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Motivation: Wreath products

Definition
Let G ,H be discrete groups, H⊕G :=

⊕
g∈G H, and let G y H⊕G

by left translation.

The wreath product of H by G is

H o G := H⊕G o G =
〈
H⊕G ,G

∣∣∣ g · x · g−1 = g .(x)
〉
.

Example
The Lamplighter group Z/2 o Z

Goal
Calculate K∗(C∗r (H o G)).
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The structure of C ∗r (H o G)

Recall: C∗r (H1 ⊕ H2) ∼= C∗r (H1)⊗ C∗r (H2).

⇒ C∗r (H⊕G) ∼= lim−→
F⊆G
finite

C∗r (H⊕F ) ∼= lim−→
F⊆G
finite

C∗r (H)⊗F =: C∗r (H)⊗G

Definition (Crossed products)
Let A be a unital C∗-algebra with G-action.

Ao G := C∗〈A,G | gag−1 = g .(a)〉

and Aor G ⊆ L(`2(G ,A)) via the regular representation.

⇒ C∗r (H o G) ∼= C∗r (H)⊗G or G .

Goal (Noncommutative Bernoulli shifts)
Calculate K∗(A⊗G or G).
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The Baum–Connes conjecture with coefficients (BCC)

Conjecture (Baum–Connes–Higson)
Let G be a discrete group and let A be a G-C∗-algebra. Then the
assembly map

µ∗ : KG
∗ (EFinG ,A)→ K∗(Aor G)

is an isomorphism.

Examples
ä a-T -menable groups satisfy BCC (Higson–Kasparov)
ä hyperbolic groups satisfy BCC (Lafforgue)
ä Certain non-exact groups do not satisfy BCC (Higson–

Lafforgue–Skandalis)

We will always assume that our groups satisfy BCC!
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The Going-Down-principle

Theorem (Chabert–Echterhoff–Oyono-Oyono, Meyer–Nest)
G satisfies BCC if and only if the following holds:

Let A,B be G-C∗-algebras and ϕ ∈ KKG(A,B). If

K∗(Aor H)→ K∗(B or H)

is an isomorphism for every finite subgroup H ⊆ G, then

K∗(Aor G)→ K∗(B or G)

is an isomorphism as well.

Strategy
Use BCC to calculate K∗(A⊗G or G) from K∗(B⊗G or G) where B
is easier to understand!
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Izumi’s Lemma

Lemma (Izumi)
Let G be a finite group, let Z be a finite G-set. Then then there is
a functor ()⊗Z : KK → KKG making the following diagram
commute:

C∗alg GC∗alg

KK KKG

()⊗Z

KK KKG

()⊗Z

In particular, for every two C∗-algebras A,B, there is a
(non-linear!) map

KK (A,B)→ KKG(A⊗Z ,B⊗Z )

mapping equivalences to equivalences.
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From finite to infinite groups

Corollary
Let G be a group satisfying BCC and let ϕ : A→ B be a unital
∗-homomorphism which is a KK-equivalence. Then ϕ induces an
isomorphism

K∗(A⊗G or G)
∼=−→ K∗(B⊗G or G).

Example
If G satisfies BCC, then we have

K∗(O⊗G
∞ or G) ∼= K∗(Z⊗G or G) ∼= K∗(C∗r (G))

K∗(O⊗G
2 or G) = 0
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Assume that G satisfies Baum–Connes with coefficients!

Theorem (Chakraborty–Echterhoff–K–Nishikawa)
Let A be a unital UCT C∗-algebra such that the unital inclusion
ι : C→ A induces a split injection ι∗ : K∗(C)→ K∗(A). Let B be a
UCT C∗-algebra such that K∗(B) = coker(ι∗). Then

K∗(A⊗G or G)∼=K∗((B+)⊗G or G) ∼=
⊕

[F ]∈G\FIN(G)
K∗(B⊗F or GF ).

•
•
•
•
•
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Assume that G satisfies Baum–Connes with coefficients!

