
WEIGHTED INEQUALITIES FOR FRACTIONAL MAXIMAL FUNCTIONS

ON THE INFINITE ROOTED k-ARY TREE

ABHISHEK GHOSH AND EZEQUIEL RELA

Abstract. In this article we introduce the fractional Hardy-Littlewood maximal function on the
infinite rooted k-ary tree and study its weighted boundedness. We also provide examples of weights
for which the fractional Hardy-Littlewood maximal function satisfies strong type (p, q) estimates
on the infinite rooted k-ary tree.

1. Introduction and Preliminaries

Weighted estimates for classical operators in Harmonic analysis has always been an active and
growing area of research. The seminal work of Muckenhoupt [Muc72] introduced the Ap class of
weights and characterized the weighted inequalities for the Hardy-Littlewood maximal function.
Subsequently, Muckenhoupt and Wheeden in [MW74] studied weighted inequalities for the frac-
tional Hardy-Littlewood maximal function and introduced the Ap,q class of weights. In this article
we initiate the study of weighted estimates for the fractional Hardy-Littlewood maximal func-
tion on infinite graphs. In recent times there are several substantial works devoted to the study
of the discrete analogues of the Hardy-Littlewood maximal function and the fractional Hardy-
Littlewood maximal function in various frameworks, for instance we refer [CH12, GRM21, GRM22].
Our main motivation for studying this object originates from the recent works [ORRS21] and
[ORR21]. In [ORRS21], Ombrosi, Rivera-Ŕıos and Safe have proved a sharp analog of Fefferman-
Stein inequality for the Hardy-Littlewood maximal operator on the infinite rooted k-ary tree and
subsequently in [ORR21] weighted inequalities for the Hardy-Littlewood maximal function were in-
vestigated by Ombrosi and Rivera-Ŕıos. We also refer the articles [ST16, ST19] where the authors
studied connections between geometrical properties of infinite graphs and the boundedness of the
Hardy-Littlewood maximal operator. To elaborate the results let us start with preliminaries.

For k ≥ 2, we denote T k to be the infinite rooted k-ary tree i.e., the infinite tree where each
vertex has k successors. (T k, d, |.|) is a metric measure space where d is the standard tree distance,
i.e., d(x, y) is the number of edges in the minimal unique path joining x and y and |A| denotes
the counting measure of any set A ⊂ T k. Given any function g,

∫
A g(y) dy :=

∑
y∈A g(y) and

B(x, r) := {y ∈ T k : d(x, y) ≤ r} will denote the ball of radius r centred at the point x ∈ T k. Set
N0 = N ∪ {0}. Now let us define the fractional maximal operator in this setting.

Definition 1.1. Fix 0 ≤ α < 1. Let f be any locally integrable function then the fractional Hardy-
Littlewood maximal operator is defined as follows

Mαf(x) = sup
r∈N0

1

|B(x, r)|1−α

∫
B(x,r)

|f(y)| dy.

For α = 0, M0 is the classical Hardy-Littlewood maximal function and will be simply denoted
by M . Let S(x, r) := {y : d(x, y) = r} denote the sphere, centred at x, of radius r ∈ N0. We also
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define the spherical fractional maximal operator as following

Sαf(x) = sup
r∈N0

1

|S(x, r)|1−α

∫
S(x,r)

|f(y)| dy.

We will denote by Ar,αf(x) := 1
|S(x,r)|1−α

∫
S(x,r) |f | to be the spherical fractional average of f at x

over the sphere S(x, r). Unlike the Euclidean setting, it is easy to see that the operators Mα and
Sα are pointwise equivalent i.e., CαSαf(x) ≤ Mαf(x) ≤ cαSαf(x) for a.e. x ∈ T k. This is due

to the fact that |S(x, r)| ' kr and |B(x,r)|
|S(x,r)| ≤ 2 (see [ORRS21]). Keeping this in mind we will only

write our results for the spherical fractional maximal function which can be easily transferred to
the fractional Hardy-Littlewood maximal function.

