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Motivation: Wreath products

Definition
Let G, H be discrete groups, H®¢ = Dgec H, and let G ~ H®6
by left translation. The wreath product of H by G is

H!G = HEBGNG:<H@G,G‘g-x-g_1:g.(x)>.

Example
The Lamplighter group Z/217Z

Goal
Calculate K. (C;}(H G)).



The structure of C'(H G)

Recall: C/(H, & Ha) = C*(Hi) ® C*(Ha).
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and A x, G C L({?(G, A)) via the regular representation.
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The structure of C(H ! G)
Recall: C*(Hy @ Hy) = C*(Hy) ®@ CH(Ha).

= C/(H®®) = |i
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CH(HOF) = lim C(H)®F = C*(H)®¢
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Definition (Crossed products)
Let A be a unital C*-algebra with G-action.

AxG:==C"A G|gag ' =g.(a))

and A x, G C L({?(G, A)) via the regular representation.
= C/(H1G) = C'(H)®° %, G.

Goal (Noncommutative Bernoulli shifts)
Calculate K,(A®¢ x, G).



The Baum—Connes conjecture with coefficients (BCC)

Conjecture (Baum—Connes—Higson)

Let G be a discrete group and let A be a G-C*-algebra. Then the
assembly map

ps: KC(Epin G, A) — Ky (A %, G)

is an isomorphism.
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The Baum—Connes conjecture with coefficients (BCC)

Conjecture (Baum—Connes—Higson)

Let G be a discrete group and let A be a G-C*-algebra. Then the
assembly map

ps: KC(Epin G, A) — Ky (A %, G)
is an isomorphism.

Examples
» a-T-menable groups satisfy BCC (Higson—Kasparov)
» hyperbolic groups satisfy BCC (Lafforgue)

» Certain non-exact groups do not satisfy BCC (Higson—
Lafforgue—Skandalis)

We will always assume that our groups satisfy BCC!
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The Going-Down-principle

Theorem (Chabert—Echterhoff-Oyono-Oyono, Meyer—Nest)
G satisties BCC if and only if the following holds:

Let A, B be G-C*-algebras and ¢ € KK®(A, B). If
K. (Ax, H) = KB x, H)

is an isomorphism for every finite subgroup H C G, then
Ki(A %, G) = K(B %, G)

is an isomorphism as well.

Strategy

Use BCC to calculate K.(A®C x, G) from K,(B®¢ x, G) where B
is easier to understand!
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lzumi's Lemma

Lemma (lzumi)

Let G be a finite group, let Z be a finite G-set. Then then there is
a functor ()¥%: KK — KK® making the following diagram
commute:

(O
Cralg —— GC*alg

[ e

®R2Z
kk 977, kke

In particular, for every two C*-algebras A, B, there is a
(non-linear!) map

KK(A, B) — KKC(A®Z, B®Z)

mapping equivalences to equivalences.
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Corollary
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From finite to infinite groups

Corollary
Let G be a group satisfying BCC and let ¢: A — B be a unital

x-homomorphism which is a KK-equivalence. Then ¢ induces an
isomorphism

K.(A%C %1, G) = K. (B®C x, G).
Example

If G satisfies BCC, then we have

K (OZ° % G) = Ki(27€ %, 6) = Ki(C(6))

K.(O5€ %, G) =0
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Assume that G satisfies Baum—Connes with coefficients!

Theorem (Chakraborty—Echterhoff~K—Nishikawa)

Let A be a unital UCT C*-algebra such that the unital inclusion
t: C — A induces a split injection t.: K.(C) — K.(A). Let B be a
UCT C*-algebra such that K.(B) = coker(ty). Then

Ki(A%C %, G)=K((BN)®C %, G) = P Ku(B¥F %, Gp).
[FIeG\FIN(G)

assumption satisfied by most (all?) nuclear C*-algebras
unitization

finite subsets of G
stabilizer of F

YYYVYY

place where Baum—Connes is used
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Wreath products

Theorem (Higson—Kasparov, Tu)

Let H be an a-T-menable group. Then C;(H) satisfies the UCT

and the map C*(H) — C}(H) is a KK-equivalence. In particular,
we have

coker (K.(C) = K.(G/(H))) = K.(B), B = ker(C*(H) =% C).

Corollary

Let H be an a-T-menable group and let G be a group satisying
BCC. We have

K (CHHIG)) = K(CH(H)®*® %, G) 2 P K(B*F x,GF)
[F]eG\FIN(G)
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Finite dimensional examples

Let A= Mko@...@ MkN with ng(ko,...,kN) =1.

