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Lecture 1

The beginning of K-theory : Grothendieck, Atiyah and Hirzebruch

In order to formalize his work on the Riemann-Roch theorem (in the spirit of Hirze-
bruch), Grothendieck introduced a new contravariant functor [BS] defined on the
category of non singular algebraic varieties X. He named this functor K(X), the
“K-theory” of X. It seems that the terminology “K” came out from the German
word “Klassen”, since K(X) may be thought of as a group of “classes” of vector
bundles on X. Grothendieck could not use the terminology C(X) since his thesis
(in functional analysis) made an heavy use of the ring C(X) of continuous func-
tions on a space X.

In order to define K(X), one considers first the free abelian group L(X) generated
by the isomorphism classes [E] of vector bundles E on X. The group K(X) is
then the quotient of L(X) by the subgroup generated by the following relations

[E′] + [E′′] = [E]

when we have an exact sequence of vector bundles

0 −→ E′ −→ E −→ E′′ −→ 0

Exercise: compute K(X) when X is a Riemann surface in complex Algebraic
Geometry.

This group K(X) has nice algebraic properties, very much related to the usual
ones in cohomology. As a matter of fact, the theory of characteristic classes, e.g.
the Chern character denoted by Ch - which we shall review later on - might be
thought of as defining a functor from K(X) to suitable cohomology theories. For
instance, if f : X −→ Y is a morphism of projective varieties, we have a “Gysin
map”fH

∗ : K(X) −→ K(Y ) which is related to the usual Gysin map fH
∗ in rational

cohomology by the following formula

Ch(fH
∗ (x)) = fH

∗ (Ch(x).T odd(f))

where x is an arbitrary element of K(X) and Todd(f) is the “Todd class” (see the
third lecture for more details) of the normal bundle of f , as introduced by Hirze-
bruch [AH2]. More precisely, the Chern character Ch is a natural transformation
from K(X) to the even Betti cohomology groups Hev(X; Q) (which depend only
on the topology of X) and Todd(f) is well defined in terms of the Chern classes
of the tangent bundles associated to X and Y . If x ∈ K(X), Ch(x) is the sum of
homogeneous elements Ch0(x), Ch1(x), · · · , where Chn(x) ∈ H2n(X; Q).
The formula above shows that Todd(f) is the defect of commutativity of the fol-
lowing diagram

K(X)
fK
∗−−−−→ K(Y )

Ch

" Ch

"

Hev(X; Q)
fH
∗−−−−→ HeV (Y ; Q)
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The group K(X) is hard to compute in general : it is just a nice functor used for
a better understanding of characteristic classes. This “Algebraic K-theory” was
investigated deeply by other mathematicians Bass, Milnor, Quillen... at the end
of the 60’s and will be studied in detail during the lectures 4 and 5.

Just after the discovery of K(X), Atiyah and Hirzebruch considered a topological
analog named Ktop(X) - now for an arbitrary compact space X - by considering
topological vector bundles instead of algebraic vector bundles. The main difference
between the two definitions lies in the fact that an exact sequence of topological
vector bundles1

0 −→ E′ −→ E −→ E′′ −→ 0

always splits. Therefore, Ktop(X) is just the symmetrized group of the semi-group
of isomorphism classes [E] of vector bundles, with the addition rule [E] + [F ] =
[E ⊕ F ], where E ⊕ F is the “Whitney sum” of the vector bundles E and F . It
is clearly a contravariant functor of X. Moreover, every vector bundle is a direct
summand in a trivial vector bundle (i.e. of the type X×Cn, with an easily guessed
vector bundle structure). This fact enables us to compute Ktop(X) in purely ho-
motopical terms. More precisely, let us define K̂top(X), the reduced K-theory of
X, as the cokernel of the obvious map Z ≈ Ktop(Point) −→ Ktop(X) induced
by the projection X −→ Point. Then K̃(X) may be identified with the group
of stable isomorphism classes of vector bundles : two vector bundles E and E′

are stably isomorphic if E ⊕ T ≈ E′ ⊕ T ′ for some trivial bundles T and T ′. It
follows that Ktop(X) is isomorphic to the set of homotopy classes of maps from
X to Z × BU , where BU is the “infinite Grassmannian” , i.e. the direct limit of
the Grasmannians Gn(Cm) with obvious inclusions between them.

Here is another important difference between the two groups : Ktop(X) is much
easier to compute that its algebraic counterpart K(X). For instance, Ktop(X)⊗Q
is isomorphic to Hev(X; Q), where Hev(X; Q) denotes the rational even C̆ech co-
homology groups of X via the topological Chern character. There is in fact an
obvious factorization of the algebraic Chern character

K(X) −→ Ktop(X) −→ Hev(X; Q)

Therefore, if X is a finite CW complex, we find that Ktop(X) is isomorphic to
G⊕ Zd, where d is the dimension of the vector space Hev(X; Q) and G is a finite
group.

Exercise: compute Ktop(X) when X is a sphere Sn for n ≤ 4.

A famous theorem of Bott which we shall see in the next lecture is the follow-
ing : K̃top(Sn) is isomorphic to Z if n is even and = 0 if n is odd. We shall
see at the end how the Chern character enables us to construct a non trivial sta-
ble bundle over Sn when n is even. The idea of the proof of the isomorphism

1complex vector bundles, in order to fix the ideas.
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Ktop(X)⊗Q ≈ Hev(X; Q) is to notice that Ktop(X)⊗Q and Hev(X; Q) are half-
exact functors2 and that the Chern character induces an isomorphism when X is
a sphere. It is now a general statement that in such a situation the two half-exact
functors are indeed isomorphic (for the details see for instance the Cartan-Schwartz
seminar 1963/64, exposé 16).

In order to make the Chern character Ktop(X) −→ H2n(X; Q) more explicit,
let us describe it when X is a C∞-manifold of finite dimension and let us imbed
Q in C via the group homomorphism λ −→ (2iπ)nλ. The vector space H2n(X; Q)
is then isomorphic to the de Rham cohomology of differential forms of degree n.
On the other hand, it is not difficult to show that the classification of topological
bundles on X is equivalent to the classification of C∞ -bundles. Moreover, any
C∞-bundle E is a direct summand in a trivial bundle as in the topological situa-
tion : this means there is a C∞-map p : X −→ Mn(C) such that for x in X, the
fiber Ex is the image of p(x), with p(x)2 = p(x).
Now, as popularized a few years ago in the framework of cyclic homology and non
commutative de Rham homology, the Chern character of E, denoted by ChnE),
is the cohomology class of the trace of the following product of matrices which
entries are differential forms

Chn(E) =
1

n!(2iπ)n
Tr(p · dp · · · dp)

(2n factors dp). It is a nice exercise to show that Chn(E) is a closed differential
form and that its cohomology class is just a function of the class of E in Ktop(X).
This is the “modern” version of the Chern character which we shall see in lecture 7.

In order to check the non triviality of the Chern character as defined above, let us
choose the example of the Hopf bundle over the sphere X = S2 which we write as
the set of point (x, y, z) such that x2 + y2 + z2 = 1. We then put p = (1 + J)/2
, where J is the involution of the trivial bundle X × C2 defined over the point
(x, y, z) by the following matrix

(
z x + iy

x− iy −z

)

The Hopf bundle is then the image of the projection operator p. The explicit com-
putation of Ch1(E) gives the canonical volume form on the sphere S2. Therefore
the Chern character (as a cohomology class) is non trivial in general.

As it was pointed out by Hirzebruch, the Chern character can be caracterized
by the following axioms (on the category of differentiable manifolds for instance)

1) Naturality : if f : X −→ Y is a C∞-map and if E is a vector bundle over

2According to Dold, a homotopy (contravariant) functor on pointed spaces is called half-exact
if we have an sequence F (X/Y ) −→ F (X) −→ F (Y ) each time we have a closed subspace Y of
the compact space X.
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Y , then Chr(f∗(E)) = f∗(Chr(E)).
2) Additivity : Chr(E ⊕ F ) = Chr(E) + Chr(F )
3) Normalisation : if L is the canonical line bundle over Pn(C) (which restricts to
the Hopf bundle over the sphere S2 = P1(C)), one has

Chr(L) = xr/r!

where x is the unique element of H2(Pn(C)) which restricts to the volume form
of S2.

More generally, using the Chern character and Clifford algebras, we are going
to show that Chn is non trivial when X is the sphere S2n (cf. [K2], chapter 1)
by choosing an explicit vector bundle on S2n (as a matter of fact the generator of
K̃(S2n) ∼= Z. More precisely, let E be a complex vector space of finite dimension
and let e1, ..., e2n+1 be automorphisms of E such that
(eα)2 = 1
eαeβ = −eβeα for α *= β
e1...e2n+1 = in

An example of such a data is given by the exterior algebra ΛCn = ΛC⊗̂...⊗̂ΛC
(n factors), where the couple (e2r−1, e2r) is acting on the rth-factor ΛC = C2 via
the (2 × 2) matrix defined above. The last automorphism e2n+1 is of course de-
termined by the equation e1...e2n+1 = in. It can be shown, using the theory of
Clifford modules, that any such E is isomorphic to a direct sum of copies of this
example.

Let now X be the sphere S2n = {x1, ..., x2n+1|Σ(xi)2 = 1} and let V be the
vector bundle which is the image of the projection operator p = (1 + J)/2 on the
trivial bundle X × E, where

J = x1e1 + ... + x2n+1e2n+1

Modulo an exact form, we have

n!(2iπ)nChn(V ) = 2−2n−1Tr(J.(dJ)2n)

with (dJ)2n = (dx1e1 + ...dx2n+1e2n+1)2n

Since the entries (dxαeα) commute which each other, we may write the previ-
ous expression as the following sum

(2n)!Σα(dx1e1)... ̂(dxαeα)...(dx2n+1e2n+1)

where the symbol ̂(dxαeα) means that we omit dxαeα. If we expand it, we find

−in(2n)!Σα(−1)αdx1...d̂xα...dx2n+1eα)

Therefore,

Trace[J.(dJ)2n] = −in(2n)!Σα(−1)αxαdx1...d̂xα...dx2n+1
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modulo an exact form. Since the expression Σα(−1)αxαdx1...d̂xα...dx2n+1 is the
volume form of S2n, which we denote by V ol(S2n), we finally find that

Chn(V ) =
(2n)!

22n+1n!(2π)n
V ol(S2n).dim(E)

In our example E = ΛCn above, we have dim(E) = 2n. Therefore, the integral
of Chn(V ) on the sphere S2n is equal to 1 which implies that Chn(V ) *= 0 in the
cohomology of S2n (and is in fact a generator of the integral class).

Let us come back now to the general theory K(X) of Grothendieck where, for
simplicity, we assume X to be a complex projective variety. We may view X as
a subvariety of the complex projective space Pn(C) for a certain n. As it is well
known, Pn(C) may be written as the quotient of the group GLn+1(C) by the
subgroup consisting of matrices of the type

(
a b
0 c

)

where a is an (n×n) matrix, c is a (1×1) matrix and finally b is an (n×1) matrix.

Over Pn(C), there is an affine variety P = Proj1(Cn+1) consisting of projec-
tion operators p in Mn+1(C) such that Tr(p) = 1, which may also be written as
the homogeneous space GLn+1(C)/H, where H is the subgroup GLn(C)×GL1(C).
Note that P is an affine variety in Mn+1(C) = C(n+1)(n+1) since it is defined by
the following equations

Σjpijpjk = pik and
∑

j

pjj = 1

Let now X ′ be the pull-back variety defined by the cartesian square

X ′ −−−−→ GLn+1(C)/GLn(C)×GL1(C) = P
"

"

X −−−−→ Pn(C)

[the second vertical map associates to a projection operator p its image Im(p)]

Then X ′ is called a “torsor” over X (there is a vector bundle acting simply tran-
sitively on the fibers) and Grothendieck proved that K(X) + K(X ′). But now
X ′ is an affine variety as a closed subvariety of P and Serre has shown that the
category of algebraic vector bundles over X ′ is equivalent to the category P(A)
of finitely generated projective modules over the ring A of coordinates of X ′. For
example, if X = Pn(C) itself, A is the algebra generated by the elements pij with
1 ≤ i, j ≤ n + 1, subject to the relations Σpij · pjk = pik and Σpjj = 1. There is a
topological analogy which we shall see in the next lecture, but already this point
of view gives rise to several questions :
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1) What will be the analog of the Chern character if we work with A-modules
instead of vector bundles? As we shall see in Lecture 7, this opens a wide range of
applications belonging to the new domain of “noncommutative geometry”, linked
with homology and cohomology theories for arbitrary rings.

2) Since the target of the Chern character is even cohomology, this suggests that
there might be “derived functors” Kn(A), n ∈ Z, for which K0(A) is just the first
group. However, we shall see later on that this question is more complicated that
it looks at the first glance. For instance, the topology of A (if any) plays an im-
portant role : this is not seen of course in the definition of K(A).

Finally, K-theory has nice cohomology operations coming from exterior powers
of bundles or modules (more geometric in nature than their cohomology coun-
terparts which are the Steenrod operations). These operations gave spectacular
applications of K-theory in the 60’s. For instance, J.-F. Adams was able to com-
pute the maximum number of independent tangent vector fields on the sphere Sn

using these methods. Other applications were found in global analysis and in the
theory of C∗−algebras. We shall review all these applications in lectures 2 and 3.

At this point in history we have two theories, quite different in nature, coming
from Algebraic Geometry and Algebraic Topology. We shall analyse the topolog-
ical theory first in the spirit of noncommutative geometry. However, we shall see
during this historical sketch that the algebraic and topological methods are in fact
deeply linked one to another.

Lecture 2

K-theory of Banach algebras. Bott Periodicity theorems

Let E be a complex vector bundle over a compact space X et let A be the Ba-
nach algebra C(X) of continuous functions f : X −→ C (with the Sup norm).
If M = Γ(X, E) denotes the vector space of continuous sections s : X −→ E of
the vector bundle E, M is clearly a right A-module if we define s.f to be the
continuous section x ,−→ s(x)f(x).

As a matter of fact, since X is compact, we may find another vector bundle
E′ such that the Whitney sum E ⊕ E′ is trivial, say X × Cn. Therefore, if we
put M ′ = Γ(X, E′), we have M ⊕ M ′ ∼= An as A-modules, which means that
M is a finitely generated projective A-module. The theorem of Serre and Swan
[K1] says precisely that the correspondance E ,−→ M induces a functor from the
category E(X) of vector bundles over X to the category P(A) of finitely generated
projective A-modules, which is in fact an equivalence of categories. In particu-
lar, isomorphism classes of vector bundles correspond bijectively to isomorphism
classes of modules.
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These considerations lead to the following definition of the K-theory of a ring
with unit A : we just mimic the definition of Ktop(X) by replacing vector bundles
by (projective finitely generated) A-modules. We call this group K(A) by abuse
of notation. It is clearly a covariant functor of the ring A (by extension of scalars).
We have of course Ktop(X) ≈ K(A) , when A = C(X).
As it was done in usual cohomology theory, one would like to “derive” this func-
tor K(A) and try to define Kn(A), n ∈ Z, with some nice formal properties with
K0(A) = K(A). This task is in fact more difficult than it looks for general rings
A, as we shall see in Lectures 4 and 5.