Let us review some unweighted boundedness for the spherical fractional maximal operator Sα.

Note that Sαf(x) . ‖f‖α
L1(T k)(Mf(x))1−α which implies that Sα maps L1(T k) to L

1
1−α ,∞(T k)

boundedly, where we have used the fact that M is of weak type (1, 1). Hölder’s inequality implies

that Sα : L1/α(T k) → L∞(T k) boundedly. Interpolating the above two, we obtain that Sα :
Lp(T k) → Lq(T k), where 1

q = 1
p − α and 1 < p < 1

α . In this article we will provide sufficient

conditions on weights w for which Sα maps Lp(w) to Lq(w) with 1 < p ≤ q <∞.
We would like to point out that in [ORR21] the authors showed that there exist weights for

which the Hardy-Littlewood maximal function is bounded from Lp(T k) to itself but the obvious
Muckenhoupt-type condition does not hold. This suggests that the classical Ap-theory is not appli-
cable for the infinite rooted k-ary tree. To overcome this difficulty, let us start with obtaining some
useful necessary conditions for the boundedness of the spherical fractional Hardy-Littlewood max-
imal function on the infinite rooted k-ary tree.

For any set A ⊂ T k and any weight w, denote w(A) :=
∑

x∈Aw(x). It is easy to see that if Sα
maps Lp(w) to Lq(w) then for any two finite subsets E and F of T k and any r ∈ N0 we have∑

x∈E

w(F ∩ S(x, r))

|S(x, r)|1−α
=
∑
x∈E

Ar,α(wχF )(x)

=

∫
T k
χE(x)Ar,α(wχF )(x)

=

∫
T k
Ar,α(χE)(x)w(x)χF (x)

≤ ‖Ar,αχE‖Lq(w)‖χF ‖Lq′ (w)

. ‖χE‖Lp(w)‖χF ‖Lq′ (w) . w(E)
1
pw(F )

1− 1
q ,

where we have used the self-adjointness of the operator Ar,α. Hence the condition

(1.1)
∑
x∈E

w(F ∩ S(x, r)) . kr(1−α)w(E)
1
pw(F )

1− 1
q

is a necessary condition for the boundedness of Sα from Lp(w) to Lq(w). However, the condition
(1.1) will not be sufficient for the boundedness of Sα, but assuming little better decay on k we are
able to obtain the boundedness. Motivated by this we define the following class of weights.

Definition 1.2. Let 1 < p, q <∞ and 0 < α < 1. We say w ∈ Zε,αp,q if there exist ε ∈ (0, 1), and a
constant C > 0 such that for all r ∈ N and all measurable sets E,F ⊂ T k we have∑

x∈E
w(F ∩ S(x, r)) ≤ C kεr(1−α)w(E)

1
pw(F )

1− 1
q .(1.2)

Now we are at a position to state the main result of this article.
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Theorem 1.3. Let 1 < p ≤ q <∞ and 0 < α < 1. Then for w ∈ Zε,αp,q we have Sα : Lp(w)→ Lq(w)
boundedly.

We note here that the exponents p, q in the above theorem are not related to the parameter α
and this might look strange, compared to the unweighted theory. The key is that in order to have a
nontrivial example of a weight belonging to the class Zε,αp,q satisfying (1.2) we will need to consider
the classical condition 1

q = 1
p − α (see Theorem 1.4 and Theorem 1.5).

