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Recall C⇤
r
(G ), one of our favorite C

⇤-algebras defined by the regular
representation

�G : G ! U(L2(G )), (�G (g)f )(s) := f (g�1
s).

If G is of type 1 (unimodular, separable), the abstract Plancherel
theorem (Dixmier) gives

L
2(G ) ⇠=

Z �

bG
V⇡ ⌦ V⇡⇤dµ(⇡), f (e) =

Z

bG
Tr(⇡(f ))dµ(⇡).

The isomorphism on the left is iso of unitary representations of G ⇥ G .

Here ⇡⇤ is the dual (contragradient) of ⇡, defined on V
⇤
⇡ , by

⇡⇤(g) := ⇡(g�1)⇤; V⇡ ⌦ V⇡⇤ ⇠= V⇡ ⌦ V
⇤
⇡
⇠= B2(V⇡).

The support of µ is the reduced dual bGr , the spectrum of C⇤
r
(G ).

I will first discuss what happens if we consider G as a symmetric space
X = G ⇥ G/diag(G ) and take the image/quotient of C⇤(G ⇥ G ).
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Let G be type 1, unimodular. Let X = G ⇥ G/diag(G ) ⇠= G . Let

A = C
⇤
�X
(G ⇥ G ) = �X (C

⇤(G ⇥ G )) ⇢ B(L2(X )).

By the abstract Plancherel theorem, we have

Â = {⇡ ⌦ ⇡⇤ | ⇡ 2 bGr} ⇢ bGr ⇥
bGr .

Note, Â contains all the limit points of {⇡ ⌦ ⇡⇤
} for ⇡ 2 bGr .

Thus, we may think A as the quotient of C⇤
r
(G )⌦ C

⇤
r
(G ) with spectrum

{⇡ ⌦ ⇡⇤}.

The map f 7! f on C
⇤(G ) induces an (anti-linear) automorphism on

C
⇤(G ), mapping the primitive ideal I⇡ for ⇡ to I⇡⇤ . Thus, the skew

diagonal {⇡⌦ ⇡⇤
} and the diagonal {⇡⌦ ⇡} are homeomorphic (same for

their closures).

So, {⇡ ⌦ ⇡⇤
| ⇡ 2 bGr} is closed in bGr ⇥

bGr i↵ {⇡ ⌦ ⇡ | ⇡ 2 bGr} is closed,
i↵ bGr is Hausdor↵.
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Let us consider for any type 1-C⇤-algebra B , the quotient A of B ⌦ B

whose spectrum Â is {⇡ ⌦ ⇡}, the closure of the diagonal inside B̂ ⇥ B̂ .

Example: B = C0(R)o C2 (by the flip action):

We have B ⇢ C0([0,1),M2(C)) (diagonal matrices at 0).
The spectrum of B is the half-line with double points at the origin.

Then, we have A ⇢ C0([0,1),M4(C)) (diagonal matrices at 0).
Â is the half-line with four points at the origin.

In this case, there is an ideal I of A whose spectrum Î = {⇡ ⌦ ⇡}.
Moreover, I is Morita-equivalent to B .
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Following Knapp, we say G is a linear connected real reductive group if it
is a closed connected subgroup of GL(n,R) stable under transpose. For
example, SL(n,R), SO(n,m)0.

Theorem: Let G be a linear connected real reductive group. Let
X = G ⇥ G/diag(G ) ⇠= G . Consider the quotient

A = C
⇤
�X
(G ⇥ G ) ⇢ B(L2(X )).

Then, there is an ideal I of A whose spectrum is {⇡ ⌦ ⇡⇤
| ⇡ 2 Ĝr}.

In other words, the skew diagonal {⇡⌦⇡⇤
| ⇡ 2 Ĝr} is open in its closure.

Moreover, the ideal I is Morita equivalent to C
⇤
r
(G ), hence they have

isomorphic K -theory.

Theorem: The same assumption on G . The diagonal {⇡ ⌦ ⇡ | ⇡ 2 Ĝr}

is open in its closure. The corresponding ideal-quotient I of C⇤(G ⇥ G )
is Morita-equivalent to C

⇤
r
(G ).

I will illustrate how these properties are uncommon for other groups G ,
and for type 1-C⇤-algebras.
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Proposition: Let X be a topological space. Then, the diagonal �X in
X ⇥ X is open in its closure (i.e. �X is locally closed) if and only if X is
locally Hausdor↵.

Proof: �X is open in �X if and only if for any x in X , there is Ux 3 x

open so that (Ux ⇥ Ux) \�X = �Ux
, i.e. Ux is Hausfor↵.

Example: The half-line with two points at the origin is locally Hausdor↵.

Non-Example: If bA has a non-closed point, then Â is not locally
Hausdor↵. Hence, for any such A, there is no ideal-quotient I of A⌦ A

whose spectrum is {⇡ ⌦ ⇡ | ⇡ 2 Â}.