On the other hand, if we avoid too much generality by working in the category of
(complex) Banach algebras, there is essentially one way to do it (at least for n ∈ N).

Firstly, we extend the definition of K(A) to non necessarily unital algebras A
by adding a unit to A. For this purpose, we consider the vector space C⊕A = A
provided with the “twisted” multiplication defined by

(λ, a).(λ′, a′) = (λ.λ′, λ.a′ + a.λ′ + a.a′)

The algebra has now a unit = (1, 0). There is an obvious augmentation

A −→ C

and we define K(A) as the kernel of the induced map K(A) −→ K(C) = Z. It
is easy to see that if A already has a unit, we recover the previous definition K(A).

Exercise: Let K be the ideal of compact operators in a Hilbert space H. Prove
that K(K) ∼= K(C) ∼= Z.

Secondly, for n ∈ N, we define Kn(A) as K(An), where An = A(Rn) is the Banach
algebra of continuous functions f = f(x) from Rn to A which vanish when x goes
to ∞.

Exercise: show that K1(A) ∼= injlimπ0(GLn(A)) ∼= π0(GL(A)), where GL(A) is
the direct limit of the GLn(A) with respect to the obvious inclusions GLn(A) ⊂
GLn+1(A).

Exercise: let A = C(X), where X is locally compact. Let X+ be the one point
compactification of X (X with one point added outside) and let Y = Sn(X+) ,
the nth suspension of X+. Show that Ktop(Y ) is isomorphic to Kn(A)⊕Z (hint :
notice that C(Y ) is isomorphic to C(X × Rn). In particular Ktop(Sn) is isomor-
phic to Kn(C)⊕ Z.

The following theorem is not too difficult to prove. It can be extracted easily
from [K1]
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THEOREM . The functors Kn(A), n ∈ N, are characterized by the following
properties

1) Exactness: for any exact sequence of Banach algebras (where A′′ has the
quotient norm and A′ the induced norm)

0 −→ A′ −→ A −→ A′′ −→ 0

we have an exact sequence of K-groups

Kn+1(A) −→ Kn+1(A′′) −→ Kn(A′) −→ Kn(A) −→ Kn(A′′)

2) Homotopy : Kn(A(I)) ∼= Kn(A), where A(I) is the ring of continuous func-
tions on the unit interval I with values in A.

3) Normalization : K0(A) is the group K(A) defined above.

Another type of K-groups which will be quite useful later on, although more
technical, is the relative K-group associated to a functor. If φ : P(A) −→ P(A′′)
is an additive functor (with some extra topological conditions), one can also define
groups Kn(φ) which fit into exact sequences

Kn+1(A) −→ Kn+1(A′′) −→ Kn(φ) −→ Kn(A) −→ Kn(A′′)

For instance, if φ is asssociated to an epimorphism of Banach algebras A −→ A′′ as
above, Kn(φ) may be identified with Kn(A′). Another case of interest is when A
(resp. A′′) is the ring of continuous functions on a compact space X (resp. a closed
subspace X”). Then, the group Kn(φ) is also written Kn(X,X ′′) or K−n(X, X ′′).

The functors K∗(A) have some other nice properties like the following : a contin-
uous bilinear pairing of Banach algebras

A× C −→ B

induces a “cup-product”

Ki(A)⊗Kj(C) −→ Ki+j(B)

In particular, if C = C, the field of complex numbers and if A = B, we have a
pairing

Ki(A)⊗Kj(C) −→ Ki+j(A)

Exercise: compute this pairing when A = C with i and j ≤ 2.

We can now state the Bott periodicity theorem in the Banach algebras setting.
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THEOREM . The group K2(C) is isomorphic to Z and the cup-product with a
generator u2 induces an isomorphism β : Kn(A) −→ Kn+2(A) for any Banach
algebra A.

This theorem has a spectacular application in homotopy : let GL(A) be the infi-
nite general linear group which is the direct limit of the GLr(A) with respect to
the obvious inclusions. Then an analysis of the group K(A(Rn)) shows that it is
isomorphic to the homotopy group πn−1(GL(A)). More precisely, if A = C for
instance, the group K(A(Rn)) is linked with the classification of stable complex
vector bundles over the sphere Sn which are determined by homotopy classes of
“gluing functions” f : Sn−1 −→ GL(A). For a general Banach algebra A, one has
to consider bundles over the sphere whose fibers are Ar instead of Cr. Then the
previous theorem has the following corollary:

COROLLARY . Let A be any complex Banach algebra. Then we have isomor-
phisms

πi(GL(A)) ∼= πi+2(GL(A)) ∼= Ktop
1 (A) if i is even;

πi(GL(A)) ∼= πi+2(GL(A)) ∼= K(A) if i is odd;
In particular, we have π1(GL(A)) ∼= K(A)

As a matter of fact, the last isomorphism (inspired by Atiyah and Bott) is the
basis of the proof of the theorem. The idea is to show that any loop in GL(A) can
be deformed into a loop of the following type

θ ,−→ pz + 1− p

where p is an idempotent matrix and z = eiθ . Such an idempotent matrix p is of
course associated to the projective module Im(p). A more conceptual proof will
be sketched at the end of this lecture.

Remark. If A = C, the groups πi(GLr(C)) = πi(U(r)) stabilize and are equal to
Ktop

i+1(C) if r > i/2.

Exercise. Prove the following facts :

1) Ktop(Sn) is isomorphic to Z if n is odd and to Z⊕ Z if n is even.
2) πi(GLr(C)) ∼= πi(U(r)) ∼= Z if i is odd and i > r/2 and = 0 if i is even and
i > r/2
3) Ktop(X)⊕Ktop(X) ∼= Ktop(X ×S0) ∼= Ktop(X ×S2) ∼= Ktop(X ×S2n) for any
compact space X.

In the previous considerations, we were working with modules over complex Ba-
nach algebras and their topological counterparts which are complex vector bun-
dles. We could as well consider real Banach algebras and real vector bundles.
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Most considerations are valid in the real case, with the notable exception of the
last theorem : in this case, we have an eight-periodicity and not a two-periodicity.
More precisely :

THEOREM . The group K8(R) is isomorphic to Z and the cup-product with
a generator induces an isomorphism between the groups Kn(A) and Kn+8(A) for
any real Banach algebra A.

For instance, the groups Kn(R) are equal to Z, Z/2, Z/2, 0, Z, 0, 0, 0 respectively
for n = 0, 1, .., 7 mod. 8.

The original proof of this theorem used Morse theory [Bott]. Other elementary
proofs (whom we mentioned already) were found by Atiyah and Bott, Wood and
the author, the last one in the framework of Banach algebras and Banach cate-
gories. See [At], [K1] and [Wo] for references.

As a matter of fact, Bott proved other theorems in the real case using loop spaces
of homogeneous spaces. He gave the following impressive list of homotopy equiv-
alences :

Ω(Z×BGL(R)) ≈ GL(R)

Ω(GL(R)) ≈ GL(R)/GL(C)

Ω(GL(R)/GL(C)) ≈ GL(C)/GL(H)

Ω(GL(C)/GL(H)) ≈ Z×BGL(H)

Ω(Z×BGL(H)) ≈ GL(H)

Ω(GL(H)) ≈ GL(H)/GL(C)

Ω(GL(H)/GL(C)) ≈ GL(C)/GL(R)

Ω(GL(C)/GL(R)) ≈ Z×BGL(R)

One way to understand these eight homotopy equivalences is to use Clifford alge-
bras as it was pointed out for the first time by Atiyah, Bott and Shapiro. As a
matter of fact, if we denote by Cn the Clifford algebra of Rn provided with the
quadratic form (x1)2 + . . .+(xn)2, there is a kind of “periodicity” of the Cn

3 : we
have graded algebra isomorphisms

Cn+8 ≈M16(Cn)

On the other hand, the complexified Clifford algebras have a 2-periodicity

Cn+2 ⊗ C ≈M2(Cn)⊗ C
3Here and until p. 21, we shall write K instead of Ktop
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These remarks gave rise to an elementary proof of the previous 8 homotopy equiv-
alences and the fact that π7(GL(A)) ≈ K0(A) [K1] [Wo]. As a matter of fact, a
uniform way to state these homotopy equivalences is to write (up to connected
components)

GL(Cn)/GL(Cn−1) ≈ Ω[GL(Cn+1)/GL(Cn)]

A second way to interpret Bott periodicity is to use Hermitian K-theory where
one studies finitely generated projective modules provided with non degenerate
Hermitian forms. This theory is associated to other classical Lie groups like the
orthogonal group or the symplectic group. We shall investigate this theory in the
sixth lecture and extend it to a discrete context (which is not possible with the
Clifford algebra interpretation).

Before going back to classical Algebraic Topology, it might be interesting to give
a conceptual proof of Bott periodicity (at least in the complex case).

Let us assume we have defined Kn(A), not only for n ∈ N, as we did before,
but also for n ∈ Z. Let us assume also that the pairing

Ki(A)⊗Kj(C) −→ Ki+j(B)

roughly described above, extends to all values of i and j in Z and has some obvious
“associative” properties. Finally, let us suppose the existence of a “negative” Bott
element u−2 in K−2(C) such that the cup-product with u2 gives the unit element
1 in K0(C) ∼= Z. With these hypotheses, we may define an inverse

β′ : Kn+2(A) −→ Kn(A)

of the Bott map
β : Kn(A) −→ Kn+2(A)

It is defined by the cup-product with u−2. It is clear that the compositions of β
with β′ both ways are the identity.
The price to pay for this proof is of course the construction of this “negative”
K-theory Kn(A) for n < 0. This may be done, using the notion of “suspension”
of a ring which is in some sense dual to the notion of the suspension of a space.
More precisely, we define the “cone” CA of a ring A to be the set of all infinite
matrices M = (aij), i, j ∈ N, such that each row and each column only contains a
finite number of non zero elements in A. This is clearly a ring for the usual rule of
matrix multiplication. We make CA into a Banach algebra by completing it with
respect to the following norm

‖M‖ = sup
j

∑

i

‖aij‖

Finally we define Ã, the “stabilization” of A as the closure of the set of finite
matrices4 in CA. It is a closed 2-sided ideal in CA and the suspension of A -

4An infinite matrix is called finite if all its elements are 0, except a finite number.
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denoted by SA - is the quotient ring CA/Ã.

DEFINITION/THEOREM . Let A be a Banach algebra. Let us define the
groups K−n(A) to be K(SnA), where SnA is the nth−suspension of A. Then
BGL(SA) is a “delooping” of K0(A)×BGL(A), i.e. we have a homotopy equiv-
alence

Ω(BGL(SA)) = K0(A)×BGL(A)

Therefore, to any exact sequence of Banach algebras as above

0 −→ A′ −→ A −→ A′′ −→ 0

we can associate an exact sequence of K-groups

Kn+1(A) −→ Kn+1(A′′) −→ Kn(A′) −→ Kn(A) −→ Kn(A”)

for n ∈ Z.

For a better understanding of SA, it is interesting to notice that the ring of Laurent
series A < t, t−1 > is a good approximation of the suspension. Any element of
A < t, t−1 > is a series

S = Σn∈Zantn

such that Σn∈Z | an |< +∞ . We define a ring homomorphism

A < t, t−1 >−→ SA

which associates to the series above the class of the following infinite matrix




a0 a1 a2 ......
a−1 a0 a1 ......
a−2 a−1 a0 ......
... ... ... ......





For instance, in order to define the element u−2 mentionned above, it is enough
to define a projective module over the Banach algebra C < t, u, t−1, u−1 >, i.e. a
non trivial complex vector bundle on the torus S1×S1, as we can see easily, using
Fourier analysis.

Let us come back now to usual Algebraic Topology and define K
n(X), n ∈ Z,

for a compact space with base point ∗ as K−n(A) where A is the Banach algebra
of continuous functions on X which vanish on the base point. The (contravariant)
functors X ,−→ K

n(X) define a (reduced) cohomology theory for compact spaces.
One may also define a relative K-theory by putting Kn(X, Y ) = K

n(X/Y ) which
is also isomorphic to the group K−n(φ) defined p. 2, where the functor φ is
associated to the surjection of rings

θ : C(X) −→ C(Y )
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To sum up, one has therefore an exact sequence

Kn−1(X) −→ Kn−1(Y ) −→ Kn(X, Y ) −→ Kn(X) −→ Kn(Y )

and an excision isomorphism

Kn(X, Y ) ∼= Kn(X/Y, ∗) + Kn(X/Y )

Finally, it is easy to show that K0(X,Φ) ∼= K(X), the original K-theory of
Grothendieck-Atiyah-Hirzebruch.

What we have defined above is a “cohomology theory” satisfying all the Eilenberg-
Steenrod axioms, except the dimension axiom. This is just an example of what
mathematicians called an “extraordinary” cohomology theory in the 60’s (other
famous examples are coming from cobordism). As we shall see in the next lecture,
this theory has many interesting topological applications.

There are many variants of topological K-theory which were considered in the
60’s. One of appealing interest is equivariant K-theory KG(X) where G is a
compact Lie group acting on X which was introduced by Atiyah and Segal. It is
defined as the K-theory of G-equivariant vector bundles on X. The analog of Bott
periodicity in this context is the “Thom isomorphism” : one considers a complex
G-vector bundle V on X and we would like to compute the equivariant K-theory
of V (viewed as a locally compact space), i.e. KG(V +) , where V + is the one-point
compactification of V . If we denote this group simply by KG(V ), we have a Thom
isomorphism (due to Atiyah)

KG(X) −→ KG(V )

More generally, if V is a real vector bundle, we can define on V a positive definite
metric invariant under the action of G and consider the associated Clifford bundle
C(V ) ; the group G also acts naturally on C(V ). We denote by EG(X) the category
of real vector bundles where G and C(V ) act simultaneously ; these two actions
are linked together by the formula

g ∗ (a.e) = (g ∗ a).(g ∗ e)

where the symbol ∗ (resp. .) denotes the action of G (resp. of C(V )). For instance,
if G is finite, it is easy to show that EV

G (X) is equivalent to the category of finitely
generated projective modules over the crossed product algebra G " C(V ), where
C(V ) is the algebra of continuous sections of the bundle C(V ). On the other hand,
if “1” denotes the trivial bundle of rank one (with trivial action of G), we have a
“restriction” functor

ϕ : EV⊕1
G (X) −→ EV

G (X)

A generalization of the theorem of Atiyah quoted above is the following : the rel-
ative group K(ϕ) is isomorphic to the equivariant K-theory of the Thom space,
i.e. KG(V ), with the notations above.
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We should notice that the last statement is true in both real and complex K-
theory and implies Bott periodicity for the K-theory of vector bundles!