Since the volume of the balls grows exponentially in the infinite rooted k-ary tree, i.e., |B(x,r)|
|B(x,r/2)| '

kr/2 →∞ as r →∞, the space (T k, d, |.|) is not even an upper-doubling space. Therefore, covering
arguments and Calderón-Zygmund decomposition are not well suited here. However, overcoming
these obstacles, the weak type (1, 1) estimate for the Hardy-Littlewood maximal function on infinite
rooted k-ary tree was obtained in [NT10]. In [NT10], Naor and Tao developed an ingenious strategy,
based on “expander” properties of graphs and combinatorial arguments, to obtain the weak type
(1, 1) boundedness of the Hardy-Littlewood maximal function with bounds independent of k (see
Theorem 1.5 in [NT10]). We would also like to note that, in [CMS10], the same result was proved
using a different approach. The idea of our proofs is inspired by the works [ORRS21] and [ORR21]
where they have brilliantly implemented the techniques developed by Naor and Tao in the weighted
setting. We also refer the article [ST16] where the authors extend the result of Naor and Tao to
more general infinite graphs. We end this section by constructing examples of appropriate weights.

Let us introduce some notations. Set T0 as the set containing the root of the infinite tree and Ti
denotes the set of children of the vertices in Ti−1 for all i ≥ 1. Then T k =

∞⋃
i=0
Ti. The examples

of weights belonging to the class Zε,αp,q are not easy to obtain since the condition (1.2) is generally
difficult to verify. One of the primary reason being the fact that the condition (1.2) involves
arbitrary sets and their possible interactions with multiple levels Ti. To overcome this difficulty, let
us first provide a simpler criterion which only depends on the behaviour of the weight on individual
scales Ti. In that direction our result reads as follows.

Theorem 1.4. Let 1
q = 1

p − α with 1 < p < 1
α and 0 < α < 1. Denote δ = 1−αp−αp2

1−αp and let w be

a weight satisfying the following condition: For r ∈ N0 and |i− j| ≤ r, we have that

(1.3) w(Ti ∩ S(x, r)) . k
r+i−j

2
(p−δ)krδw(x)q/p for all x ∈ Tj .

Then w ∈ Zε,αp,q for ε = 1−pα
1−α .

The proof of the above theorem relies on an optimization technique developed in [NT10, ORR21].
However, we modify it significantly since in our case we are dealing with the much more general
situation of off-diagonal estimates for the fractional maximal function. Finally the following result
provides some concrete example of weights.

Theorem 1.5. Let 0 < α < 1, 1 < p < 1
α and 1

q = 1
p − α. Define

w(x) =
∑
j≥0

kβjχTj ,

where 0 ≤ β ≤ p(p−1)
q . Then w belongs to Zε,αp,q for ε = 1−pα

1−α and hence Sα maps Lp(w) to Lq(w)

boundedly.

The article is organized as follows. In the next section we prove the main boundedness result
i.e., Theorem 1.3. Section 3 is devoted in proving Theorem 1.4 and Theorem 1.5. Throughout this
article A . B abbreviates that A ≤ CB where the constant C is independent of A and B. We will
also be using the inequality

∑∞
j=0 a

θ
j ≤ (

∑∞
j=0 aj)

θ, where aj ≥ 0 and 1 ≤ θ <∞, frequently.
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2. Main results

Let us prove the following lemma.

Lemma 2.1. Let 1 < p ≤ q < ∞, 0 < α < 1 and w ∈ Zε,αp,q for some ε ∈ (0, 1). Then for
λ > 0, r ∈ N, we have the following estimate

w(Ar,αf > λ) .
1

(2β − 1)q

∑
n∈N0: 1≤2n≤kr

2nq
(
kr

2n

)qβ krqε(1−α)
krq

w

({
x ∈ T k :

|f |krα

λ
≥ 2n−1

}) q
p

for all β ∈ (0, 1).

Proof. Without loss of generality let us assume f to be a non-negative function. We can write

f ≤ 1

2
+

∑
n∈N0:1≤2n≤kr

2nχEn + fχ{f≥ 1
2
krα},

where En = {2n−1 ≤ f < 2n}. This implies

Ar,αf(x) ≤ krα

2
+

∑
n∈N0:1≤2n≤kr

2nAr,α(χEn)(x) +Ar,α(fχ{f≥ 1
2
krα})(x).

