch(E;�) = Ch(0)(E) +

dim(X)=2X
m=1

1

m!
str(

X
i

�i(Ri)
m);

where the Ri are the local curvatures as functions of the �i de�ned
above, and where (�i) is a partition of unity associated to the given
covering U .
The computations made before in the �nite dimensional case show as

well that Ch(E;�) is a cocycle for the di¤erential D = d� :�: As in the
�nite dimensional case, standard homotopy arguments also show that

21As we mentioned already in Section 4, the �bres should be free if � does not
de�ne a torsion class in the cohomology of each connected component of X; see
below.

22Note again that the supertrace of "1" is the rank of P which is positive or
negative.
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the cohomology class of Ch(E;�) is independent from the connection �
and from the partition of unity (�i) (see Appendix 8.3 for the details).
Therefore, for any �; the Chern character induces an isomorphism

between K�(X) 
Z R and the twisted cohomology which is the co-
homology of the even part of the even/odd de Rham complex23 with
the twisted di¤erential D = d � :�: It is proved in [3], in a computa-
tion involving again the exponential of even forms, that this twisted
cohomology depends only on the class of � in the cohomology group
H3(X; iR):

Summarizing the previous discussion, we get the following theorem:

Theorem 7.2. Let U be a good covering of X; � be a completely nor-
malized 2-cocycle with values in S1 associated to this covering. Let (�i)
be a partition of unity associated to this covering and let � be the 3-
di¤erential form associated to ��; according to Appendix 8.1. Then
the Chern character

Ch : K�(X)! Hev
� (X;R)

from twisted K-theory to even twisted cohomology induces an isomor-
phism

K�(X)
Z R �= Hev
� (X;R):

Remark 7.3. The functoriality of the Chern character is discussed
in Appendix 8.3. Its multiplicative properties will be studied later
(Theorem 7.2).

Remark 7.4. One may also normalize the Chern character by putting
a factor (1=2�i)r in front of Ch(r)(E;�) and replace � by �=2�i: Then
we have to consider the usual de Rham complex, contrarily to our
convention in the Note 23:

If the space X is formal in the sense of rational homotopy theory
[16], we may replace the de Rham complex by its cohomology viewed
as a graded vector space (with the di¤erential reduced to 0). In that
case, the (even) twisted cohomology is isomorphic to the even part of
the cohomology of the complex�

�H2k(X; (i)kR)
�
�
�
�H2k+1(X; (i)kR)

�
;

with the di¤erential given by the cup-product with the cohomology
class of � in H3(X; iR): By a well known and deep theorem of Deligne,
Gri¢ th, Morgan and Sullivan [13], this computation is valid when X
is a simply connected compact Kähler manifold.
In the particular case when � is not 0 in all the cohomology groups

H3(Xr; iR); where the Xr are the connected composents of X; we see

23Note that 
2k(X) and 
2k+1(X) are the real vector spaces of di¤erential forms
of degree 2k or 2k + 1 with values in (i)kR: The di¤erential is the usual one d on

2k(X) and id on 
2k+1(X).
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by a direct computation that Ch(0)(E;�) is necessarily 0; which implies
that the �bres of E should be free A-modules. This also implies that
Ch(1)(E;�) is a closed di¤erential form. Therefore, for any �; one
can de�ne the �rst Chern character24 Ch(1)(E;�) in the (non twisted)
cohomology groupH2(X; iR): However, we need the twisted di¤erential
cycles for the total Chern character of E:
Let now U = (Ui) and V = (Vj) be a covering ofX and Y respectively.

Let (�i) (resp. (�j)) be a partition of unity associated to U (resp V).
The products (�i � �j) de�ne a partition of unity associated to the
covering W = (Ui � Vj) of X � Y:

Theorem 7.5. Let E be a �-twisted A-bundle on X and let F be a �-
twisted A-bundle on Y: Here � and � are explicit µCech cocycles �tsr and
�wvu with values in S1; associated to the coverings U and V respectively.
Let � and � be the closed di¤erential forms de�ned on each Ui � Vj by
the formulas

� =
X
t;s

d�t � d�s � ��1tsi � d�tsi

� =
X
w;v

d�w � d�v � ��1wvj � d�wvj;

as in Appendix 8.1. Then we have the commutative diagram25

K�(X)�K�(Y ) ! K��(X � Y )
# #

Hev
�
(X)�Hev

� (Y ) �! Hev
�+�
(X � Y )