Theorem (Chakraborty–Echterhoff–K–Nishikawa)
Let A be a unital UCT C∗-algebra such that the unital inclusion
ι : C→ A induces a split injection ι∗ : K∗(C)→ K∗(A). Let B be a
UCT C∗-algebra such that K∗(B) = coker(ι∗). Then

K∗(A⊗G or G)∼=K∗((B+)⊗G or G) ∼=
⊕

[F ]∈G\FIN(G)
K∗(B⊗F or GF ).

ä assumption satisfied by most (all?) nuclear C∗-algebras
ä unitization
ä finite subsets of G
ä stabilizer of F
ä place where Baum–Connes is used



Wreath products

Theorem (Higson–Kasparov, Tu)
Let H be an a-T-menable group. Then C∗r (H) satisfies the UCT
and the map C∗(H)→ C∗r (H) is a KK-equivalence.

In particular,
we have

coker
(
K∗(C)→ K∗(C∗r (H))

)
∼= K∗(B), B := ker(C∗(H) 1H−→ C).

Corollary
Let H be an a-T -menable group and let G be a group satisying
BCC. We have

K∗(C∗r (H oG)) = K∗(C∗r (H)⊗G or G) ∼=
⊕

[F ]∈G\FIN(G)
K∗(B⊗F or GF )
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Finite dimensional examples

Let A = Mk0 ⊕ . . .⊕MkN with gcd(k0, . . . , kN) = 1.

Lemma (Euclidian algorhithm)

coker
(
K∗(C)→ K∗(A)

)
∼= K∗(CN).

Corollary
Assume that G satisfies BCC. Then

K∗(A⊗G or G)

If G is torsion-free, then

K∗(A⊗G or G) ∼= K∗(C∗r (G))⊕
∞⊕

i=1
K∗(C).
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A = C(S1)

Let A = C(S1) and let G be a group satisfying BCC. Then
coker

(
K∗(C)→ K∗(A)

)
∼= K∗(C0(R)) and thus

K∗(A⊗G or G) ∼=
⊕

[F ]∈G\FIN(G)
K∗(C0(R)⊗F or GF ).

By equivariant Bott periodicity, we have

C0(R)⊗F = C0(RGF )⊗|GF \F | 'KKGF

{
C, |GF\F | even,
C0(RGF ), |GF\F | odd.

and thus

K∗(C0(R)⊗F or GF ) =
{
K∗(C∗(GF )), |GF\F | even,
K ∗GF

(RGF ), |GF\F | odd.

This can be computed explicitely (Karoubi, Echterhoff–Pfante)!



A = C(S1)

Let A = C(S1) and let G be a group satisfying BCC. Then
coker

(
K∗(C)→ K∗(A)

)
∼= K∗(C0(R)) and thus

K∗(A⊗G or G) ∼=
⊕

[F ]∈G\FIN(G)
K∗(C0(R)⊗F or GF ).

By equivariant Bott periodicity, we have

C0(R)⊗F = C0(RGF )⊗|GF \F | 'KKGF

{
C, |GF\F | even,
C0(RGF ), |GF\F | odd.

and thus

K∗(C0(R)⊗F or GF ) =
{
K∗(C∗(GF )), |GF\F | even,
K ∗GF

(RGF ), |GF\F | odd.

This can be computed explicitely (Karoubi, Echterhoff–Pfante)!



A = C(S1)

Let A = C(S1) and let G be a group satisfying BCC. Then
coker

(
K∗(C)→ K∗(A)

)
∼= K∗(C0(R)) and thus

K∗(A⊗G or G) ∼=
⊕

[F ]∈G\FIN(G)
K∗(C0(R)⊗F or GF ).

By equivariant Bott periodicity, we have

C0(R)⊗F = C0(RGF )⊗|GF \F | 'KKGF

{
C, |GF\F | even,
C0(RGF ), |GF\F | odd.

and thus

K∗(C0(R)⊗F or GF ) =
{
K∗(C∗(GF )), |GF\F | even,
K ∗GF

(RGF ), |GF\F | odd.