Consider the set E = {x : Ar,αf(x) > krα}. Using the above estimate, we obtain the following
inequality for all x ∈ E∑

n∈N0:1≤2n≤kr
2nAr,α(χEn)(x) +Ar,α(fχ{f≥ 1

2
krα})(x) ≥ 1

2
krα,

which implies that ∑
n∈N0:1≤2n≤kr

2nAr,α

(
1

krα
χEn

)
(x) +Ar,α

(
1

krα
fχ{f≥ 1

2
krα}

)
(x) ≥ 1

2
.

Hence w(E) ≤ w(I) + w(II), where

I :=

{
x :

∑
n∈N0:1≤2n≤kr

2nAr,α

(
1

krα
χEn

)
(x) ≥ 1

4

}
,

and

II :=
{
x : Ar,α

(
1

krα
fχ{f≥ 1

2
krα}

)
(x) ≥ 0

}
.

Let us fix some β ∈ (0, 1). For x ∈ I, there exist some n ∈ N0 with 1 ≤ 2n ≤ kr such that

2nAr,α

(
1

krα
χEn

)
(x) ≥ 1

16
(2β − 1)

(
2n

kr

)β
.

Otherwise if we have 2nAr,α
(

1
krαχEn

)
(x) < 1

16(2β − 1)
(
2n

kr

)β
, for all n ∈ N0 with 1 ≤ 2n ≤ kr, we

will have a contradiction.
Let us define

Fn :=

{
x : Ar,α(χEn)(x) ≥ 1

2n+4
(2β − 1)krα

(
2n

kr

)β }
.

Thus to estimate w(I), it is enough to estimate
∑

n∈N0:1≤2n≤kr
w(Fn). Let us estimate each w(Fn).

Using the self-adjointness of the operator Ar,α and since Fn is finite we obtain∑
x∈En

w(Fn ∩ S(x, r))

|S(x, r)|1−α
=

∑
x∈En

Ar,α(wχFn)(x)
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=

∫
T k
χEnAr,α(wχFn)

=

∫
T k
Ar,α(χEn)wχFn

≥ 1

2n+4
(2β − 1)krα

(
2n

kr

)β
w(Fn).

Recall that the condition on the weight is as follows:

(2.1)
∑
x∈E

w(F ∩ S(x, r)) . krε(1−α)w(F )1/q
′
w(E)1/p.

From the above two estimates we obtain

1

2n+4
(2β − 1)krα

(
2n

kr

)β
w(Fn) .

krε(1−α)

kr(1−α)
w(Fn)1/q

′
w(En)1/p,

which is equivalent to

w(Fn)1/q .
1

2β − 1
2n
(
kr

2n

)β krε(1−α)
kr

w(En)1/p.

We then obtain that

(2.2) w(Fn) .
1

(2β − 1)q
2nq
(
kr

2n

)qβ krqε(1−α)
krq

w
(
{f ≥ 2n−1}

)q/p
.

Thus we have the following estimate

(2.3) w(I) ≤
∑

n∈N0:1≤2n≤kr

1

(2β − 1)q
2nq
(
kr

2n

)qβ krqε(1−α)
krq

w
(
{f ≥ 2n−1}

)q/p
.

Now let us estimate w(II).

w(II) := w

({
x : Ar,α

(
1

krα
fχ{f≥ 1

2
krα}

)
(x) ≥ 0

})
= w

({
x : Ar,α

(
fχ{f≥ 1

2
krα}

)
(x) ≥ 0

})
≤ w

 ⋃
y∈{f≥ 1

2
krα}

S(y, r)


≤

∑
y∈{f≥ 1

2
krα}

w(S(y, r)).(2.4)

If we take E = {y} and F = S(y, r) in (2.1), we obtain

w(S(y, r)) ≤ krε(1−α)w(S(y, r))1/q
′
w(y)1/p,

yielding

w(S(y, r)) ≤ krε(1−α)qw(y)q/p.