It is also worth mentioning that Atiyah’s theorem and its generalization are not
easy to prove even if X is reduced to a point. A key ingredient in the proof is an
index map which Atiyah constructed with suitable elliptic operators.

There is another generalization of topological K-theory which was considered by
Donovan and the author at the beginning of the 70’s and which became “fash-
ionable” recently : this is “K-theory with twisted coefficients” Kα(X)5 defined
for α ∈ H3(X; Z) (we limit ourselves to the complex case). The simplest way to
define it is to notice that the usual complex K-theory is also the K-theory of the
Banach algebra of continuous functions

f : X −→ K

where K is the ideal of compact operators in a Hilbert space H (we just enlarge
C to K, which is quite usual in functional analysis). This is also the algebra of
sections of the trivial bundle

E = X ×K
"

X

viewed as a bundle of algebras. The idea is now to ”twist” this algebra bundle
by an automorphism. More precisely, using the fact that Aut(H) is contractile by
Kuiper’s theorem, we have the following principal bundles with contractible total
spaces (where P (H) = Aut(H)/C∗).

BC∗ −→ B(Aut(H)) −→ B(P (H))

K(Z, 2) −→ BC −→ BC∗

This shows BP (H) is the Eilenberg-Mac Lane space K(Z, 3). In other words, any
element α of H3(X; Z) is associated to a principal bundle with fiber P (H) which
may be defined by transition functions gji over an open cover (Ui) of X. We can
use this P (H) bundle to twist the previous algebra bundle E in the following way
: the twisted algebra bundle E is obtained by gluing Ui × K with Uj × K over
Ui ∩ Uj : we identify (xi, ki) with (xj , kj) whenever x = xi = xj ∈ Ui ∩ Uj and
kj = gji(x)ki(gji(x))−1.

The space of sections of E is a Banach algebra whose K-theory is precisely the
twisted K-theory of X we wanted to define.

Exercise. Let V be an oriented real vector bundle of even rank with second
Stiefel-Whitney class w2 ∈ H2(X; Z/2) and a the Bockstein of w2 in H3(X; Z).

5now called “twisted” K-theory
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Show that Kα(X) is isomorphic to the K-theory of the Thom space of V .

Let us mention finally that in the classical case of untwisted K-theory K∗(X),
there is a spectral sequence due to Atiyah and Hirzebruch whose E2 term is
Hp(X;Kq

top(∗)), where ∗ is a point. This spectral sequence converges to Kp+q(X).
There is a generalization of this spectral sequence in the case of twisted K-theory
which will appear in a forthcoming paper by Atiyah and Segal.

Lecture 3

Some applications of topological K-theory. The Atiyah-Singer index
theorem

There are many applications of topological K-theory, most of them due to Atiyah
and Adams. More recent applications in the K-theory of Banach algebras are also
given.

1) Riemann-Roch theorems for differentiable manifolds [AH2][K1].

As it was explained in the first lecture, Grothendieck’s original aim was to gener-
alize the Hirzebruch-Riemann-Roch theorem in the context of projective algebraic
smooth varieties. Soon after the discovery of topological K-theory, Atiyah and
Hirzebruch achieved the same result in the category of differentiable manifolds.
The simplest case is the following : let us consider two C∞− manifolds X and Y ,
with an almost complex structure given on the tangent bundles, together with a
smooth proper map

f : X −→ Y

Since X and Y are oriented, there is a Gysin map in cohomology

H∗(X) −→ H∗(Y )

which increases the degrees by the number dim(Y )−dim(X). On the other hand,
as briefly stated in the first lecture, any complex vector bundle V has a “Todd
class” Todd(V ) which can be formally defined as follows. We express the “total
Chern class”

c(V ) = 1 + c1(V ) + c2(V ) + ... + cn(V ) + ...

as a formal product
∏

(1 + xi) , so that the ci(V ) are the elementary symmetric
functions of the xj . Then we consider the formal product

∏
xi/(1 − e−xi) which

can be written as

Todd(V ) = 1 + Todd1(V ) + Todd2(V ) + ... + Toddn(V ) + ...

For instance6, one has the following formulas (with ci = ci(V ), and Ti = Toddi(V ))

6Note that this definition of Todd(V ) can be extended to elements x of K(X): if x = V −W ,
we put formally Todd(x) = Todd(V )/Todd(W ).
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T1 = 1/2c1

T2 = 1/12(c2 + (c1)2)
T3 = 1/24c2c1

T4 = 1/720[−c4 + c3c1 + 3(c2)2 + 4c2(c1)2 − (c1)4]
............

Using (complex) Bott periodicity and Thom isomorphism in K-theory, one may
also define a Gysin map in K-theory

fK
∗ : Ktop(X) −→ Ktop(Y )

The Atiyah-Hirzebruch theorem may then be stated as follows : for any element
x in K(X), we have the formula

Ch(fK
∗ (x)).T odd(TY ) = fH

∗ (Ch(x).T odd(TX))

If Y is reduced to a point, fH
∗ is given by integration over the compact manifold

X and we find that for any element x in the K-theory of X, Ch(x).T odd(TX) is
always an integral class of degree 2n = dim(X) (a priori it is only a rational class).
For instance, Toddn(TX) is an integral class when X is a manifold of dimension
2n with an almost complex structure.
There are many interesting generalizations of this formula (all due to Atiyah and
Hirzebruch) when Tf (the tangent bundle of f “along the fibers”) is provided with
a cspinorial structure. There is an analog of the Todd class, called the Â-genus
which can be expressed in terms of the Pontrjagin classes of TX. Here is the type
of formula we get :

Ch(fK
∗ (x)) = fH

∗ (ch(x).Â(Tf))

This relation implies other integrality theorems in terms of the Pontrjagin classes
of the tangent bundles involved. Here is a typical example : if X is a manifold of
dimension 8 which is spinorial, the value of 7(p1)2−4p2 is divisible by 11720. Here
p1 and p2 are the first two Pontjagin classes of TX (see [K1] for more examples
and details].

2) The Atiyah-Singer index theorem

There is an extensive literature about this famous theorem and the basic ref-
erences are the series of papers of the authors themselves [AS1][AS2]. There-
fore, we limit ourselves to the general ideas underlying this theorem. Let X
be a compact oriented manifold, E and F two C∞-vector bundles on X and
D : Γ(X, E) −→ Γ(X, F ) an elliptic differential operator. Then Ker(D) and
Coker(D) are finite dimensional vector spaces and one would like to compute the
index of D.

Index(D) = dim(KerD)− dim(CokerD)

in purely topological terms.
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Since the operator D is elliptic, its symbol may be viewed as a morphism of
vector bundles

σ : π∗(E) −→ π∗(F ),

where π is the projection of the cotangent bundle T ∗X over X, which is an iso-
morphism outside the zero section of T ∗X. If B(X) (resp. S(X)) denotes the ball
bundle (resp. the sphere bundle) of T ∗X with respect to a metric, the symbol
gives rise to an element, called [σ], of the relative group K0(B(X), S(X)). Let
us denote C(σ) the image of [σ] under the composition of the Chern character :
K0(B(X), S(X)) −→ Hev(B(X), S(X)) and the Thom isomorphism Hev(B(X), S(X)) −→
H∗(X). The product of C(σ) by the Todd class of the complexified bundle T ′(X)
of TX is a cohomology class C(σ).T odd(T ′(X)) which we can evaluate on the
fundamental class [X] of the manifold. This evaluation is written classically as
C(σ).T odd(T ′(X))[X]. The Atiyah-Singer index theorem can be stated as follows
:

Index(D) = C(σ).T odd(T ′(X))[X]

In particular, C(σ).T odd(T ′(X))[X] is an integer7. On the other hand, various
classical elliptic differential operators enable us to recover classical previous re-
sults : the Riemann-Roch theorem in the differentiable category and the signature
theorem of Hirzebruch among many others [AS1][AS2]. We may also notice that
the integrality theorems are a consequence of the index theorem. However, as it
was shown in [AH2] (see also [K1]), these theorems are topological in nature and
do not require the pseudo-differential machinery needed in the proof of the index
theorem.

3) The Hopf invariant one problem

Before attacking this topological problem, we recall the operations λk of Grothendieck,
defined by the exterior powers of bundles. As Adams has pointed out, there exist
more convenient operations, called ψk, which are ring endomorphisms of K(X)
(and also Ktop(X)). Moreover, we have the remarkable relation ψkψ1 = ψk1. In
order to define this operation ψk, we notice the universal formula expressing the
“fundamental” symmetric functions

SK =
∑

(xi)k

in terms of the elementary symmetric functions

σk =
∑

i1<...<ik

xi1 ...xik

For instance, S1 = σ1, S2 = (σ1)2 − 2σ2,S3 = σ1)3 − 3σ1σ2 + 3σ3, etc. In general
Sk = Qk(σ1, ...,σk) , where the Qk are the so-called Newton polynomials. Then,
for any element x of K(X), we define ϕk(x) as the expression Qk(λ1(x), ...,λk(x)).

7As a matter of fact, one has to be careful about signs, according to the chosen conventions.
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The Hopf invariant one problem in Algebraic Topology is linked with another
problem of more appealing interest : for which values of n the sphere Sn−1 may
be provided with an H-space structure ? It is not difficult to show (using Künneth
theorem in rational cohomology for instance) that this is not possible if n is odd
> 1. On the other hand, S0, S1, S3, S7 are easily seen to have a structure of H-
spaces, in fact topological groups, except for S7. It is a remarkable theorem of
Adams that these spheres are the only ones with an H-space structure. The K-
theory proof (due to Adams and Atiyah) is as follows (see [K1] for more details).
Starting with the given product Sn−1×Sn−1 −→ Sn−1, with n even, and following
Hopf, we construct a map f : S2n−1 −→ Sn to which we associate the “Puppe
sequence”

S2n−1 −→ Sn −→ Cf −→ S2n −→ Sn+1

More precisely, Cf , the cone of f , is a CW -complex with 2 cells of dimensions n
and 2n respectively : we attach a 2n-cell to Sn using the map f . Now the reduced
K-theory of Cf is easily computed : it is a free group with 2 generators u and v
and we have u2 = hv for a certain scalar h which is precisely ±1 (for a general
map f, h = h(f) is called the Hopf invariant of f).

We now follow the pattern given by Atiyah and Adams to show that h(f) cannot
be odd in general (except if n = 2, 4 or 8). From the general properties of the
Adams operations ψk, we have ψk(v) = k2rv and ψk(v) = kru + σ(k)v , where
n = 2r and σ(k) ∈ Z. On the other hand, since ψ2 = (λ1)2 − 2λ2, we have
ψ2(u) = u2 mod. 2 = h(f)v mod. 2. Hence σ(2) must be odd, since h(f) is odd
by hypothesis. On the other hand, from the relation ψkψl = ψlψk, we deduce (for
l *= 1)

kr(kr − 1)σ(l) = lr(lr − 1)σ(k)

If we choose l = 2 and k odd, we see that 2r should divide kr − 1 for all odd
integers k, a property of r which is only true if r = 1, 2 or 4 (an easy exercise left
to the reader).

4) The vector field problem on the sphere.

Let M be a compact connected oriented manifold. Here is a classical result due to
Hopf : there exists a non zero tangent vector field on M if and only if χ(M) - the
Euler Poincaré characteristic of M - vanishes. A much harder problem is to find
the maximum number of linearly independent tangent vector fields on M , even
if M is the sphere St−1. The Gram-Schmidt orthonormalization procedure may
be used to replace any field of (n − 1)− linearly independent tangent vectors by
a field of n − 1 tangent vectors of norm one which are orthogonal to each other.
Therefore, if On,t denotes the Stiefel manifold O(t)/O(t − n), the existence of a
field of (n − 1) linearly independent tangent vectors on St−1 is equivalent to the
existence of a continuous section σ : O1,t = St−1 −→ On,t of the natural projection

O(n, t) −→ O1,t
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Note that each element a of O(n, t) defines a linear map ϕa : Rn −→ Rt which is
injective and depends continuously on a.

Let us introduce now the (real) Hopf bundle ζ on RPn−1 = Sn−1/Z2 as the
quotient of Sn−1 × Rt by the equivalence relation (x, λ) ≈ (−x,−λ1, ...,−λt). In
the same way, the Whitney sum of t copies of ζ (denoted by tζ) is the quotient of
Sn−1 × Rt by the identification

(x, λ1, ...,λt) ≈ (−x,−λ1, ...,−λt)

If we write S(tζ) (resp. S(tε)) for the sphere bundle of tζ (resp. tε), the existence
of σ shows the existence of a commutative diagram

S(tε) −→ S(tε)
↘ ↙
X = RPn−1

Here θ is induced by the map (x, v) ,−→ (x, ϕσ(v)(x)) from Sn−1×St−1 into itself,
where ϕa is the linear map Rn −→ Rt defined above. Moreover, θ induces a ho-
motopy equivalence on each fiber.

We are now in the general situation of two vector bundles V and W (here tε
and tζ) such that the associated sphere bundles S(V ) and S(W ) have the same
fiber homotopy type. The same property is true if we compactify the fibers in-
stead of considering the spheres. Therefore, the map θ (extended to the vector
bundles by radial extension) has the property that for each point x in X we have
the commutative diagram

KR(W ) θ∗−−−−→ KR(V )
"

"

KR(Wx)
θ∗x−−−−→ KR(Vx)

where KR means real K-theory. As it was shown by Adams, this condition implies
the existence of an element y of KR(X) such that for each k we have the relation

ρk(V ) = ρk(W )
ψk(1 + y)

1 + y

under the condition that V and W are spinorial bundles of rank ≡ 0 mod. 8.

Here ρk(V ) is the characteristic class in K-theory8 introduced by Bott : it is
defined as the image of 1 under the composition of the following maps

KR(X) ϕ−−−−→ KR(V ) ψk

−−−−→ KR(V ) ϕ−1

−−−−→ KR(X)
8Note that this class is constructed in complete analogy with the Stiefel-Whitney classes in

cohomology mod.2: one just has to replace the Adams operations by the Steenrod squares.
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where ϕ is the Thom isomorphism in KR-theory. These remarks, together with
the computation of the order of the group K(RPn−1) are the key ingredients for
the solution in two steps of our original problem.

PROPOSITION . Let an be the order of the group KR(RPn−1), that is an = 2f ,
where f is the number of integers i such that 0 < i < n and i = 0, 1, 2 or 4 mod 8.
If St−1 admits n−1 linearly independent tangent vector fields, then t is a multiple
of an.