Proof. Let � = (�i) (resp. r = (rj)) be a connection on E (resp. F ):
Then � = � 
 1 + 1 
 r is a connection on E 
 F: Therefore, if RE
(resp. RF ) is the curvature associated to � (resp. r),

RE
F = RE 
 1 + 1
RF
is the curvature associated to � over each open subset Ui � Vj of X �
Y:Using the partition of unity (�i��j) associated to the covering (Ui�Vj)
and the binomial identity, we �nd the relation

1

m!
Ch(m)(E 
 F;�) =

X
p+q=m

1

p!q!
Ch(p)(E;�)Ch(q)(F;r);

from which the theorem follows. �

24which is also a Chern class.
25According to the computations in Section 5, we identify the K-theory of

A�b
A� with the K-theory of A��: However, in these computations, one has to
replace K by the ideal L1 of trace class operators.
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Finally, we should add a few words concerning graded twisted K-
theory which is indexed essentially by elementshe�i 2 H1(X;Z=2)�H2(X;S1):

If we apply Theorem 4.4 of [23], this group (at least rationally) is
isomorphic to the ungraded twisted K-theory of Y , where Y is the
Thom space of the orientation real line bundle L: This L corresponds
to the image of

he�i in H1(X;Z=2). In more precise terms, the graded
twisted K-group tensored with the �eld of real numbers is isomorphic
to the odd twisted relative cohomology group of the pair (P;X): Here
P = P (L � 1) denotes the real projective bundle of L � 1 (with �bre
P 1 �= S1); and the 3-dimensional cohomology twist is induced by the
projection P ! X from the one on X. This (graded) twisted coho-
mology is di¤erent in general from the twisted cohomology associated
to the image of

he�i in H3(X; iR):This is not surprising since the usual
real cohomology of a manifold with a coe¢ cient system in H1(X;Z=2)
also depends on this system.

Remark 7.6. If A is not a commutative Banach algebra, there is no
internal product

Kn(A)�Kp(A)! Kn+p(A)

in general. Therefore, it is remarkable that such a product exists for
twisted K-groups which are K�(K�); where K� is a noncommutative
Banach algebra..

8. Appendix

8.1. Relation between µCech cohomology with coe¢ cients in
S1 and de Rham cohomology. This section does not claim any
originality. It may be easily deduced from the classical books [5], [25]
for instance, the basic ideas going back to André Weil. It is added for
completeness�sake and a normalization purpose.
Our �rst task is to make more explicit the cohomology isomorphism

Hr(U)�=Hr
dR(X);

where U is a good covering of X. The µCech and de Rham cohomologies
are here taken with coe¢ cients in a real vector space of �nite dimension
V:
Let us denote by 
r(X) the vector space of di¤erential forms on X

with values in V and let (�i) be a partition of unity associated to the
covering U . We de�ne a morphism26

fr : C
r(U ;V )! 
r(X)

26With V provided with the discrete topology.
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in the following way. For r = 0; we send a cochain (ci) to the C1

function
x 7�!

X
�i(x) � ci;

which we simply write
X
i

�i � ci: For general r > 0; we send the r-

cochain (ci0i1:::ir) to the sumX
(i0;:::;ir)

�i0�d�i1 � :::d�ir � ci0i1:::ir :

We have to check that this correspondence is compatible with the
coboundaries, i.e. that

fr+1(@c) = d(fr(c)):

The cochain @c; which we call v; is de�ned by the usual formula

vi0i1:::ir+1 =
r+1X
m=0

(�1)mci0:::cim:::ir+1 :
Therefore,

fr+1(v) =
X

(i0;:::;ir+1)

�i0�d�i1 � :::d�ir+1 �
r+1X
m=0

(�1)mci0:::cim:::ir+1 :
In the previous sum, the terms corresponding to an index m > 0 are
reduced to 0 since the sum of the corresponding d� is 0: The previous
identity may then be written

fr+1(v) =
X

(i0;:::;ir+1)

�i0�d�i1 � :::d�i+1 � ci1:::ir+1

=
X

(i1;:::;ir+1)

d�i1 � :::d�ir+1 � ci1:::ir+1 ;

which is d(fr(c)); if we reindex the components of this sum: notice that
the c0s are constant functions.
The maps (fr) de�ne a morphism of complexes which is a quasi-

isomorphism over any intersection of the Ui since the covering U is
good. Therefore, by a classical Mayer-Vietoris argument, they induce
an isomorphism between the µCech and de Rham cohomologies.
We take a step further and now compare the µCech cohomology