Plugging the above estimate in (2.4) we obtain

w(II) ≤
∑

y∈{f≥ 1
2
krα}

krε(1−α)qw(y)q/p ≤ krε(1−α)qw
({

f ≥ 1

2
krα
})q/p

,
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where we have used the fact that q ≥ p in the last inequality. Observe that the estimate for w(II)
is same as the final term in the summation in (2.3). Combining the above estimates we obtain

w({x : Ar,αf > krα}) ≤ 1

(2β − 1)q

∑
n∈N0:1≤2n≤kr

2nq
(
kr

2n

)qβ krqε(1−α)
krq

w({f ≥ 2n−1})q/p.

Using the above estimate and homogeneity we obtain

w({Ar,αf > λ}) ≤ 1

(2β − 1)q

∑
n∈N0:1≤2n≤kr

2nq
(
kr

2n

)qβ krqε(1−α)
krq

w

({
x ∈ T k :

fkrα

λ
≥ 2n−1

})q/p
.

This completes the proof of the lemma. �

Now we prove the main theorem of this article.

Proof of Theorem 1.3. We start with estimating the norm ‖Ar,α‖qLq(w) by using the well know layer-

cake formula

‖Ar,α‖qLq(w) = q

∫ ∞
0

λq−1w(Ar,αf(x) > λ) dλ.

Then,

‖Ar,α‖qLq(w) ≤ cβ,q

∫ ∞
0

λq−1
∑

n∈N0;1≤2n≤kr
2nq
(
kr

2n

)qβ krqε(1−α)
krq

w

(
|f |krα

λ
≥ 2n−1

)q/p
dλ

≤ cβ,q
∑

n∈N0;1≤2n≤kr
2nq
(
kr

2n

)qβ krqε(1−α)
krq

∫ ∞
0

λq−1w

(
|f |krα

λ
≥ 2n−1

)q/p
dλ

= cβ,q
∑

n∈N0;1≤2n≤kr
2nq
(
kr

2n

)qβ krqε(1−α)
krq

∫ ∞
0

λq−1

∑
x∈T k

χ{ |f |k
rα

λ
≥2n−1}(x)w(x)

q/p

dλ

Using Minkowski’s inequality the above is dominated by the following

cβ,q
∑

n∈N0;1≤2n≤kr
2nq
(
kr

2n

)qβ krqε(1−α)
krq

∑
x∈T k

(∫ ∞
0

χ{x: |f(x)|k
rα

λ
≥2n−1}λ

q−1 dλ

)p/q
w(x) dx

q/p

≤ cβ,q
∑

n∈N0;1≤2n≤kr
2nq
(
kr

2n

)qβ krqε(1−α)
krq

∑
x∈T k

|f(x)|pkrαp

2np
w(x)

q/p

≤ cβ,q
1

krq(1−β−ε(1−α)−α)

∑
n≥0

1

2nqβ

∑
x∈T k

|f(x)|pw(x)

q/p

≤ cβ,q
1

krq(1−β−ε(1−α)−α)
‖f‖qLp(w).

Now

‖Sα‖Lq(w) ≤
∞∑
r=0

‖Ar,αf‖Lq(w)

≤ cβ,q
∞∑
r=0

1

kr(1−β−ε(1−α)−α)
‖f‖Lp(w)

. ‖f‖Lp(w),
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provided we choose β such that (1− β − ε(1−α)−α) > 0, i.e., β < (1− ε)(1−α). This completes
the theorem. �

3. Examples

This section is devoted in constructing examples of weights belonging to the class Zε,αp,q .