From this proposition and the theory of Clifford algebras over the real numbers,
we deduce the following fundamental theorem of Adams

THEOREM . Let us write each integer t in the form t = (2α − 1).2β where
β = γ + 4δ, with 0 ≤ δ ≤ 3. Then the maximum number of linearly independent
tangent vector fields on the sphere St−1 is σ(t) = 2γ + 8δ − 1.

5) Applications to C∗-algebras.

Here is a theorem due to Connes : if A = C∗
r (G) is the reduced C∗-algebra of

a free group on n generators, then the only idempotents of A are 0 and 1. The
proof is too technical to give the details here (see [R] p. 358-361) ; K-theory comes
into the picture since one has to consider in the proof extensions of C∗algebras of
the type

0 −→ K −→ D −→ A −→ 0

where K is the ideal of compact operators in a Hilbert space. A splitting of this
extension induces a homomorphism K(A) −→ K(K) ≈ Z which Connes identifies
with the usual positive normalized trace on A.

Another beautiful application in Connes’s book [C1] is a description of the Pen-
rose tiling in terms of inductive limits of finite dimensional algebras (so-called
AF -algebras). Such an inductive limit A (or rather its closure in the algebra of
bounded operators in a Hilbert space) has of course a Grothendieck group K(A).
Moreover, K(A) is an ordered group (an element of K(A) is called ≥ 0 if it comes
from a genuine projective module). In the case of the Penrose tiling, one has
K(A) ∼= Z2 , the positive cone being given by the set of all (m, n) such that
n(1 +

√
5)/2 + m ≥ 0. As a matter of fact, all AF -algebras A are classified by

their ordered Grothendieck group K(A).

In order to get more applications of the theory to C∗-algebras, a considerable
generalization was made by Kasparov [Kas], in relation with Atiyah-Singer the-
orem. In Kasparov’s theory, one associates to two C∗algebras A and B a new
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group called KK(A, B) with remarkable formal properties. According to Higson
[H] for instance, this new theory KK(A, B) - at least for separable C∗-algebras,
not necessarily unitary - is characterized by the following properties

1. Homotopy invariance : the group is unchanged (functorially) if we replace
A or B by the ring of continuous function on [0, 1] with values in A or B.

2. The group is C∗-stable with respect to the second variable, i.e. we have the
functorial isomorphism

KK(A, B) ≈ KK(A,K ⊗B),

where K is the C∗-algebra of compact operators in a separable Hilbert space.

3. If
0 −→ J −→ E −→ B −→ 0

is a split exact sequence of C∗-algebras, we have KK(A, E) ≈ KK(A, J)⊕KK(A, B).

4. A “composition” (called Kasparov product)

KK(A, B)×KK(B, C) −→ KK(A, C)

may be defined.

Therefore, the correspondence (A, B) ,−→ KK(A, B) defines a functor from the
category of C∗-algebras couples (A, B) to the the category of abelian groups,
which is an extended definition of the usual K-theory in the following sense.
We have KK(C, A) ≈ K(A) and every morphism f : A −→ B gives rise to
an element of KK(A, B). By Kasparov’s product, this induces a morphism from
K(A) = KK(C, A) to KK(C, B) = K(B) which is the usual one : to every A-
module M we associate the B-module f∗(M) = B ⊗A M .

A concrete definition of KK(A, B) and of the Kasparov product has been given
by Cuntz [Cu]. He describes KK(A, B) as the set of homotopy classes of ∗-
homomorphisms

qA −→ K ⊗B

Here qA is the ideal in the free product A ∗ A generated by the elements of type
x ∗ 1 − 1 ∗ x. One can prove that this definition is equivalent to the first one of
Kasparov and also to the definition of Connes-Skandalis ([C1] p. 428-436).

The relation with the Atiyah-Singer theorem is the following. Let B = C be
the field of complex numbers and let A be the algebra of continuous functions on a
compact manifold of even dimension. Then, an elliptic operator D on X defines a
“Fredholm module” on A [At2] which gives rise to an element of KK(A, C). The
image of 1 ∈ K(A) by the associated morphism

K(A) −→ K(C) = Z
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is the index of the operator D.

An open problem is to define a group KK(A, B) for general algebras A and B
and to find the relation with Algebraic K-theory on one side (lecture 5) and cyclic
homology on the other side (lecture 7).

Lecture 4

Algebraic K-theory of Bass and Milnor Applications

After the success of topological K-theory, the algebraists felt challenged to “de-
rive” the K0 group for ANY ring A, as it was done for Banach algebras and,
hopefully, prove some kind of ”Bott periodicity” for these hypothetic Kn(A).

The first problem was of course to define the K1 group in a purely algebraic
context. Remember that for a Banach algebra A, Ktop

1 (A) (called before K1(A))
was defined either as K(A(R)) or π0(GL(A)) = injlimnπ0(GLn(A)). The first
definition does not make any sense a priori for an abstract ring A. However, Bass
managed to give a meaning to the second definition thanks to the notion of an
elementary matrix. Such a matrix - called eλ

ij - has all entries = 0, except for the
diagonal entries = 1 and the entry at the spot (i, j), i *= j, which is equal to the
scalar λ. These matrices satisfy the following identities

eλ
ije

µ
ij = eλ+µ

ij

[eλ
ij , e

µ
jk] = eλµ

ik if i *= k

[eλ
ij , e

µ
kl] = 1 if j *= k and i *= l

We call E(A) the subgroup generated by these elementary matrices. One has
to think of the elements of E(A) as those “homotopic to the identity matrix”.

DEFINITION/THEOREM . The subgroup G′ = E(A) is equal to the com-
mutator subgroup [G, G] of G = GL(A). Moreover it is perfect, i.e. [G′, G′] = G′.
We define K1(A) as the quotient group G/G′, in other words the group G made
abelian.

This theorem is quite easy to prove, using the relations above between elementary
matrices. One of the key point is to show that a commutator ghg−1h−1 is a product
of elementary matrices if we stabilize 3 times the size of the matrix, say n. Indeed,
let us write Diag(u, v, w) for a matrix of size 3n with u, v and w as n-diagonal
blocks. Then we have Diag(ghg−1h−1, 1, 1) = [u, v], where u = Diag(g, 1, g−1)
and v = Diag(h, h−1, 1). On the other hand, a matrix of type

(
g 0
0 g−1

)
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may be written as the product
(

0 1
−1 0

) (
0 −g−1

g 0

)

We notice finally that the matrix
(

0 −g−1

g 0

)

may be written as the product of 3 matrices, each of them being a product of
elementary matrices, i.e.

(
1 −g−1

0 1

) (
1 0
g 1

) (
1 −g−1

0 1

)

Caution: if A is a Banach algebra, this group K1(A) does not coincide with its
topological analog. For instance, if A is the field of complex numbers C, we have
K1(C) ≈ C∗, whereas the topological analog π0(GL(C)) is equal to 0.

THEOREM . Let us consider a cartesian square of rings with units

A −−−−→ A1
"

"φ1

A2
φ2−−−−→ A′

with φ1 or φ2 surjective. Then we have a “Mayer-Vietoris exact sequence” of
K-groups

K1(A) −→ K1(A1)⊕K1(A2) −→ K1(A′) −→ K(A) −→ K(A1)⊕K(A2) −→ K(A′)

This theorem implies “excision” for the K0-group ; in other words, if I is an ideal
in a ring A, the K-group of the functor9 P(A) −→ P(A/I) only depends on the
ideal I, i.e. is isomorphic to Ker(K(I) −→ K(Z)), where I denotes the Z-algebra
I with a unit added.

In the case of a group ring A = Z[G], the group K1 has applications in differ-
ential topology as it was shown in the 60’s. A striking one is the s-cobordism
theorem ([R] p. 86) : if M is a compact connected manifold of dimension n ≥ 5,
any h−cobordism built on M is homeomorphic (rel. ∂M) to a product M × [0, 1].

9Here we should be more precise about the definition of the Grothendieck group of an additive
functor ϕ : C −→ C. It is the quotient of the free group generated by isomorphism classes of
triples (E, F, α), where E and F are objects of C and α : ϕ(E) −→ ϕ(F ) is an isomorphism, by
the following relations:
(E, F, α) + (E′, F ′, α′) = (E ⊕ E′, F ⊕ F ′, α⊕ α′)
(E, F, α) + (F, G, β) = (E, G, β.α).
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There is just one algebraic condition for this : Wh(G) = K1(A)/G should be
trivial. A spectacular application is the famous theorem of Smale which solves the
Poincaré conjecture in dimension ≥ 5 : any manifold of dimension n ≥ 5 homo-
topically equivalent to the sphere Sn is indeed homeomorphic to Sn.

A more algebraic application is the famous “congruence subgroup problem” : if R
is a commutative ring and SL(R) the subgroup of GL(R) consisting of matrices
of determinant 1, is every normal subgroup of SL(R) a congruence subgroup, i.e.
the kernel of a group homomorphism SL(R) −→ SL(R/I) for a certain ideal I ?
An analysis of a ”relative” K1 group shows this is the case for instance if R = Z.
In general one should have SK1(A, I) = 0 for all ideals I([R] p.106).

Let us mention an important result with many applications, due to Bass, Mil-
nor and Serre : if A is the ring of integers in a number field F , then K1(A) ∼= A∗

by the determinant map. In other words, the map K1(A) −→ K1(F ) ∼= F ∗ is
injective.

One question we may ask is whether K1(A) is the K0-group of another ring ;
this is inspired by Topology where we saw that K−1(X) is essentially K0 of the
suspension of X. There is indeed a dual notion of the suspension of a space which
is the “loop ring” ΩA of A : it is the subring of A[x], consisting of polynomials
P (x) such that P (0) = P (1) = 0. Under certain conditions (for instance if A is
regular noetherian), one can show that K1(A) ∼= K0(ΩA). This is the starting
point of the so-called ”Karoubi-Villamayor” K-theory which will be sketched in
the next lecture.

Exercise: Let Ω+(A) be the A−algebra ΩA with a unit added. Show that Ω+(A)
may be identified with the coordinate ring of the following cubic

Ω+(A) ∼= A[u, v]/(u− v)3 − uv.

Exercise (Milnor). Let A be the Banach algebra of continuous functions on a
compact space X with complex values. Then show that K1(A) ∼= A∗⊕π0(SL(A))

Remark. In contrast with the situation of the K0-group, the definition of K1(I)
when I is a ring without unit is unclear. For instance, if we define K1(I) as
Ker[K1(I+) −→ K1(k)] if I is a k−algebra, this definition depends strongly on
the choice of k.

For certain special rings I however, there is a “good” definition of A, for instance
the ideal K of compact operators in a Hilbert space, or the ring of continuous
functions from a compact space X to K.

The next step in Algebraic K−theory was done by Milnor who gave an algebraic
definition of K2(A). He first introduced the (infinite) Steinberg group ST (A)
which is generated by elements xλ

ij , i *= j, subject to the “universal” relations
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between elementary matrices, i.e.

xλ
ijx

µ
ij = xλ+µ

ij

[xλ
ij , x

µ
jk] = xλµ

ik if i *= k

[xλ
ij , x

µ
kl] = 1 if j *= k and i *= l

Note: for convenience, we shall sometimes write these symbols as xij(λ).

There is an obvious epimorphism

ST (A) −→ E(A)

As we said before, the group E(A) is perfect (i.e. is equal to its own commutator
subgroup [E(A), E(A)] ) and Milnor proved that the exact sequence

1 −→ K2(A) −→ ST (A) −→ E(A) −→ 0

is in fact the universal central extension of the perfect group E(A). In particular,
K2(A) is abelian and may be identified with H2(E(A); Z), the second homology
group of E(A) with Z coefficients. Analogously, one may remark that K1(A) is
the homology group H1(GL(A); Z).

An important part of the structure of K2 is defined by Milnor’s cup-product

K1(A)×K1(A) −→ K2(A)

when A is commutative. In particular, if u and v ∈ A∗ ⊂ K1(A), the Steinberg symbol
{u, v} is the cup-product of u and v in K2(A). It satisfies the following relations
(a) (u, 1− u) = 1 if u and 1− u belong to A∗

(b) (u,−u) = 1 if u ∈ A∗

If A is a field, the second relation follows from the first.

THEOREM (Matsumoto). Let F be a (commutative) field. The Steinberg
symbol identifies K2(F ) with the quotient of F ∗ ⊗Z F ∗ by the subgroup generated
by the relations u⊗ (1− u) for u *= 0, 1.

This theorem is the starting point for applications of K2 in Algebra and Num-
ber Theory, in relation with the Brauer group and Galois cohomology. Let F
be the separable closure of F,G the Galois group of this extension and µn the
multiplicative group consisting of n-roots of unity in F . Then, the exact sequence

0 −→ µn −→ F
∗ −→ F

∗ −→ 0

induces an isomorphism H1(G;µn) ∼= F ∗/F ∗n , since H1(G;F ∗) = 0 by a famous
theorem of Hilbert. By a classical argument, the composition

s : F ∗ × F ∗ −→ F ∗/F ∗n × F ∗/F ∗n ∼= H1(G;µn)×H1(G;µn) −→ H2(G; (µn)⊗2)
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where the last map is the cup-product in Galois cohomology, is a Steinberg sym-
bol (i.e. s(u, 1 − u) = 0 if u *= 0, 1). Therefore, s induces a homomorphism from
K2(F )/nK2(F ) to H2(G; (µn)⊗2). The following classical theorem ([Sr] p. 149) is
one of the nicest in the subject:

THEOREM (Merkurjev-Suslin). The homomorphism

K2(F )/nK2(F ) −→ H2(G; (µn)⊗2)

defined above is an isomorphism.

As a concrete application let us consider the Brauer group of F , Br(F ), gener-
ated (multiplicatively) by central simple algebras A with the relation A ∼ B iff
Mn(A) ∼= Ms(B) for some numbers n et s. It is well known that Br(F ) is canon-
ically isomorphic to the Galois cohomology group H2(G, F

∗).

COROLLARY . Let us assume µn ⊂ F . Then H2(G; (µn)⊗2) ∼= H2(G;µn) ∼=
Br(F )n, the n-torsion of the Brauer group. Therefore, we have an isomorphism

K2(F )/nK2(F ) −→ Br(F )n

A striking example is the case when n = 2 and F is of characteristic *= 2. Then,
the central simple algebra associated to the symbol {a, b} is the quaternion algebra
generated by the symbols i and j with the relations i2 = a, j2 = b and ij = −ji.
This corollary implies that any element of the 2-torsion in Br(F ) is stably isomor-
phic to a product of quaternion algebras, an open problem before Merkurjev and
Suslin proved their theorem.