Lemma (Euclidian algorhithm)

coker (K.(C) = K.(A)) = K.(C),

Corollary
Assume that G satisfies BCC. Then
KA %, 6)= @ B  K(C(Gs)

[FIEG\FIN(G) [S]€GF\{1,...,N}F

If G is torsion-free, then

K.(A®C x, G) = K,(C*(G)) & é K.(C).
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A= C(SY)

Let A= C(S') and let G be a group satisfying BCC. Then
coker (K.(C) = K.(A)) = K.(Co(R)) and thus

N——

K(A%¢ %, G )2 P K(GR)*F x, Gp).
[F]eG\FIN(G)

By equivariant Bott periodicity, we have

C, |GE\F| even,

Co(RY®F = Cr(REF)®IGF\FI ~
0( ) 0( ) KKCF CO(RGF), |GF\F| odd.
and thus

K.(C*(GF)), |GE\F]| even,

®F -
K*(CO(R) Xr GF) - {KEF(RGF)7 ‘GF\F‘ Odd

This can be computed explicitely (Karoubi, Echterhoff-Pfante)!
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Assume that G satisfies BCC!
Problem
What happens if ¢: K.(C) — K,(A) does not split? (A= M,)
Theorem (K-Nishikawa)
Let A be a unital C*-algebra. Then we have
K. ((A® Mp)®C¢ %, G) = K.(A%® %, G)[1/n], if|G|= oo,
K. ((A® My )®C %1, G) = K, (A®® %, G)[1/n], in general.

Example (finite-dimensional algebras)
Let A= My, & ... & My, with ged(ko, ..., ky) = n. Then

KA %, 6)= @D D  K(C(Gs)I/n)

[FIEG\FIN(G) [S]€GF\{1,...,N}F
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Application: Cuntz algebras

Recall: Op11 ® Mpeo >~k 0.

Corollary

Let O,41 be the Cuntz algebra on n+ 1 generators and let G be a
group satisfying BCC. Then

K028 1, G)[L/n] = K(Oni1 ® My )*€ 31, G) 20,

Lemma
If G is finite and K.(A) is finitely generated, then K.(A®® x, G) is
finitely generated as well.

Corollary
If G is finite and p a prime, then K, ((9 '©1 Xr G) is a finite direct
sum of groups of the form 7/ p*.
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The orbit category

Let G be a discrete group. Let Orpi,(G) be the category of
transitive proper G-sets G/H with G-equivariant maps.

Any G-map G/H — G/K is given by an inclusion H C gKg~!.
For a G-C*-algebra A, we get a map

Ad(ug): Ke(A x, H) = K (A x, K).
We thus get a functor
Orpin(G) — Abz, G/H+— K. (A x, H).
Warning

The map
colim K.(Ax,H)— K.(Ax,G
eHAm (A, H) (Ax, G)
is not the Davis—Liick assembly map

HE (ErinG,KS) — K.(A %, G).



AF-algebras

Theorem (Chakraborty—Echterhoff-K—Nishikawa)

Let G be an infinite group satisfying Baum—Connes with
coefficients, let A be a unital AF-algebra and let

S ={neN|[14] € Ko(A) divisible by n}.



AF-algebras

Theorem (Chakraborty—Echterhoff-K—Nishikawa)

Let G be an infinite group satisfying Baum—Connes with
coefficients, let A be a unital AF-algebra and let

S ={neN|[14] € Ko(A) divisible by n}.

Then we have a pushout diagram

lim  K.(C*(H))[S-1] — lim  K.(A®€ x, H
oM () Cr ()] e

i |

K.(C:(G))[S7Y K. (A®G X, G) .




AF-algebras

Theorem (Chakraborty—Echterhoff-K—Nishikawa)

Let G be an infinite group satisfying Baum—Connes with
coefficients, let A be a unital AF-algebra and let

S ={neN|[14] € Ko(A) divisible by n}.

Then we have a pushout diagram

lim  K(C*(H)[S — lim  K.(A®€ x, H
oHm () (IS o)A )

l |

K.(C:(G))[S7Y K. (A®G X, G) .

When G is torsion-free, we have

Ki(A®C . G) = K.(CF(G))[S 1 @ Ku(A®C)6.
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Rational computations

Let A be a unital, stably finite C*-algebra.

=1, 9Q: Ki(C)® Q — K.(A) ® Q splits!

Theorem (Chakraborty-Echterhoff-K-Nishikawa)

Let A be a unital, stably finite C*-algebra satisfying the UCT and
let G be a group satisfying Baum—Connes with coefficients. Let B
be a UCT C*-algebra satisfying K.(B) = coker(t« ® Q). Then we
have

K(A®“ %, G) Q= @  K.(B*F %, Gr)2Q.
[F]eG\FIN(G)



Rational computations

Theorem (Chakraborty—Echterhoff~K—Nishikawa)

Let G be a group satisfying Baum—Connes with coefficients, let A
be a unital, stably finite C*-algebra satisfying the UCT. Then we
have a pushout diagram

G/HEOI (G) (C(H)eQ 6/HEOtiin(6) ( et

| |

K.(CH(G)®Q K. (A€ x, 6) ® Q.

When G is torsion-free, we have

K.(A%¢ %, 6) ® Q= K(C(6)) ® Q& Ki(A®C)6 © Q.
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Obstructions to the Rokhlin property

Corollary

Let G # {1} be a finite group and let A be a unital, stably finite
C*-algebra satisfying the UCT. Then G ~ A®C does not have the
Rokhlin property.

Proof by contradiction.
By our rational computations, the map

K. (CHG)) @ Q = K. (A®® %, G) @ Q

is injective. However, by the Rokhlin property, it can be factored as
the composition

K.(C/(G)) ® Q = K.(C(G) x, G) ® Q = K.(A®® x, G) ® Q.

The first map is never injective. O



Thank you very much!