Hr�1(X : S1) with Hr
dR(X) via a map

Hr�1(U ;S1)! Hr(U ;V ) �= Hr
dR(X):

This is the coboundary map associated to the exact sequence

0! 2i�Z!iR e! S1 ! 0;
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where e is the exponential function and V the real vector space iR:
If �i0i1::ir�1 2 Zr�1(U ;S1); there is a cochain u = ui0i1::ir�1 such that
e(u) = �. The classical de�nition of the coboundary map

Hr�1(U ;S1)! Hr(U ; 2i�Z)
is as follows. We �rst consider the coboundary of u in Cr(U), which
we look as a cocycle with values in 2i�Z, de�ned by

ci0i1:::ir =
rX

m=0

(1)mui0:::cim:::ir :
According to the previous considerations, the associated de Rham class
with values in iR = V is de�ned by

! =
X

(i0;:::;ir)

�i0�d�i1 � :::d�ir � ci0:::ir

=
X

(i0;:::;ir)

�i0�d�i1 � :::d�ir�
rX

m=0

(1)mui0:::cim:::ir :
Using the same argument as above, this sum may be written

! =
X

(i1;:::;ir)

d�i1 � :::d�ir � ui1:::ir :

We notice that ! is a closed form since ci0i1:::ir 2 2i�Z: On the other
hand, it is cohomologous up to the sign (�1)r to the form

� =
X

(i1;:::;ir)

�i1 � d�i2 :::d�ir � dui1i2:::ir :

Using again the fact that ci0i1:::ir 2 2i�Z; we see that � is equal on Ui0
to the following di¤erential formX

(i1;:::;ir)

�i1d�i2 :::d�ir � dui1i2:::ir =
X

(i2;:::;ir)

d�i2 :::d�ir � dui0i2:::ir :

We observe that dui0i2:::ir is the logarithmic di¤erential of �i0i2:::ir :
Therefore, if we change the indices and r to r+1, we get the following
theorem.

Theorem 8.1. Let �i0:::ir be an r-cocycle on a good covering U with
values in S1 and let (�i) be a partition of unity associated to U . Then
the closed de Rham form ! of degree r+1 with values in V = iR which
is associated to � by the coboundary map27

Hr(U ;S1)! Hr+1(U ; 2i�Z)! Hr+1(U ; iR)
is given by the following formula on each open set Ui0 :

! = (�1)r+1
X

(i1;:::;ir)

d�i1:::d�r � (�i0:::ir)�1 � d�i0:::ir :

27Notice that R is provided with the discrete topology.
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Example 8.3. If we choose r = 2 as in our paper, those formulas may
be simply written as

! =
X
(i;j;k)

d�i � d�j � d�k � cijk

which is cohomologous to

�
X
(i;j;k)

�i � d�j � d�k � dcijk:

On the other hand, for a �xed l; if we consider the sequence (l; i; j; k);
and the fact that

cijk � cljk + clik � clij 2 2i�Z;

we may replace dcijk by dcljk � dclik + dclij: Therefore, the restriction
of ! to Ul may be written as

! = �
X
(i;j;k)

�i � d�j � d�k � dcljk +
X
(i;j;k)

�i � d�j � d�k � dclik

�
X
(i;j;k)

�i � d�j � d�k � dclij:

This expression may also be written

�
X
(i;j;k)

�i � d�j � d�k � dcljk = �
X
(j;k)

d�j � d�k � dcljk

= �
X
(j;k)

d�j � d�k � ��1ijkd�ljk;

as a di¤erential form on Ul: If we assume the cocycle � completely
normalized, we �nd again the formula given in Section 7.

8.2. Some key isomorphisms between various de�nitions of
twisted K-groups. We want to make more explicit the isomorphisms
between the various de�nitions of twisted K-theory given in Section 4.
This is especially relevant to the proof of the multiplicativity of the
Chern character in Section 7.
With the notations of Section 4, the more basic one is probably the

following

K(K�)
�=�! K1(B�=K�):

We recall that the �rst group K(K�) is the original de�nition of Rosen-
berg [29]. The second group may be interpreted as the Fredholm de�-
nition of twisted K-theory as in [2] (or [15] if � de�nes a torsion class
in H3(X;Z)): More precisely, if E is a �-twisted Hilbert bundle and if
F(E) is the space of Fredholm maps in END(E); the map