As another example, let us consider the case when A is a Banach algebra. As
we have seen in a previous lecture, there is a topologically Ktop

2 (A) which is sim-
ply the fundamental group π1(GL(A)). In order to see the relation with the group
K2(A), we send a generator xλ

ij of the Steinberg group to the path t ,−→ xλt
ij . The

relations

xλ
ijx

µ
ij = xλ+µ

ij

[xλ
ij , x

µ
kl] = 1 if j *= k and i *= l

still hold if we replace λ and µ by λt and µt. Now if we compute the commu-
tator [xλt

ij , xµt
jk] for i *= k, we find the path xλµt2

ij which is homotopic (end points
fixed) to the path xλµt

ij . This shows that the previous correspondence induces a
well defined homomorphism :

ϕ : ST (A) −→ E(GL(A))/R
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Here EX denotes in general the path space of X, i.e. the set of continuous paths
f : [0, 1] −→ X such that f(0) = I, the unit matrix, and R the equivalence
relation defined by homotopy with fixed end points. Since K2(A) is the kernel of
the homomorphism ST (A) −→ GL(A), we see immediately that ϕ(x) is a loop in
GL(A) if x ∈ K2(A) and that ϕ induces a well defined homomorphism

ϕ : K2(A) −→ π1(GL(A)) = Ktop
2 (A)

In general, ϕ is neither an injection nor a surjection. As a typical example, if we
choose A to be the field of complex numbers C, we see that ϕ is reduced to 0 since
its image is contained in π1(SL(C)) = 0. Therefore, the kernel of ϕ is the full
group K2(C), which is known to be an uncountable group. [M].

There are however Banach algebras A such that ϕ is an isomorphism. A typi-
cal example is the algebra K of compact operators in a Hilbert space or, more
generally, the algebra of continuous functions X −→ K, where X is a compact
space. A technical problem appears here since these algebras have no unit. How-
ever, as it was proved in [SW]10, these algebras satisfy excision and we may choose
to add a unit the way we want, as for the group K0. For these algebras, Bott pe-
riodicity holds : K2(A) ∼= K0(A), which is quite exceptional in Algebraic K-theory.

The previous considerations suggest to replace topological homotopy by algebraic
homotopy for the definition of the group π1(GL(A)) (A being now a discrete
ring). An “algebraic loop” is just an element σ of GL(A[t]) such that σ(0) = σ(1).
Two algebraic loops σ0 and σ1 are called homotopic if there is an element Σ of
GL(A[t, u]) such that

Σ(t, 0) = σ0(t),Σ(t, 1) = σ1(t)

Σ(0, u) = Σ(1, u) = 1

This is an equivalence relation because GL(A) is a group and we define the alge-
braic fundamental group πalg

1 (GL(A)) as the group of homotopy classes of alge-
braic loops (like in Topology). As before, we have an homomorphism

K2(A) −→ πalg
1 (GL(A))

which is an isomorphism if A is a regular Noetherian ring. This gives an alterna-
tive definition of K2, closer to Topology for this type of rings.

From another viewpoint, we also have a cup-product in Topological K-theory
(for commutative Banach algebras)

Ktop
1 (A)×Ktop

1 (A) −→ Ktop
2 (A)

10See also M . Karoubi: Homologie des groups discrets associés à des algèbres d’opérateurs.
Journal of Operator Theory. 15, p. 109-161(1986).
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The obvious diagram

K1(A)×K1(A) −−−−→ K2(A)
"

"

Ktop
1 (A)×Ktop

1 (A) −−−−→ Ktop
2 (A)

is then commutative. As a typical example, it is easy to show that K1(Z) = Z/2
and the composition K1(Z) −→ K1(R) −→ Ktop

1 (R)is injective. It follows that the
cup-product of the generator of K1(Z) by itself is a non trivial element of K2(Z),
because the same is true for the topological K-theory of R. As a matter of fact,
as it was proved in Milnor’s book, we have K2(Z) = Z/2.

There are many other examples where we can compute the group K2(A). For
finite fields Fq for instance, Milnor showed that K2(Fq) = 0. Another fundamen-
tal example is the case of a number field F and its ring of integers A. We then
have a “localization” exact sequence :

K2(A) −→ K2(F ) −→ ⊕PK1(A/P) −→ K1(A) −→ K1(F )

where P runs over all the prime ideals of A. As a matter of fact, by a famous result
of Bass, Milnor and Serre quoted in the previous lecture, the map K1(A) −→
K1(F ) ∼= F ∗ is injective and we therefore have a well defined surjective map
K2(F ) −→ ⊕K1(A/P) ∼= ⊕(A/P)∗. Each component

K2(F ) −→ (A/P)∗

is called the tame symbol and may be defined explicitly, using the P-adic valuation.

Finally, there is a “fundamental theorem” due to Bass, Heller and Swan which
enables us to compute the Algebraic K−theory Ki (for i = 1 and 2) of the ring
of Laurent polynomials A[t, t−i] in terms of the groups Ki−1 of A. More precisely,
we have an exact sequence

0 −→ KiA −→ Ki(A[t])⊕Ki(A[t−i]) −→ Ki(A[t, t−i]) −→ Ki−1(A) −→ 0

If A is a regular Noetherian ring there is a “homotopy invariance” (first proved by
Grothendieck) i.e. Ki(A) ∼= Ki(A[t]) for i = 0, 1, 2. Therefore, the previous exact
sequence reduces to the isomorphism

Ki(A[t, t−i]) ∼= Ki(A)⊕Ki−1(A)

in this case. We shall come back to this matter for the definition of the negative
K-groups in the next lecture.
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As for the functor K1 there is an application of K2 in differential topology which
is due to Hatcher and Wagoner. This application is related to pseudo-isotopy
classes of diffeomorphisms on manifolds. As it is well known, isotopy classes of
diffeomorphisms of the sphere Sn for instance parametrize the set of differentiable
structures on Sn+1 for n ≥ 5. However, it is difficult to tell in practice when
two diffeomorphisms h0 and h1 of a manifold M are isotopic. There is a weaker
notion of ”pseudo-isotopy” which is a diffeomorphism of a cyclinder M × [0, 1],
whose restrictions to M × {0} and M × {1} give h0 and h1 respectively. Let us
call P(M) the space of pseudo-isotopies of M , i.e. diffeomorphisms of M × [0, 1]
which restrict to the identity on M × {0}.

Before stating the result about this space P(M), we need a preliminary defi-
nition: in the Steinberg group St(A) of a group algebra A = Z[G], we define
wij(u) = xij(u).xji(−u−1).xij(u) and WG the subgroup of St(A) generated by the
wij(u). Finally, we define

Wh2(G) = K2(A)/K2(A) ∩WG

.

THEOREM (Hatcher-Wagoner). ([R] p. 242) Let M be a smooth compact
connected manifold without boundary, of dimension n ≥ 5 and with fundamental
group G. Then there is a surjection π0(P(M)) −→Wh2(G).

In some cases, the kernel has been computed and identified with a group related
to Wh1(G).

Lecture 5

Higher Algebraic K-theory Some computations

After the definition of K1(A) and K2(A) by Bass and Milnor, the problem was
open at the beginning of the 70’s for a “good” definition of Kn(A) for n ≥ 3. It
is now widely accepted that this definition was proposed by Quillen at the Inter-
national Congress of Mathematicians in Nice (1970). However, other definitions
were proposed at the same time and are in fact isomorphic to Quillen’s definition
in favourable cases. We shall discuss briefly one of them at the end of the lecture.

Let us point out first that there is no “axiomatic” definition of these groups Kn

in the spirit of what has been done for Banach algebra for instance (p. 9). More
precisely, Swan has pointed out the following disturbing fact : we cannot have
a natural Mayer-Vietoris exact sequence associated to a cartesian square of rings
with units
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A −−−−→ A1
"

"φ1

A2
φ2−−−−→ A′

with φ1 and φ2 surjective; in other words, in exact

Kn+1(A)→ Kn+1(A1)⊕Kn+1(A2)→ Kn+1(A′)→ Kn(A)→ Kn(A1)⊕Kn(A2)→ Kn(A′)

with K0 isomorphic to the Grothendieck group.

This means that instead of waiting for a “good” axiomatic definition of Kn(A),
Quillen’s proposal is justified by the nice theorems and applications proved with
it (the Merkurjev-Suslin theorem in the previous lecture is for instance a good
example of an application ; it could not be proved without Quillen’s theory).

The definition of Kn(A) uses the Algebraic Topology machinery, as we have seen
in Berrick’s series of lectures : more precisely, we have Kn(A) = πn(BGL(A)+),
for n > 0, where BGL(A)+ is a space obtained from the classifying space of the
infinite general linear group GL(A) by adding cells of dimension 2 and 3. For a
change, we shall adopt a more geometric viewpoint, using the concept of “virtual”
flat A−bundles.

Firstly, we define a flat A−bundle on a space X as a covering P −→ X such
that each fiber is a f.g.p. (= finitely generated projective) A-module. Note that if
A = C, we recover the usual notion of flat complex vector bundle.

A virtual flat A−bundle on a space X (assumed to be a finite CW -complex)
is given by
1) an acyclic map Y −→ X (i.e. a map inducing an isomorphism in homology
with local coefficients or, equivalently, such that its homotopy fiber is an acyclic
space).
2) a flat A−bundle E on Y

Two virtual A−bundles E and E′ on Y and Y ′ respectively are called equiva-
lent if we can find a commutative diagram (up to homotopy)

Y −−−−→ X
"

0

Z ←−−−− Y ′

with where g : Z −→ X is an acyclic map, together with a flat A-bundle F on Z
such that the pull-back of F through the map Y −→ Z (resp. Y ′ −→ Z) is iso-
morphic to E (resp. E′). Two virtual flat A-bundles (for instance E and E′ with
the previous notations) may be added by taking the homotopy fiber product T of
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Y and Y ′ over X and adding γ∗(E) and γ′∗(E′), where γ and γ′ are the obvious
projections of T on Y and Y ′. This addition is compatible with the equivalence
relation.

DEFINITION/THEOREM . [K2] Let us call KA(X) the Grothendieck group
of equivalence classes of virtual flat A-bundles on X. Then, as a functor of the
finite CW -complex X, KA(X) is representable and we have the following isomor-
phism

KA(X) ∼= [X, K0(A)×BGL(A)+]

In particular, KA(Sn) ∼= K0(A) ⊕ Kn(A), where Kn(A) are the K-groups of
Quillen.

Remarks. This theorem should be related to the analogous result in topological
K-theory (for complex vector bundles) : Ktop(Sn) ∼= Z⊕Ktop

n (C). Note also that
this definition both includes K0 and Kn for n > 0.

As in topological K−theory, one can define tensor products of virtual flat A-
bundles and construct this way a bilinear pairing

KA(X)×KB(Z) −→ KA⊗B(X × Z)

In particular, if A is commutative K∗(A) becomes a graded ring and one sees in
more geometrical terms Milnor’s cup-product

K1(A)×K1(A) −→ K2(A)

The λk and ψk operations also extend to the ring KA(X) (if A is commutative).

The first K-groups were calculated by Quillen of course. If A is a finite field
with q elements, Quillen proved that

K2n(Fq) = 0 for n > 0

K2n+1(Fq) ∼= Z/(qn − 1)Z

On the other hand, as we have seen in Berrick’s lectures, K∗(A)⊗Q is the primitive
part of the homology of GL(A) (with rational coefficients). If A is the ring of
integers in a number field, Quillen has shown on one side that Ki(A) is a finitely
generated abelian group ; on the other side Borel has computed the cohomology of
SL(A) with complex coefficients. Comparing these results, one finds the following
isomorphisms with i > 0 (mod. finite abelian groups)

K2i(A) = 0
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K4i+1(A) = Zr1+r2

K4i−1(A) = Zr2

where r1 and r2 are determined by the isomorphism

A⊗Z R ∼= Rr1 × Cr2

Following Grothendieck and Bass, Quillen has succeeded in generalizing to higher
K-groups some theorems proved for K0 and K1. Let us mention a few of them.

THEOREM (homotopy invariance). Let A be a regular Noetherian ring.
Then Kn(A[t]) ∼= Kn(A). Therefore, we also have Kn(A[t1, ..., tr]) ∼= Kn(A).

Note that if A is a field, it was an old question of Serre whether a f.g.p. module
over A[t1, ..., tr] is free. This question was answered in the affirmative by Quillen
and Suslin in the 70’s.

THEOREM (“fundamental” theorem). Let A be a regular Noetherian ring
and let A[t, t−1] be the ring of Laurent polynomial with coefficients in A. Then we
have the exact sequence

0 → Kn(A)→ Kn(A[t])⊕Kn(A[t−1])→ Kn(A[t, t−1])→ Kn−1(A)→ 0

THEOREM (one form of the “dévissage” and localization theorems).
Let A be a regular Noetherian ring and f a non zero divisor such that A/f is
regular Noetherian. Then we have an exact sequence

Kn+1(A)→ Kn+1(Af )→ Kn(A/f)→ Kn(A)→ Kn(Af )

where Af is the ring A localised at f (i.e. making f invertible).

Another variant of this theorem is the following : let A be a Dedekind ring and F
its field of fractions. Then we have an exact sequence

Kn+1(A)→ Kn+1(F )→ ⊕PKn(A/p)→ Kn(A)→ Kn(F )

where P runs through the set of all prime ideals in A.

Remarks. All these theorems may be paraphrased with a parameter space X
instead of the sphere Sn by introducing a suitable fibration. For instance, the
homotopy invariance may be restated as

KA[t](X) ∼= KA(X)
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for any regular Noetherian ring A. We should also notice that Quillen was able
to prove his theorems by using another construction in Algebraic K-theory, called
the “Q-construction”. This has been detailed in Berrick’s lectures (see also [FW]).

Having stated all these theorems, one may ask what the definition of Kn(A) for
n < 0 should be, so that the previous theorems can be extended to all values
of n ∈ Z. This definition is due independently to Bass and the author of these
notes. Since we are going to use the second definition in Hermitian K-theory, let
us choose the latter. The key ingredient is the use of “infinite” matrices. More
precisely, let us define the “cone” of A, called CA, as the set of infinite matri-
ces such that in each row and each column we have a finite number of non zero
elements chosen among a finite number of elements in A. Clearly CA is a ring
by matrix multiplication, containing the finite matrices (i.e. whose entries are 0,
except for a finite number) as a 2-sided ideal. We define the suspension SA of A
as the quotient ring. This definition may be iterated and Sn(A) will denote the
nth suspension of A.

DEFINITION/THEOREM . The group K−n(A) is by definition K(SnA). All
the theorems stated before are true for the functors Kn , n ∈ Z. Note however that
Kn(A) = 0 for n < 0 if A is regular Noetherian.