Proof of Theorem 1.4: Let E and F be any two subsets of T k. Define Ej = E∩Tj and Fi = F ∩Ti.
Then ∑

x∈E
w(F ∩ S(x, r)) =

∞∑
m=0

∑
i,j∈N0

i=j+r−2m

∑
x∈Ej

w(Fi ∩ S(x, r)),(3.1)

since for x ∈ Ej and y ∈ Fi we have d(x, y) = r if and only if i = j+r−2m for some m ∈ {0, · · · , r}.
The following estimate holds trivially since for each member of Ti there can be at most km elements
of Tj with distance r. ∑

x∈Ej

w(Fi ∩ S(x, r)) ≤ kmw(Fi).(3.2)

Now by our assumption (1.3),

(3.3)
∑
x∈Ej

w(Fi ∩ S(x, r)) ≤
∑
x∈Ej

k
r+i−j

2
(p−δ)krδw(x)q/p ≤ k(r−m)(p−δ)krδw(Ej)

q/p.

Hence from (3.2) and (3.3) we obtain∑
x∈Ej

w(Fi ∩ S(x, r)) . min
{
k(r−m)(p−δ)krδw(Ej)

q/p, kmw(Fi)
}
.

Therefore the rest of the proof is devoted to obtain an estimate for the following quantity:

M :=

∞∑
m=0

∑
i,j∈N0

i=j+r−2m

min
{
k(r−m)(p−δ)krδw(Ej)

q/p, kmw(Fi)
}
.

Denote Aj =
w(Ej)

q/p

k(p−δ)j
and Bj =

w(Fj)
kj

for j ≥ 0 and Aj = Bj = 0 for j < 0. Observe that

(3.4)
∑
j≥0

k(p−δ)jAj ≤ w(E)q/p and
∑
j≥0

kjBj = w(F ).

Note that for a real parameter ρ > 0 to be chosen later we have

M =
∞∑
m=0

∑
i,j∈N0

i=j+r−2m

min
{
k(r−m+j)(p−δ)krδAj , k

m+jBi

}

=
∞∑
m=0

∑
i,j∈N0

i=j+r−2m

min
{
k

(i+j+r)(p−δ)
2 krδAj , k

m+jBi

}

≤ k
p+δ
2
r
∞∑
j=0

∑
i<j+ρ

k
(i+j)(p−δ)

2 Aj + kr/2
∞∑
i=0

∑
j≤i−ρ

k
i+j
2 Bi

≤ k
p+δ
2
rk

ρ(p−δ)
2

∞∑
j=0

kj(p−δ)Aj + kr/2k−
ρ
2

∞∑
i=0

kiBi
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≤ k
p+δ
2
rk

ρ(p−δ)
2 w(E)q/p + kr/2k−

ρ
2w(F ),(3.5)

where in the last inequality we have used (3.4). We need to optimize the parameter ρ in order to
complete the proof. Let

φa,b(ρ) := a k
ρ(p−δ)

2 + k−
ρ
2 b

for some positive constants a and b. The function φ attains its absolute minimum at the point

ρ = 2
p+1−δ logk

(
b

a(p−δ)

)
.

Now choosing a0 = k
p+δ
2
rw(E)q/p and b0 = kr/2w(F ), we obtain that (3.5) attains its minimum

value if we choose ρ = ρ0 := 2
p+1−δ logk

(
kr/2w(F )

k
p+δ
2 rw(E)q/p(p−δ)

)
and the value is given by the following

φa0,b0(ρ0) = k
p+δ
2
rw(E)

q
pk

p−δ
p+1−δ logk

(
k
r
2 w(F )

(p−δ)k
p+δ
2 r

w(E)
q
p

)
+ k

r
2w(F )k

−1
p+1−δ logk

(
k
r
2 w(F )

(p−δ)k
p+δ
2 r

w(E)
q
p

)

= k

(
p+δ
2
− (p−δ)(p+δ−1)

p+1−δ

)
r
w(E)

q
p

(
w(F )

(p− δ)w(E)
q
p

) p−δ
p+1−δ

+ k
r
2

(
1− 1−p−δ

p+1−δ

)
w(F )

(
(p− δ)w(E)

q
p

w(F )

) 1
p+1−δ

We conclude that

(3.6) φa0,b0(ρ0) . k
p

p−δ+1
r
w(F )

p−δ
p+1−δw(E)

q
p(p+1−δ) .