F(E)! (B�=K�)�
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is a locally trivial �bration with contractible �bres, as we pointed out
in Section 4. Therefore, we have the identi�cations

K�(X) �= K(K�) �= K1(B�=K�):
Theorem 8.2. Let � be the generator of K1(L=K) �= Z; associated to
the Fredholm operator given by the shift. Then the cup-product with �
induces an isomorphism

' : K(K�)
�=�! K1(B�=K�):

Proof. In this statement, we implicitly identify the Hilbert tensor prod-
uct H 
 H with H: If we forget the twisting, there is a well de�ned
ring map

K 
 L=K ! L=K:
For the same reasons, there is a ring map

K�b
L=K !B�=K�:
When the base space X varies, the cup-product with the element �
induces a morphism between the (twisted) K�-theories associated to
K� and B�=K� respectively (with a shift for the second one). By a
standard Mayer-Vietoris argument (and Bott periodicity), we reduce
the theorem to the case whenX is contractible, a case which is obvious.

�

Although we don�t really need it in this paper, it might be interesting
to de�ne explicitly the isomorphism backwards:

 : K1(B�=K�)
�=�! K(K�) �= K(A�):

Such a map  is simply the connecting homomorphism in the Mayer-
Vietoris exact sequence in K-theory associated to the cartesian square

A� ! B�
# #
B� ! B�=K�

:

In more detail: if � is an invertible element in the ring B�=K�; we
consider the 2� 2 matrix �

� 0
0 ��1

�
:

By the Whitehead lemma (or analytic considerations: see below), this
matrix may be lifted as an invertible 2 � 2 matrix with coe¢ cients in
B�; say 
: Let " be the matrix de�ning the obvious grading

" =

�
1 0
0 �1

�
:

Then the couple ("; 
 �" �
�1) de�nes an involution J onM2(A�) �= A�;
hence a �nitely generated projective module over A� which is simply
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the image of (J + 1)=2: It is easy to show that the class in K(A�)
is independent from the choice of the lifting 
 : this is the classical
de�nition of the connecting homomorphism  (see e.g. [28]).
Instead of working with invertible elements �; we may as well con-

sider families of Fredholm maps D mapping to �; which are already in
L�: Without loss of generality, we may also assume � unitary which
implies that a lifting of ��1 may be choosen to be the adjoint D�: We
now write the identity�

D 0
0 D�

�
=

�
0 D
�D� 0

�
�
�
0 �1
1 0

�
:

If we de�ne rD as

rD =
�

0 D
�D� 0

�
in general, we see that we may choose the element 
 above to be
exp(�rD=2) � r�1: Therefore,


 � " � 
�1 = exp(�rD=2) � r�1:" � r1 � exp(��rD=2)
= � exp(�rD=2):" � exp(��rD=2):

On the other hand, it is clear that rD and " anticommute. Therefore,
the previous formula may be written as


 � " � 
�1 = exp(�rD):":
The couple

J = ("; exp(�rD):")
de�nes the required element of K(A�): By construction, we see that J
also de�nes an element of the relative group associated to the augmen-
tation map

(K�)+ ! C:
Here (K�)+ is the ring K� with a unit added and the relative K-group
is the usual one:

K(K�) = Ker(K((K�)+)! K(C) = Z)

which is canonically isomorphic to K(A�):

8.3. Some functorial properties of twisted K-theory and of the
Chern character. In this paper, we have indexed twisted K-theory
by completely normalized 2-cocycles � with values in S1: Of course,
such a cocycle determines a cohomology class [�] in H2(X;S1) �=
H3(X; 2i�Z) as we have seen in 8:1 and we would like to index twisted
K-theory by elements of this smaller group. There is an obstruction
to doing so however as we shall see. If we apply Proposition 1.2 to C-
bundles (if [�] is a torsion class) or to A-bundles in general, we see that
if � is cohomologous to �; the equivalence � in this last proposition,
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between the categories of �-twisted bundles and �-twisted bundles, de-
pends on the choice of a cochain � such that

�kji = �kji � �ji � ��1ki � �kj:
If �0 is another choice, �ji:�0�1ji is a one-dimensional cocycle with values
in S1. Since a one-dimensional coboundary does not change �; we see
that the ambiguity in the de�nition of the previous category equivalence
lies in the cohomology group28 H1(U ;S1) �= H2(X; 2i�Z) �= H2(X;Z):
In particular, the de�nition of twisted K-theory with coe¢ cients in
H3(X;Z) has a well-de�ned meaning only if H2(X;Z) = 0:
This remark is important for the de�nition of the product