A theorem which is missing in the picture is “Bott periodicity”. Of course, it does
not work in general : for finite fields for instance, we are far from getting the same
answer for Kn and Kn+α. However, we can get a partial answer for other types
of K-groups which we shall introduce now. As a matter of fact, since we know
that Algebraic K-theory is represented by a spectrum K(A) defined through the
BGL(SnA)+, there is a well known procedure in Algebraic Topology taking this
spectrum mod. n for any integer n. A more concrete way is to consider the Puppe
sequence associated to a map of degree n between spheres

Sr −→ Sr −→M(n, r) = X −→ Sr+1 −→ Sr+1

Therefore, X (so-called Moore space) is a space with 2 cells of dimension r and
r +1 respectively, the second cell being attached to the first by a map of degree n.
If n = 2 and r = 1 for instance, X is just the real projective space of dimension 2.

We now define K-theory with coefficients in Z/n, denoted by Kr+1(A; Z/n), as
the quotient group KA(X)/K0(A). From the Puppe sequence, we get an exact
sequence

Kr+1(A) −→ Kr+1(A) −→ Kr+1(A; Z/n) −→ Kr(A) −→ Kr(A)

where the arrows between the groups Ki(A) are the multiplication by n.
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Here is a fundamental theorem of Suslin which is the true analog of Bott peri-
odicity.

THEOREM . Let F be an algebraically closed field and let n be a number prime
to the characteristic of F . Then there is a canonical isomorphism of graded rings
K2r(F ; Z/n) ∼= (µn)⊗r and K2r+1(F ; Z/n) = 0.

A sketch of the proof of this theorem may be found (among other things) in [FW],
lecture 8.

With this theorem in mind, one may naturally ask if there is a way to compute
K∗(F ; Z/n) for an arbitrary field (not necessarily algebraically closed). If F is the
field of real numbers, and if we work in topological K-theory instead, we know
that it is not an easy task since we get an 8-periodicity which looks mysterious
compared to the 2-periodicity of complex K-theory. All these questions are in
fact related to the so-called homotopy fixed point set relative to a group action.
Roughly speaking, we know11 that K(F ) is the fixed point set of K(F ), where F
denotes the separable closure of F , with respect to the action of the Galois group
G. We have a fundamental map

φ : K(F ) = K(F )G −→ K(F )hG

where K(F )hG is the “homotopy fixed point set” of K(F ), i.e. the set of equivariant
maps EG −→ K(F ) where EG is the “universal” principal G bundle over BG. One
version of the Lichtenbaum-Quillen conjecture is that φ induces an isomorphism
on the homotopy groups πi for i > n-cohomological dimension of G = dn. This
implies the existence of a spectral sequence

Ep,q
r = Hp(G;µ⊗q

n )→ K2q−p(F ; Z/n)

if the characteristic of the field does not divide n and if 2q− p > dn. For instance,
dn = 1 if n is odd and if F is a number field : then the spectral sequence degener-
ates and we get a direct link between Algebraic K-theory and Galois cohomology,
quite interesting in Number Theory. By the recent work of Voevodsky, the con-
jecture is true for n = 2. We shall hear more about this in Morel’s lectures.

We should notice that the topological analog of this conjecture is true : one
should replace the classifying space of Algebraic K-theory by the classifying space
of (complex) topological K-theory, where Z/2 acts by complex conjugation. Then
the fixed point set (i.e. the classifying space of real topological K-theory) has the
homotopy type of the homotopy fixed point set.

Although the definition of the Kn(A) is getting relatively old now, they are still
11We now denote by K(F ) the classifying space of Algebraic K-theory mod. n: its homotopy

groups are the K-groups with coefficients in Z/n.
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quite difficult to compute, even for simple rings as the ring of integers Z (although
we know these groups rationally by the work of Borel on the rational cohomol-
ogy of arithmetic groups). Thanks to the remarkable work of Voevodsky followed
by Bökstedt, Rognes and Weibel, we can now compute the 2 primary torsion of
Kn(Z) through the following homotopy cartesian square (where Z′ = Z[1/2])

BGL(Z′)+# −−−−→ BGL(R)#
"

"

BGL(F3)+# −−−−→ BGL(C)#

where the symbol # means 2-adic completion and where BGL(R) and BGL(C)
are the classifying spaces of the topological groups GL(R) and GL(C) respectively.
From this homotopy cartesian square, Rognes and Weibel found the following re-
sults (mod. a finite odd torsion group and with n > 0 for the first 2 groups and
n ≥ 0 for the others)

K8n(Z) = 0
K8n+1(Z) = Z⊕ Z/2
K8n+2(Z) = Z/2
K8n+3(Z) = Z/16
K8n+4(Z) = 0
K8n+5(Z) = Z
K8n+6(Z) = 0
K8n+7(Z) = Z/2r where 2r is the 2 primary component of the number 4n + 4.

One should also mention (in reverse historical order) that Milnor gave another
definition of the groups Kn(F ), n > 2, for a field F . This definition does not
agree with Quillen’s definition in general and we should denote it by KM

n (F ): it
is the quotient of the tensor product F ∗ ⊗Z ...⊗Z F ∗ (n factors) by the subgroup
generated by the tensors x1 ⊗ ...⊗ xn such that xi+1 = 1− xi for a certain i. By
the usual cup-product in Algebraic K-theory, there is an obvious map

KM
n (F ) −→ Kn(F )

which is an isomorphism if n = 1 or 2 according to Matsumoto’s theorem. The
next interesting case is n = 3. Then we have the following nice theorem of Suslin
:

THEOREM . The map KM
3 (F ) −→ K3(F ) is injective and the quotient K3(F )ind

fits into an exact sequence

0 −→ µ −→ K3(F )ind −→ B(F ) −→ 0

In this sequence, B(F ) is the ”Bloch group” i.e. the group which fits into the
exact sequence
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0 −−−−→ B(F ) −−−−→ P (F ) r−−−−→ Λ2(F ∗) −−−−→ K2(F ) −−−−→ 0

Here P (F ) is the quotient of the free group generated by elements [x] in F ∗ by
the λ group generated by the “cross-ratio relations” :

[x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x

1− y
] = 0

and r([x] = x∧ (1− x). Moreover, µ is a torsion group which is deduced from the
group µF of roots of unity in F . If, following [FW], we write µF (2) as Tor(µF, µF ),
m is the group µF (2) if the characteristic is 2 and the non trivial extension of Z/2
by µF (2) otherwise.

It is an open problem to describe the other Kn-groups of a field in such a nice
algebraic way...

One of the most striking applications of Algebraic K-theory to Differential Topol-
ogy is due to the hard work of Waldhausen which we have not touched in this
report. For instance, in the lecture 4 we introduced the space P(M) of pseudo-
isotopies of M , i.e. diffeomorphisms q of M× [0, 1] which restrict to the identity on
M×0. If M has a boundary, we ask moreover that q is the identity on ∂M× [0, 1].

THEOREM . Let M be the ball Bn of dimension n. Then, we have an isomor-
phism

πi(P(M))⊗Z Q ∼= Ki+2(Z)⊗Z Q

for 0 ≤ i ≤ n/6 − 7. Therefore, mod. torsion elements, and within this range of
degrees, we have πi(P(M)) = Z for i = 4δ − 1 and πi(P(M)) = 0 for i *= 4δ − 1.

The same type of results applies to the group of diffeomorphisms of Bn mod.
its boundary. We get πi(Diff(Bn, ∂) ⊗Z Q = Ki+2(Z) ⊗Z Q for the same range
0 ≤ i ≤ n/6− 7 and n odd if i = 4k − 1.

For Banach algebras A, there are now two competing theories : topological K-
theory on one side which we denoted by Ktop

n (A) previously and Algebraic K-
theory Kn(A). There is a canonical homomorphism

φn : Kn(A) −→ Ktop
n (A)

If A is the field of complex numbers and if we take K-theory with finite coefficients,
we know by Suslin’s theorem that this map is an isomorphism. Other Banach al-
gebras of interest in functional analysis are the so-called “stable” C∗-algebras ;
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this means that A ⊗ K is isomorphic to A (for a suitable notion of tensor prod-
uct), where K is the ring of compact operators in an Hilbert space. A surprising
result proved by the author of these notes at the end of the 80’s is that φn is an
isomorphism for n ≤ 2 (n may be negative). The question arose then whether φn

is also an isomorphism for n > 2. This question was answered positively by Suslin
and Wodzicki [SW]. In fact, they proved excision for this kind of rings A (without
unit) : Kn(A) does not depend of the ambiant ring where the ideal A lives. The
idea of the proof (assuming excision) is quite simple and is based on cup-products
with Bott elements as it was explained in the second lecture.

Let us conclude this lecture by trying to answer a frustration the algebraists
might feel at this point. Is there a way to define Kn(A) which avoids the Al-
gebraic Topology machinery? For regular noetherian rings, this definition was
indeed proposed by Villamayor and myself [KV] and is based on polynomial ho-
motopies (much related to the A1-homotopy in Morel’s lectures). The definition
is the following. Let us consider the ring

An = A[x0, x1, ..., xn]/(x0 + x1 + ... + xn − 1)

and the subgroup12 Gn of GL(An) consisting of matrices which are equal to the
identity matrix if one of the variables xi = 0 (for i < n). We define a homomor-
phism dn : Gn −→ Gn−1 by setting xn = 0 (if n < 0, Gn = {1} by convention).
Then Kerdn/Imdn+1 is naturally isomorphic to Kn(A) for n > 0.

Exercise : check this for n = 1.

We can put these last considerations in a more sophisticated framework by con-
sidering An , n ∈ N, as a simplicial ring and constructing its classifying space
BGL(A∗) as it is usual in simplicial topology (A is now an arbitrary ring). If we
view A as a ”constant” simplicial ring, we have a map

θ : BGL(A) −→ BGL(A∗)

Now BGL(A∗) is a connected space with a fundamental group easily seen to be
GL(A)/U(A), where U(A) is the group generated by unipotent matrices. Since
we have the inclusions

[GL(A), GL(A)] = E(A) ⊂ U(A) ⊂ GL(A)

the quotient GL(A)/U(A) is an abelian group and therefore θ leads to a map

BGL(A)+ −→ BGL(A∗)

If we follow [FW] by putting KVn(A) = πn(BGL(A∗)), we therefore have a ho-
momorphism

γ : Kn(A) −→ KVn(A)
12We should notice that G∗ is a simplicial group. In modern language, we just say that

Kn+1(A) is the n-homotopy group of this simplicial group.
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Now the groups KVn(A) are just the groups described above by polynomial homo-
topies and another way of stating the previous result (due essentially to Quillen)
is the following fact : γ is an isomorphism if A is a regular Noetherian ring.

Lecture 6

Hermitian K-theory

As we know, usual K-theory is deeply linked with the general linear group and
there is no a priori reason why we should not consider the other classical groups on
an equal footing. As we shall see, it is not only desirable, but this setting appears
to be suitable for a generalization of Bott periodicity and the computation of the
homology of classical groups in terms of classical Witt groups.

The starting point is a ring with antiinvolution a ,→ a together with an element ε
of the center of A such that εε = 1. In most examples, ε = ±1. For sake of sim-
plicity, we also assume the existence of an element λ in the center of A such that
λ + λ = 1 (if 2 is invertible in A, we might choose λ = 1/2). We refer to the book
of A. Bak (Annals of Math Studies) for a more refined notion of hermitian forms
using the so called “form-parameters” (when there is no λ satisfying this property).

If M is a right f.g.p. module over A, we define its dual M∗ to be the group
of Z -linear maps f : M −→ A such that f(m.a) = a.f(m) for m ∈M and a ∈ A.
It is again a right f.g.p. A-module if we put (f.b)(m) = f(m).b for b ∈ A. An
ε-hermitian form on M is roughly speaking a A-linear map M −→ M∗ satisfying
some conditions of ε-symmetry. More precisely, it is given by a Z-bilinear map

φ : M ×M −→ A

such that
φ(ma, m′b) = aφ(m, m′)b

φ(m′, m) = εφ(m, m′)

with obvious notations. Such a (M,φ) is called an ε-hermitian module . The
correspondence

φ : m′ ,→ [m ,→ φ(m, m′)]

defines a morphism from M to M∗ and we say that φ is non-degenerate if φ is an
isomorphism.

Fundamental example (the hyperbolic module). Let N be a f.g.p. module
and M = N ⊕N∗. Then a non degenerate ε-hermitian form on M is given by the
formula

φ((x, f), (x′, f ′)) = f(x′) + εf ′(x)
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We denote this module by H(N). If N = An, we may identify N with its dual via
the map y ,→ fy defined by fy(x) = xy . The hermitian form on An ⊕ An may
then be written as

φ((x, y), (x′, y′)) = yx′ + εxy′

There is an obvious definition of the direct sum of ε-hermitian modules and of
an isomorphism between them. We write εL(A) for the Grothendieck group con-
structed from such modules13.

Exercise : compute εL(A) for A = R, C or H and all possible antiinvolutions and
ε.

Exercise : if (M,φ) is an ε-hermitian module, prove that (M,φ) ⊕ (M,−φ)
is isomorphic to H(M) (one has to use the existence of the λ above).

Exercise : let A be the ring of continuous functions on a compact space with
complex values. If A is provided with the trivial involution and if we take ε = 1,
prove that εL(A) is isomorphic to the real topological K-theory of X.

The analog of the general linear group is the ε-orthogonal group which is the
group of automorphisms of H(An). We denote this group by εO2n(A) : it can be
described concretely by matrices in n-blocks

M =
(

a b
c d

)

such that M∗M = MM∗ = I where

M∗ =
(

td εtb
εtc ta

)

Example: if A = the field of real numbers R, 1O2n(A) is the classical group
O(n, n) which has the homotopy type of O(n)×O(n). On the other end, −1O2n(A)
is the classical group Sp(2n, R) which has the homotopy type of the unitary group
U(n).

The infinite orthogonal group

εO(A) = limεO2n(A)

has the same formal property as the infinite general linear group. In particular, its
commutator subgroup is perfect. Therefore, we can perform the + construction
(or, more geometrically, consider virtual flat A-bundles with ε-hermitian forms as
we did in lecture 5).