This can be computed explicitely (Karoubi, Echterhoff–Pfante)!



Assume that G satisfies BCC!

Problem
What happens if ι∗ : K∗(C)→ K∗(A) does not split? (A = Mn)

Theorem (K–Nishikawa)
Let A be a unital C∗-algebra. Then we have

K∗((A⊗Mn)⊗G or G) ∼= K∗(A⊗G or G)[1/n], if |G | =∞,
K∗((A⊗Mn∞)⊗G or G) ∼= K∗(A⊗G or G)[1/n], in general.

Example (finite-dimensional algebras)
Let A = Mk0 ⊕ . . .⊕MkN with gcd(k0, . . . , kN) = n. Then

K∗(A⊗G or G) ∼=
⊕

[F ]∈G\FIN(G)

⊕
[S]∈GF \{1,...,N}F

K∗(C∗r (GS))[1/n].
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Application: Cuntz algebras

Recall: On+1 ⊗Mn∞ 'KK 0.

Corollary
Let On+1 be the Cuntz algebra on n + 1 generators and let G be a
group satisfying BCC. Then

K∗(O⊗G
n+1 or G)[1/n] ∼= K∗((On+1 ⊗Mn∞)⊗G or G) ∼= 0.

Lemma
If G is finite and K∗(A) is finitely generated, then K∗(A⊗G or G) is
finitely generated as well.

Corollary
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The orbit category
Let G be a discrete group. Let OrFin(G) be the category of
transitive proper G-sets G/H with G-equivariant maps.

Any G-map G/H → G/K is given by an inclusion H ⊆ gKg−1.
For a G-C∗-algebra A, we get a map

Ad(ug) : K∗(Aor H)→ K∗(Aor K ).

We thus get a functor

OrFin(G)→ AbZ, G/H 7→ K∗(Aor H).

Warning
The map

colim
G/H∈OrFin(G)

K∗(Aor H)→ K∗(Aor G)

is not the Davis–Lück assembly map

HG
∗ (EFinG ,KG

A)→ K∗(Aor G).
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AF-algebras

Theorem (Chakraborty–Echterhoff–K–Nishikawa)
Let G be an infinite group satisfying Baum–Connes with
coefficients, let A be a unital AF-algebra and let

S := {n ∈ N | [1A] ∈ K0(A) divisible by n}.

Then we have a pushout diagram

colim
G/H∈OrFin(G)

K∗(C∗r (H))[S−1] //

��

colim
G/H∈OrFin(G)

K∗(A⊗G or H)

��

K∗(C∗r (G))[S−1] // K∗
(
A⊗G or G

)
.

When G is torsion-free, we have

K∗(A⊗G or G) ∼= K̃∗(C∗r (G))[S−1]⊕ K∗(A⊗G)G .
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Rational computations

Let A be a unital, stably finite C∗-algebra.

⇒ ι∗ ⊗Q : K∗(C)⊗Q→ K∗(A)⊗Q splits!

Theorem (Chakraborty-Echterhoff-K-Nishikawa)
Let A be a unital, stably finite C∗-algebra satisfying the UCT and
let G be a group satisfying Baum–Connes with coefficients. Let B
be a UCT C∗-algebra satisfying K∗(B) ∼= coker(ι∗ ⊗Q). Then we
have

K∗(A⊗G or G)⊗Q ∼=
⊕

[F ]∈G\FIN(G)
K∗(B⊗F or GF )⊗Q.
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Obstructions to the Rokhlin property

Corollary
Let G 6= {1} be a finite group and let A be a unital, stably finite
C∗-algebra satisfying the UCT. Then G y A⊗G does not have the
Rokhlin property.

Proof by contradiction.
By our rational computations, the map

K∗(C∗r (G))⊗Q→ K∗(A⊗G or G)⊗Q

is injective. However, by the Rokhlin property, it can be factored as
the composition

K∗(C∗r (G))⊗Q→ K∗(C(G) or G)⊗Q→ K∗(A⊗G or G)⊗Q.

The first map is never injective.
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Thank you very much!