K�(X)�K�(X)! K��(X)

which is detailed in many ways in Section 5. The Hilbert bundle E�;
de�ned at the beginning of this section, depends on the cocycle �: It
depends on its cohomology class [�] up to a non canonical isomorphism
as we have just seen (except if H2(X;Z) = 0). Therefore, strictly
speaking, we cannot de�ne in a functorial way a cup-product

K[�](X)�K[�](X)! K[��](X):

Another remark is the choice of a good covering to de�ne twisted K-
theory via twisted bundles. There is also a functorial problem since
many choices are possible. One way to deal with this is to show that
the categories of twisted bundles associated to di¤erent coverings give
the same twisted K-theory if we choose two 3-µCech cocycles which are
cohomologous. This is again included in the contents of Proposition
1.2. As we already pointed out, this identi�cation is not canonical,
except if H2(X;Z) = 0:
Let us now turn our attention to the de�nition of the Chern charac-

ter. If we �x the good covering U , our de�nition depends heavily on
the choice of a partition of unity (�i): If (�i) is another choice, there
is a homotopy between them which is t 7�! (1 � t)�i + t�i: If � is a
completely normalized 2-cocycle with values in S1; the associated closed
di¤erential forms �� and �� are homotopic and therefore cohomologous:
they de�ne the same class in H3(X; iR): However, it is not completely
obvious that the associated twisted cohomologies Hev

��
(X) and Hev

��
(X)

are isomorphic in a way compatible with the Chern character. One
way to deal with this problem is to consider �-twisted bundles over
X � [0; 1] with the partition of unity given by (1� t)�i + t�i as above.
We then have a commutative diagram where the horizontal arrows are
isomorphisms.

K�(X � f0g)  � K�(X � [0; 1]) �! K�(X � f1g)
# # #

Hev
��
(X � f0g)  � Hev

� (X � [0; 1] �! Hev
��
(X � f1g)

28We assume the covering good as in 3.3.
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This diagram shows that the Chern character does not depend on the
choice of partition of unity up to canonical isomorphisms given by the
horizontal arrows.
We cannot expect the Chern character to be functorial with respect

to the cohomology class of � in H3(X;Z): However, it is �partially
functorial�in the following sense: if we choose a good re�nement V =
(Vs) of U = (Ui) as in Section 1, any restriction map of type

�� : K�(U)! K�(V)
(where Vs � U�(s)) is an isomorphism. This isomorphism is not unique
and depends on �; as it was pointed out in the proof of Propositon
1.3. If (�s) if a partition of unity associated to the covering V and
(�i) a partition of unity associated to the covering U , the functions
(�i � �s) de�ne a partition of unity associated to U \ V which is just a
reindexing of the covering V. On the other hand, we may also reindex
U , in such a way that the functions (�i � �s) de�ne also a partition of
unity of U . Since the twisted cohomology is homotopically invariant,
it follows that the �restriction map�

Hev
�
(X)! Hev

� (X)

is also well de�ned and that the diagram

K�(U) ! K�(V)
# #

Hev
�
(X) ! Hev

� (X)

is commutative (with the notations of Theorem 7:2).

References

[1] M.F. Atiyah. K-theory. Notes by D.W. Anderson. Second edition. Advanced
Book Classics. Addison-Wesley Publishing Company (1989).

[2] M.F. Atiyah and G. Segal. Twisted K-theory. Ukr.Math. Visn. 1, pp. 287-330,
19 (2004).

[3] M.F. Atiyah and G. Segal. Twisted K-theory and cohomology. Nankai Tracts
Math. 11, pp. 5-43 (2006).

[4] M.T. Benameur and A. Gorokhovsky. Local index theorem for projective fam-
ilies (preprint 2010).

[5] R. Bott and L. Tu. Di¤erential forms in algebraic topology. Graduate Texts in
Mathematics. Springer-Verlag (1982).

[6] P. Bouwknegt, A.L. Carey, V. Mathai, M.K. Murray, D. Stevenson. Twisted
K-theory and K-theory of bundle gerbes. Comm. Math. Phys. 228, pp. 17-45
(2002).

[7] L. Breen and W. Messing. Di¤erential geometry of gerbes. Adv. Math. 198,
pp. 732-846 (2005).