13We use here the letter L which is quite convenient, but the reader should not be confused
with the definition of surgery groups, also denoted by the letter L
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DEFINITION . The higher Hermitian K-theory of a ring A (for n > 0) is
defined as

εLn(A) = πn(BεO(A)+)

Example. Let F be a field of characteristic different from 2 provided with the
trivial involution. Then εL1(F ) = 0 if ε = −1 and εL1(F ) = Z/2 × F ∗/F ∗

2
if

ε = +1

Notation. We write
K(A) = K(A)×BGL(A)+

for the classifiying space of Algebraic K-theory and

εL(A) =ε L(A)×BεO(A)+

for the classifying space of Hermitian K-theory

There are two interesting functors between Hermitian K-theory and Algebraic
K-theory. One of them is the forgetful functor from modules with hermitian
forms to modules (with no forms) and the other one from modules to modules
with forms, sending N to H(N), the hyperbolic module associated to N . These
functors induce two maps

F :ε L(A) −→ K(A) and H : K(A) −→ε L(A)

We define εV(A) as the homotopy fiber of F and εU(A) as the homotopy fiber of
H. We define this way two ”relative” theories:

εVnA = πn(εV(A)) and εUnA = πn(εU(A))

THEOREM (the fundamental theorem of Hermitian K-theory). There is a
natural homotopy equivalence between εV(A) and the loop space of −εU(A). In
particular,

εVn(A) ∼= −εUn+1(A)

Moreover, if we work within the framework of Banach algebras, the same statement
is valid for the topological analogs (i.e. replacing BGL(A)+ by BGL(A)top and
BεO(A)+ by BεO(A)top).

In order to get a feeling for this theorem, it is worthwhile to work out the classical
topological examples A = R, C or H , with various antiinvolutions (and ε = ±1).
Note in general that the connected component of εV(A) (resp. εU(A)) is the con-
nected component of the homogeneous space GL(A)/εO(A) (resp. −εO(A)/GL(A)).
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If for instance A = R, ε = −1, we get the spaces GL(R)/−1O(R) (which has the
homotopy type of O/U) and 1O(R)/GL(R) (which has the homotopy type of O,
the infinite orthogonal group). Therefore, the previous theorem implies that O/U
has the homotopy type of the loop space ΩO, one of the eight homotopy equiva-
lences of Bott (see the end of lecture 2, where O has the homotopy type of GL(R)
and U the homotopy type of GL(C)). It is a pleasant exercise to recover the seven
other homotopy equivalences by dealing with other classical groups. Since the list
of classical groups is finite, it is “reasonable” to expect some periodicity...

There are two remarkable involutions14 on the H-spaces K(A) and εL(A) and
it is better to describe them in the context of classical groups. On GL(A), one
takes the contragredient

M ,→ M
−1

On εO(A) the involution is more delicate. The idea is to take the functor which
associates to any hermitian module (M, φ) the “opposite” module (M,−φ). On
the level of groups, this means that we have to identify the hyperbolic module
H(An) = An ⊕ An with its opposite Hermitian form. In terms of the orthogonal
group, this involution sends the matrix

M =
(

a b
c d

)

to the matrix
(

1 0
0 −1

) (
a b
c d

) (
1 0
0 −1

)
=

(
a −b
−c d

)

Therefore, if we localize the spaces K(A) and εL(A) away from 2, we obtain spaces
K(A)′ and εL(A)′, together with splittings according to these involutions

K(A)′ ≈ K(A)′+ ×K(A)′− and εL(A)′ ≈ε L(A)′+ ×ε L(A)′−

From to this decompositon, the hyperbolic functor and the forgetful functor are
both represented by the matrix (

1 0
0 0

)

If follows that, after localisation which we denote by the symbol a′, the space
εV(A)′ has the homotopy type of εL(A)′− ×ΩK(A)′− , whereas the space −εU(A)′
has the homotopy type of K(A)′− ×Ω−εL(A)′−. Therefore, the fundamental theo-
rem of Hermitian K-theory is equivalent to saying that εL(A)′− has the homotopy
type of Ω2

−εL(A)′−.

14One has to be careful about the precise definition of these spaces when a group is acting. For
instance, the decomposition K(A) = K(A)× BGL(A)+ is NON canionical, A correct definition
(among others) is to choose Ω(BGL(SA))+.
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The preceding considerations give us an idea of how to prove the fundamental
theorem in Hermitian K-theory after localisation (a more delicate proof, taking
into account the 2-torsion is presented in [K4]).We define the Witt groups εWn(A)
as Coker (Kn(A) −→ εLn(A)). Then the fundamental theorem amounts to saying
that

εWn(A) ∼=−ε Wn+2(A) mod.2 torsion

since these Witt groups are essentially the homotopy groups of the space εL(A)′−.
In order to prove such a statement, one may follow the pattern used to prove
complex Bott periodicity in the second lecture. The base ring which plays the role
of C is the ring Z[x] with the involution x ,→ 1−x. Then the scheme is the following

1) Construct non connected deloopings of Hermitian K-theory with a good notion
of cup-product. More precisely if we have a pairing of rings with involution

A×B −→ C

we should have a pairing between the representing spaces of Hermitian K-theory,
taking into account the sign of symmetry :

εL(A)×η L(B) −→εη L(C)

This is done as in usual K-theory, using the suspension of a ring. One can proceed
in the same way for Banach algebras by completing the cone and the suspension.

2) It is a well known theorem that 1W (Z[x]) ∼= Z ≈1 W (R). The key point is
now to construct elements −1W−2(Z[x]) and v ∈−1 W−2(Z[x]) such that their
cup-product is 4 times a generator of 1W (Z[x]). The construction of u and v is
done very explicitly in [K4]. To check that their cup-product is non trivial, one
has to send Z[x] into R, the image of x being 1/2 and use topological K-theory of
Banach algebras. This is a nice point where Algebraic and Topological K-theory
are interacting.

3) Using u and v, we define morphisms

εWn(A) −→−ε Wn+2(A) and −εWn+2(A) −→ε Wn(A)

such that the two compositions are 4 times the identity. This essentially concludes
the proof.

Another theorem of the same spirit is the following.

THEOREM . There exist u′ ∈−1 W2(Z) and v′ ∈−1 W2(Z) such that their
cup-product is an element of 1W (Z) which image in 1W (R) ∼= Z is 32 times the
canonical generator. Now let A be ANY ring with involution (we no longer assume
the existence of λ such that λ+

−→
λ = 1). Then, using u′ and v′, we define as before
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two morphisms between εWn(A) and −εWn+2(A) such that their composite is 32
times the identity. In particular,

εWn(A)⊗ Z[1/2] ∼=−ε Wn+2(A)⊗ Z[1/2]

for ANY ring A.

The fundamental theorem and the slight generalization above have nice applica-
tions for the computation of the homology of the general ε-orthogonal group. The
philosophy is that this homology splits into two parts, one coming from the gen-
eral linear group which is unknown in general and the other coming from more
accessible invariants which are ±εWn(A) for n = 0 and 1 only (since we have pe-
riodicity). As a typical example, let us consider the homology of the symplectic
group Sp(Z) = limSp2n(Z) and the orthogonal group 1O(Z) = lim1 O2n(Z) .

THEOREM . Let Z′ = Z[1/2]. Then for the homology with coefficients in Z′,
we have the following decomposition of the homology of H∗(BSp(Z)) :

H∗(BSp(Z)) ∼= Z′[x2, x6, ...]⊗M∗

where M0 = Z′ and Mi is a finite group for i > 0.

The theorem follows from the decomposition of BSp(Z)+ after localisation

BSp(Z)+ ≈−1 L(Z)′+ ×−1 L(Z)′−

where πi(−1L(Z)′−) = Z′ for i ≡ 2 mod. 4 and 0 otherwise and πi(−1L(Z)′+)) is
the symmetric part of Ki(Z) after localisation which is 0 mod. torsion since the
regulator map sends symmetric elements to 0.

THEOREM . Let Z′ = Z[1/2]. Then for the homology with coefficients in Z′,
we have the following decomposition of the homology of H∗(1O(Z)) :

H∗(1O(Z)) ∼= Z′[x4, x8, ...]⊗M∗

where M0 = Z′ and Mi is a finite group for i > 0.

For both groups, it is important to notice that the elements x4i+2 in the symplectic
case are determined by embedding Sp(Z) in the topological group Sp(R) which
has the homotopy type of the infinite (topological) unitary group. In the same
way, the elements x4i in the orthogonal case are determined by embedding 1O(Z)
in the topological group 1O(R) which has the homotopy type of the product of
two copies of the classical (topological) infinite orthogonal group. The situation
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there is in sharp contrast with what happens for the general linear group : by
Chern-Weil theory, we know that the homomorphism

Kn(R) −→ Ktop
n (R)

has a finite cokernel. This is not true for the homomorphism

1Ln(R) −→1 Ltop
n (R) (resp.−1Ln(R) −→−1 Ltop

n (R))

for n ≡ 0 mod. 4 (resp. n ≡ 2 mod. 4).

Let us now turn to some computations, starting with finite fields. It has been
proved by Quillen that BGL(Fq)+ has the homotopy fiber of the map ψq − 1,
where

ψq : BGL(C) −→ BGL(C)

is the map induced by the Adams operation. In the same way, for q odd, it has
been proved by Friedlander that B1O(Fq) [resp.B−1O(Fq)] is the homotopy fiber
of the map ψq − 1, where

ψq : B1O(C) −→ B1O(C) [resp. ψq : B−1O(C) −→ B−1O(C)]

Note that 1O(C) has the homotopy type of the usual infinite orthogonal group
O = injlimO(n) and −1O(C) has the homotopy type of Sp = injlimSp(n). This
leads to the following computations of 1Li(Fq) for i > 0 and i mod.8.

i(mod.8) 1Li(Fq) −1Li(Fq)

i = 0 Z/2 0
i = 1 Z/2⊕ Z/2 0
i = 2 Z/2 0
i = 3 Z/(q(i+1)/2 − 1) Z/(q(i+1)/2 − 1)
i = 4 0 0
i = 5 0 Z/2⊕ Z/2
i = 6 0 Z /2
i = 7 Z/(q(i+1)/2 − 1) Z/(q(i+1)/2 − 1)

Friedlander has also noticed that the Witt groups 1Wi(Fq) and −1Wi(Fq) are
periodic of period 8 with respect to i. More precisely, we have 1Wi(Fq) ∼=−1

Wi+4(Fq) and these are isomorphic to the following list, starting for i ≡ 0 mod.8

Z/2, Z/2, 0, 0, 0, 0, Z/2, Z/2

Another case of interest is when our basic ring is Z′ = Z[1/2]. Some computations
have been done recently by A.J. Berrick and the author. They will be published
shortly. Here are the results for i > 0 and mod. an odd torsion finite group

i (mod. 8) 1Li(Z ′) −1Li(Z ′)
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i = 0 Z⊕ Z/2 0
i = 1 Z/2⊕ Z/2⊕ Z/2 0
i = 2 Z⊕ Z/2 Z
i = 3 Z /8 Z /16
i = 4 Z Z /2
i = 5 0 Z /2
i = 6 0 Z
i = 7 Z/2t+1 Z/2t+1

where 2t is the 2-primary component of i + 1.

Lecture 7

Cyclic homology and K-theory

Let me say a few historical words on the subject before explaining more recent
achievements. Cyclic homology (and cohomology) grew from at least 3 sources :

1) In his attempt to understand the Atiyah-Singer index theorem in noncommu-
tative geometry, Connes was forced to find the analog of the de Rham complex for
suitable dense subalgebras of C∗-algebras (typical examples are the Schatten ide-
als introduced in Higson’s lectures). Connes explained his ideas in the K-theory
seminar in Paris in 1981 and with more details in his course at the College de
France the following years. He called his groups ”cyclic homology” and denoted
them by HC∗(A). These groups are very much related to Hochschild homology
HH∗(A), introduced 50 years ago. As a matter of fact, there is a well defined
homomorphism

B : HC∗(A) −→ HH∗+1(A)

which plays a central role in the theory.

2) From a quite different perspective, Tsygan was trying to compute the Lie al-
gebra homology of infinite matrices over a ring A of characteristic 0. He proved
that this homology is primitively generated (as a Hopf algebra) by precisely the
cyclic homology groups of A, introduced by Connes independently. This result
was proved also by Quillen and Loday in 1983, using invariant theory.

3) Finally, from my work in K-theory during the late 70’s, I was looking for a
kind of Chern character for general rings. The target was then a new homology
theory of rings called ”noncommutative de Rham homology” (see [K2] § 1] and
denoted HdR

∗ (A), but the relaton with cyclic homology was unclear at the first
glance. However, as it was realized in 1983 by Connes and myself, this theory
HdR
∗ (A) happens to be just the kernel of the map B : HC∗(A) −→ HH∗+1(A)

mentioned above. From this clarified viewpoint, HC∗(A) and HdR
∗ (A) are like

looking very much as Deligne cohomology in a noncommutative context.
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The purpose of this lecture is to fill the gap between K-theory and cyclic ho-
mology, via various types of “Chern characters”. In order not to overlap with
the lectures of Berrick and Higson, we shall take here the viewpoint of functional
analysis and deal essentially with Algebraic and Topological K-theory of Fréchet
algebras (which are more general than Banach algebras), comparing them with
the corresponding cyclic homology groups.

More precisely, let A be a unitary, but not necessarily commutative Fréchet alge-
bra. As we have seen in previous lectures, we can define Algebraic and Topolog-
ical K-theory denoted respectively by Kn(A) and Ktop

n (A). For n > 0, we have
Kn(A) = πn(BGL(A)+); here BGL(A)+ denotes the + construction of Quillen
applied to the classifying space BGL(A)δ, with GL(A)δ = GL(A), viewed as a
discrete group. On the other hand, Ktop

n (A) is defined as the homotopy group
πn(BGL(A)), where BGL(A) denotes the classifying space of the topological group
GL(A) (at least if A is a Banach algebra ; the general case needs simplicial meth-
ods). The obvious map BGL(A)+ −→ BGL(A) induces a natural homomorphism

Kn(A) −→ Ktop
n (A)

We shall use cyclic homology as a tool to construct an intermediary K-theory,
called the ”multiplicative K-theory of A” and denoted by Kn(A), which is more
accessible than Algebraic K-theory. The previous homomorphism can be factored
as

Kn(A) −→ Kn(A) −→ Ktop
n (A)

The homomorphism Kn(A) −→ Kn(A) contains various interesting invariants of
the Algebraic K-theory of the Fréchet algebra A. For instance Kn(A) ∼= C∗ when
A = C and n odd. The map K2n−1(C) −→ C∗ is essentially the regulator map.
We also have K2(C∞(S1)) ∼= C∗ and the map K2(C∞(S1)) −→ C∗ gives rise to
the well-known Kac-Moody extension of SL(C∞(S1)) by C∗ [CK].

In order to put all these informations together, we shall construct a commuta-
tive diagram with 16 entries (when n ≥ 1) and exact horizontal sequences :

Krel
n (A) −→ Kn(A) −→ Ktop

n (A) −→ Krel
n−1(A)

↓ ↓ ‖ ↓
HCn−1(A) −→ Kn(A) −→ Ktop

n (A) −→ HCn−2(A)
‖ ↓ ↓ ‖

HCn−1(A) −→ HCn(A) −→ HCtop
n (A) −→ HCn−2(A)

‖ ↓ ↓ ‖
HCn−1(A) −→ HHn(A) −→ HCn(A) −→ HCn−2(A)

Most of the work describing this diagram is included in a paper by Connes and
myself [CK] and in a paper of Weibel15. In the first row, the group Krel

n (A) is de-
15C.Weibel. Nil K-theory maps to cyclic homology. Trans. AMS 303(1987), 541-558
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fined as the nth homotopy group of the homotopy fiber of the map BGL(A)+ −→
BGL(A). Therefore, the first exact sequence is tautological. The other terms and
arrows of this diagram will be detailed now. At the same time we shall explain
what the Chern character should be in this context.