Non-Example: Let G be the Heisenbeg group

2

4
1 a c

0 1 b

0 0 1

3

5 over the real.

Then, Ĝ = bGr is not locally Hausdor↵: Ĝ is the real line ”with plane at
the origin”.
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Even if B̂ is Hausdor↵, the quotient A of B ⌦ B with spectrum
{⇡ ⌦ ⇡ | ⇡ 2 B̂} are often not Morita equivalent to B :

Example: Take B ⇢ C0([0,1),M2(C)) (scalar matrices at 0). K1
⇠= Z/2.

Then, A ⇢ C0([0,1),M4(C)) (scalar matrices at 0). K1
⇠= Z/4.

Example: Take B a continuous trace C
⇤-algebra with (locally compact,

Hausdor↵) spectrum X . According to the Dixmier-Douady theory,
A = B ⌦X B is Morita-equivalent to B if and only if their DD-invariants
coincide: �B + �B = �B in H

3(X ,Z), i.e. �B = 0. Same conclusion if we
instead use ”the skew-diagonal” B ⌦X B

op. If �B = 0, we have
B = K(C0(X ,HX )), and A is Morita-equivalent to B via continuous field
HX ⌦X K(HX ).
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The main ingredients of the proof of Theorem (briefly):

For G real reductive (in Harish-Chandra’s class), one of the major results
of Harish-Chandra is the Plancherel decomposition of the Schwartz space
C(G ), which is a subspace of L2(G ), but also a dense subalgebra of
C

⇤
r
(G ). The corresponding decomposition of C⇤

r
(G ) was obtained by

Clare, Crisp, and Higson, utilising Hilbert-module techniques:

C
⇤
r
(G ) ⇠=

M

[P]2P

C
⇤
r
(G )P ,

C
⇤
r
(G )P ⇠=

0

@
M

⇠2 bMds

C0(a,K)

1

A
WP

⇠=
M

[⇠]2 bMds/WP

C0(a,K)
WP,⇠

I omit more explanations, but this implies

bGr =
G

[P,⇠]

\C0(a,K)WP,⇠
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If G is connected and linear, there is an extra feature of each summand
C0(a,K)WP,⇠ , due to Kanpp–Stein, and separately by Vogan.

Let K be a maximal compact subgroup of G .

For each P , ⇠, there is a (canonically defined) finite subset SP,⇠ ⇢ bK with
the following properties:

For a (any) rank one projection p⌧ in C
⇤(K ) of type ⌧ 2 SP,⇠,

p⌧C0(a,K)
WP,⇠p⌧

⇠= C0(a/WP,⇠)

and

X

⌧2SP,⇠

C0(a,K)
WP,⇠p⌧C0(a,K)

WP,⇠ = C0(a,K)
WP,⇠ .

These imply that C0(a,K)WP,⇠ has locally Hausdor↵ spectrum. Therefore,
C

⇤
r
(G ) has a locally Hausdor↵ spectrum.
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Remark: There is a linear, disconnected, real reductive G such that bGr is
not locally Hausdor↵.

Example (Vogan): G = (SL(2,R)⇥ SL(2,R))oH8 (quoternionic group).

C
⇤
r
(G ) contains a direct summand that is Morita equivalent to the

following C
⇤-algebra

A ⇢ C0([0,1)⇥ [0,1),M2(C)),

diagonal matrices on {0}⇥ R and on R⇥ {0} and scalar matrices at the
origin (0, 0).

Â is not locally Hausdor↵ at the origin.

10 / 16

Shintaro Nishikawa

Shintaro Nishikawa
M2(C)

Shintaro Nishikawa
C

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa

Shintaro Nishikawa



A homogeneous space G/H is called a real reductive symmetric space if
G is real reductive and H is a symmetric subgroup of G : H is an open
subgroup of G� where � 2 Aut(G ) is an involution (��1 = �).

Examples: G = G1xG1/diag(G1), GLm+n(R)/GLm(R)⇥GLn(R),
SLn(C)/SLn(R), ... and a lot more.

From what we just saw regarding the group case G = G1xG1/diag(G1), it
is expected that the image/quotient of the regular representation

�X : C⇤(G ) ! B(L2(G/H)),

may contain a proper ideal that deserves some attention in terms of
K -theory: C⇤

�G1
(G1 ⇥ G1) has an ideal Morita equivalent to C

⇤
r
(G1) if G1

is linear connected real reductive.

We also know that this is quite delicate: the aforementioned ideal of
C

⇤
�G1

(G1 ⇥ G1) exists i↵ the skew-diagonal {⇡ ⌦ ⇡⇤
} is locally closed i↵

cG1 is locally Hausdor↵.