For the choice of the δ = 1−αp−αp2
1−αp and 1

q = 1
p − α, we have

p− δ
p+ 1− δ

=
p− 1−αp−αp2

1−αp

p+ 1− 1−αp−αp2
1−αp

=
p− 1 + αp

p

=
1

p′
+ α = 1− 1

q
.

Similarly 1
p−δ+1 = 1−αp

p = 1
q . Combining these facts with (3.6) we conclude∑

x∈E
w(F ∩ S(x, r)) ≤ Cp,αk

p
p−δ+1

r
w(F )

p−δ
p+1−δw(E)

q
p(p+1−δ)

= Cp,αk
(1−αp)rw(E)

1
pw(F )

1− 1
q

= Cp,αk
(1−α)εrw(E)

1
pw(F )

1− 1
q ,

provided we choose ε = 1−pα
1−α ∈ (0, 1). This completes the proof. �

Proof of Theorem 1.5. For β = 0, the weight is the constant weight and the result trivially follows.

Hence we assume 0 < β ≤ p(p−1)
q . We have 1 < p < 1

α and 1
q = 1

p − α.

w(x) =
∑
j≥0

kβjχTj .

It is sufficient to show that w satisfies condition (1.3). Let x ∈ Tj and |i−j| ≤ r and m ∈ {0, · · · , r}
be the unique integer such that i = j + r − 2m. Then

w(Ti ∩ S(x, r)) ≤ |Ti ∩ S(x, r)|kβi
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≤ kr−mk
(i−j)βq

p k
i(β−βq

p
)
k
jβq
p

= kr−mk
(r−2m)βq

p k
i(β−βq

p
)
w(x)q/p

= k
(r−m)(1+2βq

p
)
k
−r βq

p k
i(β−βq

p
)
w(x)q/p.

In order to complete the proof it is enough to show that the following inequality holds

k
(r−m)(1+2βq

p
)
k
−r βq

p k
i(β−βq

p
) ≤ k(r−m)(p−δ)krδ.

But this is equivalent to

(3.7) (r −m)

(
1 + 2

βq

p
− p+ δ

)
≤ rδ + r

βq

p
− i(β − βq

p
).

Since (β − βq
p ) ≤ 0 and we need to prove the above for all i ≥ 0, thus (3.7) will follow if we ensure

the following

r

(
1 + 2

βq

p
− p+ δ

)
≤ rδ + r

βq

p
⇐⇒ β ≤ p(p− 1)

q
.

This completes the proof of Theorem 1.5. �

Remark 3.1 (Two weight estimates). We would like to highlight that approach is also applicable
in the two weight setting. Let u, v be two weights on T k satisfying the following condition: Let
1 < p ≤ q <∞. There exists ε ∈ (0, 1) such that for all E,F ⊂ T k and r ∈ N0∑

x∈E
u(F ∩ S(x, r)) ≤ C kεr(1−α)v(E)

1
pu(F )

1− 1
q .(3.8)

Then one can prove Sα maps Lp(v) to Lq(u). We just point out that arguing as in Lemma 2.1,
under the condition (3.8) the following holds

u({Ar,αf > λ}) ≤ 1

(2β − 1)q

∑
n∈N0;1≤2n≤kr

2nq
(
kr

2n

)qβ krqε(1−α)
krq

v

({
x ∈ T k :

|f |krα

λ
≥ 2n−1

})q/p
,

for all λ > 0, r ∈ N0 and β ∈ (0, 1). After this the proof follows the exact arguments as in
Theorem 1.3 with necessary modifications. It is also possible to provide an analogous condition of
(1.3) in the two weight setting but for brevity we do not include it here.
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[GRM21] Cristian González-Riquelme and José Madrid, Sharp inequalities for maximal operators on finite graphs,
J. Geom. Anal. 31 (2021), no. 10, 9708–9744.
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