Cyclic homology has already been defined in previous lectures. Therefore, we
shall innovate slightly by taking cyclic homology of Fréchet algebras16 instead,
since it is our viewpoint here. If ⊗π denotes the completed tensor product of
Grothendieck, we define a double complex by the following formulas

Cp,q(A) = A⊗π A⊗π ...⊗π A(q + 1 times)

for p ∈ Z and q ∈ N. The first differential b : Cp,q(A) −→ Cp,q−1(A) is the usual
Hochschild boundary

b(a0, ..., aq) =
q−1∑

i=0

(−1)i(a0, ..., aiai+1, ..., aq) + (−1)q(aqa0, a1, ..., aq−1)

The second differential ∂ : Cp,q(A) −→ Cp−1,q(A) is defined by 1 − t if p is even
and −N if p is odd. Here the operators t and N : Cp,q(A) −→ Cp,q(A) are defined
by

t(a0, ..., aq) = (−1)q(aq, a0, ..., aq−1)

N = 1 + t + ... + tq

We therefore get the following picture :

"
"

"
"

"
"

←−−−− C−2,2 ←−−−− C−1,2 ←−−−− C0,2 ←−−−− C1,2 ←−−−− C1,2 ←−−−−
"

"
"

"
"

"

←−−−− C−2,1 ←−−−− C−1,1 ←−−−− C0,1 ←−−−− C1,1 ←−−−− C1,1 ←−−−−
"

"
"

"
"

"

←−−−− C−2,0 ←−−−− C−1,0 ←−−−− C0,0 ←−−−− C1,0 ←−−−− C1,0 ←−−−−

The “total” complex of this diagram is defined by a product formula :

Cper
n (A) =

∏

p+q=n

Cp,q(A)

We denote by HCper
∗ (A) the (periodic cyclic) homology of this complex. The

restriction of this double complex to the first quadrant defines a complex whose
homology HC∗(A) is by definition the cyclic homology of the Fréchet algebra

16For instance, a Banach algebra or the algebra of C∞ functions on a manifold.
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A (taking the topology into account ). The restriction to the second quadrant
(denoted C−

∗ (A) ) of the double complex gives the definition of the negative cyclic
homology HC−

∗ (A). We have an exact sequence (see [L1] p. 160 for instance):

0 −→ lim1
rHCn+2r+1(A) −→ HCper

n (A) −→ limrHCn+2r(A) −→ 0

Here the projective limits lim and lim1 are computed using the periodicity oper-
ator S of Connes [C1]. We should notice that the homology spaces obtained this
way are not Hausdorff in general.

For technical reasons which will appear later on, we shall truncate the complexes
En = Cper

n or C−
n by 0 if n < 0 and Ker(E0 −→ E−1) if n = 0, the other En

staying unchanged. For n ≥ 0, the groups HCper
n and HC−

n are still the same as
before. Finally, we notice the following diagram with two exact sequences

HCn−1(A) −→ HC−
n (A) −→ HCper

n (A) −→ HCn−2(A)
‖ ↓ ↓ ‖

HCn−1(A) −→ HHn(A) −→ HCn(A) −→ HCn−2(A)

Another way to introduce cyclic homology is to consider the double complex (B, b)
of Connes (cf. [L1] p. 56 for instance). It can be written over 3 quadrants in the
following way:

←−−−− ←−−−− D2 ←−−−− D1
B←−−−− D0

"
"

"
"b

←−−−− D2 ←−−−− D1 ←−−−− D0
"

"
"

D2 ←−−−− D1 ←−−−− D0

where we put in general Dq = Cp,q = A⊗
q+1
π . If we truncate as before, we can

restrict it to the first two quadrants. We denote by B (resp. b) the horizontal
arrows (resp. the vertical ones). The bidegrees are obvious (the D0 of the second
line has bidegree (0, 0)).

We may normalize this double complex by replacing Dq by Ωq = Ωq(A) =
A⊗π A⊗π ...⊗π A (q copies ofA = A/C.1). The bicomplex

←−−−− ←−−−− Ω2 ←−−−− Ω1
B←−−−− Ω0

"
"

"
"b

←−−−− Ω2 ←−−−− Ω1 ←−−−− Ω0
"

"
"

Ω2 ←−−−− Ω1 ←−−−− Ω0
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also enables us to compute cyclic homology and its variants (HCper
∗ , HC−∗ , ...).

Finally, there is a last variant of cyclic homology, called non commutative de
Rham homology, mentionned at the beginning, which we shall define now. The
direct sum of the Ωn(A) above is a differential graded algebra : we write formally
an element of A ⊗π A ⊗π ... ⊗π A as a linear combination (infinite since we are
dealing with the topological case) of elements of the type

a0da1...dan

and we multiply them formally using the Leibniz rule: for instance, (x.dy).(z.dt) =
x.d(yz).dt − xy.dz.dt. The differential is defined simply by d(a0da1...dan) =
1.da0da1...dan. Let us now consider the algebra A obtained by adding a unit
to A and the quotient Ω∗(A) of Ω∗(A) by the C-module generated by commuta-
tors λω−ωλ, λ ∈ A, and their differentials. This C-module is easily seen to be the
quotient of the algebra Ω∗(A) by the module generated by graded commutators.

THEOREM ([C1][K2]). We have a natural isomorphism

HdR
n (A) ∼= Ker[B : HCn(A) −→ HHn+1(A)]

From the classical proof of the Poincaré lemma in de Rham cohomology, we de-
duce that HdR

n is a homotopy invariant. More precisely, we have HdR
n (A) ∼=

HdR
n (A⊗ C∞(R)). As a consequence, we deduce from the previous theorem that

KerB is also a homotopy invariant which in turn implies the following theorem:

THEOREM . Let Ar be the algebra of C∞ functions on the canonical simplex17

∆r with values in A, interpreted as the completed tensor product C∞(∆r) ⊗π

A. Then, the obvious map A −→ Ar induces an isomorphism HCper
n (A) ≈

HCper
n (Ar).

In order to go further, we need a “differential form” version of the Dold-Kan
correspondance. If we denote by C the category of chain complexes (positively
graded and assumed to be C-vector spaces, which is our framework) and by G the
category of simplicial C-vector spaces, they are equivalent. In particular, we can
associate to a chain complex (Cn) a space such that its homotopy groups are the
homology groups of the chain complex. There are many choices of spaces18 which

17We may avoid ”angle problem” by defining ∆r as the affine space of points with coordinates

(t0, t1, ..., tr) in Rr+1 such that t0 + t1, +..., +tr = 1 (we do not assume that ti are ≥ 0.) The
face and degeneracy operators enable us to define a simplicial ring from the C∞(∆r). If X is
a manifold and A a Banach algebra, it is a well know fact that C∞(X)⊗π A may be identified
with the algebra of C∞ functions on X with values in A.

18M. karoubi. Formes différentielles et théotème de Dold-Kan. Journal of Algebra 198, p.
618-626 (1997)
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are equivalent up to homotopy. The one which is the most suitable for our purpose
is the following. Let Ω∗(∆r) be the DGA of usual C∞ differential forms on the
r-simplex. We associate now to (Cn) a double simplicial complex defined on the
second quadrant by

Dp,q(∆r) = Ω−p(∆r)⊗C Cq

The two differentials (which decrease the degrees p and q by 1) are induced by the
differentials on Ω−∗ and C∗. To this double complex we associate the simplicial
complex defined by

Cn(∆r) =
⊕

p+q=n

Dp,q(∆r) =
⊕

q≥n

Ωq−n(∆r)⊗C Cq

where n ∈ Z. There is a remarkable simplicial subgroup of C0(∆∗) : it consists of
closed chains of total degree 0 : it is a subgroup of the direct sum Ωq(∆∗)⊗C Cq

. The face and degeneracy operators are induced by those on Ωq(∆∗). We call it
DK(C∗).

THEOREM . The functor DK : C∗ ,→ DK(C∗) from C to G is inverse up to
homotopy to the well-known category equivalence F : G −→ C . We shall simply
write |C∗| for DK(C∗) and we call it the “simplicial realization” of the chain
complex C∗.

Let X∗ be a simplicial abelian group and let C∗ = F (X∗) be the associated chain
complex. According to the previous theorem, there should be an explicit homotopy
equivalence

φ : X∗ −→ |C∗|

This may be applied to the particular case when X∗ is the C-vector space with
basis the simplicial set BG or EG, whose G is a discrete group. In order to be
more explicit, let C∗ = C∗(EG) be the “homogeneous” Eilenberg-Mac Lane chain
complex defining the homology of BG = G \ EG. We define a simplicial map

Φ : BG −→ |C∗|

by the following formula for g = (g0, g1, ..., gr) of degree r in BG = G \ EG:

Φ(g) =
∑

i

xi ⊗ gj +
∑

(i,j)

xidxj ⊗ {gi, gj}+
∑

(i,j,k)

xidxj ∧ dxk ⊗ {gi, gj , gk}+ ...

where{gi, gj}, {gi, gj , gk}, etc... are the corresponding classes in C∗(BG). Here
xidxj , xidxj∧dxk, etc... are the usual differential forms on the standard r-simplex
∆r with the xi as barycentric coordinates. It is easy to check that φ is the ex-
pected map.
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With these definitions, let us now describe the Chern character in Algebraic K-
theory. For this purpose we consider the double complex

C∗∗(G)

defined in [K2] and C∗∗ = G/C∗∗(G) the quotient complex by the left action of
G. The definition of this double complex follows the same pattern as C∗∗, using
the obvious cyclic module associated to the bar construction of EG. The double
indices in Cp,q(G) or Cp,q(G) are in the same range as before : p ∈ Z, q ∈ N. In
the same way, we put

Cper
n (G) =

∏

p+q=n

Cp,q(G) for n > 0 and

Cper
0 (G) = Ker[

∏

p+q=0

Cp,q(G) −→
∏

p+q=−1

Cp,q(G)],

and analogous definitions for C−
n (G) if n ≥ 0. In particular, we define HC∗(G)

as the homology of the total complex associated to the previous double complex
restricted to the first quadrant. With the method described in [K2], it is easy to
show, using classical homological algebra (see [K2] or the book of Weibel) that

HCn(G) = Hn(G)⊕Hn−2(G)⊕ ...

HC−
n (G) =

∏

k≥0

Hn+2k(G)

HCper
n (G) =

∏

k

Hn+2k(G)

According to the previous considerations, we therefore have well defined maps of
simplicial complexes

BG −→ |C∗(G)| −→ |C−
∗ (G)|

In particular, if G = GL(A), we get a morphism |C∗(G)| −→ |C−
∗ (A)|. If we apply

the + construction, we obtain a well defined map up to homotopy BGL(A)+ −→
|C−
∗ (A)| −→ |C−

∗ (A)| and therefore a homomorphism

Kn(A) −→ HC−
n (A)

defined by Hood and Jones19, generalizing the results obtained in [K2], with the
same method.

In order to define the same type of invariants in topological K-theory, we just
apply the same ideas, but with G = GL(A) replaced by the simplicial group
G∗ = GL(A∗). We write the composition

BG∗ −→ |C∗(G∗)| −→ |C−
∗ (G∗)| −→ |C−

∗ (A∗)| −→ |Cper
∗ (A∗)|

19C. HOOD and J.D.S. JONES. Some algebraic properties of cyclic homology groups. K-theory
1(1987),361-384
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Now comes the crucial fact : since periodic cyclic homology is homotopy invariant,
the space |Cper

∗ (A∗)| is homotopically equivalent to the space |Cper
∗ (A)| and finally

we get the Chern character in topological K-theory defined as a map

BGL(A) −→ |Cper
∗ (A)|

By taking homotopy groups, one finally gets a homomorphism

Ktop
n (A) −→ HCper

n (A)

DEFINITION/THEOREM . Let G∗ be the simplicial group GL(A∗) and let
K(A) be the homotopy fiber of the map

BG∗ −→ |Cper
∗ (A)| −→ |Cper

∗ (A)|/|C−
∗ (A)|

For n > 0, the multiplicative K-theory groups Kn(A) are then defined as the
homotopy groups of the space K(A). We have an exact sequence

Ktop
n+1(A) −→ HCn−1(A) −→ Kn(A) −→ Ktop

n (A) −→ HCn−2(A)

It is easy to see that the composite map

BGL(A)δ −→ BGL(A∗) −→ |Cper
∗ (A∗)| ≈| Cper

∗ (A)|

can be factored through |C−
∗ (A)|. We deduce from this observation a canonical

map from BGL(A)δ to K(A). In the same way, if we denote by G the homotopy
fiber of the map

BGL(A) −→ BGL(A∗)

we have a canonical map from G to |C∗−1(A)|. Thanks to the + construction, we
can write the following diagram of homotopy fibrations (with F = G+) :

ΩBGL(A∗) −−−−→ F −−−−→ BGL(A)+ −−−−→ BGL(A∗)
"

"
"

"

ΩBGL(A∗) −−−−→ Ω|C∗−2(A)| −−−−→ K(A) −−−−→ BGL(A∗)

Applying the functor πn, we find the commutative diagram

Krel
n (A) −→ Kn(A) −→ Ktop

n (A) −→ Krel
n−1(A)

↓ ↓ ‖ ↓
HCn−1(A) −→ Kn(A) −→ Ktop

n (A) −→ HCn−2(A)
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The commutativity of the diagram

HCn−1(A) −→ Kn(A) −→ Ktop
n (A) −→ HCn−2(A)

‖ ↓ ↓ ‖
HCn−1(A) −→ HC−

n (A) −→ HCper
n (A) −→ HCn−2(A)

is a consequence of the homotopy fibrations :

Kn(A) −−−−→ BGL(A∗) −−−−→ |Cper
∗ (A)|/|C−

∗ (A)|
"

"
"

|C−
∗ (A)| −−−−→ |Cper

∗ (A)| −−−−→ |Cper
∗ (A)|/|C−

∗ (A)|

Finally, the commutativity of the diagram

HCn−1(A) −→ HC−
n (A) −→ HCper

n (A) −→ HCn−2(A)
‖ ↓ ↓ ‖

HCn−1(A) −→ HHn(A) −→ HCn(A) −→ HCn−2(A)

follows from the classical definitions (cf. [L], p. 158 for instance).
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