For symmetric spaces G/H, the situation is analogous but much more
complicated. I will focus on some aspects that are easy to digest.
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The Harish-Chandra’s Plancherel decomposition has been extended to
this setting by van den Ban, Delorme, and Schlichtkrull in the 1990s,
utilizing the work of Flensted-Jensen, Oshima-Matuski, et al on the
discrete series representations (irreducible direct summand) of L2(G/H):

C(G/H) ⇠=
M

[P]2P

C(G/H)P ,

C(G/H)P ⇠=

0

@
M

v2W

M

⇠2 bMH,v,ds

S(aq,H⌦ V)

1

A
WP

⇠=
M

[⇠]2 bMH,ds/WP

S(aq,H⌦V)WP,⇠

To be precise, we need to consider the dense subspace of K -finite
functions, and I also abused some notations.

I omit more explanations, but the crucial di↵erence from the group case
is that C(G/H) is not an algebra, and it is not straightforward to transfer
this decomposition to a decomposition of C⇤

�X
(G ), the image/quotient of

the regular representation

�X : C⇤(G ) ! B(L2(G/H)).

But in some cases, the Plancherel theorem is more than enough to fully
determine C

⇤
�X
(G ).
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Tempered symmetric spaces
A symmetric space (more generally a homogeneous space) G/H is called
a tempered symmetric/homogeneous space if supp(�G/H) ⇢ bGtemp = bGr .

Benoist and Kobayashi classified all reductive pairs (G ,H) such that the
homogeneous space G/H is not tempered. In their work, they showed
that if GC/HC is tempered, then G/H is tempered.

For a symmetric space, the condition for GC/HC being tempered is
equivalent to the following:

We say a symmetric space G/H is well-tempered if for a (any) Cartan
subspace b of q, the centralizer Zg(b) is abelian (thus Zg(b) is a Cartan
subspace of g). Here, q is the orthogonal complement of h in g.

Any well-tempered symmetric space is tempered. If G/H is a complex
symmetric space, the converse holds. These can also be deduced from
the Plancherel theorem and the theory of discrete series.

Examples of well-tempered homogenous spaces: G1 ⇥ G1/diag(G1),
SL(m + n,R)/SO0(m, n), SU(m, n)/SO0(m, n), G/K✏ (G quasi-split),
SL(2n,R)/S(GL(n,R)xGL(n,R)), SO0(2n, 2)/SO(n)⇥ SO0(n, 2), ... 13 / 16



Symmetric spaces of type GC/GR

Let G be a connected complex reductive Lie group, and H be an open
subgroup of its real points. We call G/H a symmetric space of type
GC/GR.

Examples: SL(n,C)/SL(n,R), SO0(n,m)C/SO0(n,m), KC/K , ...

The Plancherel formula for L2(G/H) was obtained by Pascale Harinck
(1990).

Any G/H of type GC/GR is well-tempered: a subspace bq ⇢ q is a Cartan
subspace of q i↵ bh = ibq ⇢ h is a Cartan subspace of h i↵ b = bh + bq is
a Cartan subspace of g. In particular, Zg(bq) = b.
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C ⇤-algebra on symmetric spaces of type GC/GR

Theorem Let G/H be a symmetric space of type GC/GR. Then, the
following are equivalent:

1. K⇤(C⇤
�G/H

(G )) � 0;

2. For a (any) Cartan subspace ah of p \ h, Zh(ah) is abelian, i.e. H is
quasi-split;

3. For a (any) Cartan subspace tq of k \ q, Zk(tq) is abelian;

4. K/K \ H is well-tempered, i.e. KC/(K \ H)C is tempered,

If these conditions are satisfied, we have

K⇤(C
⇤
�G/H

(G )) ⇠=

(L
bKK\H,reg

Z ⇤ = dim(th)

0 ⇤ 6= dim(th)

where th � tq is the most-�-split Cartan of k. By Helgason’s work, bKK\H

is parametrized by their highest weights in ( \T/T \ H)dom where
T = exp(th � tq). The set bKK\H,reg corresponds to strictly dominant
characters.
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C ⇤-algebra on symmetric spaces of type GC/GR
For any symmetric pair (G ,H) defined by involution �, it has a
companion (G ,H 0) defined by involution ✓�.

If (G ,H) is of type GC/GR, its companion is (KC, (K \H)C). ”G = KC”.

The condition of the previous theorem is that the latter is tempered. In
this case, the associated C

⇤-algebras have similar decompositions:

K⇤(C
⇤
�GC/GR

(G )) ⇠=

(L
bKK\H,reg

Z ⇤ = dim(th)

0 ⇤ 6= dim(th)

K⇤(C
⇤
�KC/(K\H)C

(G )) ⇠=

(L
bKK\H,reg

Z ⇤ = dim(tq)

0 ⇤ 6= dim(tq)

where th � tq is the most-�-split Cartan of k.

This ”duality” does not hold without the tempered assumption.
Example: (G ,H) = (KC,K ) where � = ✓. Then, the companion is
(KC,KC) with trivial involution. They have di↵erent K -theory:
Z for (KC,KC) and zero for (KC,K ) (unless K is abelian).
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Thank you for your time listening!
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