[8] P. Bressler, A. Gorokhovsky, R. Nest, B. Tsygan. Chern character for twisted
complexes. Progr. Math. 265, pp. 309-324 (2008).

[9] A. Caldararu. Derived categories of twisted sheaves on Calabi-Yau manifolds.
Ph. D. Thesis, Cornell University, May 2000.



TWISTED BUNDLES AND TWISTED K-THEORY 41

[10] A.L. Carey and Bai-Ling Wang. Thom isomorphism and push-forward maps
in twisted K-theory. Journal of K-theory 1, Nr2, pp. 357-393 (2008).

[11] A.L. Carey, J. Mickelsson, B.L. Wang. Di¤erential twisted K-theory and its
applications. J. Geom. Phys. 59, Nr 5, pp. 632-653 (2009).

[12] A. Connes. Noncommutative di¤erential geometry. Publ. Inst. Hautes Et. Sci.
62, pp. 257-360 (1985).

[13] P. Deligne, P. Gri¢ th, J. Morgan, D. Sullivan. Real homotopy theory of Kähler
manifolds. Invent. Math. 29, pp. 245-274 (1975).

[14] J. Dixmier et A. Douady. Champs continus d�espaces hilbertiens et de C*-
algèbres. Bul. Soc. Math. France 91, pp. 227-284 (1963).

[15] P. Donovan and M. Karoubi. Graded Brauer groups and K-theory with local
coe¢ cients. Publ. Math. IHES 38, pp. 5-25 (1970). Summary in: �Groupe de
Brauer et coe¢ cients locaux en K-théorie�. Comptes Rendus Acad. Sci. Paris,
t. 269, pp. 387-389 (1969).

[16] Y. Felix, S. Halperin and J.-C. Thomas. Rational homotopy theory. Graduate
Texts in Math. 205 (2001).

[17] A. Grothendieck. Le groupe de Brauer. Séminaire Bourbaki 290 (1965). Société
Mathématique de France (1995).

[18] F. Hirzebruch.Topological methods in Algebraic Geometry. Springer Verlag
(1965).

[19] K. Janich. Vectorraumbündel und der Raum der Fredholm-operatoren. Math.
Ann. 161, pp. 129-142 (1965).

[20] C. Laurent, P. Xu, J.-L. Tu. Twisted K-theory of di¤erential stacks. Ann. Sci.
Ec. Norm. Sup. 37;pp. 841-910 (2004).

[21] M. Karoubi. Résolutions symétriques. Indag. Mathem., N.S., (8), pp. 193-207
(1997).

[22] M. Karoubi. Homologie cyclique et K-théorie. Astérisque 149. Société Mathé-
matique de France (1987).

[23] M. Karoubi. Twisted K-theory, old and new. K-theory and noncommutative
geometry, pp. 117-149, EMS Ser. Congr. Rep., European Math. Society, Zürich
(2008).

[24] M. Karoubi. K-theory, an introduction. Reprint of the 1978 edition. Classics
in Mathematics. Springer-Verlag (2008).

[25] M. Karoubi and C. Leruste. Algebraic topology via di¤erential geometry.
Reprint of the 1982 edition. Cambridge University Press (1987).

[26] S. Kobayashi and K. Nomizu. Foundations of di¤erential geometry I. Reprint
of the 1963 original. John Wiley & Sons (1996).

[27] V. Mathai and D. Stevenson. On a generalized Connes-Hochschild-Kostant-
Rosenberg theorem. Adv. Math. 200, pp. 303-335 (2006).

[28] J. Milnor. Introduction to Algebraic K-theory. Ann. of Maths Studies 72:
Princeton (1971).

[29] J. Rosenberg. Continuous trace algebras from the bundle theoretic point of
view. J. Austr. Math. Soc. A 47, pp. 368-381 (1989).

[30] C. Schochet. The Dixmier-Douady invariant for Dummies. Notices Amer.
Math. Soc. 56, pp. 809-816 (2009).

[31] N. Steenrod. Fibre bundles. Princeton Mathematical Series. Princeton. New
Jersey (1965).

[32] J.-L. Tu and P. Xu. Chern character for twisted K-theory of orbifolds. Adv.
Math. 207, pp. 455-483 (2006).



42 TWISTED BUNDLES AND TWISTED K-THEORY

Université Denis Diderot- Paris 7, UFR de Mathématiques. Case
7012, 175, rue du Chevaleret. 75205 Paris cedex 13
E-mail address: max.karoubi@gmail.com


